
  

 

 

 

 

Real-Time Support in the Proposal for Fine-
Grained Parallelism in Ada 

 

 
 

 

Journal Paper 

CISTER-TR-151204 

 

 

Luis Miguel Pinho 

Brad Moore 

 



Journal Paper CISTER-TR-151204 Real-Time Support in the Proposal for Fine-Grained  ... 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 

 

Real-Time Support in the Proposal for Fine-Grained Parallelism in Ada 

Luis Miguel Pinho, Brad Moore 

CISTER Research Center 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail:  

http://www.cister.isep.ipp.pt 

 

Abstract 

The Ada language has for long provided supportfor the development of reliable real-time systems, with a modelof 
computation amenable for real-time analysis. Tocomplement the already existent multiprocessor support in 
thelanguage, an ongoing effort is underway to extend Ada with afine-grained parallel programming model also 
suitable for realtime systems. This paper overviews the model which is beingproposed, pointing out the main 
issues still open and road ahead. 
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Abstract— The Ada language has for long provided support 

for the development of reliable real-time systems, with a model 

of computation amenable for real-time analysis. To 

complement the already existent multiprocessor support in the 

language, an ongoing effort is underway to extend Ada with a 

fine-grained parallel programming model also suitable for real-

time systems. This paper overviews the model which is being 

proposed, pointing out the main issues still open and road 

ahead. 
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V.  INTRODUCTION 

In the last years there has been a plethora of work on real-
time parallel models, mainly focusing in timing and 
schedulability analyses concerns. At the same time, very little 
has been done to integrate fine-grained parallelism and real-
time in the software platforms used to deploy such systems. 
In this paper we focus particularly in real-time programming 
technologies in general and Ada in particular.  

Ada [1] is a language of choice to the development of 
reliable real-time systems, having for long incorporated 
models of computation which are amenable for real-time 
analysis. It has intrinsically the notion of tasks which can be 
used to model recurrent periodic or sporadic computations. A 
previous revision of the language (Ada 2005) extended the 
scheduling model with the provisions for mixing fixed 
priority, EDF, round-robin and non-preemptive scheduling in 
an integrated hierarchical scheduling framework [2, 3].  

The latest version of the language, Ada 2012, also 
provides support to multiprocessor system programming, 
with the ability to represent platforms with multiple cores, 
and control how tasks are pinned to the cores, with the 
possibility to support global, partitioned and a multitude of 
in-between scheduling schemes [4]. Nevertheless, 
multiprocessor support provides only a coarse-grained 
concurrent and parallel model, using Ada tasks.     

More recently, a proposal was put forward to augment the 
language with a fine-grained parallel programming model, 
[5], which can be made amenable for real-time analysis [6,7]. 
This paper provides an overview of this model, presenting 

some of the current main open issues for real-time 
computing.  

The paper is structured as follows. The next section 
presents the parallel programming model proposed for Ada, 
whilst section III discusses its applicability for real-time 
systems. Section IV then presents the open issues as well as 
the current status.  

VI.   PROPOSED PARALLEL MODEL 

The proposal to extend Ada with a fine-grained 
parallelism model is based on allowing an Ada task to 
execute a graph of non-schedulable computation units 
(similar to Cilk [8] or OpenMP [9] tasks), denoted tasklets 
[5]. Graph edges represent control-flow dependencies. An 
Ada application can consist of several Ada tasks, each of 
which can be represented conceptually by a graph. 

Tasklets may be explicitly created by the programmer 
(using proposed new syntax for parallel loops and blocks) as 
well as implicitly by the compiler. In order to support the 
compiler a separate proposal is to create contract annotations 
to [10], to prevent unprotected parallel access to shared 
variables. An important notion is that the model uses strict 
fork-join. Tasklets can be spawned by other tasklets (fork), 
and need to synchronize with the spawning tasklet (join). 
This restriction, which may be seen as a disadvantage, allows 
safer programming, as scoping guarantees data access 
correctness. 

A goal of the model is to allow a complete graph of 
potential parallel execution to be extracted during the 
compilation phase. Data allocation and contention for 
hardware resources are key challenges for parallel systems, 
and therefore compilers and tools must have more 
information on the dependencies between the parallel 
computations, as well as data, to be able to generate more 
efficient programs.   

Tasklets are not schedulable per se, and always execute 
within the semantic context of the enclosing task inheriting 
the properties of the task such as identification, priority and 
deadline. The proposed model integrates with the resource 
sharing protected objects of Ada, therefore synchronization 
between tasklets of the same or different tasks can be 
performed using Ada protected operations. 



task body My_Task is 
begin 

 

 -- tasklet A, parent of B, C, F and G,  

      ancestor of D and E 

 parallel  

  -- tasklet B, child of A, parent of D and E 

  for I in parallel Some_Rage loop 

     -- tasklets D, E, …, are   
     -- created by compiler/runtime 

  end loop; 
 and 

  -- tasklet C, child of A, sibling of B 

 end; 

 
 -- tasklet A again 

 

 parallel  

  -- tasklet F, child of A 

 and 

  -- tasklet G, child of A 

 and 

  -- tasklet H, child of A 

 end; 

  

 -- tasklet A again 

end; 

Figure 1 – Task body example (not yet Ada) 

 
Figure 2 – Task graph example 

Figure 1 shows code representing the body of execution 
of an Ada task (using the parallelism syntax proposal in 
[10]), whilst Figure 2 provides its associated graph of tasklets 
(rectangles denote tasklets, dark circles fork points, and white 
circles join points). The gray area of a tasklet represents 
tasklet waiting for child joining. The proposed model also 
specifies the execution behavior of the graphs (as tasklets 
compete for the finite execution resources), based on a pool 
of abstract executors (Figure 3), which are required to serve 
the execution of tasklets while guaranteeing progress [7].  

An executor is an entity which is able to carry the 
execution of code blocks. Although most likely executors 
will be operating system threads, the definition gives 
freedom so that other underlying mechanisms can be 
provided to support this model. An implementation may 
provide the minimum functionality to execute parallel 
computation, without requiring the full overhead associated 
with thread management operation. In an extreme case, an 
executor can be the core itself, continually executing code 
blocks placed in a queue.   

 

Figure 3 – Execution stack 

Tasklet execution by the executors is a limited form of 
run-to-completion, i.e., when a tasklet starts to be executed 
by one executor, it is executed by this same executor until the 
tasklet finishes. Limited because the model allows executing 
tasklets to migrate to a different executor, but only in the case 
where the tasklet has performed an operation that would 
require blocking or suspension. It would be too restrictive to 
force the executor to also block or suspend. Before starting to 
execute, tasklet migration is unrestricted. 

Note that run-to-completion does not mean that the 
tasklet will execute uninterruptedly or that it will not 
dynamically change the core where it is being executed, since 
the executor itself might be scheduled in a preemptive, or 
quantum-based scheduler, with global or partitioned 
scheduling. 

The model presumes that the allocation of tasklets to 
executors, and of executors to cores is left to the 
implementation [7]. More flexible systems, that are 
compatible with this model, might decide to implement a 
dynamic allocation of tasklets to executors, and a flexible 
scheduling of these in the cores, whilst static approaches 
might determine an offline-fixed allocation of the tasklets to 
the executors, and utilize partitioned scheduling approaches 
for the executors within the cores.  

In the general case it is implementation defined whether 
or not a tasklet, when it blocks, releases the executor. The 
implementation may also block the executor, creating a new 
executor, if needed, to serve other tasklets and guarantee the 
progress of the task, or it may queue the tasklet for later 
resumption (in the same or different executor).  

Note that when a tasklet needs to join with its children 
(wait for the completion of its children), it is not considered 
to be blocked, as long as one of its children is executing 
(forward-progressing). Regardless of the implementation, the 
executor that was executing the parent tasklet may suspend it 
and execute one or more of its children, only returning to the 
parent tasklet when all children have completed.  

Furthermore, in a fork-join model it is always safe to 
suspend a parent tasklet when it forks children, releasing the 
executor to execute the children tasklets, and resuming the 
parent tasklet in the same executor when all children tasklets 
have completed (since the parent can only resume once the 
children complete). It might happen that other executors take 
some of the children tasklets. In that case, it might happen 
that the executor that was executing the parent finishes the 
execution of children tasklets while other executors are still 



executing other children of the same parent.  In this case, the 
parent needs to wait for other children tasklets still being 
executed in other executors, and the implementation may 
spin, block or suspend the executor, or re-lease it to execute 
other unrelated tasklets (as described above). 

Implementations may also use some form of parent-
stealing [11]. In this case, the suspended parent tasklet might 
be reallocated to a different executor, or its continuation 
might be represented by a different tasklet. As before, the 
implementation must guarantee that tasklet-specific state is 
also migrated. 

VII. REAL-TIME SUPPORT 

The usual model for real-time programming in Ada is 
where real-time tasks map one-to-one with Ada tasks. The 
parallel model follows the same approach, and thus the 
execution of the Ada task generates a (potentially recurrent) 
graph of tasklets (on a shared memory multiprocessor). As 
specified in the model, tasklets run at the priority (and/or 
with the deadline) of the associated task.  

To avoid priority inversion, each Ada task (or priority) is 
provided with a specific executor pool, where all executors 
carry the same priority and deadline of the task and share the 
same budget and quantum. Tasklets run-to-completion in the 
same executor where they have started execution, although 
the executor can be preempted by higher-priority (or nearer 
deadline) executors, or even the same priority/deadline if the 
task’s budget/quantum is exhausted. 

This allows for a tasklet graph to be represented (Figure 
4) as a Directed Acyclic Graph (DAG) of sub-tasks as 
commonly used in the real-time systems domain, allowing 
for the multitude of existent analysis in the community. 
Moreover, the safety concerns which implied using a strict 
fork join model have another positive advantage, as allows to 
use the analysis methods for simpler fork/join and 
synchronous models. 

Each Ada task, and therefore its graph of tasklets, execute 
within the same dispatching domain, which is a subset of the 
processors scheduled independently from all other 
processors. For real-time systems it may be necessary to 
explicitly control parallelism, since the analysis might need 
to consider how the parallelism is implemented in greater 
detail. Therefore, controls are provided [6] for defining, e.g., 
the number of task executors, the number of tasklets 
generated in parallel loops, and if executors are allowed to 
migrate. Together with the dispatching domain model of Ada 
[4], where platforms can be divided in a set of (disjoint) 
processor clusters (domains), and Ada tasks allocated to a 
specific domain (shared or not) this allows sufficient 
flexibility to support the majority of the real-time models.  

The proposed model nevertheless does not support 
approaches that require setting different priorities/deadlines 
for individual nodes in the graph (decomposition techniques). 
In the model, base priorities and deadlines of tasklets remain 
the same as the parent task, which simplifies creation and 
scheduling of tasklets, as well as integration with Ada 
tasking. Note that priority and deadline represent the relative 
urgency of the job executing; urgency between tasklets of the 
same graph is not meaningful since it is only the correct and 
timely completion of the complete graph that matters. 
Therefore, decomposition techniques must be supported by 
program restructuring into different Ada tasks. 

 

Figure 4 – Representation of a tasklet graph (left) to a general 
DAG (middle) and synchronous fork-join (right) 

To accommodate models where self-suspension is not 
allowed inside a job (one iteration of the recurrent loop in a 
real-time task), potentially blocking operations are not 
allowed when executing in a potentially parallel setting (i.e. 
if more than one tasklet exists for a given task) and an 
executor that spawns children tasklets (such as in a parallel 
block or loop) is required to execute children tasklets, if 
available, or spin as if executing the parent tasklet. 

VIII. OPEN ISSUES 

The integration of fine-grained parallelism in Ada is a 
very complex issue, with implications in all mechanisms of 
the language, from tasks to timing and interrupt handlers, or 
even exceptions. And supporting real-time computing 
introduces further complexity. There are therefore a 
multitude of open issues, which have been recently discussed 
in a real-time Ada workshop [12]. Of these, several issues 
impact real-time support, such as: 

• Execution time budget. In Ada, execution time timers 
measure the amount of time that a single task (or group of 
tasks or interrupt routine) uses and notifies a handler if 
that time is exceeded. Under the current proposal, the 
execution of a tasklet is reflected in the budget of its task. 
The overhead of managing the parallel update of the 
budget may make this unfeasible, except if larger quanta 
are used or budget updates are not immediate (which may 
lead to accuracy errors). Specific per core quanta may be 
used to address this issue. 

• Limited preemption models. With the introduction of 
the lightweight tasklet-based programming model (known 
as task-based programming model in other programming 
models), it is important to assess if new preemption 
models are of interest. In particular, the potential small 
computation effort of tasklets, as well as the fact that 
potentially variables exist that do not cross the tasklet 
boundary, it would be possible to implement a model of 
(limited) preemption only at tasklet boundaries (when 
tasklets complete). This could eventually reduce overhead 
and contention, improving efficiency and analyzability.  

• Executor control. The proposal allows some limited 
degree of programmer control of tasklets and executors. It 
is still open if it is possible to explicitly control the 



number of executors which are processing a specific 
parallel region, and if the programmer can use some sort 
of inter-executor synchronization to control the execution 
of the tasklets (e.g. by doing computation in phases inside 
a parallel loop), as this can lead to unsafe computations. 

• Tasklet stealing. In the real-time model tasklets run-to-
completion in the same executor where they have started 
execution. Therefore, tasklets that have already started 
cannot be stolen, and parent stealing is disallowed. If 
executors are not allowed to migrate, any tasklet after 
starting in a specific core will not leave that core. This is 
potentially too restrictive. 

The hard real-time guarantees of applications executing 
with the proposed model need to be provided by appropriate 
timing and schedulability analysis approaches. Although 
extensive works exist in these topics, and the model 
described in this paper is fit to be used in these works, it is 
still not possible to know the feasibility of applying these 
methods for parallel systems. The complexity and 
combinatorial explosion of interferences between the parallel 
executions may prove the timing analysis of parallel 
computations to be unfeasible. Moreover, the timing analysis 
requires determinism (and knowledge) of the specific 
contention mechanisms at the hardware level, something 
which is more and more difficult to obtain.    

This current work allows the compiler, static tools and the 
underlying runtime to derive statically known tasklet graphs 
and use this knowledge to guide the mapping and scheduling 
of parallel computation, reducing the contention at the 
hardware level. Co-scheduling of communication and 
computation can further remove contention, and requires 
knowledge from the application structure. But with the 
increased complexity and non-determinism of processors, it 
is not easy to recognize a solution in the near future. For less 
time-critical firm real-time systems, the model allows for 
more flexible implementations, using less pessimistic 
execution time estimates (e.g. measurement-based), and 
work-conserving scheduling approaches.   

Currently no implementation exists of the complete 
proposal. This work brings to the Ada world models which 
are widely used in other fine-grained parallelization 
approaches, where for the general case efficient solutions 
exist (such as OpenMP or Cilk). At the same time parts of the 
proposal are implemented in both the ParaSail language [13] 
and the Paraffin library [14]. The next step needs to be the 
implementation of the compiler support and executor 
runtime, even if for a reduced Ada profile.   
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