

Response Time Analysis of Slotted WiDom
in Noisy Wireless Channels

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-121004

Version:

Date: 10-12-2012

Maryam Vahabi

Stefano Tennina

Eduardo Tovar

Björn Andersson

Technical Report HURRAY-TR-121004 Response Time Analysis of Slotted WiDom in Noisy Wireless Channels

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Response Time Analysis of Slotted WiDom in Noisy Wireless Channels
Maryam Vahabi, Stefano Tennina, Eduardo Tovar, Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
WiDom is a wireless prioritized medium access control protocol which offers very large number of priority levels.
Hence, it brings the potential to employ non-preemptive static-priority scheduling and schedulability analysis for a
wireless channel assuming that the overhead of WiDom is modeled properly. Recent research has created a new version
of WiDom (we call it: Slotted WiDom) which offers lower overhead compared to the previous version. In this paper we
propose a new schedulability analysis for slotted WiDom and extend it to work for message streams with release jitter.
Furthermore, to provide an accurate timing analysis, we must include the effect of transmission faults on message
latencies. Thus, in the proposed analysis we consider the existence of different noise sources and develop the analysis
for the case where messages are transmitted under noisy wireless channels. Evaluation of the proposed analysis is done
by testing the slotted WiDom in two different modes on a real test-bed. The results from the experiments provide a firm
validation on our findings.

Response Time Analysis of Slotted WiDom
in Noisy Wireless Channels

Maryam Vahabi*, Stefano Tennina*, Eduardo Tovar*, and Björn Andersson†

*CISTER Research Unit, Polytechnic Institute of Porto (ISEP/IPP), Porto, Portugal

† Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
Email: *{mmvi, sota, emt}@isep.ipp.pt,†baandersson@sei.cmu.edu

Abstract. WiDom is a wireless prioritized medium access control protocol
which offers very large number of priority levels. Hence, it brings the potential
to employ non-preemptive static-priority scheduling and schedulability analysis
for a wireless channel assuming that the overhead of WiDom is modeled
properly. Recent research has created a new version of WiDom (we call it:
Slotted WiDom) which offers lower overhead compared to the previous
version. In this paper we propose a new schedulability analysis for slotted
WiDom and extend it to work for message streams with release jitter.
Furthermore, to provide an accurate timing analysis, we must include the effect
of transmission faults on message latencies. Thus, in the proposed analysis we
consider the existence of different noise sources and develop the analysis for
the case where messages are transmitted under noisy wireless channels.
Evaluation of the proposed analysis is done by testing the slotted WiDom in
two different modes on a real test-bed. The results from the experiments
provide a firm validation on our findings.

Keywords: Real-Time Systems, Fixed-Priority Scheduling, Medium Access
Control Protocol, Wireless Communications.

1 Introduction

Wireless communication in embedded computer systems is spreading and it is an
enabler for many future applications such as (i) wireless sensor networks (WSN) for
environmental monitoring, (ii) wire replacement, particularly in automation,
(iii) collaborative robotics, (iv) inter-vehicle communication and (v) smart materials.

These applications tend to have real-time requirements. The scientific community
has already created solutions to fulfill real-time requirements. The most well-known
of these solutions is the Generalized Rate-Monotonic Analysis which allows
designers to prove in advance that all deadlines are met at run-time. This analysis is
matured into a fully-fledged theory for uniprocessor systems and for a wired
communication channel. However, it is not well-developed for wireless networks —
not even for a wireless network in a single broadcast domain (a network where each
computer node can hear every transmission). Creating a rate-monotonic analysis for
wireless networks in a single broadcast domain requires that:

R1. A prioritized Medium Access Control (MAC) protocol should exist for a
wireless channel. This protocol grants, among all computer nodes that request to
transmit, the right to transmit on the channel to the computer node with the highest
priority message;

R2. The overhead related to the arbitration of the prioritized MAC protocol should
grow slowly with the number of priority levels;

R3. The overhead related to the arbitration of the prioritized MAC protocol should
be low;

R4. A schedulability analysis should exist for the prioritized MAC protocol;
R5. The schedulablity analysis should take into consideration the case where

corrupted messages in a noisy channel require retransmission.
Unfortunately, the current state of the art cannot fulfill all these requirements.

There exists a prioritized MAC protocol, the Controller Area Network (CAN) [1], for
a wired channel that offers many priority levels (hence fulfilling R2). A wireless
version of CAN has been proposed and dubbed WiDom [2,3] which provides a
corresponding schedulability analysis as well (hence fulfilling R1, R2 and R4) but the
existing analysis is based on assumption that no errors can happen during the message
transmission (missing R5). Another problem with this protocol was that it imposes a
large overhead (missing R3). On this account, researchers have developed a new
version [4] of WiDom (we call it slotted WiDom) which offers low overhead (hence
fulfilling R1, R2 and R3) but no schedulability analysis is available for it. The
development of a schedulability analysis for slotted WiDom — with the capability of
analyzing timing of message streams that suffer from release jitter and also
experience noise on the channel — would, however, offer us the missing piece in
fulfilling the five requirements above.

In this paper, we present schedulability analysis for slotted WiDom of message
streams that suffer from release jitter and also experience noise on the channel.
Previous work [2] has already provided the schedulability analysis of WiDom, but it
was applicable only to the initial implementation of WiDom — not the slotted
version. On the other hand, the existing analysis considers the case where all
messages are transmitted faultlessly. In this work, we define a new schedulability
analysis for slotted WiDom, taking into account erroneous transmissions of message
streams.

The remainder of this paper is organized as follows. In Section 2 we first present a
brief background on slotted WiDom and its implementation. In Section 3 we show the
response time analysis for slotted WiDom. The error model of the wireless channel is
discussed in Section 4 followed by the experimental results in Section 5. Section 6
concludes the paper with final remarks and possible items for future work.

2 Background on the Slotted WiDom Protocol.

As mentioned earlier, slotted WiDom is a recent version of WiDom that is developed
in order to reduce the large overhead of the previous version. To do so, our group has
developed an add-on board platform (called WiFLEX) [4] and utilized an out-of-band
signaling technique for the synchronization purposes. A more powerful node (called
master node) is used to broadcast synchronization (synch) pulses on a separate radio
channel with the periodicity of PS. Since this periodic synch signal creates timeslots,

we call this version of WiDom “slotted WiDom”. The periodicity of PS should be
chosen in a way that a message with the longest transmission time (Ci) could be able
to finish its transmission before the start of the next synch signal. This constraint is
formulated as follows:

sP TFSS+PRIO_TRA+2(H+G)(npriobits+1)
 +ETG+WIN_PRIO+max(Ci)+SWX+ACK

(1)

where SWX is the time needed by the radio to switch from receive mode to transmit
mode and vice versa; TFSS is the time needed to recognize the synch signal;
PRIO_TRA and WIN_PRIO are time spans needed for WiFLEX and sensor platform
communications; G is the guarding time to let discrimination between two H-length
priority bits and ETG is a gap at the end of tournament to let nodes sets their radio
according to the result of the tournament. ACK is also considered as a time for
transmitting an acknowledgement packet. Figure 1 shows how these parameters are
related to each other to form the “superframe” of slotted WiDom protocol. In what
follows we better detail how the protocol works.

The protocol is composed of three phases, namely: synchronization, tournament
and data exchange. All these three phases are located in a time interval which is called
timeslot. Each timeslot starts with the reception of the synch signal. Synchronization
generally is needed to provide a common reference point in time so that all nodes can
start the contention simultaneously.

Fig. 1. Timing of WiDom with master node. Time intervals are not drawn in scale.

When messages contend for the channel, a conflict resolution phase (called
tournament) similar to the dominance/binary countdown arbitration [1, 2, 5] is
performed. During the tournament, nodes transmit bit-by-bit the priority of the
message to contend for the medium access. Hence, the synchronization should happen
right before the tournament phase in order to provide an error-free priority bit
exchange. During the tournament phase, those nodes that have dominant bit, i.e., “0”,
start transmitting a pulse of carrier for duration of H units of time, while nodes with
recessive bit, i.e., “1”, perform carrier sensing. The fact that wireless transceivers are
not able to transmit and receive simultaneously poses no problem to WiDom, since

Tournament
phase

 A: Transferring priority from MicaZ to WiFLEX (PRIO_TRA)
 B: Transferring winner priority from WiFLEX to MicaZ (WIN_PRIO)
 ACK: Optional for error recovery scheme

TFSS A H G H G ... G H H G B ETG TX/RX TFSS
Time

Start of receiving
synch signal

 Synchronization
phase

(npriobit)x2

Data exchange
phase

Preamble

sP

iC

iC iC

SWX ACK

when a node has a dominant bit, there is no need for reception and when a node has a
recessive bit, it just performs carrier sense. There is also a guarding time interval G to
separate pulses of carrier’s wave. This guarding time interval makes the protocol
robust against clock inaccuracies and takes into account that signals need some (non-
zero) time to propagate from one node to another. If a node loses the contention of a
bit (i.e., it has a recessive bit and receives a dominant bit), it does not continue
sending further bits and only proceed listening to the medium to find out the priority
of the winner. If a node does not lose the contention during the current bit it will
proceed with the contention for the next bit. At the end of the tournament, the node
that does not receive a pulse wins the competition and waits for ETG time units before
starting data transmission.

There are three important issues that deal with the add-on circuitry which is used in
the new implementation of WiDom: (i) In the tournament phase, before going through
the competition, the priority of the enqueued message should be notified to the
WiFLEX board and at the end of the competition, the priority of the winner should be
reported back to the WSN host platform. Thus, in the slotted WiDom, we need to
consider two time intervals (A and B) for internal communications between the two
boards. (ii) Only those nodes that have messages in their queues wait for receiving the
synch signal; this means that if a node enqueues a message slightly after the synch
signal broadcast, it will not participate in the current on-going tournament, even if the
tournament phase formally has not started, yet. (iii) Due to hardware shortcomings
[6], it is needed to introduce some bit stuffing after each priority bit and according to
the same reason two dominant bits instead of a single one should be sent as preamble,
to indicate the start of the contention period.

In the following section, we will present the response time analysis for slotted
WiDom according to the described timings.

3 Calculating Response Time

The schedulability analysis presented in this paper borrows ideas from the previously
published CAN analysis [7]. It provides feasibility tests, based on Worst Case
Response Time (WCRT) computation. However, our analysis is non-trivial and
slightly different from [7], since we deal with (i) error detection, using
acknowledgment (Ack) packets rather than (six) consecutive identical symbols, and
(ii) the slotted nature of the protocol. The WCRT of a message stream is the longest
response time of all message instances q that enter the ready queue for a period of
time called level-i busy period. A level-i busy period is a time interval [t0, t1) such that
both t0 and t1 are beginning of a timeslot and considering only non-faulty timeslots
(i.e., timeslots where all the three phases perform normally without any error
occurrence) in [t0, t1) it holds that for each timeslot, either (i) all transmitted packets
have higher priority than mi, or (ii) at most one transmitted packet with lower priority
than mi is transmitted in the first timeslot (started at t0). Figure 2 shows an example of
a level-i busy period.
Our preliminary WiDom analysis presented in [2] is simplistic in that:

 It is assumed that no transmission error can happen. It is not realistic to ignore the
transmission errors especially for error-prone wireless channel, when providing
pre-run-time guarantees for safety-critical applications.

 It does not consider the release jitter that generally occurs while messages are
being queued.

Fig. 2. Level-i busy period; lower index shows higher priority. The upward arrow indicates the
release time of the message.

Consequently, following the analysis in [7], we observe that the WCRT of an
instance q of a message stream mi can be divided into four components:
1. wi,q, which corresponds to the longest time interval from the start of the busy

period till when the instance q starts a successful transmission — see Figure 3.
2. iC , as the time span needed to finish a transmission, which includes the

tournament duration and time needed to detect the synch signal — see Figure 1.
3. Ji, as release jitter or queuing jitter [8], which is defined as the largest difference

between the initiating time of an event and the time at which the message,
triggered by the event, has been queued.

4. EOi, as error overheads, including the time for receiving Ack packets, the re-
transmission time and the duration of noise burst which is provoked by an
interference source.

Fig. 3. An example of wi,q.

To compute the response time of message stream mi in slotted WiDom, we
consider a busy period of [t0, t1) interval. According to the definition, there should be
a packet transmission in all non-faulty timeslots during the [t0, t1) interval. We
observe that, according to the release time of messages in high or low priority sets, it
is possible to have different cases which result in various response time equations. All

0,2q

 Tx

 Tx
1,1q

Time

Stream m2

1,2q

 Tx
1,2 2Qq

...

1,2w

Stream m1 Tx
0,1q

 Tx

 Level-i Busy Period

Stream m1

Stream m2

Stream mi

Stream mi+1 Tx

Tx

Tx

Tx

Time t0 t1

Ps Ps Ps Ps

these cases are shown in Table 1. In order to reduce the level of pessimism in our
calculation, we investigate each case individually and then derive the appropriate
response time equations for each of them. Finally the maximum of the response times
over all these cases gives a tight bound on the WCRT for a set of message streams.

Table 1. Different cases of WCRT computation. lp(i) / hp(i) corresponds to the set of message
streams with priority lower / higher than the message stream mi.

 Message in lp(i) arrived
in [t0-PS, t0)?

Message mi arrived
in [t0-PS, t0)?

Message in hp(i) arrived
in [t0-PS, t0)?

Case 1 No No No
Case 2 No No Yes
Case 3 No Yes No
Case 4 No Yes Yes
Case 5 Yes No No
Case 6 Yes No Yes
Case 7 Yes Yes No
Case 8 Yes Yes Yes

 Case 1.
Considering there is no message released in [t0-PS, t0) interval which is the last
timeslot immediately before, the level-i busy period begins. This is the simplest case
where there is neither blocking from the lp(i) set nor further interfering from the hp(i)
set. We can compute the WCRT for the message stream mi as follows:

iii
Case

Qq

Case
i TqCJwR

qiCase
i

1

1,...,0

1
,1

max (2)

where iC is the time span needed to finish transmission can be obtained by the
following:

iC =TFSS+PRIO_TRA+2(H+G)(npriobits+1)+ETG+WIN_PRIO+ Ci
(3)

and wi,q represents the longest time from the start of busy period until when the
instance q of the message stream mi begins a successful transmission. It is obvious
that the erroneous transmission can lead to a longer delay. Therefore, it should include
the error recovery overhead and can be formulated as follows:

i
Case

qiis
ihpj j

bitj
Case

qi
s

Case
qi CwEP

T
QJw

Pqw 1
,

)(

1
,1

, (4)

Ei(t) is the maximum time required for error signaling and recovery scheme in any
time interval of length t. The error model, Ei(t), will be described in the following
section. The number of instances Qi, of message stream mi that become ready for
transmission before the end of busy period is given by:

1
1

1

i

i
Case
iCase

i T
JLQ (5)

where Li is the length of the longest level-i busy period and can be computed by:

1

)(

1
1 Case

iis
iihpj j

j
Case
iCase

i LEP
T

JL
L . (6)

To investigate the remaining cases, we follow same equations as shown above and
rewrite only those equations that are different. Note that in each case we should
replace the appropriate superscript in the response time equations.

Case 2.
Consider that there is an instance of hp(i) message released in [t0-PS, t0) interval. This
case is rather similar to Case 1 except that we need to consider more interference
imposed by the hp(i) message. Therefore, Ri and Qi can be calculated similar to
Case 1 but we must consider the following changes in wi,q and Li computation:

i
Case

qiis
ihpj j

bitjs
Case

qi
s

Case
qi CwEP

T
QJPw

Pqw 2
,

)(

2
,2

,

(7)

2

)(

2
2 Case

iis
iihpj j

js
Case
iCase

i LEP
T

JPL
L . (8)

Case 3.
In this case we have neither hp(i) nor lp(i) message instances in [t0-PS, t0) interval, but
the instance of message mi is released in [t0-PS, t0) slightly after synch signal
broadcast. As described in Section 2, only nodes with non-empty ready queue wait to
receive synch signal, thus, message mi misses participating in the current tournament
phase and should wait for the next timeslot. This case is almost similar to Case 1 but
we need to add the duration of one timeslot to Equation 2. So we will have:

siii
Case

Qq

Case
i PTqCJwR

qiCase
i

3

1,...,0

3
,3

max . (9)

Case 4.
Assume that there is no lp(i) message released in [t0-PS, t0) interval, but both hp(i) and
mi messages are released during this interval. With the same reasoning as Case 2 we
revise the Equation 4 and 6 by considering the following equation for Ri calculation:

siii
Case

Qq

Case
i PTqCJwR

qiCase
i

4

1,...,0

4
,4

max (10)

i
Case

qiis
ihpj j

bitjs
Case

qi
s

Case
qi CwEP

T
QJPw

Pqw 4
,

)(

4
,4

,

(11)

4

)(

4
4 Case

iis
iihpj j

js
Case
iCase

i LEP
T

JPL
L . (12)

Case 5.
Consider that there is only one instance of lp(i) released in [t0-PS, t0) interval and there
is neither any instance of message mi nor any hp(i) message in this time interval. We
can follow the same equation as we had in Case 1 and then introduce the blocking
term in the computation of wi,q and Li. Thus we have:

i
Case

qiis
ihpj j

bitj
Case

qi
ss

Case
qi CwEP

T
QJw

PqPw 5
,

)(

5
,5

, (13)

5

)(

5
5 Case

iis
iihpj j

j
Case
i

s
Case
i LEP

T
JL

PL . (14)

Case 6.
In this case both hp(i) and lp(i) messages are released in [t0-PS, t0) interval. Knowing
that the low priority message is suppressed by the higher priority one, we can consider
this case exactly similar to Case 2 where there is no lp(i) message instance released.

Case 7.
Assume that there is no hp(i) message in [t0-PS, t0) interval, but both lp(i) and message
mi are released during this interval. It is clear that the lp(i) cannot impose any
blocking to the response time calculation, thus this case is equivalent to Case 3.

Case 8.
Consider that an instances of hp(i), lp(i) and the message stream mi are released in
[t0-PS, t0) interval. Following the same rationale as in last two cases, lp(i) is
suppressed by higher priority messages which results in similar equations as Case 4.

Therefore, by studying all the possible scenarios and observing that the response time
in Case 4 is no less than the response times of cases 1, 2 and 3, the WCRT of message
stream mi can be calculated as follows:

54 ,max Case
i

Case
ii RRR . (15)

4 Error model

Besides physical aspects related to signal propagation, in the wireless channel a
communication error may result from the interference due to various transmitters
sharing the same frequency band, like Wi-Fi, Bluetooth and other sensor networks. It
may also come from the presence in the close area of electromagnetic sources such as,
e.g., electric motors and microwave ovens. To minimize the impact of external
interferers on the reliability of the system, we implement an error recovery scheme
based on Ack packets sent after each data packet. Thus, if the sender does not receive
back from the receiver an Ack packet during a predefined period of time, it will re-
issue the data transmission, i.e., by retrying from the next tournament and retransmit
the data until it receives the Ack from the intended receiver1. It should be mentioned
that the retransmission of the corrupted packet may not happen immediately after the
erroneous transmission, since a higher priority message may be enqueued while
waiting for the Ack of the previous transmission.

A fully asynchronous noise burst can cause a transmission error: an error happens
when a node is transmitting either a data packet or an Ack packet. As it is shown in
Figure 4, a noise burst with length of one timeslot PS can impose a penalty of up to
2PS on the response time.

Fig. 4. Error caused by a noise burst with length of one timeslot.

Given P(L) as a function that computes the penalty of an occurring L-length error,
a burst of noise with duration of Le can give rise to the following penalty on the
response time:

1 Note that, the error recovery method that we used for WiDom is not exactly like what is done

in CAN bus. We do not need to globalize a detected error since in this version of WiDom we
are dealing with the unicast transmission not multicast. To save more resources we also do
not assign an individual timeslot for sending the Ack packet since the Ack packet size is
comparatively smaller than data packet size and can be transmitted during the current
timeslot.

TFSS TRNM ACK TX/RX
Time

TFSS TRNM ACK TX/RX

PS PS

 Noise Burst

Noise Burst

ss
s

e
e PP

P
LLP)(. (16)

Assuming that F(t) is an error function that models the interference in wireless
channel during time interval t, then, the maximum additional delay caused by the
error recovery scheme can be given by:

Ei(t)= P(Le)F(t) . (17)

Unfortunately, no widely-accepted error model has been proposed for a real-time
data traffic over wireless channels so far – an important research issue that is beyond
the scope of this paper. As a consequence, similarly to the technique proposed in [9],
we consider two different types of noise sources: (i) periodic noise burst with the
period of Terror and the burst length of Lerror, and (ii) sporadic noise burst with
minimum inter-arrival time of Ts_error and burst duration of Ls_error. The sporadic noise,
models the interference caused by packet-based radios (e.g., Wi-Fi, Bluetooth) and
the periodic noise represents the interference induced by other electromagnetic
devices. So, by considering K sources of periodic noise bursts and J sources of
sporadic noise bursts, the overall delay during the time interval t due to the error
recovery process is given by [9]:

Table 2 summarizes all the symbols used in the analytical section and their
corresponding definitions.

5 Experimental Evaluations

In this section, we evaluate the existing WiDom protocol against the implementation
of a novel and more reliable version: the Ack-enabled WiDom. To the best of our

J

i

i
errorsi

errors

K

i

i
errori

error
i LP

T
tLP

T
ttE

1
_

_1
)()()(. (18)

Table 2. Symbols used in the equations
Ri WCRT for message stream i
Li The length of level-i busy period

Qi
 Number of instances in message stream i that become ready for transmission

during Li period
Wi,q Time span from start of busy period until instance q start transmission

Ji Release jitter of message stream i
Ci”

 Time needed to finish the transmission of a message in message stream i
Ti The periodicity of message stream i
PS The periodicity of synchronization signal

P(Le) The penalty of an Le-length error occurring

Ei(t) Extra time overhead imposed by the error recovery mechanism during a time
interval t

knowledge, this is the first reported implementation of WiDom (either slotted or
unslotted) with an acknowledgement mechanism. In the following subsections we
first detail the implementation of Ack-enabled WiDom, then we discuss the
experimental setup and finally show the results from a real test bed and compare them
against the theoretical analysis reported in the previous sections.

5.1 Implementation and practical aspects

We implemented the Ack-enabled WiDom in the Nano-RK operating system [14].
Nano-RK is a Real-Time Operating System (RTOS) designed for wireless sensor
networks. It employs an energy-efficient time management scheme using one-shot
timer interrupts, instead of polling interrupts. Due to this policy, the scheduler
executes with the periodicity of such timer, i.e., approximately every 1 ms.
Consequently, every time-related events, such as task periods and event wake-ups,
will experience at most a 1 ms jitter with respect to their targeted time. Nevertheless,
to enhance the accuracy of our estimations, such a jitter factor has been taken into
account into our analytical computations.

Each sender node has three periodic tasks running on Nano-RK: Send-Task,
Receive-Task and Management-Task, whose pseudo-codes are presented in
Algorithm 1 to 3, respectively. By each request of Send-Task a variable called Gnt_N
is incremented by one. This variable records the number of requests for packet
transmission generated during an experiment. The arrival time of each request is
stored in the variable Gnt_T, in order to check the possibility of retransmissions, in
case of an unsuccessful data exchange. Since the tournament phase is performed by a
WiFLEX board, i.e., an ad-hoc add-on hardware [4], which is shared by the above

Algorithm 1. Send-Task Algorithm 2. Receive-Task

 1: while true do
 2:
 3: Gnt_N++
 4:
 5: SendPkt()
 6: SSent
 7: false
 8: Wait until next period
 9: end while
10:
11: Procedure SendPkt()
12: if successful access to hardware=1 then
13: if my_ID= winner_ID then
14: if this is an original transmission then
15: Txed_N++
16: end if
17: transmit the packet over radio
18:
19: end if
20: end if

 1: while true do
 2: if TTSRCV= false then
 3: Wait until next period
 4: else
 5: Wait to receive the Ack packet
 6: if received Ack is correct then
 7: SSent
 8: end if
 9:
10:
11: Wait until next period
12: end if
13:end while

tasks, the access to that resource needs arbitration. This has been implemented by
regulating the way the tasks call a SendPkt() function, through a global flag
(LockSend), which is set by the Send-Task only. Through the SendPkt() function the
nodes start contending for the channel. Based on the WiDom protocol, each node uses
its given ID number as its packet priority and if two or more nodes access the channel
at the same time, the collision is resolved by the given priorities. As a result, if a node
wins the tournament it sends its packet and then “activates” the Receive-Task in order
to wait for the reception of the corresponding acknowledgment packet. To do so, it
sets a global flag (TTSRCV, time to start receiving) to TRUE — see Algorithm 1, line
18.When the Receive-Task is executed, two conditions might hold: (i) the global flag
TTSRCV has not been set, then the task suddenly exits, or (ii) the flag has been set by
the Send-Task. In the latter case, the node switches to receive mode and waits to
receive an Ack packet. If the received Ack packet is the expected one, i.e., it contains
the correct information including source ID and sequence number of the recent data
transmission, then the global flag “SSentFlag” (i.e., successful sent) is set to TRUE.
Either the Ack has been received or not, the Receive-Task ends up by “activating” the
Management-Task to execute — see Algorithm 2, line 10.
Similarly, the Management-Task encounters one of two situations when it requests to
be executed. The first situation occurs when the “TTSMNG” flag (time to start
managing) is FALSE; in this case the task is released to the scheduler and waits for
the next activation — see Algorithm 3. The second situation occurs when the
“TTSMNG” is TRUE and it usually happens after a transmission of data packet and a
miss in the reception of an Ack packet. Then, if the TTSMNG is TRUE, a
retransmission is needed and the first step is to get the current time and check if there
is enough time for performing a retransmission. To do so, it is needed to compute the
elapsed time by subtracting the current time from the Gnt_T time recorded at the
beginning of the Send-Task. If there is enough time to have another slot with duration
of PS before the next activation of Send-Task (which is defined by the Send-Task
period), then it is possible to retransmit the packet. However, the retransmission

Algorithm 3. Management-Task Table 3. Tasks’ configuration

 1:while true do
 2: if TTSMNG = false then
 3: Wait until next period
 4: else
 5:
 6: - Gnt_T
 7: if Elapsed_T > (SND_task.period - Ps) then
 8: if SSentFlag = 0 then
 9: if LockSend = false then
10: SendPkt()
11: end if
12: end if
13: end if
14:
15: Wait until next period
16: end if
17:end while

Send_Task_prio 2
Send_Task_period MSG-Period
Send_Task.SchType NONPREEMPTIVE

Receive_Task_prio 3
Receive _Task_period 15 ms
Receive _Task.SchType PREEMPTIVE

Managemant_Task_prio 4
Managemant_Task_period 15 ms
Managemant _Task.SchType PREEMPTIVE

should be performed if the SSentFlag is still FALSE. In this case, the task calls the
SendPkt() function ensuring that the shared resource is currently available. Taking
advantage of locks and flags we are able to target an efficient way to control the
execution of each task at right moments. Table 3 shows the values Nano-RK allows to
set for each task’s configuration. Note that: (i) a small number in Task_prio implies
higher priority, and (ii) the period of the Send_Task defines the data rate of the nodes
in each experiment.

 When a packet has no chance to be transmitted within its deadline, it is said that a
deadline miss event occurred. In order to estimate how often this happens, at the end
of each experiment the difference between the number of generated packets (i.e.,
Gnt_N) and the number of actually transmitted packets (i.e., Txed_N) is computed.
Similarly, to measure the response time, each node measures the delay between the
instant of the Send-Task execution until the actual packet transmission. Then this
delay (Wi) piggybacks within the packet payload. Since we have used a hardware-
timer with time resolution of 1 µs, all the measured values have the accuracy of 1 µs.
Upon receiving a packet, the receiver extracts the Wi and computes the response time
(Ri) according to the following expression:

Ri=Wi+Ci , (19)

where Ci is the duration of the data exchange phase (refer to Figure 1).
With the help of sniffer devices [10] and a custom–designed log file’s parser, built

in C and bash programming, we are able to measure the packet loss ratio and the
WCRT-miss ratio. Furthermore, to enrich the comparison of the performance between
the classical WiDom and the novel Ack-based protocol, the energy consumed by the
nodes at different data rates is also shown. Finally, to better appreciate the trade-offs
between the performance indices, the behavior of the packet loss ratio against the
energy consumption is presented.

 5.2 Experimental Setup

 We have conducted several experiments by varying the interference level in the
environment. Our testbed consists of 10 MicaZ motes [11] (featuring an Atmel
ATmega128L 8-bit microcontroller with 128 kB of in-system programmable memory
and 4 kB of available RAM memory) equipped with the WiFLEX add-on board [4].
An extra MicaZ mote acts as a gateway: this node is always waiting to receive data
from the other nodes and never participates in the tournament phase to send back the
acknowledgement packets, so it doesn’t need to be equipped with any extra hardware
— see Figure 5.

Each one of the 10 MicaZ equipped with the WiFLEX board is configured to run at
a different data rate (i.e., MSG-Period as in Table 3) or a different priority. For
instance, Node1’s MSG-Period is T1=70 ms, Node2’s MSG-Period is T2=180 ms and
so on, while for the last three nodes2 it holds T8=T9=T10=5.4 s (refer to Tables 5-8).

The data packets’ length is set to 128 bytes (including PHY, MAC headers, CRC
and payload) since it is the maximum packet length supported by the CC2420 radio
[12] on board of MicaZ platform. The length of Ack packets is 17 bytes. Given these

2 For the last three nodes only the priority (given by the node’s ID) is different.

figures and considering the maximum data rate over the wireless medium of 250 Kb/s
at the ISM band of 2.4 GHz [12], the time needed to transmit a data packet is:

sCni i 4096
250000

18128:...1

(20)

 In the same way, the time needed to transmit an Ack packet is 554 . Applying
Equation (3) we have:

sCni i 9158:...1 (21)

 This value is computed with the timeouts given in Table 4, experimentally
measured from the real platform. Considering (i) npriobits=15 and all the mentioned
timeout values and (ii) the constraint in Equation (1), the periodicity of the synch
signal, PS, should be larger than 9747 s. We choose the PS =15 ms, i.e., the master
node sends a 300 s-long synch signal every 15 ms. We relaxed this choice to allocate
to the gateway some time to accomplish the data extraction from the received packet
and to format the customized Ack packet. Consequently, the nodes were configured
with different transmission rates ranging from 190 bps to 14 kbps. Interestingly, these
choices give analytical system utilization values ranging between 39% and 92.2%.

5.3 Observations

We utilize different interference patterns to evaluate the reliability and robustness of
WiDom protocol against noise, while having a predictable response time for message
streams. Our evaluation focuses on five network performance indices as follows:
 Packet loss rate: the ratio of the received data packets over all the sent packets.
 Deadline miss ratio: the ratio of messages that missed their deadlines over the
total number of generated messages. In all scenarios, the deadline is considered to be
implicit which is equal to the message periodicity.
 WCRT miss ratio: the ratio of messages that have been sent after their calculated
WCRT over the total number of generated messages.

Table 4. Timeout values.

Parameter Value

GH s110
TFSS s300

TRAPRIO _ s238
PRIOWIN _ s449

ETG s555

SWX s35

Fig. 5. Experimental setup

 Average response time: the average of all received messages response time on the
gateway from any sender.
 Energy consumption: the average energy consumption for each node, expressed
as a function of the number of packets sent and received.

We run the experiment for both classical and Ack-enabled version of WiDom in
different noisy environments. All experiments were run for around 40 minutes, which
corresponds to more than 40,000 message transmission requests.

5.3.1 Interference pattern
We create two types of interference to test WiDom protocol: (i) periodic interference
and (ii) sporadic interference. The periodic interference is usually spatially localized
and follows a regular duty cycle pattern. The best example is the interference
produced by microwave ovens. To create this noise pattern we utilize the Jamlab
tool [13] running on an extra MicaZ node. We set the interferer’s duty cycle to 70 ms
and 200 ms to compare the performance of WiDom protocol under different noise
densities. We refer to the environment with higher noise burst rate as High Noisy
Channel (HNC) scenario — see Figure 6(a), and the one with with lower noise burst
rate as Low Noisy Channel (LNC) scenario — see Figure 6(b). Both periodic
interferers send three packets with length of 128 bytes in burst to occupy the channel
for the duration of one slot, PS = 15 ms — considering data rate of 250 Kb/s. The
sporadic noise model emulates in a fully controlled way the interference coming from
heavily loaded WiFi access points. To generate this interference traffic, we used a
simple model inspired by the Markov model presented in [9], consisting of two states:
“clear channel” and “interference”. However, in our model, instead of having a
complete randomness and irregularity of the interference signal, we imposed a fixed
duration of staying in the “interference” state, in order to have the same burst length
— equal to one time slot PS. To define the time duration for staying in the “clear
channel” state we have used a constant value of 5 ms multiplied by a random variable
R which is uniformly distributed over [14, 200]. Hence, the time duration of staying
on the clear channel state will be a random time period from 70 ms to 1 s. In other
words the minimum inter-arrival time between two consecutive noise bursts is set to
70 ms. We refer to this scenario as Sporadic Noisy Channel, SPNC — see Figure 6(c).
All interferers generate noise in the channel 15 of the IEEE 802.15.4 spectrum. In all
scenarios, interferers are generating packets and transmitting them with the highest
power level (0 dBm). As it is shown in the spectrum analyzer (Figure 6), the radiation
power in all situations are the same, but the density of noise bursts are quite high in
the Figure 6(a) compared to that on Figure 6(b). It can be also observed that in the
presence of a sporadic noise source, the channel spends more time in clear channel
state compared to the periodic noise source with duty cycle of 70 ms. Note that the
spectrum analyzer visualizes the status of the entire Zigbee bandwidth, including the
noise coming from WiFi/IEEE 802.11 wireless routers on the adjacent channels.

5.3.2 Results and discussion
Packet loss rate. Figure 7 depicts the packet loss rate for both version of protocols in
different noise conditions. Here two observations can be made. First, the packet loss
rate for Ack-enabled WiDom is much smaller than that of classical version of WiDom

Fig. 6. Spectrum occupancy in presence of a periodic interferer with duty cycle of 70 ms (a)
and 200 ms (b) and in presence of a sporadic interferer with minimum inter-arrival time of

70 ms (c). The spectrum analyzer also shows the effect of IEEE 802.11 wireless routers on the
adjacent channels.

(a)

(b)

(c)

Zigbee Channels

A
m

pl
itu

de
 [d

B
m

]

A
m

pl
itu

de
 [d

B
m

]

Zigbee Channels

A
m

pl
itu

de
 [d

B
m

]

Zigbee Channels

protocol in every scenarios. This is thanks to the implementation of Ack packets
which provide a legitimate feedback on transmission status for the sender nodes,
giving them a chance for retransmitting the lost packets. It is also shown that the high
noisy channel jeopardizes the network performance much more than the low noisy
channel or the SPNC case. As it is illustrated on Figure 7, SPNC is less destructive,
since the packet loss rate in SPNC is about 2% lower than that in the HNC. Two
reasons contribute to this: (i) in high noisy channel there is a higher risk of collision
for both data and Ack packet; (ii) higher collision rate consequently leads to more
retransmission requests that increases the traffic load. The second observation is that
in each scenario the packet loss rate is almost flat against the data rate. There might be
an expectation that for higher transmission rate there ought to be higher loss rate. It is
true that higher data rates experience a greater number of packets lost, but Figure 7
clearly shows that in terms of packet loss rate (percentage) the performance is almost
independent from the data rate. Moreover, the implementation of Ack-enabled
mechanism helps in achieving fairer performance for all data rates than the classical
WiDom.

Timing behavior. There are three distinct metrics that are investigated under the time
domain. Table 5, Table 6 and Table 7 show the results achieved from the
experimental setup of WiDom in HNC, LNC and SPNC interference environments.
The first metric is the deadline miss ratio and shows the number of generated packets
which did not have the chance to be transmitted. It has been observed that for all
scenarios there is no deadline miss for any message stream — the two variables
Gnt_N and Txed_N were always equal!

The WCRT miss ratio is the second timing metric considered. It indicates the
number of messages which have been sent with response time higher than their
analytically computed WCRT. The analytically calculated response time is shown by
Calc. Ri on the tables. It has been computed by applying the response time
analysis to calculate the upper-bound of response time for each message stream
according to Equation (2)-(15).

Fig. 7. Packet loss ratio of Ack-enabled WiDom and classical WiDom.

Table 6. Response time in LNC.

i 1 2 3 4 5
Protocol

implementation
Ack-enabled

WiDom
Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ti(s) 70,000 180,000 350,000 700,000 1,200,000
Data rate(bit/s) 14,629 5,689 2,926 1,463 853

Calc.Ri(s) 55,158 25,158 70,158 40,158 100,158 55,158 115,158 70,158 130,158 100,158
Exp. Avg. Ri(s) 17,769 13,932 20,020 16,061 19,342 18,994 26,118 20,187 33,916 22,956
Exp. Max. Ri(s) 53,122 23,159 59,232 33,809 80,596 44,296 94,604 55,271 108,183 73,483

i 6 7 8 9 10
Ti(s) 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

Data rate(bit/s) 539 277 190 190 190
Calc.Ri(s) 145,158 115,158 175,158 130,158 205,158 145,158 265,158 175,158 280,158 205,158

Exp. Avg. Ri(s) 35,303 29,103 38,711 29,801 37,509 37,001 40,080 40,127 45,397 40,741
Exp. Max. Ri(s) 118,599 94,601 142,268 104,367 163,848 96,682 168,064 105,221 184,175 82,168

Table 5. Response time in HNC.

i 1 2 3 4 5
Protocol

implementation
Ack-enabled

WiDom
Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ti(s) 70,000 180,000 350,000 700,000 1,200,000
Data rate(bit/s) 14,629 5,689 2,926 1,463 853

Calc.Ri(s) 55,158 25,158 70,158 40,158 130,158 55,158 145,158 70,158 265,158 100,158
Exp. Avg. Ri(s) 21,389 14,370 19,729 16,648 27,887 18,675 27,835 20,269 38,450 24,067
Exp. Max. Ri(s) 53,289 23,163 56,228 33,835 91,558 46,490 109,865 59,157 169,607 82,223

i 6 7 8 9 10
Ti(s) 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

Data rate(bit/s) 539 277 190 190 190
Calc.Ri(s) 280,158 115,158 340,158 130,158 355,158 145,158 490,158 175,158 565,158 205,158

Exp. Avg. Ri(s) 35,849 30,499 39,827 29,554 54,920 40,113 52,907 41,039 58,839 41,063
Exp. Max. Ri(s) 202,986 94,846 236,513 108,986 262,178 76,108 290,555 77,645 308,128 149,384

Table 7. Response time in SPNC.

i 1 2 3 4 5
Protocol

implementation
Ack-enabled

WiDom
Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ack-enabled
WiDom

Classical
WiDom

Ti(s) 70,000 180,000 350,000 700,000 1,200,000
Data rate(bit/s) 14,629 5,689 2,926 1,463 853

Calc.Ri(s) 55,158 25,158 70,158 40,158 130,158 55,158 145,158 70,158 265,158 100,158
Exp. Avg. Ri(s) 19,218 14,122 19,627 16,201 19,703 16,962 26,012 19,961 35,627 23,108
Exp. Max. Ri(s) 52,942 23,240 60,124 35,556 98,219 44,215 91,240 56,294 122,419 73,947

i 6 7 8 9 10
Ti(s) 1,900,000 3,700,000 5,400,000 5,400,000 5,400,000

Data rate(bit/s) 539 277 190 190 190
Calc.Ri(s) 280,158 115,158 340,158 130,158 355,158 145,158 490,158 175,158 565,158 205,158

Exp. Avg. Ri(s) 35,604 29.014 38,868 29,462 42,191 39,218 46,713 40,793 47,508 41,921
Exp. Max. Ri(s) 132,047 93,261 153,510 102,286 185,420 82,490 181,506 83,912 181,241 85,122

Table 8. Response time for classical WiDom in non-lossy environment.

i 1 2 3 4 5
Ps (s) 10,000 15,000 10,000 15,000 10,000 15,000 10,000 15,000 10,000 15,000

Ti(s) 30,000 70,000 70,000 180,000 120,000 350,000 300,000 700,000 900,000 1,200,000
Data rate(bit/s) 34,133 14,629 14,629 5,689 8,533 2,926 3,413 1,463 1,138 853

Calc.Ri(s) 20,158 25,158 30,158 40,158 50,158 55,158 60,158 70,158 90,158 100,158
Exp. Avg. Ri(s) 10,936 14,035 13,417 16,025 14,512 18,731 16,204 19,970 18,301 23,281
Exp. Max. Ri(s) 17,316 22,901 27,305 33,914 36,827 44,260 50,113 54,218 54,961 79,540

i 6 7 8 9 10
Ti(s) 1,900,000 1,900,000 3,700,000 3,700,000 5,400,000 5,400,000 5,400,000 5,400,000 5,400,000 5,400,000

Data rate(bit/s) 539 539 277 277 190 190 190 190 190 190
Calc.Ri(s) 110,158 115,158 120,158 130,158 170,158 145,158 180,158 175,158 200,158 205,158

Exp. Avg. Ri(s) 21,743 26,916 25,047 29,427 32,184 36,849 33,927 39,085 36,265 40,110
Exp. Max. Ri(s) 61,227 89,301 75,203 102,546 69,416 98,113 76,439 86,343 80,116 109,754

We have used the timeouts given in Subsection 5.2 and a value for the jitter3 of 1
s. The maximum and average value of response time obtained through the

experiment for each message stream are shown by Exp. Max. Ri and Exp. Avg.
Ri , respectively. From a comparison between the values of Calc. Ri and Exp.
Max. Ri , it is confirmed that no message has shown a response time higher than
the calculated WCRT in all the considered scenarios, which substantiates the fact that
the analytical model for the WCRT provides a fairly good upper bound to the
expected response time. Moreover, looking at Exp. Avg. Ri in Table 5, 6 and 7,
i.e., the average value of response time, it is evident how the Ack-enabled mechanism
slightly increases the response time for all the message streams.
 As expected, this is what the system pays to achieve the good results shown in
Figure 7 in terms of packet loss ratio. Moreover, while the classical WiDom is almost
indifferent to the various noise patterns, from the tables it can be observed that, a
higher noise density leads to higher response time for the Ack-enabled WiDom. These
results are totally expected, because as the noise density increases, there are more
packet collisions and consequently higher number of retransmissions. As anticipated,
the average values of the response time of message streams are similar for the
classical WiDom, in any channel condition. The reason is that there is no mechanism
devised in classical WiDom which takes into account the noise of the channel. Nodes
sends their packet only once according to their arrival schedules and there is no
feedback to let them know about their transmission status.

The last observation leads us to run another experiment for classical WiDom in
non-lossy environment in order to push the system to its limits. Since we are using the
classical WiDom there is no need to consider extra time for the gateway to process
received data packet and to issue an Ack packet. Hence, the synchronization period
can be safely decreased from PS=15 ms to, e.g., PS=10 ms, i.e., a value closer to the
theoretical limit computed in Section 5.2. Accordingly, the data rate of the first five
message streams can be increased.

Table 8 shows the timing behavior of protocol in such a non-lossy environment,
with a noise floor of -96 dBm. Once more, no packet loss has been observed nor
deadline miss and no WCRT miss ratio were reported. Observing the values of
Table 8 it is also evident that by shrinking the synchronization period, we could
slightly achieve better timing behavior, while accommodating nodes with higher data
rates. This leads to the conclusion that in a non-lossy environment (interference
probability reduced to 0) or for non-loss sensitive applications, it is preferable to use
the classical WiDom approach, since it can provide better timing behavior.

Finally, Figure 8 summarizes the previous findings by showing the average
response time as a function of the data rate in all interference scenarios. As confirmed
by the above analysis of the tables, the average response time in Ack-enabled WiDom
is higher than that of classical WiDom protocol in all scenarios. It appears clear that
the higher noisy channel deteriorates the average response time compared to lower
noisy channel for the Ack-enabled WiDom protocol, while the average response time
for the classical WiDom protocol does not change significantly under different noise

3 We remind that Nano-RK [14] uses a policy of scheduling the tasks and interrupts with a one-

shot timer whose accuracy is 1 µs. Then all tasks might experience a jitter of around 1 µs
delay for any execution.

conditions. Finally, when the environment is non-lossy, it is possible to get smaller
average response time values by implementing the classical WiDom protocol also
through the reduction of the synchronization period, PS, which allows for higher data
rates.

Energy cost. As we have discussed earlier, implementing Ack mechanism

increases the reliablity of WiDom protocol and makes it robust in noisy environment,
despite an increase in the response time. Nevertheless, we should also consider the
cost of extra energy consumption due to the exchange of extra packets. In particular,
there are two major sources of energy cunsumption in Ack-enabled WiDom compared
to the classical WiDom case: (i) the amount of energy for receiving the Ack packet
and (ii) the extra cost for retransmitting after an unsuccessful transmission.
Cosidering the current draw of 19.7 mA in receive mode and 14 mA in transmit mode
(transmission power level 19) of MicaZ mote [11], the normalized energy
consumption for Ack-enabled WiDom is estimated as follows:

E(Ack-enabled WiDom) =)
14

7.19(17)_(128)__(AckPktNoTxPktNoRTxPktNo

(22)

Fig. 8. Average response time for Ack-enabled and classical WiDom in HNC, LNC and
SPNC environments and classical WiDom in non-lossy environment with PS =15 ms and
PS = 10 ms and different data rates.

where No_RTxPkt represents the number of retransmitted 128 bytes-long packets,
No_AckPkt indicates the number of 17 bytes-long Ack packets received by the nodes
and No_TxPkt is the number of transmitted packets. Similarly, the normalized energy
consumption of classical WiDom can be estimated as follows:

 E(Classical WiDom) = 128)_(TxPktNo (23)
so, the extra energy we pay for implementing the Ack-enabled WiDom against the
classical WiDom for same number of transmission request is:

Energy loss ratio [%] = E(Ack-enabled WiDom) - E(Classical WiDom) 100
 E(Classical WiDom)

. (24)

We do not consider the extra cost paid by the gateway node to receive
retransmissions and send back Ack packets. This makes sense under the common
assumption that the gateway is provided with an extra energy supply. As it is shown
in Figure 9, the extra energy cost of using the Ack-enabled mechanism is roughly
between 25% and 35%, compared with the classical WiDom, for any data rate. It can
be seen that the energy loss shows some fluctuations at lower data rates and tends to
stabilize as the data rate increases. The reason is that nodes at lower data rate may
have the opportunity to experience disruptive bursts of interference more often than
the others, then they may need to retransmit more to deliver their messages
successfully.

In terms of the impact of the interference pattern, it is evident that the higher noise
density conditions imposes higher energy consumptions due to the higher number of
retransmissions. The energy loss rate is about 10% higher for HNC scenario
compared to that in LNC environment, while the SPNC case shows performance
similar to the LNC interference pattern.

Finally, to better understand the impact of the ack-based mechanism, we have
compared the packet loss rate against the power consumption (assuming as a
simplification that the time to transmit a byte is equal to the time to receive one) —
see Figure 10. The average power consumption has been computed knowing the
duration of each experiment. Note that the number of transmission request is different
in each scenario. That is why we have different power consumption for classical
WiDom. However, the number of transmission requests for both Ack-enabled and
classical WiDom protocol is the same under the same channel condition. The

Fig. 9. Energy loss ratio for Ack-enabled WiDom vs. classical WiDom in HNC, LNC and
SPNC environments.

comparison of the two implementations under the same channel condition proves
once more that by spending around 30% of more energy it is possible to keep the data
loss ratio below 2%, even in the worst interference conditions.

6 Concluding remarks

In this paper, we focused on a prioritized MAC protocol, WiDom, recently proposed
for Wireless (Sensor) Networks and opted for a more recent low overhead
implementation of this MAC design that is called slotted WiDom. Our primary
contribution was to develop a sufficient response time analysis for slotted WiDom
with message streams that suffer from release jitter and also experience noise in the
channel. We have shown that our analysis is non-trivial due to the slotted nature of
the protocol and in order to reduce the level of pessimism in the calculated upper
bound, we should individually explore all the possible cases that may happen
according to the arrival pattern of message streams and then pick the maximum upper
bound among all possible cases. Another contribution of this paper was to offer error
recovery scheme to make the protocol more robust and reliable in noisy environment.
We considered an Ack-based implementation of the protocol and developed the
analysis according to this modification.
To validate our calculated upper bounds we have conducted a set of experiments in
different channel conditions. The experimental results have shown that implementing
Ack-enabled WiDom reduces the packet loss rate remarkably, to less than 2%, under
high noisy channel compared to the classical WiDom protocol. The results further
certified our findings in the analytical calculations that the theoretical analysis offers a
valid upper-bound for each message streams. According to the analysis, having Ack-
enabled WiDom increases the average response time that is verified through the
experiments. It has also shown that having Ack-enabled WiDom intensifies energy
consumptions (as number of data transmissions and retransmissions). In fact, there is
a trade-off between having lower response time, lower energy consumptions and
reliable data transmissions: this leads to an optimization problem at design time,

Fig. 10. jfjyk.

 Fig. 10. Packet loss ratio vs. average power consumption for Ack-enabled WiDom and
classical WiDom in HNC, LNC and SPNC environments.

where the system designer can choose the most appropriate solution according to the
application needs or (expected) channel conditions.

References

1. Bosch. CAN Specification version 2.0. Robert Bosch GmbH, Pstfach 30 02 40, D-70442
Stuttgart (1991)

2. Pereira, N., Andersson, B., Tovar, E.: WiDom: a Dominance Protocol for Wireless
Medium Access. J. TII. 3, 120--130 (2007)

3. Andersson, B., Tovar, E.: Static-Priority Scheduling of Sporadic Messages on a Wireless
Channel. In: 9th International Conference on Principles of Distributed Systems, pp. 322--
333. IEEE Press, Italy (2005)

4. Pereira, N., Gomes, R., Andersson, B., Tovar, E.: Efficient Aggregate Computations in
Large-Scale Dense WSN. In: 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 317--326. IEEE Press, San Francisco (2009)

5. Mok, A., Ward, S.: Distributed Broadcast Channel Access. J. Com. Net. 3, 327--335
(1979)

6. Gomes, R.: Efficient Implementation of a Dominance Protocol for Wireless Medium
Access. Technical report, MSc Thesis, Polytechnic Institute of Porto, (2008)

7. Davis, R., Burns, A., Bril, R., Lukkien, J.: Controller Area Network (CAN)
Schedulability Analysis: Refuted, Revisited and Revised. J. RTS. 35, 239--272 (2007)

8. Tindell, K., Hansson, H., Wellings, J.: Analysing real-time communications: controller
area network (CAN). In: 15th IEEE Real-Time Systems Symposium, pp. 259--263. IEEE
Press, Puerto Rico (1994)

9. Boano, C.A. , Voigt T., Tsiftes N., Mottola L., Römer K., Zuniga M.: Making Sensornet
MAC Protocols Robust Against Interference. In: 7th European Conference on Wireless
Sensor Networks, pp. 272--288, Portugal (2010)

10. Z-monitor: A monitoring tool for ieee 802.15.4 wireless personal area networks, 2010.
(http://www.z-monitor.org).

11. CROSSBOW-Datasheet: MICAz. San Jose, USA. Crossbow Technology, Inc., 2004.
12. T. Instruments, “CC2420 datasheet,” http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
13. Boano, C.A., Voigt, T., Noda, C., Romer, K., and Zuniga, M.: Jamlab: Augmenting

sensornet testbeds with realistic and controlled interference generation. In IPSN 2011.

http://www.z-monitor.org/
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

	HURRAY_TR_121004
	slotted widom analysis-2012-v10

