

REVERT: Runtime Verification for Real-Time
Systems

Conference Paper

CISTER-TR-161006

Sangeeth Kochanthara

Geoffrey Nelissen

David Pereira

Rahul Purandare

Conference Paper CISTER-TR-161006 REVERT: Runtime Verification for Real-Time Systems

© CISTER Research Center
www.cister.isep.ipp.pt

1

REVERT: Runtime Verification for Real-Time Systems

Sangeeth Kochanthara, Geoffrey Nelissen, David Pereira, Rahul Purandare

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Real-time systems are becoming more complex andopen, thus increasing their development and verification
costs.Although several static verification tools have been proposedover the last decades, they suffer from
scalability and precisionproblems. As a result, the tools fail to cover all the necessarysafety properties for realistic
real-time applications involving alarge number of components and tasks. Runtime verification is aformal
technique that verifies properties during system executionwith the support of monitors. The monitors are
generatedfrom formal languages using correct-by-construction generationmethods. Runtime verification can thus
be used as a complementor replacement for static verification approaches. The currentstate-of-the-art tools either
do not have notion of time, or sufferfrom the potential blowup of states at run-time. In this paper,we propose
REVERT, a framework developed with a focus onthe verification of functional and non-functional properties
withtiming constraints. The contribution of this work is twofold: (i) adomain-specific specification language allowing
the definition ofrequirements for real-time applications; (ii) a novel mechanism togenerate monitors, with state-
space and time guarantees, capableof identifying and reacting to timing properties defined with theproposed
specification language.

REVERT: Runtime Verification for Real-Time

Systems

Sangeeth Kochanthara

IIIT-Delhi,

India

Geoffrey Nelissen

CISTER/INESC TEC, ISEP,

Portugal

David Pereira

CISTER/INESC TEC, ISEP,

Portugal

Rahul Purandare

IIIT-Delhi,

India

Abstract—Real-time systems are becoming more complex and
open, thus increasing their development and verification costs.
Although several static verification tools have been proposed
over the last decades, they suffer from scalability and precision
problems. As a result, the tools fail to cover all the necessary
safety properties for realistic real-time applications involving a
large number of components and tasks. Runtime verification is a
formal technique that verifies properties during system execution
with the support of monitors. The monitors are generated
from formal languages using correct-by-construction generation
methods. Runtime verification can thus be used as a complement
or replacement for static verification approaches. The current
state-of-the-art tools either do not have notion of time, or suffer
from the potential blowup of states at run-time. In this paper,
we propose REVERT, a framework developed with a focus on
the verification of functional and non-functional properties with
timing constraints. The contribution of this work is twofold: (i) a
domain-specific specification language allowing the definition of
requirements for real-time applications; (ii) a novel mechanism to
generate monitors, with state-space and time guarantees, capable
of identifying and reacting to timing properties defined with the
proposed specification language.

I. INTRODUCTION

The time at which a result is produced by Real-Time

Systems (RTS) is as important as their functional correctness.

Depending on the application domain and on the level of

criticality associated with the application, failing to meet some

timing constraints can lead to drastic consequences for the

system’s environment and the agents involved in the system’s

operation. Due to the strong reliability and predictability

demanded from these systems, verification and validation

are fundamental activities often required to be performed

according to directives of legal certification entities [7].

Static verification is one of the means to address the strong

reliability and predictability demands. However, static verifi-

cation experiences practical limitations such as undecidability

of properties of the underlying formal model, or blowup of the

potential states to track. Moreover, extra-functional properties

like the time at which events occur are only available at run-

time. This scenario makes Runtime Verification (RV) tech-

niques the natural candidates to address the current limitations

of static approaches [9].

The earliest works in the RV literature focused on event-

triggered monitoring in which monitors are invoked on each

event occurrence that is being monitored. RMOR [5] and

MOP [4], for instance, use aspect-oriented programming to

instrument the target application’s source code. Such methods,

however, have unpredictable overheads [10] making them

unsuitable to RTS. Moreover, aspect-oriented programming

may impact the timing and correctness of the target system

and may interfere with certifiability constraints.

In order to make RV suitable to RTS, Zhu et al. [12]

proposed predictable monitoring which ensures temporal non-

interference of the system being monitored. More recently,

Navabpour et al. introduced Rithm [10] for RV on many-

core platforms using LTL 3-valued logic to specify properties.

Rithm is based on a time-triggered framework. Rithm can use a

GPU to improve the responsiveness of the monitors by parallel

execution of monitors on accumulated traces. However, it

may face a trade-off between responsiveness and efficiency

since execution of parallel monitor for each event occurrence

in real-time will reduce efficiency. Furthermore, there is a

significant overhead incurred while transferring data between

the host monitoring process on the CPU and the monitoring

threads on the GPU. In comparison, self-monitoring [2], where

monitoring code is directly inserted in the application code,

has a better response time, but with the potential drawback

of hampering the timing properties of the program being

monitored, as well as linking the behavior of the monitors

to the behavior of the monitored tasks. The main limitation

of Rithm though is its lack of notion of time. It relies on

the relative ordering of events but cannot specify timing

constraints on a sequence of events.

RuleR [6], RT-Mac [11], and Copilot [8] are examples of

tools with notion of time. RuleR has a highly expressive

monitoring architecture which models constraints as rules.

Yet, RTS properties may be difficult to model as rules which

makes RuleR hard to comprehend, error-prone, and better

suited for domain experts rather than for industrial developers.

Notably, Copilot is one of the RV tools designed to handle

ultra critical systems and uses Satisfiability Modulo Theories

(SMT) based k-induction [8] to prove invariant properties of

generated monitors. Due to the non-deterministic properties of

timed automata models, the tools with notion of time may have

to keep track of multiple possible states at each time instant. It

was shown that, under such models, the number of states that

need to be tracked by the monitor may grow exponentially [1].

Therefore the memory space and the computing time required

by those tools are hard to predict.

Contributions. In this paper, we propose a new specification

language named REVERT. It supports timing constraints on

top of events relative ordering. It is designed to be simple

and easy to learn. As a second contribution, we also present

a new method to generate complete finite deterministic timed

automata from the specification written with REVERT.

We argue that this new method guarantees that the generated

monitor has to keep track of only one state at any point in

run-time, thus avoiding the potential blowup in the number of

states of the generated monitor that most RV frameworks en-

counter. This makes REVERT an efficient and expressive inline

runtime verification framework for safety critical systems.

II. SPECIFICATION LANGUAGE

REVERT is a new specification language for real-time

applications designed with usability and easiness in mind.

REVERT is a combination of state machine, extended regular

expressions, boolean expressions, and timing constraints.

REVERT relies on external events to reason about traces.

Properties on execution patterns or execution order of events,

that must be enforced during the application run-time, are

specified using extended regular expressions. To express tim-

ing constraints on a sequence of events we use three high-level

operators: time, duration and jitter (refer to section III

for a formal definition). These operators are then automatically

converted to finite timed automata. The syntactic structure of

a monitor specification in REVERT is presented below:

monitor mi {
observe { ev1 , . . ., evl }
variables {v1 : type, . . ., vj : type }

jobs{
j1{
start: {ev1 , ev2}
suspend: {ev3}
resume: {ev1}
complete: {ev6}
},

. . .,

jp{. . .}
}

nodes { n1 , . . ., nk }
initial { nq }

node n1 { init1 prop1 trans1 }
. . .

node nk { initk propk transk }
}

Listing 1: Structure of a monitor specification in REVERT

The observe statement specifies the events that are mon-

itored by the monitor mi, out of the complete set of events

produced by the monitored application. The complete set of

events is specified in external files included in the specifica-

tion.

The variables statement defines variables local to the

monitor mi; The jobs statement declares the set of jobs asso-

ciated with different tasks. Each job specification is defined by

the set of events associated with its lifecycle (from its release

to its completion). Each job is defined using the following

four sets of events; start, suspend, resume and complete,

which contain events related to the release, suspension (for

instance, due to preemption, unavailability of a shared resource

or a self-suspension), resumption, and completion of the job,

respectively.

The nodes statement declares identifiers of all the nodes of

the monitor. Those nodes model the different states that can

be reached by a finite state machine, which determine how the

properties to be monitored evolve with the system state. The

initial statement declares the node in which the monitor

will be active when it starts its execution. The behavior of

the monitor for each node ni is specified in a node block

with the corresponding name. A node block ni includes some

initialization code initi, the set of properties that need to be

monitored propi, and the set of transitions transi from the

current node ni to any other node defined in the monitor. The

transitions between the nodes are guarded by guards based on

the success or failure of the properties monitored in that node.

The structure of the specification language is built on top

of two main observations. First, real-time systems may be

dynamic, adapting to the changes in the environment, their

workload, and the type of operations that must be performed at

a given time or reacting to detected anomalies. Consequently,

the properties that must be verified by the monitors may

change over time, and it should be possible to specify different

modes of operations that are activated depending on some

constraints. In the monitor specification as presented in Listing

1, different nodes can be seen as different modes of execution.

Transitions can be used to specify mode changes or the activa-

tion of corrective measures in case of a specification violation.

The definition of a corrective action and the mechanism for

its execution are not in the scope of this paper.

As a second observation, we realized that the number of

timing properties that must be verifiable are rather limited

and can all be expressed with a combination of the three

operators time, duration and jitter, which return the time

taken by a sequence of events, the execution time of a job,

and the jitter on a timing property, respectively. The time

operator may, for instance, be used to verify that a deadline,

a period or a minimum separation time between two events is

respected. The duration operator is useful to check that the

execution time of a job does not exceed its budget or estimated

worst-case execution time, or to ensure that the interference

suffered by one task due to other tasks is bounded. Finally, the

jitter operator may be used to bound the variation on any

timing property. It can be argued that similar properties can be

encoded in existing frameworks such as RULER and RT-MaC.

However, they are not all intrinsic constructs of the language,

which renders their specification difficult and error-prone to

inexperienced users.

The specification language does not explicitly impose but

expects the guards on the transitions to be mutually exclusive.

If some non-determinism exists in the specification due to non-

mutually exclusive node transitions, it is resolved during the

monitor generation using implicit priorities. Transitions are

prioritized in the order of their declarations, thereby ensuring

that there is only one active node at any time.

III. MODEL

Let Σ be the set of all observable events in the application.

The monitoring model considers a finite set of monitors

M = {m1, . . . ,mk}, where each monitor mi ∈ M is a

tuple (Pi, Ei, Ai) such that Ei ⊆ Σ specifies the subset of

events of interest for the monitor mi, Pi is a collection of

properties over Ei, and Ai is a structure (Ni, νi) such that

Ni is the set of states that the monitor mi can reach, and

νi : Ni → Gi → Ni is a transition function dependent on

a transition guard that is a member of the set of guarded

expressions Gi. Each guarded expression is expressed as the

success or the failure of one property in Pi. Properties in Pi

can be expressed as logical expressions and extended regular

expressions (ERE) inductively defined over Ei.

Logical expressions extend the traditional propositional

logic with the time-related predicates time(α) ⊙ val,

duration(ji) ⊙ val and jitter(ρ) ⊙ val, where α is an

ERE, ji is the identifier of a job (see section II), ρ is either

a time or a duration predicate, ⊙ ∈ {<,≤,=,≥, >},

and val is a natural number. Assuming that the function

∆ returns the timestamp associated with any event in Σ,

the semantics of the previous three predicates are defined

as follows: if first and last are the events that denote the

start and the end of α, respectively, then time(α) ⊙ val

holds iff (∆(last) - ∆(first)) ⊙ val; similarly, let start,

suspk, resk, and comp be the events that denote the start,

the kth suspension, the kth resumption, and the completion

of the job ji, then duration(ji) ⊙ val holds iff (∆(comp)

- ∆(start) -
∑

k(∆(resk) −∆(suspk))) ⊙ val; finally for the

case of jitter(ρ) ⊙ val, the predicate holds iff (maxt(ρ)−
mint(ρ)) ⊙ val where maxt and mint return the maximum

and minimum value of ρ until time t.

Formally, Extended Timed Regular Expressions (ETREs)

used in REVERT are defined as follows. Let Σ be a nonempty

finite set of alphabets and let I be a closed interval [a, b] with

a, b ∈ N
+ and a ≤ b. The set of Extended Timed Regular

Expressions (ETRE) is inductively defined by the following

BNF grammar:

α ::= 0 | 1 | e ∈ Σ |α ∨ α |α.α |α⋆ | 〈α〉I | �α.

where 0 is the empty set, 1 is the set containing the null string,

‘∨’ is the logical or, ‘.’ is the concatenation, ‘⋆’ is the Kleene’s

star operator, 〈α〉I is defined as time(α) ∈ I , and � is a newly

introduced operator. The introduction of the operator � is

based on the observation that regular expressions may become

extremely complex when (i) the number of monitored event

increases but (ii) some properties refer only to a small subset

of those events. For instance, specifying that the response time

of a task must be smaller than its deadline would require to

express all possible sequence of events that do not comprise

the completion event between the start and completion of

the task. However, using the � operator, the same property

can simply be written as time(start � comp) < deadline.

� operator is formally defined as follows: considering that

L(α) ⊆ Σ⋆ is the language denoted by the event expression

α, the language of L(�α) is defined as the set of all words

w = w1w2 such that w2 ∈ L(α), and w1 does not contain any

word in the language denoted by α. Note that we did not use

the complement operator to ensure determinism [1].

Except for the newly introduced operator �α, the syntax

of ETRE is the same as of classic timed regular expressions,

ev3, ev4, ev5, ev6

ev1; clk := 0

ev6; clk<10

ev1; clk < 10
ev2; clk < 10

CMPLTD

BLKD

ev3, ev4, ev5

ev2, ev6

ev3; clk<10; var := clk ev1; clk >= 10
ev2; clk >= 10
ev3; clk >= 10
ev4; clk >= 10

STRTD

VLTD

ev1; clk := var

ev2; clk := 0

ev5; clk >= 10
ev6; clk >= 10

ev4; clk < 10
ev5; clk < 10

Fig. 1: FSM of the expression failure(duration(j1)<10)

as well as their semantic interpretation in the domain of timed

languages.

IV. MONITOR GENERATION

In order to generate the monitor that will be running beside

the application, we transform the specification to a complete

deterministic finite automaton with the notion of time. Note

that the automaton generation occurs before run-time and

the automaton has a maximum of one transition per event

occurrence. This enables to generate a monitor with time and

space guarantees by avoiding the potential blowup of states in

run-time, irrespective of the size and complexity of autmaton

from which the monitor is generated. The determinism and

finiteness of the automaton ensures that the generated monitor

will be tracking one single state at any time. To the best of

our knowledge no other RV tool with the notion of time gives

state-space and time guarantees.

The generation of monitors is achieved through the fol-

lowing steps: 1) Generating an automaton for each transition;

2) Generating an automaton for each node ni by applying a

product operation on the automata obtained for each transition

from ni to any other node. As mentioned in section II, implicit

priority is used to resolve potential conflicts on the final

state; 3) Generating the monitor automaton by concatenating

the automata of all nodes. The monitor automaton is then

converted to XML format which can be used to produce code.

As discussed in Section III, each individual constraint can

either be an ETRE or a logical expression on the duration of

job or the jitter of a time property. The transformation of a

logical expression duration or jitter in a timed automaton,

is implemented using predefined templates. For example, Fig.

1 shows failure(duration(j1) < 10), where j1 is defined in

Listing 1 and the list of observed events are ev1 to ev6.

For transitions based on ETRE however, the traditional

automaton construction methods were incapable of generating

complete deterministic finite timed automaton from timed

expressions as the ones offered by REVERT. We extended

the notion of derivative of a regular expression that was

introduced in the 60’s by Brzozowski [3], with a notion of

pseudo-integral. In this extension, as presented here, we do not

consider the � operator. Given an ETRE α and a timestamped

event ρi = (evi, ti), informally the derivation process will

return a new ETRE that removes the event evi from the head

of all traces that are members of the language denoted by

α; pseudo-integration process will give an ETRE as result

which will accept the language formed by appending event

evi to the language of α. By applying these methods finitely

many times with respect to all events of interest, the result

will be a finite automaton that recognizes all the words of the

original expression α. We now provide the formal definition of

this method, but first we need to provide a syntactic function

that can decide whether or not the empty trace belongs to the

language of the expression given to be derived or integrated.

Definition 1 (Empty trace membership): Let Σ be a non-

empty finite set of events, and let α be an ETRE defined over

Σ. The syntactic emptiness function is inductively defined as

follows:
E(0) = false E(1) = true E(a) = false, a ∈ Σ
E(α ∨ β) = E(α) ∨ E(β) E(α · β) = E(α) ∧ E(β)
E(α⋆) = true E(〈α〉I) = E(α)

Definition 2 (Derivative): Let Σ be a non-empty finite set

of events, let α be an ETRE, and let ρ = (ev, t) be a timed

symbol with ev ∈ Σ and t ∈ T, where T is a time domain.

The derivative of α with respect to ρ, denoted as Dρ(α), is

inductively defined as follows:

Dρ(0) = 0 Dρ(1) = 0 Dρ(α
⋆) = Dρ(α) · α

⋆

Dρ(α) =

{

1, if α = ev;

0, otherwise.
Dρ(〈α〉I) =

{

〈Dρ(α)〉I−t, if I − t 6= ∅;

0, otherwise.

Dρ(α1 ∨ α2) = Dρ(α1) ∨ Dρ(α2)
Dρ(α1 · α2) = Dρ(α1) · α2 ∨ E(α1) · Dρ(α2)

Definition 3 (Pseudo Integral): Let Σ be a non-empty finite

set of events, let α be an ETRE, and let ρ = (ev, t) be a timed

symbol with ev ∈ Σ and t ∈ T, where T is a time domain. The

integral of α with respect to ρ, denoted as Iρ(α), is inductively

defined as follows:

Iρ(0) = 0 Iρ(1) = ev Iρ(α1 · α2) = α1 · Iρ(α2)

Iρ(α) =

{

α, if α = ev⋆;

α · ev, otherwise.
Iρ(α1 ∨ α2) = Iρ(α1) ∨ Iρ(α2)

Iρ(〈α〉I) =

{

〈Iρ(α)〉I−t, if I − t 6= ∅;

0, otherwise.
Iρ(α

⋆) = α⋆ · Iρ(α)

We propose Algorithm 1 to build a complete deterministic

finite timed automata from the logical expression time(α).

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented REVERT, a specification

language for performing RV on RTS. We proposed a novel

method to generate complete deterministic timed automata

from the specification, that avoids blowup in the number of

states at run-time suffered by other state-of-the-art tools. As

future work, we first plan to formally prove the correctness of

the algorithm presented in this paper and extend it to support

the � operator. Secondly, we will compare the expressivity of

our language with state-of-the-art tools. Finally, we will bound

the time and space complexity of the generated monitors.

ACKNOWLEDGMENTS

This work was partially supported by National Funds

through FCT/MEC (Portuguese Foundation for Science and

Technology) and co-financed by ERDF (European Re-

gional Development Fund) under the PT2020 Partnership,

within the CISTER Research Unit (CEC/04234); also by

ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

Algorithm 1:

1 every state statei is associated with two variables REexi and REeli;

add start state (state0) to the set waiting states;

2 reset clock variable main clock;

3 REex0 := α;

4 REel0 := 0;

5 for all statei ∈ waiting states do

6 for all ρ ∈ Σ do

7 if Dρ(REexi) 6= 0 then

8 if ∃statej ∈ waiting states s. t. Dρ(REexi) ∈ REexj

then

9 REelj := REelj ∨ Iρ(REeli);

10 else if Dρ(REexi) = 1 then

11 create a new final state statej ;

12 REexj := 1;

13 REelj := Iρ(REeli);

14 else

15 add a new state statej to waiting states;

16 REexj := Dρ(REexi) ;

17 REelj := Iρ(REeli);

18 end

19 create a transition from statei to statej ;

20 else

21 LSI := longest suffix of Iρ(REeli) matched with REelj for

any state statej ∈ waiting states;

22 if LSI is empty then

23 create a transition from statej to state0;

24 else if length of LSI = 1 then

25 create a self-loop on statei with main clock reset;

26 else

27 add an auxiliary clock aux clki;

28 REpre := longest prefix of Iρ(REeli) before LSI;

29 reset aux clki at statek ∈ waiting states s. t.

REpre = REelk;

30 create a transition from statei to statej with

main clock set to value of aux clki;

31 end

32 end

33 end

34 end

REFERENCES

[1] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical

computer science, 126(2):183–235, 1994.
[2] Borzoo Bonakdarpour, Johnson J Thomas, and Sebastian Fischmeister.

Time-triggered program self-monitoring. In RTCSA, pages 260–269.
IEEE, 2012.

[3] Janusz A Brzozowski. Derivatives of regular expressions. JACM,
11(4):481–494, 1964.

[4] Feng Chen and Grigore Roşu. Mop: An efficient and generic runtime
verification framework. OOPSLA, New York, NY, USA, 2007. ACM.

[5] Klaus Havelund. Runtime verification of c programs. In ICTSS: 8th

International Workshop, TestCom ’08 / FATES ’08, pages 7–22, Berlin,
Heidelberg, 2008. Springer-Verlag.

[6] Klaus Havelund. Rule-based runtime verification revisited. STTT,
17(2):143–170, 2015.

[7] Andrew Kornecki and Janusz Zalewski. Software certification for safety-
critical systems: A status report. In IMCSIT 2008., pages 665–672. IEEE,
2008.

[8] Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the
guardians. In Runtime Verification, pages 87–101. Springer, 2015.

[9] Martin Leucker and Christian Schallhart. A brief account of runtime ver-
ification. The Journal of Logic and Algebraic Programming, 78(5):293
– 303, 2009.

[10] Samaneh Navabpour, Yogi Joshi, Wallace Wu, Shay Berkovich, Ramy
Medhat, Borzoo Bonakdarpour, and Sebastian Fischmeister. Rithm: a
tool for enabling time-triggered runtime verification for c programs. In
FSE. ACM, 2013.

[11] Usa Sammapun, Insup Lee, and Oleg Sokolsky. RT-MaC: Runtime
monitoring and checking of quantitative and probabilistic properties. In
RTCSA 2005, pages 147–153. IEEE Computer Society, 2005.

[12] Haitao Zhu, Matthew B Dwyer, and Steve Goddard. Predictable runtime
monitoring. In ECRTS, pages 173–183. IEEE, 2009.

