

Response Time Analysis of COTS-Based
Multicores Considering The Contention On
The Shared Memory Bus

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110705

Version:

Date: 09-27-2011

Dakshina Dasari

Björn Andersson

Vincent Nelis

Stefan M. Petters

Arvind Easwaran

Jinkyu Lee

Technical Report HURRAY-TR-110705 Response Time Analysis of COTS-Based Multicores Considering

 The Contention On The Shared Memory Bus

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Response Time Analysis of COTS-Based Multicores Considering The
Contention On The Shared Memory Bus
Dakshina Dasari, Björn Andersson, Vincent Nelis, Stefan M. Petters, Arvind Easwaran, Jinkyu Lee

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: dndi@isep.ipp.pt, baa@isep.ipp.pt, nelis@isep.ipp.pt, smp@isep.ipp.pt, aen@isep.ipp.pt, jule@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Abstract—The current industry trend is towards using Commerciallyavailable Off-The-Shelf (COTS) based multicores
for developing realtimeembedded systems, as opposed to the usage of custom-madehardware. In typical implementation
of such COTS-based multicores,multiple cores access the main memory via a shared bus. This oftenleads to contention
on this shared channel, which results in an increaseof the response time of the tasks. Analyzing this increased
responsetime, considering the contention on the shared bus, is challengingon COTS-based systems mainly because bus
arbitration protocolsare often undocumented and the exact instants at which the sharedbus is accessed by tasks is not
explicitly controlled by the operatingsystem scheduler; they are instead a result of cache misses. This paperproposes
three contributions towards analyzing tasks scheduled onCOTS-based multicores. Firstly, we describe a method to
model thememory access patterns of a task. Secondly, we apply this model toanalyze the worst-case response time for a
set of tasks. Finally, thispaper describes a method to experimentally obtain the parametersrequired for such an analysis,
by using performance monitoringcounters. We compare our work against an existing approach andshow that our
approach outperforms it by providing tighter upperboundson the number of bus requests generated by the tasks.

Response Time Analysis of COTS-Based Multicores Considering the Contention on the

Shared Memory Bus

Dakshina Dasari∗, Björn Andersson†∗, Vincent Nelis∗, Stefan M. Petters∗, Arvind Easwaran∗ and Jinkyu Lee‡
∗CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

†Software Engineering Institute, Carnegie Mellon University, USA
‡Dept. of Computer Science, KAIST, South Korea

{dndi, baa, nelis, smp, aen}@isep.ipp.pt; jinkyu@cps.kaist.ac.kr; baandersson@sei.cmu.edu

Abstract—The current industry trend is towards using Commercially

available Off-The-Shelf (COTS) based multicores for developing real-

time embedded systems, as opposed to the usage of custom-made

hardware. In typical implementation of such COTS-based multicores,

multiple cores access the main memory via a shared bus. This often

leads to contention on this shared channel, which results in an increase

of the response time of the tasks. Analyzing this increased response

time, considering the contention on the shared bus, is challenging

on COTS-based systems mainly because bus arbitration protocols are

often undocumented and the exact instants at which the shared bus is

accessed by tasks are not explicitly controlled by the operating system

scheduler; they are instead a result of cache misses. This paper makes

three contributions towards analyzing tasks scheduled on COTS-based

multicores. Firstly, we describe a method to model the memory access

patterns of a task. Secondly, we apply this model to analyze the worst-

case response time for a set of tasks. Although the required parameters

to obtain the request profile can be obtained by static analysis, we

provide an alternative method to experimentally obtain them by using

performance monitoring counters (PMCs). We also compare our work

against an existing approach and show that our approach outperforms

it by providing tighter upper-bound on the number of bus requests

generated by a task.

I. INTRODUCTION

Currently, multicore processors are generic building blocks in
the design of embedded real-time computing systems. In a typical
multicore system, each core has its own resources (architectural
state, registers, execution units, some or all levels of caches).
Data is transferred from the memory to the processor over an
interconnection network and the focus of this paper is on mul-
ticore implementations that use the Front Side Bus (FSB) as
the interconnection network. Since all the cores access memory
via the FSB, cores may stall while waiting for requests to be
served, thereby increasing the execution time of the tasks running
on those cores. For the deployment of real-time applications on
multicores it is often of utmost importance to determine whether
tasks meet their deadlines by analyzing their worst-case response
time (WCRT) at design time, considering the contention on shared
low-level hardware resources. Unfortunately, established methods
to compute WCRT of tasks for a uniprocessor cannot be used
unmodified for multicores, since they do not take into account the

This work was supported by the CISTER Research Unit (608FCT),
the REPOMUC project (ref. FCOMP-01-0124-FEDER-015050), funded
by FEDER funds through COMPETE (POFC - Operational Programme
’Thematic Factors of Competitiveness), and by National Funds (PT) through
FCT - Portuguese Foundation for Science and Technology; by the RE-
COMP project, funded by National Funds through FCT under grant ref.
ARTEMIS/0202/2009, and by the ARTEMIS JU under grant agreement no
100202.

additional impact of shared low-level hardware resources. For the
multicore domain, methods to profile the bus request patterns and
to compute the increased execution time due to contention on the
shared low-level hardware resources are still in the initial stages of
research. Hence there is a need to develop such a method which
will help in leveraging the computing power of multicores for real-
time applications. To do so, we first discuss the solutions which
exist in the state of the art and then proceed towards defining our
objectives and proposing our method for analyzing tasks deployed
on multicores, considering the contention on the memory bus.

A. Related Work

The research community has made important initial contributions
to advance the state of the art. Some TDMA-based schemes have
been analyzed since they are predictable and hence real-time
friendly. However, it is difficult to point out currently existing
architectures that actually support TDMA, for lack of documen-
tation from the vendors. A TDMA-based arbitration algorithm has
been proposed by Rosén et al. [1], in which different time slots
to access the bus are allocated to different processors by static
scheduling, stored in a memory directly connected to the bus arbiter
(not available in COTS systems). Schranzhofer et al. [2] developed
a framework for analyzing the worst-case response time of real-
time tasks when TDMA is applied to arbitrate access to a shared
resource. This was followed by their work on resource adaptive
arbiters [3]. Unfortunately, their rigid assumption of tasks being
split into superblocks which execute in some statically pre-defined
order and divided into mutually exclusive acquisition, execution
and replication phases limits the applicability of their solution. In
the TDMA-based schemes proposed in [4] and [5], the authors
have considered the effect of shared instruction caches with a
shared bus as well. Since they do not model data accesses and
assume separate buses and memories for code and data (uncommon
in commodity hardware), their solution though interesting, has
limited applicability. Another method to model request patterns
and the memory bus using timed automata has been proposed in
[6], but they model only instruction accesses. Pellizoni et al. [7]
have developed a method to compute an upper bound to the
contention delay incurred by a task, for systems comprising any
number of cores and any number of peripheral buses sharing
a single main memory. They assume time triggered (periodic)
tasks and a restrictive preemption model and hence their solution
does not cater to event-triggered tasks. Schliecker et al. [8] have
proposed a method to address the issue of bounding the shared
resource load for multiprocessor systems using a general event

based model, but their method is based on the computation of
the minimum time between two consecutive accesses to a shared
resource, leading to an over-estimation of the number of requests
since it inherently implies a uniform distribution of requests. We
will show in Section V that the approach proposed in this paper
provides a tighter upper-bound on the number of requests when
compared to the approach by Schliecker et al.

B. Objectives and Assumptions
Given the WCET of a task in isolation, we aim to develop a

method to compute the WCRT, considering the increased execution
time due to contention on the bus for COTS-based systems. As
chip makers often do not publish the underlying bus arbitration
protocols, the method must not be tightly bound to a particular bus
arbitration mechanism and therefore should be generic. In addition,
the method should also deal efficiently with event-triggered tasks
to reflect real world applications. In order to realize such a method,
we believe that it is warranted to make the following assumptions:
A1. The interconnection network to memory is a bus: The rationale
for this assumption is that although the general trend among
chip makers is towards switched interconnection networks, the
shared front side bus is still the dominant technology in multicore
processors and is expected to be used for some considerable time.
A2. Non preemptive tasks: This assumption is made as a first
step to avoid dealing with cache-related preemption delays and the
effect of context switching overhead associated with preemptive
scheduling.
A3. A constrained deadline sporadic task model: sporadic tasks
have proven remarkably useful for the modeling of event-triggered
real-time systems.
A4. Partitioned scheduling (tasks have been assigned to processors
before run-time and they do not migrate at run-time): Again, this
is to focus on the problem of bus contention.
A5. Arbitration for the memory bus is work conserving: This is
the current standard of COTS-based multicore implementations.
A6. Only one memory request can be handled at a time. Today,
most of the commercial memory controllers implement complex
and optimized features to improve the memory performance, such
as multiple data rates or multiple channels. In such memory con-
trollers, memory requests can be overlapped and multiple requests
can then be served simultaneously. However, this assumption is
made to simplify the analysis while still providing safe results.

We present a method which attempts to fulfill the objectives
stated above, based on assumptions A1–A6. Our main contributions
are towards developing a method to (i) Characterize the bus request
pattern of the task (ii) Find an upper bound on the number of bus
requests generated in a time window of length t (iii) Compute
the WCRT of tasks for multicores under a partitioned scheme,
considering the contention on the bus (iv) Experimentally obtain
the requisite parameters on a COTS-based multicore. These are
presented in Sections III, IV and VI in the paper. We also compare
our method with the method proposed in [8] in Section V.

II. SYSTEM AND TASK MODEL

A. Hardware Model
The hardware is composed of a set of m processor cores denoted

by π1, π2, . . . , πm, and as stated, the cores do not share caches.
This model applies to systems in which each core has a private

cache, or the shared cache if present, is disabled. All the cores
communicate over a shared bus (the Front-Side-Bus) in order to
access the shared main memory.

B. Task Model

The application is composed of a set of tasks τ =

{τ1, τ2, . . . , τn}. We also assume a constrained-deadline sporadic
task model in which each task τi is characterized by �Ci, Di, Ti�;
a worst-case execution time, Ci, a minimum inter-arrival time Ti

and a deadline Di ≤ Ti, with the interpretation that, during the
execution of the system, task τi releases a sequence of jobs such
that two subsequent jobs from τi are released at least Ti time
units apart and the exact times of the releases of these jobs cannot
be controlled by the scheduling algorithm. In order to meet its
deadline, each job released by τi needs to be executed for Ci time
units within Di time units from its release. We denote by Ri an
upper-bound on the worst-case response time (WCRT) of task τi.
The response time of a job denotes the time between its arrival and
its completion and the WCRT of a task is the maximum amongst
the response time of all the jobs released by the task.

In this paper, we are interested in finding the WCRT when τi

executes with contention on the memory bus, i.e., assuming that
other tasks are running on other cores. Clearly, this value is not an
inherent property of τi, but is co-runner dependent and it depends
on the memory request pattern of the other tasks scheduled to run
during its execution. To compute this contention-aware WCRT, we
extend the general WCRT time equation for non-preemptive tasks
and incorporate the extra delay introduced due to cores competing
for the same shared FSB to access the shared main memory. To
compute the contention delay, we next introduce the notations
BRi(t) and TR.

Given a task τi, we define a function BRi(t), that returns an
upper bound on the number of bus requests that task τi can generate
in a time interval of length t. Since the tasks do not share any
cache in our hardware model, the initial value of BRi(t), is clearly
dependent on task τi only, and independent of the behavior of tasks
running on the other processors/cores. But, as will be seen, since
the computation of BRi(t), takes as a parameter the response time
of the task, which is in turn affected by the other tasks run in the
system, the value of BRi(t) will change accordingly.

We denote by TR an upper bound on the time needed to perform
a bus transaction. In general, a bus transaction is a complete
sequence of bus actions required to perform a read (or write)
operation.

C. Scheduler Specification

As noted, tasks are assigned to processors before run-time; i.e.,
we consider a partitioned scheme of task assignment in which
tasks are not allowed to migrate from one core to another. Also,
remember that tasks run to completion and are not preempted.
For analysis, we will assume that each task assigned to a core
is assigned a unique priority at design time. It has to be noted that
the assumption of fixed priority scheduling has only been made for
clarity of representation, but in principle our approach can be used
with any fixed job priority algorithm which allows the computation
of the WCRT Ri. To summarize, our current approach assumes a
non-preemptive, fixed priority, partitioned model for the task set
under analysis.

2

timeCi Ci Ci Ci

TiTi Ticarry in Ti −Ri

Ri

thead tbody ttail

t = thead + tbody + ttail

Figure 1. Calculation of BRi(t) for t ≥ Ci

time

Ci

s
s + t

t

Figure 2. Calculation of BRi(t) for t < Ci

We denote by π(i), the set of tasks, excluding τi, that are
assigned to the same core as τi. The notation π̄(i) will be used to
denote the set of tasks not assigned to the same core as τi. Also,
we denote by lp(i) and hp(i) the subset of tasks executed on the
same core as τi and which have a lower and higher priority than
τi, respectively.

III. A METHOD TO COMPUTE BRi(t)

As stated previously, BRi(t) denotes an upper bound on the
number of bus requests that task τi can generate during any time
interval of duration t. The following notations are used in context
of the computation of BRi(t):

1) A lower and upper bound, ARL
j

i
(t) and ARH

j

i
(t) (re-

spectively) on the number of bus requests in an interval
[0, t], where 0 denotes the beginning of execution of the j

th

execution path of task τi up to time t.
2) The execution time C

j

i
of the j

th execution path of task τi.
We note that different executions of the same path may result

in different number of bus requests as a result of the underlying
cache replacement policy; this is the reason why we distinguish
between ARH

j

i
(t) and ARL

j

i
(t). We let paths(τi) denote the set

of all the execution paths of task τi. By definition, ARH
j

i
(t) and

ARL
j

i
(t) are non-decreasing functions for all i, j.

Consider a time window of a given length t, for which we need
to compute an upper bound BRi(t) on the number of bus requests
generated by a task τi. We can have three types of jobs in this time
interval (i) A job that is released before the start of the time window
but with its deadline in the time window, which means it executes
partially or completely within the window(ii) Jobs that are released
within this time window and complete their entire execution within
it, and (iii) A job released within the given time window but having
its deadline outside the window and hence executes partially or
completely within the time window. To calculate BRi(t), we divide
the time window t into three subintervals correspondingly: the head
portion of length thead, the body portion of length tbody, and the
tail portion of length tL, such that thead + tbody + ttail = t and
thead, ttail < Ti.

As shown in Figure 1, the head has a length of less than Ti,
implying either one partial or one complete execution. The head is
in turn divided into two parts, namely, the carry in and the arrival

gap (a gap). The carry-in portion represents the execution segment
of the task which lies within the time window (under consideration)
and it ranges from 0 to Ci. Since the task executes in the carry-in
portion, we can also view the carry-in part as the request generating
portion of the head. On the other hand, the a gap part specifies the
time between the termination of τi in the head and its next release
time-instant, i.e., it is the time between the end of the carry-in
and the next release of τi. In this portion, no bus requests can
be generated since the CPU is waiting for the next release of τi.
In order to maximize the number of requests in the whole time
window under consideration, it can be easily shown that the a gap
interval should be as short as possible, and its shortest length is
given by (Ti −Ri), which assumes the scenario in which the job
of τi that executes in the head has completed execution exactly Ri

time units after its release. We represent this by

thead
def
=

(
carry in + a gap if carry in > 0

0 otherwise
with 0 ≤ carry in ≤ Ciand a gap = Ti −Ri

Since the head part starts from any arbitrary point of an execution
of τi, but includes the end point of that execution, an upper bound
on the number of bus requests generated in the head portion is
given by:

fhead
i (carry in)

def
= max

j∈paths(τi)

n
ARH

j
i (C

j
i)− ARL

j
i ([C

j
i − carry in])

o

(1)
In the body portion, there are exactly tbody/Ti complete execu-

tions of τi and the maximum number of request generated in the
body portion is given by:

fbody
i

(tbody)
def
=

tbody

Ti

× max
j∈paths(τi)

n
ARH

j

i
(Cj

i
)

o
(2)

Finally, the length of the tail part is less than Ti, implying either
one partial or one complete execution. The number of bus requests
generated in the tail part can be bounded from above by:

f tail
i

(ttail)
def
= max

j∈paths(τi)

n
ARH

j

i
(min{ttail, Cj

i
})

o
(3)

Algorithm 1 describes a method to compute the function BRi(t).
The input to the algorithm is t, the duration for which the number
of requests needs to be upper bounded, Ri, the response time of the
task, Ci and Ti. When the task is run in isolation, we assign Ri =

Ci. The algorithm computes the maximum number of requests by
considering every feasible combination of thead, tbody and ttail.
To do so, it initially fixes the carry in which ranges from 0 to Ci,
computes the arrival gap given by Ti−Ri and then correspondingly
calculates tbody and ttail in lines 3 to 14 of the algorithm. Next
the body portion is computed and the rest of the time interval is
assigned to the tail portion. This is represented as:

tbody
def
= max

0,

—
(t− thead)

Ti

�ff
× Ti (4)

ttail
def
= max {0, t− thead − tbody} (5)

For every combination of thead, tbody and ttail, the algorithm
computes the number of requests in line 15. The maximum

3

Algorithm 1: ComputeBR()
input : Ri, Ci, Ti and time interval t
output: BRi(t)

1 begin

2 total← maxreq← 0 ;
3 for carry in← 0 to min(Ci, t) do

4 if (carry in == 0) then

5 thead ← 0 ;
6 tbody ←

j
t

Ti

k
× Ti;

7 ttail ← t− tbody;
8 else

9 a gap← Ti −Ri;
10 thead ← carry in + a gap;
11 if thead > t then tbody ← ttail ← 0 ;
12 else

13 tbody ←
j

t−thead
Ti

k
× Ti;

14 ttail ← t− thead − tbody;

15 total← fH

i
(carry in) + fM

i
(tbody) + fT

i
(ttail);

16 if total > maxreq then maxreq← total

17 if t < Ci then

18 Compute maxreq1 as per Equation (6) ;
19 if maxreq1 > maxreq then maxreq← maxreq1

20 return maxreq ;

recorded value of the number of requests generated is updated as
the algorithm proceeds and the final value is returned as BRi(t).

For the special case in which t < Ci, the maximum number of
requests may be generated across two jobs (with only a carry in
and tail portion, and no body portion), or in any arbitrary segment
of the task. In the latter case, we compute BRi(t) as follows (see
Figure 2):

BRi(t) = max
j∈paths(τi)

0≤s<(Ci−t)

n
ARH

j

i
(min{s + t, Cj

i
})−ARL

j

i
(s)

o
(6)

For this scenario t < Ci, BRi(t) is thus computed by taking the
maximum between the value returned by the algorithm described
above and the value returned by Equation (6), which handles the
case in which the maximum number of requests is generated within
a task segment.

Although it appears that the algorithm loops over all the values
from 0 to Ci, in practice it is not feasible to compute the value of
ARHi(t) or ARLi(t) for all t from 0 to Ci as it is computationally
expensive and hence the values must be computed at a coarser
granularity. In reality and as described in the experiment section,
a limited number (say k) of sampling points are chosen from 0

to Ci and readings are recorded only at these k points. In such a
method, whenever t is not equal to one of these k sampling point
while reading ARHi(t) or ARLi(t), it is always important for
these two functions to round the returned value to the next higher
sampling point. This may result in a over-approximated number
of request for a given t, but the returned value will be safe. The
algorithm is presented as such, to separate the theoretical method
which is generic, from the implementation which may depend on
the hardware (e.g. the resolution of timers, which will decide the
frequency of sampling).

The current method of exploring all paths is inevitable in static
analysis, measurement-based or hybrid methods to ensure safe
upper bounds. It can be optimized on an application-to-application
basis, considering the input sets and eliminating paths which will
not contribute to the maximum number of requests (for e.g. simple
error reporting/recovery paths which return immediately or paths
with certain conditional clauses). The proposed method can thus
be applied after a path truncation phase and application of other
optimization techniques which is not in the focus of the paper. The
proposed solution as such, is meant to serve as a generic method,
irrespective of the application or the input set.

IV. RESPONSE TIME ANALYSIS

In this section, we describe the function to compute the general
response time and then propose an extension to handle interference
from the other cores.

A. General Response-Time Analysis
The research literature provides methods for computing the exact

response-time of tasks scheduled by non-preemptive fixed-priority
scheduling on uniprocessor system [9], [10]. For the task model
considered in this paper, a simplified version which does not
explore the entire busy period and is hence faster can be derived
from [11]. Instead of computing the response time Ri of task τi

exactly, it computes an upper-bound bRi on it by using the following
recursive equation:

bR(k+1)
i

= Ci + Bi +

X

j∈hp(i)

&
bR(

i
k)

Tj

’
× Cj (7)

where Bi is the maximum blocking time imposed on task τi due
to lower-priority tasks, i.e., Bi

def
= maxj∈lp(i){Cj}. The WCRT

Ri of the task τi is computed in an iterative manner, starting from
bR(0)

i
= Ci + Bi, and is given by the smallest value of bR(k)

i
that

satisfies Equation (7). The process terminates when either it reaches
the first fixed-point value of the equation at which bR(k+1)

i
= bR(k)

i
,

in which case the WCRT Ri = bR(k+1)
i

is obtained, or it reaches
bR(k)

i
> Di which implies that the deadline of task τi is missed.

B. Extended Response-Time analysis
The computation of the WCRT in the multicore scenario must

consider the increased delay due to tasks executing on the same
core and the additional delays due to contention on the FSB from
tasks running on the other cores. We now introduce the extended
response-time equation which, in addition to the original WCRT
equation, also factors-in the contention delay due to requests
generated by the co-scheduled tasks on the other cores competing
for the shared FSB.

bR(k+1)
i

= Ci +Bi +

X

j∈hp(i)

&
bR(k)

i

Tj

’
×Cj +

X

j∈π̄(i)

BRj(
bR(k)

i
)×TR

(8)

Equation (8) encapsulates the effects of the delay due to inter-
ference by higher priority tasks on the same core, the blocking by
the lower priority tasks on the same core and the delay caused
by interference from tasks running on the other cores. If τi is
the task under analysis, all the tasks with a higher priority than

4

Algorithm 2: ComputeRespTime()
input : τi

output: Rnew
i

or failure code
1 Rnew

i
← Ci ;

2 repeat

3 Rold
i
← Rnew

i
;

4 Rnew
i

← Ci + Bi +
P

j∈hp(i)

‰
R

old
i
Tj

ı
× Cj +

P
j∈π̄(i) BRj(Rold

i
)× TR ;

5 if (Rnew
i

> Di) then return failure ;
6 until (Rnew

i
== Rold

i
) or (Rnew

i
> Di);

7 return Rnew
i

;

τi and assigned on the same core as τi, will also be impacted
by the requests generated by tasks scheduled on the other cores,
thereby increasing their execution time. This in turn will impact the
WCRT of task τi. In the increased response time, more requests
may be generated by the tasks running on the other cores. This will
continue till the value of bRi stabilizes (like the regular response
time equation). Hence, to incorporate the extra delay due to the bus
requests, which are generated during the increased response time,
BRj() is parameterized with bR(k)

i
.

Although the process is largely standardized, we present the
method to compute the above equation as an algorithm (Algorithm:
ComputeRespTime()) for easier readability. In order to prove that
this algorithm terminates, we have to prove that the value of
R

new

i ≥ R
old

i in each iteration of the algorithm. The following
conditions will cause the algorithm to terminate: (i) R

new

i > Di

implying that the task will miss its deadline, hence making the
task set non schedulable (ii) R

new

i = R
old

i implying that the fixed
point value of the equation is reached and the recurrence relation
has converged. The term representing the interference from the
higher priority tasks is known to be a monotonically increasing
function. To guarantee increasing monotonicity of the entire right-
hand side (RHS) of the equation, we then need to prove the mono-
tonic increasing property of the term,

P
j∈π̄(i) BRj(R

old

i)× TR,
representing the interference from the other cores.

We know from Algorithm ComputeBR() for task τi, which is
being delayed by requests from τj (j ∈ π̄(i)), we have to compute
BRj(t). In the case presented here, the value of t is R

old
i . Hence

we can express BR as a function of two parameters and represent
it here as BRj(Rj , R

old
i). The value of Rj stays constant during

the entire iterative process ComputeRespTime() but the value of
the input R

old
i increases at each iteration (see line 3). By the very

definition of the function BR(), we know that for all tasks τj having
the property Cj ≤ Rj ≤ Dj and for all t, t

�
> t: BRj(Rj , t

�
) ≥

BRj(Rj , t). Hence we obtain the monotonic increasing property
of the RHS of the equation.

C. System Analysis
To analyze the entire system, we need to find the response

times of all the tasks in the system. To facilitate this, we have
formulated the process as two algorithms: PerCoreAnalysis() and
SystemAnalysis() (Algorithm 3 and 4). The value of any variable
X in the iterative step k is denoted by X

k in both algorithms.

Algorithm PerCoreAnalysis(): This algorithm captures the
computation of R

k

i for a set of tasks assigned to a core, during

Algorithm 3: PerCoreAnalysis()
/* πj denotes the core index */
input : stepnum, πj

output: statuscode (TRUE(1) or FALSE(0) or failure(-1))
1 begin

2 k ← stepnum, RiModified← FALSE, R0
i
← C0

i
← Ci;

/* Compute the WCRT for the set of n tasks
*/

3 foreach (τi assigned to πj) do

4 Rk+1
i

← ComputeRespT ime(τi) ;
5 if (Rk+1

i
> Di) OR Rk+1

i
= failure then

return failure;
6 if (Rk+1

i
�= Rk

i
) then RiModified← TRUE;

7 return RiModified ;

Algorithm 4: SystemAnalysis()
begin

stepnum← 0 ;
repeat

foreach πi ∈ {π1, π2, . . . , πm} do

status← PerCoreAnalysis(stepnum, πi);
if (status == failure) then

print “Task Set Not Schedulable”, Exit
/* status returns TRUE if any Ri was

modified. */

stepnum ++ ;
until (status �= TRUE);

the iteration step k. For every iteration k, R
k+1
i

is computed using
Equation (8), considering the interference (modeled by BRj(R

k

i))

from the tasks running on the other cores. If the response time of
any task exceeds its deadline, the algorithm returns a failure status.
If the response time of any task in the current iteration differs from
the previous iteration, the algorithm, sets the value of the variable
RiModified to TRUE, implying that another round of iteration is
required.
Algorithm SystemAnalysis(): This algorithm applies the PerCore-
Analysis() algorithm to the set of tasks running on each core in a
sequence of iterative steps, passing the step index as a parameter.
The algorithm PerCoreAnalysis() for step k is first applied to
the tasks set on core π1, then on core π2 and subsequently to
core πm. The algorithm terminates when the response time, Ri

for every task τi in the entire system (all task sets on all cores)
converges to a stable value across iterations (Rk+1

i
= R

k

i), or
the WCRT of any task of the entire system exceeds its deadline,
implying that the task set is not schedulable, thereby terminating
the entire offline analysis process. It is important to note that
if the call to PerCoreAnalysis() results in a modified response
time of any task, it affects the resulting value, generated by the
ComputeBR() algorithm (which uses the value of Ri as an input).
Hence, the next call to PerCoreAnalysis, must be made, with the
modified Ri as input to the ComputeBR() algorithm, to reflect
the modified external core interference represented by the termP

j∈π̄(i) BRj(t)× TR in Equation (8).
In order to prove that the algorithm terminates, we have to

prove that the (k + 1)
th call to the function PerCoreAnalysis()

generates a value R
k+1
i

≥ R
k

i . Note that the value of k now denotes

5

the iteration index in the context of Algorithm SystemAnalysis().
On exiting the PerCoreAnalysis() function, the response time of
every task has reached a fixed-point equation or a status indicating
that the deadline of the task is exceeded is returned. In the former
case, the attainment of the fixed point value implies that:

Ri = Ci + Bi +

X

j∈hp(i)

‰
Ri

Tj

ı
× Cj +

X

j∈π̄(i)

BRj(Ri)× TR (9)

The computeBR() algorithm for task τj needs Rj (amongst other
parameters) as an input, to compute the maximum number of
requests in time t. As mentioned earlier, BR() can be expressed as
a function of two parameters BRj(Rj , t). In the above equation t

has the value Ri.
Lemma 1: For all tasks τj having the property Cj ≤ Rj ≤ R

�
j ,

it holds for all t > 0 that BRj(Rj , t) ≤ BRj(R
�
j , t)

Proof: The proof follows from Algorithm computeBR(). In-
creasing the response time Ri implies that the maximum arrival
gap (Ti − Ri) decreases, thereby decreasing the idle segments of
the time window in which no requests are generated between task
releases: It potentially allows more requests to be generated in the
carry-in portion, the body portion or the tail portion during the time
window under consideration1.

V. COMPARISON WITH RELATED WORK

An arbitration algorithm agnostic method is proposed by [8] (and
an extended version in [12]) and hence warrants a comparison with
our method, since the method may look similar in principle to
the reader. The approach presented in [8] uses an event activation
model to compute the upper bound to access shared resources in a
given time t. To compute the maximum number of requests for a
single task instance, they assume that there is a known minimum
time dsr between two requests to a shared resource. They propose
a simple lower bound to compute the minimum time that a task
must execute, to generate n requests, given by δ

−
(n) = (n− 1)×

dsr. This is then extended, to compute the minimum time to make
n requests by multiple instances of the task. An inverse function
η
+
(t), is used to derive the maximum number of requests in time

t. The assumption of a minimum request distance is request pattern
agnostic and inherently implies a uniform distribution of requests
and hence leads to an over-estimation of the maximum number of
requests that a task can generate in a given time t.

It is important to note that the method proposed here, uses a
different technique (compared to the method proposed in [8]) to
compute the maximum number of requests for a task in a time
interval t and hence the experiments here are used to highlight only
that phase of the overall analysis. Since our approach to compute
BRi(t) takes into consideration, the request profile of a task and
is request pattern sensitive, the bounds computed are tighter, as
seen in Figure 3(c) and 3(d). These results are drawn from artificial
request patterns depicted in Figure 3(a) and 3(b). These patterns are
representative of applications having a (i) burst of requests at the
beginning and end and (ii) wave like request distribution. In these
graphs, Ci = 100, Ti = 300 and the maximum number of requests,
BR(Ci) in one task instance (referred to N

max
j in their approach)

1Although intuitive, it is to be noted that when Ri = Ti, no more
requests can be generated, as the entire carry in portion is within the time
window.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
um

. n
um

be
r o

f r
eq

ue
st

s

Execution time

Wavy pattern

(a) Input: wave-like request pat-
tern with Ci = 100

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
um

. n
um

be
r o

f r
eq

ue
st

s

Execution time

Bursty begin end

(b) Input: request pattern with
burst at begin-end with Ci = 100

 0

 1000

 2000

 3000

 4000

 0 200 400 600 800M
ax

. n
um

be
r o

f r
eq

ue
st

s

Time

Task parameters: Ci=100, Ti=300

Our method
method in [8]

(c) Output: wave-like request pat-
tern (wave-like) over t = 900

time units

 0

 1000

 2000

 3000

 4000

 0 200 400 600 800M
ax

. n
um

be
r o

f r
eq

ue
st

s

Time

Task parameters: Ci=100, Ti=300

Our method
method in [8]

(d) Output: request pattern (burst
at begin-end) over t = 900 time
units

Figure 3. Comparison of the approaches

is 1000. The experiments are run with Ri = Ci as inputs to both
algorithms. The maximum number of requests are computed for
all values from 0 to 900 (i.e. 3*Ti time units). The curve denoted
by “method in [8]” reflects the number of requests as per the
method proposed in [8], while the curve denoted by “Our method”
reflects the number of requests reported by our method. As seen
in the graphs, our method for determining the maximum number
of requests first characterizes the task behavior and then derives
the bounds. In contrast, in the method proposed in [8], the authors
do not consider the request distribution and base their analysis on
the basis of request distances. As a result, their approach yields
more pessimistic upper bounds on the number of requests that a
task can generate. We compared the two approaches for other types
of request patterns (like bursts at the beginning of the application,
bursts at the end of the application, etc.) as well and found that
our method outperforms their method. As expected, for tasks with
uniform distribution of requests, both methods yield the same upper
bounds. The graphs with other patterns are not presented here
due to space limitations. Summarizing the discussion above, we
believe that our approach dominates their approach in yielding
tighter upper bounds on the number of requests in a given time
interval.

VI. A METHOD TO OBTAIN PARAMETERS EXPERIMENTALLY

In principle, it is possible to use the substantial amount of
work developed in the WCET analysis community [13] to provide
suitable bounds on ARH and ARL. However, these approaches
generally need an important amount of information about the
hardware in order to provide accurate results. Since it is difficult
to obtain suitably accurate documentation for COTS hardware,
those techniques might provide highly pessimistic results and we
focus on an alternative technique based on measurements, as this
is still the de-facto standard in the analysis of safety critical
systems. This alternative is also preferable when the underlying
cache replacement policy is pseudo-LRU, because static/offline

6

analysis methods generally lead to highly pessimistic results for
such policies (and pseudo-LRU is usually employed in COTS-based
hardware).

The approach proposed in the paper requires as an input, the
parameters TR, an upper bound on the time to complete one bus
transaction. It also needs the cache profile of a task modeled by
the ARH and ARL values. This section details how these values
can be obtained by measurement on the actual hardware.

The experiments were carried out on an IntelTMCore2 Quad
Q8300 processor consisting of four cores placed on two dies on
a single chip. Each die has two cores and each core has its own
instruction and data cache (denoted as I$ and D$). However,the
two cores on the same die share the L2 cache i.e., (i) Core-1 and
Core-2 share a L2 cache on one die and (ii) Core-3 and Core-4
share a L2 cache on another die. All the 4 cores access the main
memory via a single shared bus. On one die, tasks were run only
on Core-1, keeping Core-2 idle, thereby giving Core-1 access to
the entire L2 cache available on that die. Analogously, on the other
die tasks were run only on Core-3, keeping Core-4 idle, thereby
giving Core-3 access to the entire L2 cache available on that die.
Experiments were performed on the VxWorks 6.8 [14] real-time
operating system. Other relevant details of the experimental setup
are presented in Table I.

System characteristics

Processor model Intel R� Core2TMQuad Processor

CPU Q8300 @ 2.50GHz

L1 cache 32 KB D-cache, 32KB I-cache, 8-way associative

L2 cache 2048 KB, unified, 8-way associative

FSB Specs 333 MHz, 1333 MTps, 10656 MBps

OS kernel VxWorks 6.8

Table I
TEST SYSTEM DESCRIPTION

A. Measurement Setup

Before each run of the experiments, the cache was invalidated,
ensuring that the state of the cache was consistent across runs.
The experiments were run with the same input, thereby forc-
ing single execution paths. To reduce the non determinism, the
hardware prefetching and adjacent cache line prefetching features
were disabled in the processor. To avoid migration of the tasks
across cores, tasks were pinned to the cores using the taskAffinity
feature in VxWorks. Another feature namely, “CPU Reservation”
(in VxWorks terminology) that dedicates a core to a task was also
used to ensure that the task to which the core is dedicated runs
non-preemptively. Events were monitored at the micro-architectural
level by writing to model-specific registers and reading PMCs
directly. PMCs are a set of special-purpose registers built into
modern microprocessors to store the counts of hardware related
activities, such as cache misses ([15], [16]). It is necessary to
disable the prefetching feature (i) to isolate the bus contention
problem and (ii) to have more determinism while taking the
measurements, as prefetchers speculatively fetch data and add to
the traffic on the bus and run in the background at arbitrary

times, thus making the timing measurements inaccurate. Since the
memory is shared between several peripherals, the interference
from these must be kept to a minimum. Hence the experiments
were run with a basic console device and a diskless system to
avoid any DMA activity to influence measurement results.

B. Measurement of TR

TR is defined as an upper bound on the time to complete one
bus transaction. To obtain this value experimentally, a task was
generated that constantly accessed the memory and generated an L2
cache miss on each access. We programmed this task by declaring
an array twice the size of the cache and accessing each line of the
cache sequentially, thereby causing an L2 miss for every access.
Since the array size is twice the cache size, the task scans the
entire cache twice in each run, hence evicting all the cache lines
that were already fetched, prior to the next run. The number of
bus requests, denoted by NBR, is obtained by monitoring the
Bus Requests Mem event, for each run and the time taken for
each run, denoted by TBR is recorded. The number of bus requests
generated was verified against the expected number of bus requests
(which is twice the number of cache lines) to validate the approach
and was found to be consistent. The value of TR is thus computed
for thousands of runs and the maximum is recorded over all the
runs. Then the final TR is given by Equation (10).

TR = max
k=1..nr

(TBRk / NBRk) (10)

where k denotes the run index, nr denotes the number of runs and
TBRk and NBRk denote the corresponding values in that run.
The value of TR from the experiments was 46.6 nano seconds.

C. Measurement of ARH and ARL

The ARH and the ARL values described in Section III, represent
the upper and lower bound on the number of bus requests generated
by a task from the beginning of its execution up to time t. To
measure these values for a given task, we chose some sampling
points by dividing the execution time of the tasks into subintervals.
We obtained the cumulative number of bus requests upto that point
by interrupting the task and reading the performance monitoring
counters at the required sampled point. We then re-ran the task and
interrupted the task at the next sampling point. At each sampling
point, the highest measured value was recorded as ARH and
the lowest value was recorded as ARL, over multiple iterations.
It is to be noted that unlike simulations, where it is assumed
that a task will have fixed number of memory accesses at a
given time instance, this presents a more realistic approach, as
it takes into account the variations in the number of requests
issued due to the underlying cache replacement policy employed
and makes this method very generic. For the given system, the
Bus Requests Mem This Core This Agent event was monitored
to precisely measure the number of requests issued by the task. An
example of the AR curve, showing the ARH and ARL values at
each sampling point for the Search Benchmark from the MiBench
Suite [17] is presented in Figure 4. The AR curve for the search
program shows a variability in the number of cache misses across
runs during one complete execution. It can be seen that after a
certain time, the number of bus requests remains almost constant
and then increases. The constant number of requests seen in the
graph corresponds to the time when the task is not issuing any

7

requests and this was achieved by the introduction of a task delay
in the program (to demonstrate the variability in the request pattern
which can be captured by PMCs).

Figure 4. ARH, ARL Curve for the Search Benchmark

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a method to analyze the response
times of tasks in a multicore system, considering the contention on
the shared front-side-bus. We have presented a method to model
the memory access patterns of a task, and used it to derive an
upper bound on the number of requests it can generate within a
given time window. By comparing our approach with an existing
approach, we have shown that we can derive tighter bounds on the
number of requests. We also outline the steps to obtain the required
parameters on an actual hardware set-up. In the current work we
considered a non-preemptive task model and multicores with non-
shared caches. In the future, we plan to extend the current work to
analyze shared caches.

REFERENCES

[1] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access optimiza-
tion for predictable implementation of real-time applications on
multiprocessor systems-on-chip,” in Proceedings of the Real-Time
Systems Symposium, 2007, pp. 49–60.

[2] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for
TDMA arbitration in resource sharing systems,” in Proceedings
of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2010, pp. 215–224.

[3] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Cac-
camo, “Timing analysis for resource access interference on adap-
tive resource arbiters,” in Real-Time and Embedded Technology
and Applications Symposium, 2011.

[4] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling
shared cache and bus in multi-cores for timing analysis,” in
Proceedings of the 13th International Workshop on Software &
Compilers for Embedded Systems, 2010, pp. 6:1–6:10.

[5] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roy-
choudhury, “Bus-Aware Multicore WCET Analysis through
TDMA Offset Bounds,” in ECRTS ’11: Proceedings of the 2011
Euromicro Conference on Real-Time Systems, 2011.

[6] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract inter-
pretation with model checking for timing analysis of multicore
software,” in Proceedings of the 2010 31st IEEE Real-Time
Systems Symposium, ser. RTSS ’10, 2010, pp. 339–349.

[7] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele, “Worst case delay analysis for memory interference in
multicore systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2010, pp. 741–746.

[8] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared
resource load for the performance analysis of multiprocessor sys-
tems,” in Proceedings of the Conference on Design, Automation
and Test in Europe, 2010, pp. 759–764.

[9] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling
with deferred preemption,” Real-Time Systems, vol. 42, pp. 63–
119, August 2009.

[10] K. Tindell, A. Burns, and A. Wellings, “Calculating controller
area network (can) message response times,” Control Engineering
Practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[11] K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible
approach for analyzing fixed priority hard real-time tasks,” Real-
Time Systems, vol. 6, pp. 133–151, March 1994.

[12] S. Schliecker and R. Ernst, “Real-time performance analysis of
multiprocessor systems with shared memory,” ACM Transactions
in Embedded Computing Systems, vol. 10, pp. 22:1–22:27, 2011.

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström,
“The worst-case execution-time problem – overview of methods
and survey of tools,” ACM Trans. Embed. Comput. Syst., vol. 7,
pp. 36:1–36:53, 2008.

[14] VxWorks, Applications Programmers Guide, 6.8.

[15] B. Sprunt, “The basics of performance-monitoring hardware,”
IEEE Micro, vol. 22, pp. 64–71, 2002.

[16] Intel 64 and IA-32 Architecture Software Developers Manual
Volume 3B: System Programming Guide, Part 2, Intel Corp.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in Proceedings of the
Workload Characterization, 2001, pp. 3–14.

8

