
Limitations of classic (static) approaches:
• Number of reachable states too large for testing
• Potential blow-up when automatically exploring the system’s state-

space (e.g., model-checking)
• Limited automation in machine assisted proof construction tools 

(e.g., SMT solvers, proof-assistants)
• Difficulties in capturing data expected to be available only at run-

time (need for abstraction leads to lack of precision)

Limitations of existing Runtime Verification 
solutions:
• Vast majority of tools developed for non-real-time applications;
• In most cases, it is difficult to capture extra-functional properties:

• either no support at all; or
• via complex specifications that are not accessible for the 

non-expert or the typical industrial practitioner
• Lack of a specification language that is user friendly, and that 

allows to capture distinct classes of timing properties 
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The REVERT Framework

Example REVERT specification

1) A new specification language:
• Intuitive, easy to use domain specification language
• Capture changes in the system via guarded state-machine 

transitions between nodes (monitor states)
• Functional behavior as extended regular expressions
• Support for associating events with job specifications 
• Three classes of timing constraints relevant for real-time 

systems: time, duration and jitter. 
• Timing constraint on sequences of events, 
• Execution time of a job, 
• Jitter on time and duration.

• Local variables and local code (e.g., for monitor 
initialization, calling counter-measure actions, etc)
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2) A new monitor generation process:
1. REVERT specifications are parsed into intermediate data-

structure;
2. Generation of the corresponding automata (via 

combination of intermediate types of finite automata)
3. Translation of the generated timed state-machine into 

XML format
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• Generate the corresponding code from the XML in order 

to make the monitor execution online, together with the 
target monitored system;

• Use the monitor to verify traces offline and therefore 
detect unexpected/unkown behaviors

• Overall, improve the reliability and trust on the target 
system

• New specification language for runtime verification of RTSs
• Novel method to generate timed finite state machines that 

avoids state blowup in run-time
• Implemented the framework as a tool-chain

Concluding Remarks
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