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Abstract — This paper presents an architecture that supports 

Quality of Service (QoS) in an Arrowhead-compliant System of 

Systems (SoS). The Arrowhead Framework supports local cloud 

functionalities for automation applications, provided by means of 

a Service Oriented Architecture (SOA), by offering a number of 

services that ease application development. On such applications 

the QoS guarantees are required for service fruition, and are 

themselves requested as services from the framework. To fulfil this 

objective we start by describing the Arrowhead architecture and 

the components needed to dynamically in run-time negotiate a 

system configuration that guarantees the QoS requirements 

between application services. 

Keywords— Quality of Service, Service Oriented Architectures 

I.  INTRODUCTION 

The Arrowhead project [1] devoted considerable research 
and development efforts to normalizing all interactions 
involving embedded systems by means of a Service Oriented 
Architecture (SOA). The SOA paradigm is applied to both the 
interactions that serve the business logic of the applications, the 
support actions such as the authentication of devices, registration 
of the devices and the services they provide, the look-up of 
devices or service providers and to the orchestration of services 
for creation of more complex services. To this purpose, services 
are divided into Core Services and User Services. The first set is 
provided by the Arrowhead Framework and support Arrowhead 
applications by satisfying the non-functional requirements of the 
system. Three Core Services are mandatory and comprises the 
Authentication Service, the Registration Service and the 
Orchestration Service. User Services are the building blocks that 
provide the application functionalities on each particular 
scenario.  

The Arrowhead Framework can be applied to multiple fields, 
like smart cities, industrial automation, smart grids, etc. The 
application of a SOA architecture to such scenarios allows for 
higher flexibility, scalability and evolvability [1 – 3]. 

The architecture of an Arrowhead-enabled system of 
systems is based on the concept of Local Cloud, which is a 
bounded set of computational resources used by stakeholders to 
attain a goal. The approach simplifies design and 
implementation, since it allows for greater control on access and 

operations. The local cloud also makes it possible to simplify 
QoS monitoring and to reduce the QoS managing complexity. 

Arrowhead’s aims at supporting the ISA-95 automation 
pyramid [4] at various levels, using IoT technologies and a 
System of Systems approaches. A particularly important non-
functional requirement for SOA applications for automation 
systems is guaranteeing the Quality of Service (QoS) required 
by the application services, which varies with the application. 
Examples of QoS parameters are the reliability of 
communications (which allows guaranteeing that messages are 
delivered, and in which order and condition) and real-time 
constraints (which ensure that messages are delivered within 
their deadlines). 

This work shows how the Arrowhead Framework has been 
expanded to implement the paradigm of QoS-as-a-Service. QoS 
is granted as a non-functional requirement for service fruition, 
and is offered by means of a Core Service itself. In this paper, 
we define an architecture enabling QoS management and 
monitoring for service connections. Detailed properties of a 
system for QoS management (QoSManager system) including 
service interfaces is proposed together with the anticipated 
interaction with a local cloud Orchestration system, which 
provides orchestrated services to service consuming systems. 
The proposed QoSManager system might be required to adapt 
to changing operating conditions, to this purpose the system 
should also be capable of monitoring activities to ensure that the 
required QoS parameters are being achieved or not, and inform 
the interested parties (application services) about QoS faults. 
The application services can then act according to the situation, 
eventually adapting to the new conditions (e.g. by asking the 
Orchestration system for a new system configuration).  

The rest of the paper is organized as follows. Section 2 
discusses background information comprising the Arrowhead 
Framework basics. Section 3 shows the motivation for the paper 
and discusses which QoS parameters will be tackled on the 
context of automation applications. Section 4 discusses the main 
architectural components that allow supporting service fruition 
with QoS requirements. Section 5 discusses the interactions 
between components. Section 6 draws some conclusions. 

II. BACKGROUND INFORMATION 

A. QoS for embedded systems 

It’s clear that different applications have different QoS 
requirements in terms of latency, safety or bandwidth, just to 978-1-5090-1314-2/16/$31.00 ©2016 IEEE 



name a few parameters. Nowadays, most automation 
applications are supported on closed systems with limited 
capabilities to evolve and usually it can only be done at high 
costs. The trend on applying Industrial IoT (IIoT) technologies 
and specifically a SOA Architecture to these systems requires 
changes on the philosophy applied to its development [5].  

QoS is often required in many applications, for example on 
distributed control loops, while other applications are capable of 
adapting to environments where no QoS guarantees are possible. 
Nevertheless, it is possible to identify a set of challenges on the 
development of automation technologies and QoS in particular. 

Performance: the technologies being used on IIoT were not 
developed for resource constrained devices and consequently 
have to be adapted and simplified to work properly on those 
devices.  

Scalability: the addition of multiple things to the networks 
poses problems on the overall processing chain: sensor nodes, 
communication bandwidth and data processing.  

Heterogeneous networks: automation systems are expected 
to span across multiple networks with different technologies and 
in geographically different areas, consequently this poses a new 
set of problems for guaranteeing security and QoS. 

Security: automation systems are usually composed of many 
resource constrained devices, which are not be capable of using 
complex algorithms for implementing security functions. 

The Arrowhead Framework, which is described in the rest of 
the section, tackles most of these challenges and in this paper we 
focus on how it can support QoS. 

B. The Arrowhead Framework 

The Arrowhead Framework is devoted to supporting local 
cloud automation functionalities by offering a number of 
services that ease application development. In Arrowhead, all 
interactions are mediated by services, which allow one element 
of the architecture to request information and actions from other 
elements of the architecture. Each element providing or 
consuming a service is called a system. Each physical or virtual 
platform providing computational resources in a local cloud is 
called a device. 

The services offered in a local cloud comprise discovery of 
services, loosely coupled data exchange between producer and 
consumer services, security-related services and orchestration of 
services. The Arrowhead Framework offers the above 
mentioned functionalities through the definition of Core 
Services, among which three services are mandatory and present 
in each Arrowhead local cloud: ServiceDiscovery (SD), 
Authentication (AA) and Orchestration (O). The 
ServiceDiscovery, which is offered by DeviceRegistry, 
SystemRegistry and ServiceRegistry systems, allows devices, 
systems and services to be registered in the Arrowhead local 
cloud. The Authentication is used to authenticate and provide 
authorization for connections between services. The 
Orchestration service is used to create the matching between 
service producers and service consumers, to allow service 
fruition. 

The process to allow service fruition starts with the proper 
registration of devices, systems, and services. Each device 
declares which systems it is hosting, and to which other devices 
it is connected. Each system declares which services it produces 
and consumes. Each service defines its semantics, by referring 
to a unique document for the service. A service instance is thus 
a triple (service, producing system, consuming system).  

The Orchestration service is used to match service 
consumers and producers, taking care of satisfying further 
criteria such as localization of the systems, QoS, and identity of 
the interacting devices. For example, a system can request access 
to systems in its geographical area, with a maximum end-to-end 
delay, and on a given industrial machine. The Orchestration 
system, accesses all registries and computes the orchestration of 
services, which might comprise the computation of a chain of 
services that together compose a more complex service instance, 
and the matching between service consumers and producers. 

The Orchestration system can respond to the pull or the push 
paradigm. Whenever a system decides that it needs to consume 
a service, it “pulls” an orchestrated service from the 
Orchestration service. Moreover, orchestration is repeated 
periodically, looking for changes in the system of systems, and 
the service instances are refreshed in front of the changes. The 
new set of orchestrated services are then “pushed” by the 
Orchestration system to the service consumers. 

 

Figure 1 - Example of an Arrowhead application supported by the core 

services 

Thus, the service orchestration responds to the declarative 
paradigm. The orchestration process is driven by the description 
of devices, systems and services in the Registry, and the 
Orchestration system is an engine that gets through the data, 
distils them into rules, and performs the matching between 
potential service producers and consumers. As explained in 
Section 4, the orchestration process is also responsible for the 
negotiation of QoS, and Section 5 will consider the pros and 
cons of the declarative paradigm to QoS. 

 Using this set of systems and their services, it is 
straightforward to design and implement a minimal local 
automation cloud. Figure 1 shows an example which only shows 
the connection between application services (depicted in 
yellow). The application services are also consumers of the core 
services, depicts in red, green and blue. 



The Arrowhead framework already provides a large set of 
support Core Services, among which the Historian, 
Configuration Manager and Event Handler [6] are examples 
carrying obvious names. Arrowhead also enables the 
development of systems of systems supported on multiple 
protocols, like REST, MQTT and COAP. 

III. SUPPORTING QOS IN ARROWHEAD  

The support of QoS in the local cloud is of paramount 
importance to support some automation applications. This 
requires the definition of an architecture that outlines the roles 
of the involved parties in supporting QoS between a service 
producer and a consumer. For this purpose, it is possible to 
foresee the involvement of not only the producer and consumer 
services, but in some circumstances of network elements that are 
mediating data transfers in the system (switches, routers, 
gateways, etc) and the devices that are hosting the services. 

The QoS service aims at covering the most common QoS 
dimensions for the most general automation scenarios. In 
particular, the QoS service should be able to impose constraints 
on the following non-functional parameters, and thus provide 
capabilities to work on the following QoS dimensions:  

-  End-to-end delay – hard/soft real-time guarantees; 

-  Data bandwidth; 

-  Communication semantics – delivery guarantees, and 

message ordering; 

-  Message prioritization; 

-  Local device parameters – on-device task scheduling; 

-  Service configuration parameters – buffer size, 

middleware parameters and prioritization of requests. 

Two scenarios can be described, to highlight how QoS is a 
fundamental part of typical automation applications: i) an 
Ethernet network composed by several nodes interconnected by 
switches; and ii) a wide area network where parts of the network 
are not owned nor controlled by the service providers. For the 
sake of simplicity, let us assume that the objective is to setup the 
network parameters in order to guarantee communications 
latencies lower than a given deadline for the interaction between 
a service producer and a service consumer. 

In our approach, a characteristic that is common between all 
scenarios is that, in order to provide QoS guarantees, a central 
entity must be able to monitor the QoS of relevance to a service 
consumer and compare it to the QoS requested. The mitigation 
of QoS can benefit from the knowledge of the current network 
topology and types of network actives (switches, routers, 
gateways, access points, etc) in the system. Additionally, the 
current status of involved devices. The status of the system 
comprises (complete or incomplete) information regarding all 
message streams in the system and the current configuration of 
the networks. The central entity must be able to collect required 
information by contacting the adequate registries and can 
leverage this information to run adequate algorithms to verify if 
all message streams fulfill their QoS and to determine a new 
system setup, which is then used to configure the involved 
devices and systems. 

The main structural difference between the two scenarios 
described in the following involves the degree of control of the 

systems over the QoS parameters of the devices. In particular, 
the first scenario can feature an industrial Ethernet that may 
provide even hard real-time guarantees, while in the case of the 
wide area network, it is necessary to stick to solutions similar to 
Diffserv [8], which can only prioritize a message stream. 

One of the main requirements for Arrowhead QoS 
Architecture is to be able to create a request for the needed QoS 
independently of the underlying network technology, taking for 
given that the QoS service will take care of feeding the network 
actives with a proper configuration to support the QoS. 

A. QoS Dimensions 

General QoS objectives can be articulated over many 
dimensions. This work aims at making the system more robust, 
both in terms of limiting the resources used by each message 
stream and in terms of mechanisms to protect communication 
against failures. 

For each family of QoS objectives, we define a class, which 
is refined into types of QoS parameters. The QoS classes 
supported in this work are Delay, Bandwidth, Resources Limits, 
and Communication Semantics. Nevertheless, the actual 
implementation is capable of handling other parameters, just by 
adding such functionalities to the QoS-related components.  

Delay is a very common non-functional requirement in 
distributed automation systems-of-systems. For the objective to 
be respected, it implies the execution of actions within a 
deadline. This class of objectives comprises time elapsed for a 
message delivery, and end-to-end delay of a service invocation. 
Moreover, this class of QoS objectives spans over both hard real-
time and soft real-time constraints, the latter representing 
statistical guarantees on the communication delay. 

Bandwidth refers to guarantees that sufficient 
communication and computational resources are allocated to the 
services, and it is quite common for service support in SOA 
applications and slightly less common in embedded 
applications. This class of objectives comprises both constraints 
on the minimum bandwidth for data produced / transmitted in a 
time unit, and on the number of service requests supported in a 
time unit. Usually, the requests bandwidth QoS requirement is 
applied to service producers only, since network actives do not 
track the number of requests and thus limit their vision over the 
data bandwidth being used. On the other hand, the data 
bandwidth is used on both networking elements, and service 
providers. 

The Resource Limits class of QoS objectives is concerned 
with limiting the quantity of resources used by a service, to 
protect the system of systems against resource choking. 
Example of resources are CPU, memory, and any other resource 
used by an application in the case of nodes, and data bandwidth 
per time unit in case of both nodes and network actives. 

While the previous class protects the system of systems 
against the services, the Communication Semantics protects the 
services interactions against events disrupting the 
communication infrastructure and the system of systems in 
general. This class spans over a set of capabilities that can be 
requested as part of the QoS. In particular, this QoS class is 
currently focused on reliability, and it is used to request 



assurance of receiving the message at least once, the assurance 
of not receiving duplicated messages, and the reception of 
messages in the same order they were produced. Moreover, this 
class comprises also the prioritization of services and message 
streams.  

IV. ARROWHEAD QOS ARCHITECTURE 

We propose a QoS architecture centered on a QoSManager 
system that interacts with the Orchestration system to connect 
service instances respecting the specified QoS requirements. We 
consider both direct interaction between them through service 
fruition, and indirect interaction via the Registry, which hosts 
the result of the computation of the QoSManager system. The 
monitoring of QoS relies on a QoS Monitor system, which can 
run on the same device as the QoSManager system, or operate 
as an external device. 

The QoSManager collects information regarding network 
topology, real-time device capabilities and QoS requirements 
from the ServiceRegistry, SystemRegistry and DeviceRegistry. 
The management of QoS is strictly related to the reservation of 
communication and computational resources, whose 
information is maintained on a QoS Store, accessible also 
through a SOA interface and under the control of the 
QoSManager system. This latter system is able to verify if the 
requested QoS requirements can be granted or not. Moreover, it 
can configure the involved active network elements (e.g. router 
and switches) and devices to grant a QoS request. 

The set of elements that can be configured by the 
QoSManager comprises node’s traffic smoothing filters on the 
output of service producers or consumers, parameters like traffic 
priority and delivery guarantees of message oriented 
middleware with QoS capabilities, like DDS [9], RabbitMQ [10] 
or XMPP [11]. Network actives, like switches, routers or 
gateways can also be configured in order to control the 
bandwidth of specific message streams.  

The QoSManager might also be capable of configuring the 
device running the service producer and consumer in order to 
have response time guarantees for coding/decoding the request 
and providing a reply. To that purpose, the QoSManager system 
must be aware of the applications and threads running on the 
producer device and, if required, it must be able to configure the 
devices through a specific interface. More complex situations 
occur when services are composed by set of services running on 
different devices. Assuming that the application requires a 
specific response time, then, in both cases response time 
calculation tools, like holistic analysis [12] have to be applied in 
order to integrate communications with task scheduling.  

Finally, some applications might also require to know the 
current status of the system and be able to adapt to changing 
conditions. As an example one of the Arrowhead pilots is 
capable of reducing its sampling rate and consequently the 
consumed bandwidth in order to support more devices in an 
IEEE 802.15.4 network, with very limited bandwidth. This can 
be achieved by monitoring the network status, using the 
QoSMonitor system, and informing the interested parties, using 
the Event Handler. 

Even though the literature reports efforts of decentralized 
control [13], in Arrowhead we focus on a centralized solution, 
at least in terms of logical components. The main reasons are 
related to small number of message streams with QoS 
requirements on the envisaged applications for the Arrowhead 
framework and the existence of Arrowhead systems (QoS Store 
Service Registry, System Registry and Device Registry) which 
are able to capture the status and configuration of a system of 
systems. 

 

Figure 2 – Relevant components for the QoS support 

Figure 2 presents the main building blocks of the Arrowhead 
QoS architecture, where a service producer and a service 
consumer are connected through a network active (e.g. a switch). 
The Orchestration system and the QoSManager system interact 
with the three registry systems (Service Registry, System 
Registry and Device Registry) to collect information regarding 
the system of systems. The QoSManager system accesses the 
QoS Store holding information regarding resource reservations, 
a module (Alg module) containing different algorithms for QoS 
verification and configuration, and a module (QoSDrivers 
module) with drivers for interaction with custom protocols. This 
latter module is used to configure network actives, since for the 
time being we must consider that network actives will not use 
the SOA approach of Arrowhead, and instead communicate 
using custom protocols. Finally, there is communication 
between the QoSManager and the Event Handler system, which 
is an extension to SOA of publish/subscribe communication and 
is using to notify systems of QoS faults. The details of this 
architecture are discussed in detail in the following sections. 

A. QoSManager system 
The main goal of the QoSManager system is to provide QoS-

as-a-Service, aligned with Arrowhead Framework objectives, 
and this is done by means of offering a QoSSetup service. We 
consider that the QoS requirements are specified in a declarative 
manner, which can be achieved by adhering to Service Level 
Agreements (SLAs) mechanisms [14, 15, 16]. 

The usage of SLAs for setting up QoS parameters was 
already proposed in [17], specifically for the field of embedded 
computing, where the focus was on providing a common 
platform for both critical applications and mainstream 
embedded applications, the first being characterized by strict 
timing requirements, and the second by the need for energy 
saving and low cost. In other scenario, for example related to 



multimedia fruition, the SLA can specify the amount of data that 
must be offered by the service providers. 

The QoS requirements are uploaded on the Registry at 
system startup time, or when a service consumer registers itself. 
The result of the verification process is a configuration of 
parameters on the devices and network actives. More 
information regarding the paradigm followed are given in 
Section V. 

B. QoS drivers 

The QoSDrivers represent the software modules responsible 
for providing a uniform interface, used by the QoSManager, for 
the configuration of QoS parameters on network actives and for 
the monitoring of all the devices. Their duty is to act as adapters 
between the custom protocol of the network actives and devices, 
and the protocols used in Arrowhead, and in particular to reach 
out to the non-Arrowhead compliant world, in particular when a 
configuration protocol in not natively REST-based. 

As an example, these drivers could be used to configure a 
network switch, only accessible using proprietary protocols, in 
order to change the priority of the message streams. In some 
particular cases, it is possible that the QoS parameters of the 
system have to be setup manually by the system administrator 
(e.g. using proprietary software tools); in these cases the output 
of the driver is the configuration to be used on the network. 

There are already some tools that allow the remote 
configuration of some network QoS parameters, such as Nagios 
[18] and OpenFlow [19]. Anyway, their integration into the 
Arrowhead environment has to be carefully evaluated since 
these tools are mostly used on common LAN/WAN network 
scenarios, and lack support for some wireless networks like 
IEEE 802.15.4 (ZigBee). 

C. QoS Store 

The QoS Store is a SOA database that holds information 
regarding the resource reservations active in the local cloud. The 
data in the QoS Store are kept aligned with the QoS 
configurations deployed onto network actives and devices. 
Should the system of systems host more than one QoSManager 
system, all of them will refer to the same QoS Store to gain a 
consistent vision of the resource reservations.  

D. Algorithms 

The information contained on the QoS Store is used by the 
Algorithms module to perform calculations to determine the 
system parameters which are capable of fulfilling the QoS 
requirements, taking into account the current status of the 
systems of systems. These algorithms can be based on 
mathematical models of the system of systems, which take into 
account all the data retrieved by the Registry regarding devices, 
systems and services. Since each service can be an orchestration 
of other services, particular care has to be taken for both 
verifying the kind of QoS constraints that can be satisfied by the 
orchestrated (composed) service (e.g.: should one of the 
orchestrated services not support hard real-time, all orchestrated 
services will not support hard real-time) and for the computation 
of the configuration that can satisfy the QoS levels.  

As an example, the work in [20] proposes some algorithms 
to deal with the composition of real-time services, where it 
considers the real-time requirements in the context of Ethernet 
networks, using the Flexible Timer Triggered – Switched 
Ethernet (FTT-SE) protocol. This protocol can be modeled using 
a mathematical holistic analysis model proposed in [21], which 
accounts for the processing time of the nodes involved on a 
transaction and provides hard real-time guarantees. Similarly, 
the work in [2] is capable of providing real-time guarantees for 
beacon-enabled IEEE 802.15.4 networks.  

E. QoS Monitor 

The QoS Monitor main functionality is to monitor if the SLA 
between producer and consumer is not being violated. 
Additionally, some dynamic and adaptable QoS algorithms 
require the knowledge of the connection status during run-time 
in order to adapt.  

The QoSManager system should be able to detect deviations 
from the performance requested through the QoSManager 
system. Therefore, the QoS Monitor is responsible for 
monitoring the behavior of devices and network actives in 
relation to QoS variables, and informing other systems regarding 
QoS faults. Violation of QoS requirements and its status is 
disseminated using the Event Handler system.  

F. Interaction with the Event Handler system 

The Event Handler system [6] provides functionality for the 
notification of events that occur in a given Arrowhead compliant 
system. Basically, the Event Handler receives the events from 
Event Producers and forwards them to subscribing Event 
Consumers. Two different communication workflows are 
envisaged. 

If the system of systems administrator prefers the 
Orchestration system to push configurations to other systems, 
the Orchestration system is the subscriber to messages regarding 
QoS faults. On reception of the messages, the Orchestration 
system computes new orchestrated services, and pushes the new 
configuration to the systems involved in the service instance. 

If the system of systems administrator prefers the pull 
approach to service orchestration, the service consumer is the 
subscriber of the messages regarding QoS faults. On reception 
of the message, the service consumer contacts the Orchestration 
system, and requests to pull a new orchestrated service to 
consume. 

The mediation by the Event Handler system allows for 
different kinds of decoupling of the QoS Monitor from the 
message subscribers [23], thus it enables an easier development 
of QoS functionalities. 

V. BEHAVIOR OF THE QOSMANAGER SYSTEM 

A. Interaction paradigm 

This section describes how systems interact with the 
QoSManager system, to allow the latter to realize its functions. 
As anticipated in previous sections, two approaches can be 
envisaged. 



A more declarative approach considers that the QoSManager 
system processes periodically the knowledge base stored on the 
Registry service. The QoSManager system collects data on the 
devices, systems and services in the system of systems to 
compute constraints on the orchestrated services that are 
compatible with the QoS requirements. The constraints are 
distilled into rules that are uploaded onto the Registry. When 
computing orchestrated services, the Orchestration system will 
take into account the QoS-related rules. The interaction between 
the QoSManager system and the systems consuming and 
producing services is totally implicit, and mediated by the 3 
registry systems. 

In a more imperative paradigm, the Orchestration system, 
each time that computes orchestrated services, interrogates the 
QoSSetup service of the QoSManager system regarding the 
compatibility with the QoS objectives. The QoSManager 
receives an orchestrated service and QoS objectives from the 
Orchestration system, collects data on the system of systems 
from the Registry, and answer to the Orchestration system to 
allow the latter to push/pull the orchestrated service to the 
service consumer. 

A comparison between the two approaches led to the 
definition of three issues with the declarative approach. 

The first problem is related with race conditions in dynamic 
systems. When the system of systems is changed, the 
Orchestration system can compute a new matching before the 
QoS Monitor wakes up and updates the QoS-related rules. This 
would leave the system of systems in a state that cannot respect 
QoS objectives, which can be catastrophic in case of industrial 
machines and industrial processes. 

The second issue regards the computational cost of QoS-
related rules when resource reservations are considered. When 
the Orchestration system considers Registry information as 
rules, each orchestrated service instance can be considered at a 
time, since the capability of a service to satisfy functional 
requirements do not depend on consumption of other services. 
On the other hand, when the QoSManager considers to reserve 
resources for the consumption of a service, the fruition of all 
other services can be impacted. Thus, the computation of 
feasibility of QoS objectives must be computed against the 

system of systems. The net results is that the computation of 
QoS-related rules needs to consider all potential systems of 
systems, whose number is huge (exponential in the number of 
systems). 

The third issue with the declarative approach is the 
reservation management. The operations to verify QoS 
feasibility and to reserve resources cannot be separated, since the 
QoS rules are put in place before the Orchestration system 
decides which service instances will be used. Thus, resources 
will be reserved even when the Orchestration system does not 
instruct a service consumer to consume the reserved resources. 

 The discussion at hand proved that the best paradigm for the 
interaction with the QoSManager is imperative, where the 
QoSManager behaves as a plug-in of the Orchestration service. 

B. A protocol for the QoSManager system 

Figure 3 depicts the most common interactions involving the 
verification of QoS objectives for service fruition, and the 
configuration of a system of systems to respect QoS. 

The entry point for the process is the Orchestration service. 
The service consumer sends the SLA [16] to the Orchestration 
system, to ask at the same time for the functional and non-
functional requirements for the service fruition. The 
QoSManager system is responsible for the setup of the involved 
services directly, once instructed by the Orchestration system, 
which builds up – and returns – one orchestrated service between 
a Service consumer (SC) and Service producer (SP). Should the 
returned orchestrated service not respect the QoS, the SC would 
have to restart the process an undefined number of times.  

On the other hand, we assume that the Orchestration system 
is capable of determining one or a set of ordered configurations 
that establish this order, whose criteria are beyond the scope of 
this paper. The Orchestration system sends the description of the 
orchestrated service to the QoSManager, to allow it to verify the 
satisfiability of the QoS request and compute a proper 
configuration for the services and the devices. 

The QoSManager system receives the set of possible 
orchestrated services and verifies, for each of them, if the 
required QoS level can be supported or not. To do that, the 

Figure 3 - Sequence diagram of the interaction between the modules involved on the provision of QoS 



QoSManager system transforms the SLA into constraints on the 
non-functional requirements of the services to be orchestrated, 
and applies the mathematical or statistical models contained in 
the Algorithms modules. To this aim, the QoSManager system 
also retrieves information regarding the system of systems from 
the Registry service, and current status of resource reservation 
from the QoS Store. When a feasible configuration is found the 
QoSManager system contacts the involved systems and network 
actives to configure the QoS for the new service, thus reserving 
the required resources and modifying the data on the QoS Store 
to account for the new resource reservation status. Afterwards, 
the Orchestration system answers to the service consumer with 
a service configuration which complies with the functional and 
non-functional requirements of the service request. 

The following list resumes the QoS provision sequence, 
which is depicted in Figure 3: 

1) The SC sends request to OS, with functional requirements 

and a SLA; 

2) The OS computes a set of possible service configurations; 

3) The OS sends one service configuration at a time to the 

QoSMan; 

4) QoSMan retrieves info from QoSStore and the Registries 

5) QoSMan verifies if the QoS requirements contained in the 

SLA can be guaranteed for a configuration. This step can 

be repeated several times until a feasible configuration is 

found or no configuration is possible. 

6) QoSMan communicates with systems and network 

actives to reserve resources to guarantee the required 

QoS; QoSMan also updates the QoSStore regarding the 

new reservation; 

7) The OS answers to the CS; 

8) The CS starts establishes connection with the SP and 

starts fruition of the service. 

VI. QOS-AS-A-SERVICE ON AN FTT-SE NETWORK 

The FFT-SE protocol makes use of the master/slave 
paradigm, where a dedicated node (the Master node) schedules 
messages on the network. The communications within a FTT-
SE network are done based on Elementary Cycles (ECs), which 
uses fixed duration time slots for synchronous and for 
asynchronous messages, the remaining EC time can be used for 
conveying best effort traffic.  

The scheduler applies a scheduling policy over these tables, 
generating the ready queues for transmission for that EC. 
Synchronous messages are scheduled autonomously by the 
master, without any petition/feedback from the slave nodes. 
Asynchronous messages are also scheduled by the master node, 
but asynchronous messages are activated in response to events 
that happen in the environment, thus, slave nodes must report its 
activation to the Master via a signaling mechanism. This process 
is repeated until no other message fits on the scheduling window 
for that EC (i.e., considering all messages from higher to lower 
priority). 

For building the EC, it is important to consider: (i) the 
characteristics of the transmission links; switched Ethernet has 
fullduplex transmission links, namely the uplink and the 
downlink, connecting the ports exiting the switch to the nodes, 

(ii) the multiple switching delays: the switch relaying latency 
and the Store-and-Forward Delay (which depends on the 
message size and link speed), and (iii) the length of the specific 
transmission window for each type of traffic (e.g., synchronous 
or asynchronous window). 

A simplified version of the instantiation of the Arrowhead 
QoS architecture on an FTT-SE network is depicted in Figure 4.  
In this figure the thick line represent physical connections 
between devices, while the thin lines represent logical 
connections. The circular object represent the switch that 
connects all devices. 

 

Figure 4 – QoS Architecture instantiation on an FTT-SE network 

In this scenario it the responsibility of the FTT-SE slave to 
ask the orchestrator for a connection with a service producer 
using a specific set of QoS parameters. As an example of such a 
message assume a QoS parameter being requested is the delay 
time. An extract of the SLA is given next. 

… 
  "specifications": { 

    "entry": [ 

      { 

        "key": "delay", 

        "value": { 

          "value": "90.0" 

          "period": "200.0" 

          "msglength": "300"   

        } 

      } 

    ] 

 … 
Code 1 – SLA extract: specifying delay QoS parameter 

It is important to note that the SLA is defined in Janson, and 
the main objective of its structure is to allow it to be adapted for 
different QoS parameters, by allowing using adequate tuples of 
Key and Value. 

The instantiation of the architecture also complies modules 
specific for FTT-SE networks. The QoSM module is responsible 
for monitoring the delay of the messages exchanged between 
producer and consumer and report any violation using the Event 
Handler systems (not represented in this figure) to interested 
parties. The QoS Driver is responsible for informing the 
producer and consumer about the parameters to be used on the 



connection, namely: stream ID, message size and period. After, 
it is the responsibility of both to establish the connection using 
the standard FTT-SE protocol. The FTT-SE Alg module takes 
care of performing complex calculations to determine if the new 
message stream can be admitted to the system or not. That can 
be done, supported by the mathematical model presented in [23]. 
This model tests if all message streams in the systems will be 
able to handle their delay requirements. If there is fail for one of 
the existing message streams or for the new one then the new 
message stream cannot be admitted.   

VII. CONCLUSIONS 

The paper presented the Arrowhead general approach, and 
went on describing how it can include services to support QoS 
requests for the interaction of service consumers and producers. 
An architecture was defined, up to the systems involved in QoS 
management and the services mediating their interactions. We 
advocate the use of SLA to define the QoS request, and we 
consider that the Orchestration System of Arrowhead takes care 
of bargaining with the QoSManager system the proper 
orchestrated services to support the requested QoS. 

A discussion showed that, even in a SOA architecture that is 
heavily declarative, the reservation for QoS is better satisfied if 
the interactions are done explicitly and then responding to the 
imperative paradigm. Thus, the QoSManager system, which 
interacts with the Orchestration system only, is able to add QoS 
verification and setup to Arrowhead-compliant local cloud, 
without adding complexity to the architecture.  

The architecture will act as container for mechanisms that 
will be studied in future work, for example algorithms that will 
“fill up” the Algorithms module and extend our approach to 
scenarios different from the FTT-SE one (Section VI). Future 
work will also discuss the impact of the approach on other 
characteristics of Arrowhead-compliant local clouds, such as 
security, scalability. 
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