

QoS-as-a-Service in the Local Cloud

Luis Lino Ferreira, Michele Albano

CISTER, ISEP/INESC-TEC

Polytechnic Institute of Porto

Porto, Portugal

{llf, mialb}@isep.ipp.pt

Jerker Delsing

EISLAB

Lulea University of Technology,

Lulea, Sweden

jerker.delsing@ltu.se

Abstract — This paper presents an architecture that supports

Quality of Service (QoS) in an Arrowhead-compliant System of

Systems (SoS). The Arrowhead Framework supports local cloud

functionalities for automation applications, provided by means of

a Service Oriented Architecture (SOA), by offering a number of

services that ease application development. On such applications

the QoS guarantees are required for service fruition, and are

themselves requested as services from the framework. To fulfil this

objective we start by describing the Arrowhead architecture and

the components needed to dynamically in run-time negotiate a

system configuration that guarantees the QoS requirements

between application services.

Keywords— Quality of Service, Service Oriented Architectures

I. INTRODUCTION

The Arrowhead project [1] devoted considerable research
and development efforts to normalizing all interactions
involving embedded systems by means of a Service Oriented
Architecture (SOA). The SOA paradigm is applied to both the
interactions that serve the business logic of the applications, the
support actions such as the authentication of devices, registration
of the devices and the services they provide, the look-up of
devices or service providers and to the orchestration of services
for creation of more complex services. To this purpose, services
are divided into Core Services and User Services. The first set is
provided by the Arrowhead Framework and support Arrowhead
applications by satisfying the non-functional requirements of the
system. Three Core Services are mandatory and comprises the
Authentication Service, the Registration Service and the
Orchestration Service. User Services are the building blocks that
provide the application functionalities on each particular
scenario.

The Arrowhead Framework can be applied to multiple fields,
like smart cities, industrial automation, smart grids, etc. The
application of a SOA architecture to such scenarios allows for
higher flexibility, scalability and evolvability [1 – 3].

The architecture of an Arrowhead-enabled system of
systems is based on the concept of Local Cloud, which is a
bounded set of computational resources used by stakeholders to
attain a goal. The approach simplifies design and
implementation, since it allows for greater control on access and

operations. The local cloud also makes it possible to simplify
QoS monitoring and to reduce the QoS managing complexity.

Arrowhead’s aims at supporting the ISA-95 automation
pyramid [4] at various levels, using IoT technologies and a
System of Systems approaches. A particularly important non-
functional requirement for SOA applications for automation
systems is guaranteeing the Quality of Service (QoS) required
by the application services, which varies with the application.
Examples of QoS parameters are the reliability of
communications (which allows guaranteeing that messages are
delivered, and in which order and condition) and real-time
constraints (which ensure that messages are delivered within
their deadlines).

This work shows how the Arrowhead Framework has been
expanded to implement the paradigm of QoS-as-a-Service. QoS
is granted as a non-functional requirement for service fruition,
and is offered by means of a Core Service itself. In this paper,
we define an architecture enabling QoS management and
monitoring for service connections. Detailed properties of a
system for QoS management (QoSManager system) including
service interfaces is proposed together with the anticipated
interaction with a local cloud Orchestration system, which
provides orchestrated services to service consuming systems.
The proposed QoSManager system might be required to adapt
to changing operating conditions, to this purpose the system
should also be capable of monitoring activities to ensure that the
required QoS parameters are being achieved or not, and inform
the interested parties (application services) about QoS faults.
The application services can then act according to the situation,
eventually adapting to the new conditions (e.g. by asking the
Orchestration system for a new system configuration).

The rest of the paper is organized as follows. Section 2
discusses background information comprising the Arrowhead
Framework basics. Section 3 shows the motivation for the paper
and discusses which QoS parameters will be tackled on the
context of automation applications. Section 4 discusses the main
architectural components that allow supporting service fruition
with QoS requirements. Section 5 discusses the interactions
between components. Section 6 draws some conclusions.

II. BACKGROUND INFORMATION

A. QoS for embedded systems

It’s clear that different applications have different QoS
requirements in terms of latency, safety or bandwidth, just to 978-1-5090-1314-2/16/$31.00 ©2016 IEEE

name a few parameters. Nowadays, most automation
applications are supported on closed systems with limited
capabilities to evolve and usually it can only be done at high
costs. The trend on applying Industrial IoT (IIoT) technologies
and specifically a SOA Architecture to these systems requires
changes on the philosophy applied to its development [5].

QoS is often required in many applications, for example on
distributed control loops, while other applications are capable of
adapting to environments where no QoS guarantees are possible.
Nevertheless, it is possible to identify a set of challenges on the
development of automation technologies and QoS in particular.

Performance: the technologies being used on IIoT were not
developed for resource constrained devices and consequently
have to be adapted and simplified to work properly on those
devices.

Scalability: the addition of multiple things to the networks
poses problems on the overall processing chain: sensor nodes,
communication bandwidth and data processing.

Heterogeneous networks: automation systems are expected
to span across multiple networks with different technologies and
in geographically different areas, consequently this poses a new
set of problems for guaranteeing security and QoS.

Security: automation systems are usually composed of many
resource constrained devices, which are not be capable of using
complex algorithms for implementing security functions.

The Arrowhead Framework, which is described in the rest of
the section, tackles most of these challenges and in this paper we
focus on how it can support QoS.

B. The Arrowhead Framework

The Arrowhead Framework is devoted to supporting local
cloud automation functionalities by offering a number of
services that ease application development. In Arrowhead, all
interactions are mediated by services, which allow one element
of the architecture to request information and actions from other
elements of the architecture. Each element providing or
consuming a service is called a system. Each physical or virtual
platform providing computational resources in a local cloud is
called a device.

The services offered in a local cloud comprise discovery of
services, loosely coupled data exchange between producer and
consumer services, security-related services and orchestration of
services. The Arrowhead Framework offers the above
mentioned functionalities through the definition of Core
Services, among which three services are mandatory and present
in each Arrowhead local cloud: ServiceDiscovery (SD),
Authentication (AA) and Orchestration (O). The
ServiceDiscovery, which is offered by DeviceRegistry,
SystemRegistry and ServiceRegistry systems, allows devices,
systems and services to be registered in the Arrowhead local
cloud. The Authentication is used to authenticate and provide
authorization for connections between services. The
Orchestration service is used to create the matching between
service producers and service consumers, to allow service
fruition.

The process to allow service fruition starts with the proper
registration of devices, systems, and services. Each device
declares which systems it is hosting, and to which other devices
it is connected. Each system declares which services it produces
and consumes. Each service defines its semantics, by referring
to a unique document for the service. A service instance is thus
a triple (service, producing system, consuming system).

The Orchestration service is used to match service
consumers and producers, taking care of satisfying further
criteria such as localization of the systems, QoS, and identity of
the interacting devices. For example, a system can request access
to systems in its geographical area, with a maximum end-to-end
delay, and on a given industrial machine. The Orchestration
system, accesses all registries and computes the orchestration of
services, which might comprise the computation of a chain of
services that together compose a more complex service instance,
and the matching between service consumers and producers.

The Orchestration system can respond to the pull or the push
paradigm. Whenever a system decides that it needs to consume
a service, it “pulls” an orchestrated service from the
Orchestration service. Moreover, orchestration is repeated
periodically, looking for changes in the system of systems, and
the service instances are refreshed in front of the changes. The
new set of orchestrated services are then “pushed” by the
Orchestration system to the service consumers.

Figure 1 - Example of an Arrowhead application supported by the core

services

Thus, the service orchestration responds to the declarative
paradigm. The orchestration process is driven by the description
of devices, systems and services in the Registry, and the
Orchestration system is an engine that gets through the data,
distils them into rules, and performs the matching between
potential service producers and consumers. As explained in
Section 4, the orchestration process is also responsible for the
negotiation of QoS, and Section 5 will consider the pros and
cons of the declarative paradigm to QoS.

 Using this set of systems and their services, it is
straightforward to design and implement a minimal local
automation cloud. Figure 1 shows an example which only shows
the connection between application services (depicted in
yellow). The application services are also consumers of the core
services, depicts in red, green and blue.

The Arrowhead framework already provides a large set of
support Core Services, among which the Historian,
Configuration Manager and Event Handler [6] are examples
carrying obvious names. Arrowhead also enables the
development of systems of systems supported on multiple
protocols, like REST, MQTT and COAP.

III. SUPPORTING QOS IN ARROWHEAD

The support of QoS in the local cloud is of paramount
importance to support some automation applications. This
requires the definition of an architecture that outlines the roles
of the involved parties in supporting QoS between a service
producer and a consumer. For this purpose, it is possible to
foresee the involvement of not only the producer and consumer
services, but in some circumstances of network elements that are
mediating data transfers in the system (switches, routers,
gateways, etc) and the devices that are hosting the services.

The QoS service aims at covering the most common QoS
dimensions for the most general automation scenarios. In
particular, the QoS service should be able to impose constraints
on the following non-functional parameters, and thus provide
capabilities to work on the following QoS dimensions:

- End-to-end delay – hard/soft real-time guarantees;

- Data bandwidth;

- Communication semantics – delivery guarantees, and

message ordering;

- Message prioritization;

- Local device parameters – on-device task scheduling;

- Service configuration parameters – buffer size,

middleware parameters and prioritization of requests.

Two scenarios can be described, to highlight how QoS is a
fundamental part of typical automation applications: i) an
Ethernet network composed by several nodes interconnected by
switches; and ii) a wide area network where parts of the network
are not owned nor controlled by the service providers. For the
sake of simplicity, let us assume that the objective is to setup the
network parameters in order to guarantee communications
latencies lower than a given deadline for the interaction between
a service producer and a service consumer.

In our approach, a characteristic that is common between all
scenarios is that, in order to provide QoS guarantees, a central
entity must be able to monitor the QoS of relevance to a service
consumer and compare it to the QoS requested. The mitigation
of QoS can benefit from the knowledge of the current network
topology and types of network actives (switches, routers,
gateways, access points, etc) in the system. Additionally, the
current status of involved devices. The status of the system
comprises (complete or incomplete) information regarding all
message streams in the system and the current configuration of
the networks. The central entity must be able to collect required
information by contacting the adequate registries and can
leverage this information to run adequate algorithms to verify if
all message streams fulfill their QoS and to determine a new
system setup, which is then used to configure the involved
devices and systems.

The main structural difference between the two scenarios
described in the following involves the degree of control of the

systems over the QoS parameters of the devices. In particular,
the first scenario can feature an industrial Ethernet that may
provide even hard real-time guarantees, while in the case of the
wide area network, it is necessary to stick to solutions similar to
Diffserv [8], which can only prioritize a message stream.

One of the main requirements for Arrowhead QoS
Architecture is to be able to create a request for the needed QoS
independently of the underlying network technology, taking for
given that the QoS service will take care of feeding the network
actives with a proper configuration to support the QoS.

A. QoS Dimensions

General QoS objectives can be articulated over many
dimensions. This work aims at making the system more robust,
both in terms of limiting the resources used by each message
stream and in terms of mechanisms to protect communication
against failures.

For each family of QoS objectives, we define a class, which
is refined into types of QoS parameters. The QoS classes
supported in this work are Delay, Bandwidth, Resources Limits,
and Communication Semantics. Nevertheless, the actual
implementation is capable of handling other parameters, just by
adding such functionalities to the QoS-related components.

Delay is a very common non-functional requirement in
distributed automation systems-of-systems. For the objective to
be respected, it implies the execution of actions within a
deadline. This class of objectives comprises time elapsed for a
message delivery, and end-to-end delay of a service invocation.
Moreover, this class of QoS objectives spans over both hard real-
time and soft real-time constraints, the latter representing
statistical guarantees on the communication delay.

Bandwidth refers to guarantees that sufficient
communication and computational resources are allocated to the
services, and it is quite common for service support in SOA
applications and slightly less common in embedded
applications. This class of objectives comprises both constraints
on the minimum bandwidth for data produced / transmitted in a
time unit, and on the number of service requests supported in a
time unit. Usually, the requests bandwidth QoS requirement is
applied to service producers only, since network actives do not
track the number of requests and thus limit their vision over the
data bandwidth being used. On the other hand, the data
bandwidth is used on both networking elements, and service
providers.

The Resource Limits class of QoS objectives is concerned
with limiting the quantity of resources used by a service, to
protect the system of systems against resource choking.
Example of resources are CPU, memory, and any other resource
used by an application in the case of nodes, and data bandwidth
per time unit in case of both nodes and network actives.

While the previous class protects the system of systems
against the services, the Communication Semantics protects the
services interactions against events disrupting the
communication infrastructure and the system of systems in
general. This class spans over a set of capabilities that can be
requested as part of the QoS. In particular, this QoS class is
currently focused on reliability, and it is used to request

assurance of receiving the message at least once, the assurance
of not receiving duplicated messages, and the reception of
messages in the same order they were produced. Moreover, this
class comprises also the prioritization of services and message
streams.

IV. ARROWHEAD QOS ARCHITECTURE

We propose a QoS architecture centered on a QoSManager
system that interacts with the Orchestration system to connect
service instances respecting the specified QoS requirements. We
consider both direct interaction between them through service
fruition, and indirect interaction via the Registry, which hosts
the result of the computation of the QoSManager system. The
monitoring of QoS relies on a QoS Monitor system, which can
run on the same device as the QoSManager system, or operate
as an external device.

The QoSManager collects information regarding network
topology, real-time device capabilities and QoS requirements
from the ServiceRegistry, SystemRegistry and DeviceRegistry.
The management of QoS is strictly related to the reservation of
communication and computational resources, whose
information is maintained on a QoS Store, accessible also
through a SOA interface and under the control of the
QoSManager system. This latter system is able to verify if the
requested QoS requirements can be granted or not. Moreover, it
can configure the involved active network elements (e.g. router
and switches) and devices to grant a QoS request.

The set of elements that can be configured by the
QoSManager comprises node’s traffic smoothing filters on the
output of service producers or consumers, parameters like traffic
priority and delivery guarantees of message oriented
middleware with QoS capabilities, like DDS [9], RabbitMQ [10]
or XMPP [11]. Network actives, like switches, routers or
gateways can also be configured in order to control the
bandwidth of specific message streams.

The QoSManager might also be capable of configuring the
device running the service producer and consumer in order to
have response time guarantees for coding/decoding the request
and providing a reply. To that purpose, the QoSManager system
must be aware of the applications and threads running on the
producer device and, if required, it must be able to configure the
devices through a specific interface. More complex situations
occur when services are composed by set of services running on
different devices. Assuming that the application requires a
specific response time, then, in both cases response time
calculation tools, like holistic analysis [12] have to be applied in
order to integrate communications with task scheduling.

Finally, some applications might also require to know the
current status of the system and be able to adapt to changing
conditions. As an example one of the Arrowhead pilots is
capable of reducing its sampling rate and consequently the
consumed bandwidth in order to support more devices in an
IEEE 802.15.4 network, with very limited bandwidth. This can
be achieved by monitoring the network status, using the
QoSMonitor system, and informing the interested parties, using
the Event Handler.

Even though the literature reports efforts of decentralized
control [13], in Arrowhead we focus on a centralized solution,
at least in terms of logical components. The main reasons are
related to small number of message streams with QoS
requirements on the envisaged applications for the Arrowhead
framework and the existence of Arrowhead systems (QoS Store
Service Registry, System Registry and Device Registry) which
are able to capture the status and configuration of a system of
systems.

Figure 2 – Relevant components for the QoS support

Figure 2 presents the main building blocks of the Arrowhead
QoS architecture, where a service producer and a service
consumer are connected through a network active (e.g. a switch).
The Orchestration system and the QoSManager system interact
with the three registry systems (Service Registry, System
Registry and Device Registry) to collect information regarding
the system of systems. The QoSManager system accesses the
QoS Store holding information regarding resource reservations,
a module (Alg module) containing different algorithms for QoS
verification and configuration, and a module (QoSDrivers
module) with drivers for interaction with custom protocols. This
latter module is used to configure network actives, since for the
time being we must consider that network actives will not use
the SOA approach of Arrowhead, and instead communicate
using custom protocols. Finally, there is communication
between the QoSManager and the Event Handler system, which
is an extension to SOA of publish/subscribe communication and
is using to notify systems of QoS faults. The details of this
architecture are discussed in detail in the following sections.

A. QoSManager system
The main goal of the QoSManager system is to provide QoS-

as-a-Service, aligned with Arrowhead Framework objectives,
and this is done by means of offering a QoSSetup service. We
consider that the QoS requirements are specified in a declarative
manner, which can be achieved by adhering to Service Level
Agreements (SLAs) mechanisms [14, 15, 16].

The usage of SLAs for setting up QoS parameters was
already proposed in [17], specifically for the field of embedded
computing, where the focus was on providing a common
platform for both critical applications and mainstream
embedded applications, the first being characterized by strict
timing requirements, and the second by the need for energy
saving and low cost. In other scenario, for example related to

multimedia fruition, the SLA can specify the amount of data that
must be offered by the service providers.

The QoS requirements are uploaded on the Registry at
system startup time, or when a service consumer registers itself.
The result of the verification process is a configuration of
parameters on the devices and network actives. More
information regarding the paradigm followed are given in
Section V.

B. QoS drivers

The QoSDrivers represent the software modules responsible
for providing a uniform interface, used by the QoSManager, for
the configuration of QoS parameters on network actives and for
the monitoring of all the devices. Their duty is to act as adapters
between the custom protocol of the network actives and devices,
and the protocols used in Arrowhead, and in particular to reach
out to the non-Arrowhead compliant world, in particular when a
configuration protocol in not natively REST-based.

As an example, these drivers could be used to configure a
network switch, only accessible using proprietary protocols, in
order to change the priority of the message streams. In some
particular cases, it is possible that the QoS parameters of the
system have to be setup manually by the system administrator
(e.g. using proprietary software tools); in these cases the output
of the driver is the configuration to be used on the network.

There are already some tools that allow the remote
configuration of some network QoS parameters, such as Nagios
[18] and OpenFlow [19]. Anyway, their integration into the
Arrowhead environment has to be carefully evaluated since
these tools are mostly used on common LAN/WAN network
scenarios, and lack support for some wireless networks like
IEEE 802.15.4 (ZigBee).

C. QoS Store

The QoS Store is a SOA database that holds information
regarding the resource reservations active in the local cloud. The
data in the QoS Store are kept aligned with the QoS
configurations deployed onto network actives and devices.
Should the system of systems host more than one QoSManager
system, all of them will refer to the same QoS Store to gain a
consistent vision of the resource reservations.

D. Algorithms

The information contained on the QoS Store is used by the
Algorithms module to perform calculations to determine the
system parameters which are capable of fulfilling the QoS
requirements, taking into account the current status of the
systems of systems. These algorithms can be based on
mathematical models of the system of systems, which take into
account all the data retrieved by the Registry regarding devices,
systems and services. Since each service can be an orchestration
of other services, particular care has to be taken for both
verifying the kind of QoS constraints that can be satisfied by the
orchestrated (composed) service (e.g.: should one of the
orchestrated services not support hard real-time, all orchestrated
services will not support hard real-time) and for the computation
of the configuration that can satisfy the QoS levels.

As an example, the work in [20] proposes some algorithms
to deal with the composition of real-time services, where it
considers the real-time requirements in the context of Ethernet
networks, using the Flexible Timer Triggered – Switched
Ethernet (FTT-SE) protocol. This protocol can be modeled using
a mathematical holistic analysis model proposed in [21], which
accounts for the processing time of the nodes involved on a
transaction and provides hard real-time guarantees. Similarly,
the work in [2] is capable of providing real-time guarantees for
beacon-enabled IEEE 802.15.4 networks.

E. QoS Monitor

The QoS Monitor main functionality is to monitor if the SLA
between producer and consumer is not being violated.
Additionally, some dynamic and adaptable QoS algorithms
require the knowledge of the connection status during run-time
in order to adapt.

The QoSManager system should be able to detect deviations
from the performance requested through the QoSManager
system. Therefore, the QoS Monitor is responsible for
monitoring the behavior of devices and network actives in
relation to QoS variables, and informing other systems regarding
QoS faults. Violation of QoS requirements and its status is
disseminated using the Event Handler system.

F. Interaction with the Event Handler system

The Event Handler system [6] provides functionality for the
notification of events that occur in a given Arrowhead compliant
system. Basically, the Event Handler receives the events from
Event Producers and forwards them to subscribing Event
Consumers. Two different communication workflows are
envisaged.

If the system of systems administrator prefers the
Orchestration system to push configurations to other systems,
the Orchestration system is the subscriber to messages regarding
QoS faults. On reception of the messages, the Orchestration
system computes new orchestrated services, and pushes the new
configuration to the systems involved in the service instance.

If the system of systems administrator prefers the pull
approach to service orchestration, the service consumer is the
subscriber of the messages regarding QoS faults. On reception
of the message, the service consumer contacts the Orchestration
system, and requests to pull a new orchestrated service to
consume.

The mediation by the Event Handler system allows for
different kinds of decoupling of the QoS Monitor from the
message subscribers [23], thus it enables an easier development
of QoS functionalities.

V. BEHAVIOR OF THE QOSMANAGER SYSTEM

A. Interaction paradigm

This section describes how systems interact with the
QoSManager system, to allow the latter to realize its functions.
As anticipated in previous sections, two approaches can be
envisaged.

A more declarative approach considers that the QoSManager
system processes periodically the knowledge base stored on the
Registry service. The QoSManager system collects data on the
devices, systems and services in the system of systems to
compute constraints on the orchestrated services that are
compatible with the QoS requirements. The constraints are
distilled into rules that are uploaded onto the Registry. When
computing orchestrated services, the Orchestration system will
take into account the QoS-related rules. The interaction between
the QoSManager system and the systems consuming and
producing services is totally implicit, and mediated by the 3
registry systems.

In a more imperative paradigm, the Orchestration system,
each time that computes orchestrated services, interrogates the
QoSSetup service of the QoSManager system regarding the
compatibility with the QoS objectives. The QoSManager
receives an orchestrated service and QoS objectives from the
Orchestration system, collects data on the system of systems
from the Registry, and answer to the Orchestration system to
allow the latter to push/pull the orchestrated service to the
service consumer.

A comparison between the two approaches led to the
definition of three issues with the declarative approach.

The first problem is related with race conditions in dynamic
systems. When the system of systems is changed, the
Orchestration system can compute a new matching before the
QoS Monitor wakes up and updates the QoS-related rules. This
would leave the system of systems in a state that cannot respect
QoS objectives, which can be catastrophic in case of industrial
machines and industrial processes.

The second issue regards the computational cost of QoS-
related rules when resource reservations are considered. When
the Orchestration system considers Registry information as
rules, each orchestrated service instance can be considered at a
time, since the capability of a service to satisfy functional
requirements do not depend on consumption of other services.
On the other hand, when the QoSManager considers to reserve
resources for the consumption of a service, the fruition of all
other services can be impacted. Thus, the computation of
feasibility of QoS objectives must be computed against the

system of systems. The net results is that the computation of
QoS-related rules needs to consider all potential systems of
systems, whose number is huge (exponential in the number of
systems).

The third issue with the declarative approach is the
reservation management. The operations to verify QoS
feasibility and to reserve resources cannot be separated, since the
QoS rules are put in place before the Orchestration system
decides which service instances will be used. Thus, resources
will be reserved even when the Orchestration system does not
instruct a service consumer to consume the reserved resources.

 The discussion at hand proved that the best paradigm for the
interaction with the QoSManager is imperative, where the
QoSManager behaves as a plug-in of the Orchestration service.

B. A protocol for the QoSManager system

Figure 3 depicts the most common interactions involving the
verification of QoS objectives for service fruition, and the
configuration of a system of systems to respect QoS.

The entry point for the process is the Orchestration service.
The service consumer sends the SLA [16] to the Orchestration
system, to ask at the same time for the functional and non-
functional requirements for the service fruition. The
QoSManager system is responsible for the setup of the involved
services directly, once instructed by the Orchestration system,
which builds up – and returns – one orchestrated service between
a Service consumer (SC) and Service producer (SP). Should the
returned orchestrated service not respect the QoS, the SC would
have to restart the process an undefined number of times.

On the other hand, we assume that the Orchestration system
is capable of determining one or a set of ordered configurations
that establish this order, whose criteria are beyond the scope of
this paper. The Orchestration system sends the description of the
orchestrated service to the QoSManager, to allow it to verify the
satisfiability of the QoS request and compute a proper
configuration for the services and the devices.

The QoSManager system receives the set of possible
orchestrated services and verifies, for each of them, if the
required QoS level can be supported or not. To do that, the

Figure 3 - Sequence diagram of the interaction between the modules involved on the provision of QoS

QoSManager system transforms the SLA into constraints on the
non-functional requirements of the services to be orchestrated,
and applies the mathematical or statistical models contained in
the Algorithms modules. To this aim, the QoSManager system
also retrieves information regarding the system of systems from
the Registry service, and current status of resource reservation
from the QoS Store. When a feasible configuration is found the
QoSManager system contacts the involved systems and network
actives to configure the QoS for the new service, thus reserving
the required resources and modifying the data on the QoS Store
to account for the new resource reservation status. Afterwards,
the Orchestration system answers to the service consumer with
a service configuration which complies with the functional and
non-functional requirements of the service request.

The following list resumes the QoS provision sequence,
which is depicted in Figure 3:

1) The SC sends request to OS, with functional requirements

and a SLA;

2) The OS computes a set of possible service configurations;

3) The OS sends one service configuration at a time to the

QoSMan;

4) QoSMan retrieves info from QoSStore and the Registries

5) QoSMan verifies if the QoS requirements contained in the

SLA can be guaranteed for a configuration. This step can

be repeated several times until a feasible configuration is

found or no configuration is possible.

6) QoSMan communicates with systems and network

actives to reserve resources to guarantee the required

QoS; QoSMan also updates the QoSStore regarding the

new reservation;

7) The OS answers to the CS;

8) The CS starts establishes connection with the SP and

starts fruition of the service.

VI. QOS-AS-A-SERVICE ON AN FTT-SE NETWORK

The FFT-SE protocol makes use of the master/slave
paradigm, where a dedicated node (the Master node) schedules
messages on the network. The communications within a FTT-
SE network are done based on Elementary Cycles (ECs), which
uses fixed duration time slots for synchronous and for
asynchronous messages, the remaining EC time can be used for
conveying best effort traffic.

The scheduler applies a scheduling policy over these tables,
generating the ready queues for transmission for that EC.
Synchronous messages are scheduled autonomously by the
master, without any petition/feedback from the slave nodes.
Asynchronous messages are also scheduled by the master node,
but asynchronous messages are activated in response to events
that happen in the environment, thus, slave nodes must report its
activation to the Master via a signaling mechanism. This process
is repeated until no other message fits on the scheduling window
for that EC (i.e., considering all messages from higher to lower
priority).

For building the EC, it is important to consider: (i) the
characteristics of the transmission links; switched Ethernet has
fullduplex transmission links, namely the uplink and the
downlink, connecting the ports exiting the switch to the nodes,

(ii) the multiple switching delays: the switch relaying latency
and the Store-and-Forward Delay (which depends on the
message size and link speed), and (iii) the length of the specific
transmission window for each type of traffic (e.g., synchronous
or asynchronous window).

A simplified version of the instantiation of the Arrowhead
QoS architecture on an FTT-SE network is depicted in Figure 4.
In this figure the thick line represent physical connections
between devices, while the thin lines represent logical
connections. The circular object represent the switch that
connects all devices.

Figure 4 – QoS Architecture instantiation on an FTT-SE network

In this scenario it the responsibility of the FTT-SE slave to
ask the orchestrator for a connection with a service producer
using a specific set of QoS parameters. As an example of such a
message assume a QoS parameter being requested is the delay
time. An extract of the SLA is given next.

…
 "specifications": {

 "entry": [

 {

 "key": "delay",

 "value": {

 "value": "90.0"

 "period": "200.0"

 "msglength": "300"

 }

 }

]

 …
Code 1 – SLA extract: specifying delay QoS parameter

It is important to note that the SLA is defined in Janson, and
the main objective of its structure is to allow it to be adapted for
different QoS parameters, by allowing using adequate tuples of
Key and Value.

The instantiation of the architecture also complies modules
specific for FTT-SE networks. The QoSM module is responsible
for monitoring the delay of the messages exchanged between
producer and consumer and report any violation using the Event
Handler systems (not represented in this figure) to interested
parties. The QoS Driver is responsible for informing the
producer and consumer about the parameters to be used on the

connection, namely: stream ID, message size and period. After,
it is the responsibility of both to establish the connection using
the standard FTT-SE protocol. The FTT-SE Alg module takes
care of performing complex calculations to determine if the new
message stream can be admitted to the system or not. That can
be done, supported by the mathematical model presented in [23].
This model tests if all message streams in the systems will be
able to handle their delay requirements. If there is fail for one of
the existing message streams or for the new one then the new
message stream cannot be admitted.

VII. CONCLUSIONS

The paper presented the Arrowhead general approach, and
went on describing how it can include services to support QoS
requests for the interaction of service consumers and producers.
An architecture was defined, up to the systems involved in QoS
management and the services mediating their interactions. We
advocate the use of SLA to define the QoS request, and we
consider that the Orchestration System of Arrowhead takes care
of bargaining with the QoSManager system the proper
orchestrated services to support the requested QoS.

A discussion showed that, even in a SOA architecture that is
heavily declarative, the reservation for QoS is better satisfied if
the interactions are done explicitly and then responding to the
imperative paradigm. Thus, the QoSManager system, which
interacts with the Orchestration system only, is able to add QoS
verification and setup to Arrowhead-compliant local cloud,
without adding complexity to the architecture.

The architecture will act as container for mechanisms that
will be studied in future work, for example algorithms that will
“fill up” the Algorithms module and extend our approach to
scenarios different from the FTT-SE one (Section VI). Future
work will also discuss the impact of the approach on other
characteristics of Arrowhead-compliant local clouds, such as
security, scalability.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within the
CISTER Research Unit (CEC/04234); also by FCT/MEC and
the EU Artemis JU within project ARTEMIS/0001/2012 - JU
grant nr. 332987 (ARROWHEAD).

REFERENCES

[1] Ferreira, Luis Lino, et al. "Arrowhead compliant virtual market of
energy", Emerging Technology and Factory Automation (ETFA), 2014
IEEE. IEEE, 2014.

[2] Koubâa, A., Alves, M., Tovar, E., Cunha, A., "An implicit GTS allocation
mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks:
theory and practice", Real-Time Systems Journal, Springer, Edited:
Giuseppe Lipari. Aug 2008, Volume 39, Issue 1-3, pp 169-204.

[3] Valls, Marisol García, Iago Rodríguez López, and Laura Fernández
Villar. "iLAND: An enhanced middleware for real-time reconfiguration
of service oriented distributed real-time systems." Industrial Informatics,
IEEE Transactions on, vol. 9, no. 1 (2013): 228-236.

[4] Iiro Harjunkoski, Rasmus Nyström, and Alexander Horch. "Integration of
scheduling and control—Theory or practice?." Computers & Chemical
Engineering 33.12 (2009): 1909-1918.

[5] Da Xu, Li, Wu He, and Shancang Li. "Internet of things in industries: a
survey." Industrial Informatics, IEEE Transactions on 10.4 (2014): 2233-
2243.

[6] M. Albano, L.L. Ferreira, J. Sousa, “Extending publish/subscribe
mechanisms to SOA applications”, 12th IEEE World Conference on
Factory Communication Systems (WFCS 2016), May 3-6, 2016, Aveiro,
Portugal

[7] Varga, Pál, and Csaba Hegedus. "Service Interaction through Gateways
for Inter-Cloud Collaboration within the Arrowhead Framework." 5th
IEEE WirelessVitae, Hyderabad, India (2015).

[8] Nichols, K., Blake, S., Baker, F. and D. Black, "Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers",
RFC 2474, December 1998.

[9] Object Management Group, Inc. (OMG), “Data Distribution Service for
Real-Time Systems Specification”, Version 1.1, December 2005

[10] AMQP Advanced Message Queuing Protocol, Protocol Specification,
Version 0-9-1, 13 November 2008,
http://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

[11] P. Saint-Andre, K. Smith, and R. Troncon, “XMPP: The Definitive
Guide”, O’Reilly, 2009

[12] J. Gutierrez Garcia, J. Gutierrez, and M. Gonzalez Harbour,
“Schedulability analysis of distributed hard real-time systems with
multiple-event synchronization,” in ECRTS’00, 2000, pp. 15–24.

[13] Li, Fei, Fangchun Yang, Kai Shuang, and Sen Su. Q-peer: A decentralized
qos registry architecture for web services. Springer Berlin Heidelberg,
2007.

[14] Muthusamy, Vinod, et al. "SLA-driven business process management in
SOA."Proceedings of the 2009 Conference of the Center for Advanced
Studies on Collaborative Research. IBM Corp., 2009

[15] Ding, Jianmin, and Zhuo Zhao. "Towards autonomic SLA management:
A review."Systems and Informatics (ICSAI), 2012 International
Conference on. IEEE, 2012.

[16] M. Albano, R. Garibay-Martínez, L.L. Ferreira, “Architecture to Support
Quality of Service in Arrowhead Systems”, 7th INForum Simpósio de
Informática (INForum 2015), 7-8 September, 2015, Covilhã, Portugal

[17] S. Girbal et al, “On the Convergence of Mainstream and Mission-Critical
Markets”, In Proceedings of the 50th Annual Design Automation
Conference, p. 185. ACM, 2013

[18] Nagios Enterprises, “Nagios”, www.nagios.com, last accessed in
04/2015.

[19] Open Networking Foundation, “OpenFlow Switch Specification, Version
1.4.0 (Wire Protocol 0x05)”, Oct/2013, available onlinde from:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[20] I. Estevez-Ayres, P. Basanta-Val, M. Garcia-Valls, J. Fisteus, and L.
Almeida, “QoS-aware real-time composition algorithms for service-based
applications,” IEEE Trans. Ind. Informatics, vol. 5, no. 3, pp. 278–288,
Aug. 2009.

[21] Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Paulo
Pedreiras, Luís Miguel Pinho, “Holistic Analysis for Fork-Join
Distributed Tasks supported by the FTT-SE Protocol,” in Proc. of the 11th
IEEE World Conference on Factory Communication Systems, (to appear)

[22] Cardellini, Valeria, and Stefano Iannucci. "Improving SOA Applications
Response Time with Service Overload Detection." 21st International
ACM Symposium on High-Performance Parallel and Distributed
Computing (HPDC'12). 2012.

[23] Michele Albano, Luis Lino Ferreira, Luís Miguel Pinho, Abdel Rahman
Alkhawaja, “Message-oriented middleware for smart grids”, Computer
Standards & Interfaces (2015), vol.38, pp. 133-143, Elsevier, DOI
10.1016/j.csi.2014.08.002

[24] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time
communication over cots ethernet switches,” in WFCS’06, 2006, pp. 295–
302.

http://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

