
Limitations of classic (static) approaches:
• Number of reachable states too large for testing
• Potential blow-up when automatically exploring the system’s state-

space (e.g., model-checking)
• Limited automation in machine assisted proof construction tools

(e.g., SMT solvers, proof-assistants)
• Difficulties in capturing data expected to be available only at run-

time (need for abstraction leads to lack of precision)

Limitations of existing Runtime Verification
solutions:
• Vast majority of tools developed for non-real-time applications;
• In most cases, it is difficult to capture extra-functional properties:

• either no support at all; or
• via complex specifications that are not accessible for the

non-expert or the typical industrial practitioner
• Lack of a specification language that is user friendly, and that

allows to capture distinct classes of timing properties

Runtime Verification of Real-Time
Systems

CISTER Research Unit (CEC/04234), co-financed by: +351 228 340 502
www.cister.isep.ipp.pt
cister-info@isep.ipp.pt
facebook.com/cisterrealtime

CISTER Research Centre/INESC-TEC
ISEP, Polytechnic Institute of Porto

Rua Dr. Antº Bernardino de Almeida, 431
4249-015 Porto, Portugal

REVERT: A Monitor Generation Tool for Real-
Time Systems

Sangeeth Kochanthara, Geoffrey Nelissen, David Pereira, Rahul Purandare
sangeeth1455@iiitd.ac.in, {grrpn,dmrpe}@isep.ipp.pt, purandare@iiitd.ac.in

CISTER – Research Centre in
Real-Time & Embedded Computing Systems

The REVERT Framework

Example REVERT specification

1) A new specification language:
• Intuitive, easy to use domain specification language
• Capture changes in the system via guarded state-machine

transitions between nodes (monitor states)
• Functional behavior as extended regular expressions
• Support for associating events with job specifications
• Three classes of timing constraints relevant for real-time

systems: time, duration and jitter.
• Timing constraint on sequences of events,
• Execution time of a job,
• Jitter on time and duration.

• Local variables and local code (e.g., for monitor
initialization, calling counter-measure actions, etc)

Generated Monitor Diagram

Node Automata
Generation by

Product
Operation

Transition
Automata

Generation

Monitor
Automaton

Generation by
Concatenation

Transition
Automata

Node
Automata

2) A new monitor generation process:
1. REVERT specifications are parsed into intermediate data-

structure;
2. Generation of the corresponding automata (via

combination of intermediate types of finite automata)
3. Translation of the generated timed state-machine into

XML format

Timed
Automaton
Generator

Parser
XML

Converter

Intermediate
Data Structure

Monitor
Automaton

REVERT
Specification

Monitor
In XML

Generated Monitor XML
• Generate the corresponding code from the XML in order

to make the monitor execution online, together with the
target monitored system;

• Use the monitor to verify traces offline and therefore
detect unexpected/unkown behaviors

• Overall, improve the reliability and trust on the target
system

• New specification language for runtime verification of RTSs
• Novel method to generate timed finite state machines that

avoids state blowup in run-time
• Implemented the framework as a tool-chain

Concluding Remarks

	Slide Number 1

