

Real-Time Support in the Proposal for Fine-
Grained Parallelism in Ada

Journal Paper

CISTER-TR-151204

Luis Miguel Pinho

Brad Moore

Journal Paper CISTER-TR-151204 Real-Time Support in the Proposal for Fine-Grained ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Real-Time Support in the Proposal for Fine-Grained Parallelism in Ada

Luis Miguel Pinho, Brad Moore

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

The Ada language has for long provided supportfor the development of reliable real-time systems, with a modelof
computation amenable for real-time analysis. Tocomplement the already existent multiprocessor support in
thelanguage, an ongoing effort is underway to extend Ada with afine-grained parallel programming model also
suitable for realtime systems. This paper overviews the model which is beingproposed, pointing out the main
issues still open and road ahead.

Real-Time Support in the Proposal for

Fine-Grained Parallelism in Ada

Luís Miguel Pinho

CISTER Research Centre

Portugal

Brad Moore

General Dynamics

Canada

Stephen Michell

Maurya Software Inc

Canada

S. Tucker Taft

AdaCore

USA

Abstract— The Ada language has for long provided support

for the development of reliable real-time systems, with a model

of computation amenable for real-time analysis. To

complement the already existent multiprocessor support in the

language, an ongoing effort is underway to extend Ada with a

fine-grained parallel programming model also suitable for real-

time systems. This paper overviews the model which is being

proposed, pointing out the main issues still open and road

ahead.

Keywords—real-time systems; parallel programming model;

Ada

V. INTRODUCTION

In the last years there has been a plethora of work on real-
time parallel models, mainly focusing in timing and
schedulability analyses concerns. At the same time, very little
has been done to integrate fine-grained parallelism and real-
time in the software platforms used to deploy such systems.
In this paper we focus particularly in real-time programming
technologies in general and Ada in particular.

Ada [1] is a language of choice to the development of
reliable real-time systems, having for long incorporated
models of computation which are amenable for real-time
analysis. It has intrinsically the notion of tasks which can be
used to model recurrent periodic or sporadic computations. A
previous revision of the language (Ada 2005) extended the
scheduling model with the provisions for mixing fixed
priority, EDF, round-robin and non-preemptive scheduling in
an integrated hierarchical scheduling framework [2, 3].

The latest version of the language, Ada 2012, also
provides support to multiprocessor system programming,
with the ability to represent platforms with multiple cores,
and control how tasks are pinned to the cores, with the
possibility to support global, partitioned and a multitude of
in-between scheduling schemes [4]. Nevertheless,
multiprocessor support provides only a coarse-grained
concurrent and parallel model, using Ada tasks.

More recently, a proposal was put forward to augment the
language with a fine-grained parallel programming model,
[5], which can be made amenable for real-time analysis [6,7].
This paper provides an overview of this model, presenting

some of the current main open issues for real-time
computing.

The paper is structured as follows. The next section
presents the parallel programming model proposed for Ada,
whilst section III discusses its applicability for real-time
systems. Section IV then presents the open issues as well as
the current status.

VI. PROPOSED PARALLEL MODEL

The proposal to extend Ada with a fine-grained
parallelism model is based on allowing an Ada task to
execute a graph of non-schedulable computation units
(similar to Cilk [8] or OpenMP [9] tasks), denoted tasklets
[5]. Graph edges represent control-flow dependencies. An
Ada application can consist of several Ada tasks, each of
which can be represented conceptually by a graph.

Tasklets may be explicitly created by the programmer
(using proposed new syntax for parallel loops and blocks) as
well as implicitly by the compiler. In order to support the
compiler a separate proposal is to create contract annotations
to [10], to prevent unprotected parallel access to shared
variables. An important notion is that the model uses strict
fork-join. Tasklets can be spawned by other tasklets (fork),
and need to synchronize with the spawning tasklet (join).
This restriction, which may be seen as a disadvantage, allows
safer programming, as scoping guarantees data access
correctness.

A goal of the model is to allow a complete graph of
potential parallel execution to be extracted during the
compilation phase. Data allocation and contention for
hardware resources are key challenges for parallel systems,
and therefore compilers and tools must have more
information on the dependencies between the parallel
computations, as well as data, to be able to generate more
efficient programs.

Tasklets are not schedulable per se, and always execute
within the semantic context of the enclosing task inheriting
the properties of the task such as identification, priority and
deadline. The proposed model integrates with the resource
sharing protected objects of Ada, therefore synchronization
between tasklets of the same or different tasks can be
performed using Ada protected operations.

task body My_Task is
begin

 -- tasklet A, parent of B, C, F and G,

 ancestor of D and E

 parallel

 -- tasklet B, child of A, parent of D and E

 for I in parallel Some_Rage loop

 -- tasklets D, E, …, are
 -- created by compiler/runtime

 end loop;
 and

 -- tasklet C, child of A, sibling of B

 end;

 -- tasklet A again

 parallel

 -- tasklet F, child of A

 and

 -- tasklet G, child of A

 and

 -- tasklet H, child of A

 end;

 -- tasklet A again

end;

Figure 1 – Task body example (not yet Ada)

Figure 2 – Task graph example

Figure 1 shows code representing the body of execution
of an Ada task (using the parallelism syntax proposal in
[10]), whilst Figure 2 provides its associated graph of tasklets
(rectangles denote tasklets, dark circles fork points, and white
circles join points). The gray area of a tasklet represents
tasklet waiting for child joining. The proposed model also
specifies the execution behavior of the graphs (as tasklets
compete for the finite execution resources), based on a pool
of abstract executors (Figure 3), which are required to serve
the execution of tasklets while guaranteeing progress [7].

An executor is an entity which is able to carry the
execution of code blocks. Although most likely executors
will be operating system threads, the definition gives
freedom so that other underlying mechanisms can be
provided to support this model. An implementation may
provide the minimum functionality to execute parallel
computation, without requiring the full overhead associated
with thread management operation. In an extreme case, an
executor can be the core itself, continually executing code
blocks placed in a queue.

Figure 3 – Execution stack

Tasklet execution by the executors is a limited form of
run-to-completion, i.e., when a tasklet starts to be executed
by one executor, it is executed by this same executor until the
tasklet finishes. Limited because the model allows executing
tasklets to migrate to a different executor, but only in the case
where the tasklet has performed an operation that would
require blocking or suspension. It would be too restrictive to
force the executor to also block or suspend. Before starting to
execute, tasklet migration is unrestricted.

Note that run-to-completion does not mean that the
tasklet will execute uninterruptedly or that it will not
dynamically change the core where it is being executed, since
the executor itself might be scheduled in a preemptive, or
quantum-based scheduler, with global or partitioned
scheduling.

The model presumes that the allocation of tasklets to
executors, and of executors to cores is left to the
implementation [7]. More flexible systems, that are
compatible with this model, might decide to implement a
dynamic allocation of tasklets to executors, and a flexible
scheduling of these in the cores, whilst static approaches
might determine an offline-fixed allocation of the tasklets to
the executors, and utilize partitioned scheduling approaches
for the executors within the cores.

In the general case it is implementation defined whether
or not a tasklet, when it blocks, releases the executor. The
implementation may also block the executor, creating a new
executor, if needed, to serve other tasklets and guarantee the
progress of the task, or it may queue the tasklet for later
resumption (in the same or different executor).

Note that when a tasklet needs to join with its children
(wait for the completion of its children), it is not considered
to be blocked, as long as one of its children is executing
(forward-progressing). Regardless of the implementation, the
executor that was executing the parent tasklet may suspend it
and execute one or more of its children, only returning to the
parent tasklet when all children have completed.

Furthermore, in a fork-join model it is always safe to
suspend a parent tasklet when it forks children, releasing the
executor to execute the children tasklets, and resuming the
parent tasklet in the same executor when all children tasklets
have completed (since the parent can only resume once the
children complete). It might happen that other executors take
some of the children tasklets. In that case, it might happen
that the executor that was executing the parent finishes the
execution of children tasklets while other executors are still

executing other children of the same parent. In this case, the
parent needs to wait for other children tasklets still being
executed in other executors, and the implementation may
spin, block or suspend the executor, or re-lease it to execute
other unrelated tasklets (as described above).

Implementations may also use some form of parent-
stealing [11]. In this case, the suspended parent tasklet might
be reallocated to a different executor, or its continuation
might be represented by a different tasklet. As before, the
implementation must guarantee that tasklet-specific state is
also migrated.

VII. REAL-TIME SUPPORT

The usual model for real-time programming in Ada is
where real-time tasks map one-to-one with Ada tasks. The
parallel model follows the same approach, and thus the
execution of the Ada task generates a (potentially recurrent)
graph of tasklets (on a shared memory multiprocessor). As
specified in the model, tasklets run at the priority (and/or
with the deadline) of the associated task.

To avoid priority inversion, each Ada task (or priority) is
provided with a specific executor pool, where all executors
carry the same priority and deadline of the task and share the
same budget and quantum. Tasklets run-to-completion in the
same executor where they have started execution, although
the executor can be preempted by higher-priority (or nearer
deadline) executors, or even the same priority/deadline if the
task’s budget/quantum is exhausted.

This allows for a tasklet graph to be represented (Figure
4) as a Directed Acyclic Graph (DAG) of sub-tasks as
commonly used in the real-time systems domain, allowing
for the multitude of existent analysis in the community.
Moreover, the safety concerns which implied using a strict
fork join model have another positive advantage, as allows to
use the analysis methods for simpler fork/join and
synchronous models.

Each Ada task, and therefore its graph of tasklets, execute
within the same dispatching domain, which is a subset of the
processors scheduled independently from all other
processors. For real-time systems it may be necessary to
explicitly control parallelism, since the analysis might need
to consider how the parallelism is implemented in greater
detail. Therefore, controls are provided [6] for defining, e.g.,
the number of task executors, the number of tasklets
generated in parallel loops, and if executors are allowed to
migrate. Together with the dispatching domain model of Ada
[4], where platforms can be divided in a set of (disjoint)
processor clusters (domains), and Ada tasks allocated to a
specific domain (shared or not) this allows sufficient
flexibility to support the majority of the real-time models.

The proposed model nevertheless does not support
approaches that require setting different priorities/deadlines
for individual nodes in the graph (decomposition techniques).
In the model, base priorities and deadlines of tasklets remain
the same as the parent task, which simplifies creation and
scheduling of tasklets, as well as integration with Ada
tasking. Note that priority and deadline represent the relative
urgency of the job executing; urgency between tasklets of the
same graph is not meaningful since it is only the correct and
timely completion of the complete graph that matters.
Therefore, decomposition techniques must be supported by
program restructuring into different Ada tasks.

Figure 4 – Representation of a tasklet graph (left) to a general
DAG (middle) and synchronous fork-join (right)

To accommodate models where self-suspension is not
allowed inside a job (one iteration of the recurrent loop in a
real-time task), potentially blocking operations are not
allowed when executing in a potentially parallel setting (i.e.
if more than one tasklet exists for a given task) and an
executor that spawns children tasklets (such as in a parallel
block or loop) is required to execute children tasklets, if
available, or spin as if executing the parent tasklet.

VIII. OPEN ISSUES

The integration of fine-grained parallelism in Ada is a
very complex issue, with implications in all mechanisms of
the language, from tasks to timing and interrupt handlers, or
even exceptions. And supporting real-time computing
introduces further complexity. There are therefore a
multitude of open issues, which have been recently discussed
in a real-time Ada workshop [12]. Of these, several issues
impact real-time support, such as:

• Execution time budget. In Ada, execution time timers
measure the amount of time that a single task (or group of
tasks or interrupt routine) uses and notifies a handler if
that time is exceeded. Under the current proposal, the
execution of a tasklet is reflected in the budget of its task.
The overhead of managing the parallel update of the
budget may make this unfeasible, except if larger quanta
are used or budget updates are not immediate (which may
lead to accuracy errors). Specific per core quanta may be
used to address this issue.

• Limited preemption models. With the introduction of
the lightweight tasklet-based programming model (known
as task-based programming model in other programming
models), it is important to assess if new preemption
models are of interest. In particular, the potential small
computation effort of tasklets, as well as the fact that
potentially variables exist that do not cross the tasklet
boundary, it would be possible to implement a model of
(limited) preemption only at tasklet boundaries (when
tasklets complete). This could eventually reduce overhead
and contention, improving efficiency and analyzability.

• Executor control. The proposal allows some limited
degree of programmer control of tasklets and executors. It
is still open if it is possible to explicitly control the

number of executors which are processing a specific
parallel region, and if the programmer can use some sort
of inter-executor synchronization to control the execution
of the tasklets (e.g. by doing computation in phases inside
a parallel loop), as this can lead to unsafe computations.

• Tasklet stealing. In the real-time model tasklets run-to-
completion in the same executor where they have started
execution. Therefore, tasklets that have already started
cannot be stolen, and parent stealing is disallowed. If
executors are not allowed to migrate, any tasklet after
starting in a specific core will not leave that core. This is
potentially too restrictive.

The hard real-time guarantees of applications executing
with the proposed model need to be provided by appropriate
timing and schedulability analysis approaches. Although
extensive works exist in these topics, and the model
described in this paper is fit to be used in these works, it is
still not possible to know the feasibility of applying these
methods for parallel systems. The complexity and
combinatorial explosion of interferences between the parallel
executions may prove the timing analysis of parallel
computations to be unfeasible. Moreover, the timing analysis
requires determinism (and knowledge) of the specific
contention mechanisms at the hardware level, something
which is more and more difficult to obtain.

This current work allows the compiler, static tools and the
underlying runtime to derive statically known tasklet graphs
and use this knowledge to guide the mapping and scheduling
of parallel computation, reducing the contention at the
hardware level. Co-scheduling of communication and
computation can further remove contention, and requires
knowledge from the application structure. But with the
increased complexity and non-determinism of processors, it
is not easy to recognize a solution in the near future. For less
time-critical firm real-time systems, the model allows for
more flexible implementations, using less pessimistic
execution time estimates (e.g. measurement-based), and
work-conserving scheduling approaches.

Currently no implementation exists of the complete
proposal. This work brings to the Ada world models which
are widely used in other fine-grained parallelization
approaches, where for the general case efficient solutions
exist (such as OpenMP or Cilk). At the same time parts of the
proposal are implemented in both the ParaSail language [13]
and the Paraffin library [14]. The next step needs to be the
implementation of the compiler support and executor
runtime, even if for a reduced Ada profile.

ACKNOWLEDGMENT

This work was partially supported by General Dynamics,
Canada, the Portuguese National Funds through FCT
(Portuguese Foundation for Science and Technology) and by
ERDF (European Regional Development Fund) through
COMPETE (Operational Programme ‘Thematic Factors of
Competitiveness’), within project FCOMP-01-0124-FEDER-
037281 (CISTER); by FCT and EU ARTEMIS JU, within
project ARTEMIS/0001/2013, JU grant nr. 621429 (EMC2),
and European Union Seventh Framework Programme
(FP7/2007-2013) grant agreement n° 611016 (P-
SOCRATES).

REFERENCES

[1] ISO IEC 8652:2012. Programming Languages and their Environments

– Programming Language Ada. International Standards Organization,
Geneva, Switzerland, 2012.

[2] A. Burns, A. J. Wellings, “Programming Execution-Time Servers in
Ada 2005”, Real-Time Systems Symposium - RTSS 2006, Rio de
Janeiro, Brazil.

[3] J. A. Pulido, S. Urueña, J. Zamorano, T. Vardanega, J. A. de la
Puente, “Hierarchical scheduling with ada 2005”, International
Conference on Reliable Software Technologies - Ada-Europe 2006,
Porto, Portugal.

[4] A. Burns and A. J. Wellings, “Dispatching Domains for
Multiprocessor Platforms and their Representation in Ada,”
International Conference on Reliable Software Technologies - Ada-
Europe 2010, Valencia, Spain.

[5] S. Michell, B. Moore, L. M. Pinho, “Tasklettes – a Fine Grained
Parallelism for Ada on Multicores”. International Conference on
Reliable Software Technologies - Ada-Europe 2013, Berlin, Germany.

[6] L. M. Pinho, B. Moore, S. Michell, S. T. Taft, “Real-Time Fine
Grained Parallelism in Ada”, International Real-Time Ada Workshop
– IRTAW 2015, ACM Ada Letters (to appear).

[7] L. M. Pinho, B. Moore, S. Michell, S. T. Taft, “An Execution Model
for Fine-Grained Parallelism in Ada”, International Conference on
Reliable Software Technologies - Ada-Europe 2015, Madrid, Spain.

[8] Intel Corporation, Cilk Plus, https://software.intel.com/en-us/intel-
cilk-plus, last Accessed September 2015.

[9] OpenMP Architecture Review Board, “OpenMP Application Program
Interface”, Version 4.0, July 2013.

[10] T. Taft, B. Moore, L. M. Pinho, S. Michell, “Safe Parallel
Programming in Ada with Language Extensions”. High-Integrity
Language Technologies Conference 2014, Portland, Oregon, USA.

[11] L. M. Pinho, B. Moore, S. Michell, "Session Summary: Fine-grained
paralllelism", International Real-Time Ada Workshop – IRTAW
2015, ACM Ada Letters (to appear).

[12] R. D. Blumofe, C. E. Leiserson. “Scheduling multithreaded
computations by work stealing”. J. ACM, 46:720-748, September
1999.

[13] S. T. Taft, ParaSail – Parallel Specification and Implementation
Language, http://parasail-programming-language.blogspot.com, last
Accessed September 2015.

[14] B. Moore, Paraffin libraries. http://sourceforge.net/projects/paraffin/,
last Accessed September 2015.

https://software.intel.com/en-us/intel-cilk-plus
https://software.intel.com/en-us/intel-cilk-plus

