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Abstract 
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the 
problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks 
upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a 
new algorithm, LPC (task-assignment-based-on-solving a Linear Program with Cutting planes). The algorithm offers 
the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor 
assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform 
in which each processor is 1.5 times faster and has 3 additional processors. For systems with large number of 
processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, 
this is the first work that develops a provably good real-time task assignment algorithm using cutting planes. 
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Provably Good Task Assignment for Two-type Heterogeneous
Multiprocessors using Cutting Planes
(Submitted to Special Issue on Real-Time, Embedded and Cyber-Physical Systems)

Björn Andersson, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA

Gurulingesh Raravi, CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, con-
sider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline
sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this
problem, we propose a new algorithm, LPC (task-assignment-based-on-solving a Linear Program with Cut-
ting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there ex-
ists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor
assignment as well but on a platform in which each processor is 1.5 times faster and has 3 additional proces-
sors. For systems with large number of processors, LPC has a better approximation ratio than state-of-the-
art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time
task assignment algorithm using cutting planes.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems; G.4 [Mathematical Software]: Algorithm design and analysis

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Cutting planes, Heterogeneous multiprocessors, Linear programming,
Real-time scheduling

1. INTRODUCTION
This paper addresses the problem of finding an assignment of real-time tasks to proces-
sors (also referred to as partitioning or task-to-processor assignment or non-migrative
assignment) for a given set of tasks on a heterogeneous multiprocessor platform. We
consider implicit-deadline sporadic tasks, that is, a task generates a (potentially in-
finite) sequence of jobs where each job has an execution time and a deadline and for
each task, the deadline of a job this task is equal to the minimum time between job
arrivals of this task. Such tasks can be used to model a range of applications where
the software needs to perform an operation repeatedly on incoming or sampled data,
e.g. feedback control systems, signal processing or multimedia playout. We consider a
heterogeneous multiprocessor platform comprising processors of two unrelated types:
type-1 and type-2 and we refer to such a computing platform as two-type platform. Our
interest in considering such a platform model is motivated by the fact that many chip
makers offer chips having two types of processors [AMD Inc. 2012; Apple Inc. 2012;
Intel Corp. 2013b; 2013c; Nvidia Inc. 2013; Qualcomm Inc 2013; Samsung Inc. 2013;
Texas Instruments 2012; Alben 2013; Intel Corp. 2013a].

In the partitioning problem, every task must be statically assigned to a processor
before run time and all its jobs must execute on that processor at run time (i.e., jobs
cannot migrate between different processors). The challenge is to find, before run time,
a task-to-processor assignment such that, at run time, a uniprocessor scheduling algo-
rithm running on each processor meets all the deadlines of the tasks on the respective
processor. Scheduling the tasks to meet deadlines on a uniprocessor platform is a well-
understood problem. One may use Earliest-Deadline First (EDF) [Liu and Layland
1973], for example. EDF is an optimal scheduling algorithm on a uniprocessor sys-
tem [Liu and Layland 1973; Dertouzos 1974], with the interpretation that for every
valid arrival pattern, if a schedule exists that meets deadlines then EDF constructs a
schedule that meets deadlines as well. Therefore, assuming that an optimal schedul-
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A:2 B. Andersson and G. Raravi

Table I. Summary of state-of-the-art task assignment algorithms along with the algorithm proposed in this paper.
Computing Adversary Task Assignment Algorithms

Platform Task migration Algorithm Task migration Approx. ratio Complexity
t-typea non-migrative [Baruah 2004a] non-migrative 2x polynomial
t-type non-migrative [Baruah 2004b] non-migrative 2x polynomial
t-type non-migrative [Lenstra et al. 1990] non-migrative 2x polynomial
t-type fully-migrative [Correa et al. 2012] non-migrative 4x polynomial

2-typeb non-migrative [Raravi et al. 2013] non-migrative 2x polynomial
2-type intra-migrative [Raravi et al. 2012] non-migrative 2x polynomial

t-type non-migrative
[Horowitz and

non-migrative PTASc exponential
Sahni 1976] in processors

t-type non-migrative
[Jansen and

non-migrative PTAS
exponential

Porkolab 1999] in processors

2-type non-migrative [Raravi and Nélis 2012] non-migrative PTAS
exponential

in 1/ϵ

t-type non-migrative [Wiese et al. 2013] non-migrative PTAS
exponential

in 1/ϵ

2-type non-migrative LPC non-migrative
1.5x and

polynomial
3 extra processors

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c A PTAS takes an instance of an optimization problem and a parameter ϵ > 0 as inputs and, in time polynomial in the

problem size (although not necessarily in the value of ϵ), produces a solution that is within a factor 1 + ϵ of being optimal.

ing algorithm is used on each processor, the challenging part is to find a partitioning
for which there exists a schedule that meets all the deadlines — such a partitioning is
said to be a feasible partitioning hereafter. Even in the simpler case of identical mul-
tiprocessors, finding a feasible partitioning is NP-Complete in the strong sense [Korte
and Vygen 2006]. Hence, this result continues to hold for two-type platforms. Our goal
in this work is to design an algorithm for assigning tasks to processors on two-type
heterogeneous multiprocessors and prove its performance.

In this work, the resource augmentation framework [Phillips et al. 1997] is used to
characterize the performance of the algorithm under design. We define the approxima-
tion ratio ARA of a (non-migrative) algorithm A against a (non-migrative) adversary
as the lowest number such that for every task set τ and computing platform π it holds
that if it is possible for a non-migrative algorithm (i.e., the adversary) to meet all dead-
lines of τ on π then algorithm A outputs a task-to-processor assignment which meets
all deadlines of τ on a platform π′ (when scheduled using uniprocessor EDF [Liu and
Layland 1973]) whose every processor is ARA times faster than the corresponding pro-
cessor in π. A low approximation ratio indicates high performance; the best achievable
is 1 (which reflects the optimal algorithm for a given problem). Therefore, we aim to
design an algorithm with a finite (ideally small) approximation ratio.

Related work. The partitioning problem on heterogeneous multiprocessors has
been studied in the past [Baruah 2004b; 2004a; Raravi et al. 2012; Raravi et al. 2013;
Raravi and Nélis 2012; Wiese et al. 2013]. It is a well-known fact that the problem
under consideration is equivalent to the problem of scheduling a set of non-real-time
jobs, arriving at time zero, on unrelated parallel machine, so that they all finish before
a specified time. This (equivalent) problem has been studied in [Horowitz and Sahni
1976; Lenstra et al. 1990; Jansen and Porkolab 1999; Correa et al. 2012]. In [Baruah
2004b; 2004a; Lenstra et al. 1990], the authors proposed algorithms for the problem
of partitioning implicit-deadline sporadic task sets on heterogeneous multiprocessors
with an approximation ratio of 2. All these approaches [Baruah 2004b; 2004a; Lenstra
et al. 1990] focused on generic heterogeneous multiprocessor platforms with two or
more processor types. Due to practical relevance, recent research [Raravi et al. 2013]
considered the partitioning problem on two-type platforms and proposed an algorithm,
FF-3C, and couple of its variants based on first-fit heuristic. These had the same per-
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formance guarantee as the approaches in [Baruah 2004b; 2004a; Lenstra et al. 1990]
(i.e., requiring processors twice as fast, in the worst-case) but can be implemented ef-
ficiently and exhibit better average-case performance than those in [Baruah 2004b;
2004a].

Moving to algorithms whose performance has been evaluated against a more pow-
erful adversary, recently, in [Raravi et al. 2012], it is shown that, for the given task
set on a two-type platform, if there exists a feasible task-to-processor-type assignment
(i.e., tasks are assigned to processor types and the jobs can migrate between proces-
sors of the same type) then, the algorithm proposed in [Raravi et al. 2012] succeeds in
finding a task-to-processor assignment for the given task set on a platform in which
the speed of each processor is twice faster. In [Correa et al. 2012], it is shown that if a
task set can be scheduled by an optimal algorithm on a heterogeneous platform with
full migrations (i.e., jobs can migrate between processors of any type) then, an optimal
algorithm for scheduling tasks on a heterogeneous platform with no migrations (i.e.,
non-migrative assignment) needs processors four times as fast.

In [Horowitz and Sahni 1976; Jansen and Porkolab 1999; Raravi and Nélis 2012;
Wiese et al. 2013], authors proposed polynomial-time approximation schemes (PTAS)
for this problem. A PTAS takes an instance of an optimization problem and a pa-
rameter ϵ > 0 as inputs and, in time polynomial in the problem size (although not
necessarily in the value of ϵ), produces a solution that is within a factor 1 + ϵ of being
optimal. PTAS is theoretically a significant result since such algorithms partition the
task set in polynomial time, to any desired degree of accuracy. However, (most often)
their practical significance is severely limited due to a very high run-time complexity
that they incur.

The state-of-the-art (along with the contributions of this paper) is summarized in
Table I. Each row in the table corresponds to a different algorithm. For example, the
first row in the table is read as follows: for a generic heterogeneous multiprocessor
platform in which there can be two or more types of processors (denoted as t-type),
a non-migrative algorithm is proposed in [Baruah 2004a] and this algorithm has an
approximation ratio of 2 against a non-migrative adversary and the algorithm has a
polynomial time-complexity.

Contribution and Significance of this work. We present an algorithm, LPC
(task assignment based on solving a Linear Program with Cutting planes), for the
problem of partitioning a given implicit-deadline sporadic task set on a two-type het-
erogeneous multiprocessor platform which offers the following guarantee. If there ex-
ists a feasible partitioning of a task set τ on a two-type platform π then, LPC succeeds
in finding a feasible partitioning of τ as well but on a platform π(1.5x+3p) in which each
processor is 1.5 times faster than the corresponding processor in π and has 3 additional
processors than π.

The significance of this work is two-fold. First, for the problem of non-migrative
task assignment, our algorithm, has superior performance compared to state-of-the-
art. This can be seen from Table I since, for systems with large number of processors,
our algorithm offers a better approximation ratio than all the previous algorithms.
This is because (i) for systems with large number of processors, the additional 3 proces-
sors that our algorithm requires become negligible and hence its approximation ratio
tends to 1.5x which is better than the algorithms in [Baruah 2004a; 2004b; Lenstra
et al. 1990; Correa et al. 2012; Raravi et al. 2013; Raravi et al. 2012] and (ii) compared
to PTAS algorithms [Horowitz and Sahni 1976; Jansen and Porkolab 1999; Raravi and
Nélis 2012; Wiese et al. 2013] which incur a very high time-complexity (i.e., exponen-
tial in processors or exponential in 1/ϵ), our algorithm offers a lower (i.e., polynomial)
time-complexity. Second, although task assignment schemes with provably good per-
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formance have previously been developed by relaxing an Mixed Integer-Linear Pro-
gram (MILP) to a Linear Program (LP) (e.g., [Baruah 2004b; 2004a; Lenstra et al.
1990]) and cutting planes have been used to solve (M)ILP in different efforts, no work
in the past has shown how cutting planes can be used to improve the approximation
ratio of algorithms for provably good algorithms for assigning real-time tasks to pro-
cessors. Hence, to the best of our knowledge, this work is the first to show how cutting
planes can be used to improve the approximation ratio of algorithms for provably good
algorithms for assigning real-time tasks to processors.

Organization of the paper. The rest of the paper is organized as follows. Section 2
briefs the system model. Section 3 discusses task assignment using Integer Linear
Program, Linear Program relaxation and cutting planes. Section 4 presents our new
algorithm, LPC and Section 5 derives its performance. Finally, Section 6 concludes.

2. SYSTEM MODEL
We consider the problem of scheduling a task set τ = {τ1, τ2, . . . , τn} of n implicit-
deadline sporadic tasks on a two-type heterogeneous multiprocessor platform π = {π1,
π2, . . ., πm} comprising m processors, of which |P t(π)| are of type-t; where t ∈ {1, 2}.
The set of processors of type-t is represented by P t(π). Note that P 1(π)

⋃

P 2(π) = π.
Each task τi is characterized by a worst-case execution time (WCET) and a minimum
inter-arrival time Ti (which is equal to its deadline). Each task τi releases a (potentially
infinite) sequence of jobs, with the first job released at any time and subsequent jobs
released at least Ti time units apart. Each job released by a task τi has to complete its
execution within Ti time units from its release. We assume that an optimal scheduling
algorithm (such as EDF [Liu and Layland 1973]) is used to schedule the tasks on each
processor.

On a two-type platform, the WCET of a task depends on the type of processor on
which the task executes. We denote by Ci,1 and Ci,2 the WCET of task τi when executed

on a processor of type-1 and type-2 and we denote by ui,1
def
= Ci,1

Ti
and ui,2

def
= Ci,2

Ti
the

utilizations of task τi on type-1 and type-2 processors, respectively. A task that cannot
be executed upon a certain processor type is modeled by setting its utilization on that
processor type to ∞1.

We now define a couple of auxiliary functions that are used in the rest of the paper.
Let aot

(

ts : set of tasks,t : type
)

be a function that returns the subset of tasks
in ts such that ui,t > 1/3. Similarly, let ah(ts, t) be a function which returns the subset
of tasks in ts such that ui,t > 1/2.

Let solve
(

lp : linear program
)

be a function which solves the linear program lp
and if this solution is not a vertex optimal solution then it converts this solution into a
vertex optimal solution (previous work [Baruah 2004b] did such a transformation). It
returns the values assigned to variables and the value of the objective function.

Let mp
(
∣

∣P 1 (pl)
∣

∣ : number of processors,
∣

∣P 2 (pl)
∣

∣ : number of processors, s:
relative speed of processors, pl: two-type platform

)

denote a function that re-

turns a computing platform with |P 1(pl)| (resp., |P 2(pl)|) processors of type-1 (resp.,
type-2) that are s > 0 times as fast as the corresponding processors of type-1 (resp.,
type-2) in computing platform pl. Intuitively, “mp” means “make platform”. This func-
tion is never called by our algorithm; it is only used in proofs.

1Later in the paper, we will solve LPs and MILPs and unfortunately, solvers for these problems typically
do not allow coefficients to be ∞. This can be dealt with, however, by assigning utilization of a task on a
certain processor to max(

∣

∣P 1(π)
∣

∣ ,
∣

∣P 2(π)
∣

∣). We will see, later in the paper, that this gives the same result
as assigning ∞.
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Task Assignment for Two-type Heterogeneous Multiprocessors using Cutting Planes A:5

Minimize ZMILP subject to the following constraints:

I1. ∀p ∈ P 1 (pl) :
∑

τi∈ts xvi,p × ui,1 ≤ ZMILP

I2. ∀p ∈ P 2 (pl) :
∑

τi∈ts xvi,p × ui,2 ≤ ZMILP

I3. ∀τi ∈ ts :
∑

p∈P 1(pl) xvi,p +
∑

p∈P 2(pl) xvi,p = 1
I4. ∀τi ∈ ts and ∀p ∈ P 1 (pl) : xvi,p is an integer ∈ {0, 1}
I5. ∀τi ∈ ts and ∀p ∈ P 2 (pl) : xvi,p is an integer ∈ {0, 1}

Fig. 1. MILPOPT(ts, pl)– MILP formulation for assigning tasks in ts to processors in pl.

Let sched(A, τ,π) denote a predicate to signify that the task-to-processor assignment
returned by algorithm A for tasks in τ onto processors in π meets all the deadlines
when the tasks assigned to each processor are scheduled by an optimal uniproces-
sor scheduling algorithm (such as EDF [Liu and Layland 1973]). The term meets all
the deadlines in this and other predicates means ‘meets deadlines for every possible
arrival of tasks that is valid as per the given parameters of τ ’. The predicates with
A = OPT imply that there exists a feasible task-to-processor assignment of tasks in τ
onto processors in π.

3. TASK ASSIGNMENT, MILP, LP AND CUTTING PLANES
In this section, we describe how the task assignment problem under consideration can
be formulated as MILP. Recall that we mentioned in Section 1 that given a task set and
a computer platform, the problem of deciding if a feasible task assignment exists is NP-
complete in the strong sense. Then it clearly follows that, for any MILP formulation
of this problem, deciding if the MILP is feasible is NP-complete in the strong sense as
well. Since deciding if our MILP formulation of task assignment is NP-complete, we
also discuss how it can be relaxed to LP (because LP can be solved in polynomial time).

Recall that, once the tasks are assigned to processors (also referred to as task-to-
processor or non-migrative assignment or partitioning), we assume that an optimal
scheduling algorithm (such as EDF [Liu and Layland 1973]) is used on each processor
to schedule the respective tasks. From the uniprocessor feasibility test, the following
necessary and sufficient condition must hold ∀t ∈ {1, 2} in order for the non-migrative
task assignment to be feasible:

∀πp ∈ P t(π) :
∑

τi∈τ [πp]

ui,t ≤ 1 (1)

where τ [πp] denotes the tasks assigned to processor πp ∈ π.
The problem of assigning tasks in τ to processors in π can be formulated as MILP

using the function MILPOPT(τ,π) which returns an MILP formulation as defined by
Figure 1. In this MILP formulation, the indicator variable xvi,p indicates the assign-
ment of task τi to processor πp, i.e., xvi,p = 1 implies that τi is entirely assigned to
processor πp, xvi,p = 0 implies that τi is not assigned to processor πp. The variable
ZMILP denotes the maximum capacity of any processor that is used and is set as the
objective function (to be minimized). If ZMILP ≤ 1 then it implies that the sum of uti-
lization of tasks assigned to any processor is less than or equal to the available capacity
on that processor and hence the assignment is feasible. If ZMILP > 1 then it implies
that the condition in Expression (1) is violated and hence the task set is non-migrative
infeasible, i.e., no task assignment algorithm will be able to assign the given tasks on
the given processors such that all the deadlines are met.

We now illustrate this with an example. Consider a task set τ = {τ1, τ2, τ3, τ4} com-
prising four tasks and a two-type platform π = {π1,π2,π3} comprising three processors
of which π1 and π2 are of type-1 and π3 is of type-2. The utilizations of these tasks
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Table II. An example task set.
Type-1 (π1,π2) Type-2 (π3)

Task ui,1 ui,2

τ1 0.51 1.1
τ2 0.51 1.1
τ3 0.51 1.1
τ4 1.1 0.5

on type-1 and type-2 processors are shown in Table II. Note that this task set is non-
migrative infeasible on the given platform.

Solving the MILP formulation, MILPOPT(τ,π), for this example outputs ZMILP = 1.02
(corresponding to the assignment in which τ1 and τ2 are assigned to π1 of type-1, τ3 is
assigned to π2 of type-1 and τ4 is assigned to π3 of type-2). Since ZMILP > 1, it rightly
indicates that the task set is non-migrative infeasible on the given platform.

As stated earlier (in Section 1) the problem of finding a feasible task-to-processor
assignment on two-type heterogeneous multiprocessors is NP-Complete in the strong
sense. Since MILPOPT(ts, pl), shown in Figure 1, is the MILP formulation for this prob-
lem, it holds that MILPOPT(ts, pl) is NP-Complete in the strong sense as well. It has
been shown in the past that, via relaxation of (M)ILP formulation to LP (by allow-
ing a certain number of tasks to be fractionally assigned to processors initially) and
certain rounding tricks [Potts 1985] (for integrally assigning the fractionally assigned
tasks), polynomial time-complexity can be attained [Baruah 2004a; 2004b; Lenstra
et al. 1990] at the expense of potentially non-optimal value for the objective function.
Recently, it was shown that assigning tasks to processor types first (also referred to as
task-to-processor-type or intra-migrative assignment since jobs are allowed to migrate
between processors of the same type) and then assigning them to individual processors
lead to a better performance [Raravi et al. 2012] than [Baruah 2004a; 2004b; Lenstra
et al. 1990]. Hence, in addition to using cutting planes in this work, we also use the
above mentioned two tricks, i.e., (i) assigning tasks to processor types first and then as-
signing them to individual processors and (ii) relaxing MILP to LP and then integrally
assigning the fractional tasks.

In intra-migrative task assignment, once tasks have been assigned to processor
types, we can use an optimal identical multiprocessor scheduling algorithm (e.g.,
Sporadic-EKG [Andersson and Bletsas 2008] with s = gcd(T1, . . . , Tn), ERfair [Ander-
son and Srinivasan 2000], DP-WRAP [Levin et al. 2010]) to schedule them on proces-
sors of each type. From the feasibility tests of identical multiprocessor scheduling, the
following conditions must hold ∀t ∈ {1, 2} in order for intra-migrative task assignment
to be feasible:

∀τi ∈ τ t : ui,t ≤ 1 (2)
∑

τi∈τt

ui,t ≤
∣

∣P t(π)
∣

∣ (3)

where τ t denotes the tasks assigned to processors of type-t. Given these necessary and
sufficient feasibility conditions, we now describe how to obtain a task-to-processor-type
assignment of τ on π.

We partition the task set τ into four subsets H12(τ, 1), H1(τ, 1), H2(τ, 1) and L(τ, 1)
as defined below.

H12(ts, θ) = {τi ∈ ts : ui,1 > θ ∧ ui,2 > θ} (4)

H1(ts, θ) = {τi ∈ ts : ui,1 ≤ θ ∧ ui,2 > θ} (5)

H2(ts, θ) = {τi ∈ ts : ui,1 > θ ∧ ui,2 ≤ θ} (6)

L(ts, θ) = {τi ∈ ts : ui,1 ≤ θ ∧ ui,2 ≤ θ} (7)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Task Assignment for Two-type Heterogeneous Multiprocessors using Cutting Planes A:7

Minimize Z subject to the following constraints:

I1. U1 +
∑

τi∈ts yvi,1 × ui,1 ≤ Z × |P 1(pl)|
I2. U2 +

∑

τi∈ts yvi,2 × ui,2 ≤ Z × |P 2(pl)|
I3. ∀τi ∈ ts: yvi,1 + yvi,2 = 1
I4. ∀τi ∈ ts: yvi,1 is an integer ∈ {0, 1}
I5. ∀τi ∈ ts: yvi,2 is an integer ∈ {0, 1}

Fig. 2. MILPTYPE(ts, pl, U1, U2) — MILP formulation for assigning tasks in ts to processor types in pl.

H12(τ, 1) is the set of tasks whose utilization exceeds one on both processor types.
These tasks cannot be assigned to any of the processor types as assigning them in such
a manner violates the condition in Expression (2). Hence, these tasks make the task set
infeasible and thus we assume this set to be empty in the rest of this section. H1(τ, 1)
is the set of tasks that must be assigned to type-1 processors as their utilization on
type-2 processors exceeds one and hence assigning them to type-2 processors violates
the condition in Expression (2). Analogously, H2(τ, 1) is the set of tasks that must be
assigned to type-2 processors as their utilization on type-1 processors exceeds one.
Finally, L(τ, 1) is the set of tasks that can be assigned on either processor type as their
utilizations on both processor types do not exceed one. In these definitions, we can
intuitively understand the meaning of “H” as “heavy” and “L” as “light” tasks. Now, to
obtain an intra-migrative task assignment, do the following.

First, assign the tasks in H1(τ, 1) to type-1 (resp., H2(τ, 1) to type-2) processors. Let
U1 refer to the capacity used on type-1 processors after assigning H1(τ, 1) tasks, i.e.,
U1 =

∑

τi∈H1(τ,1) ui,1. Analogously, let U2 =
∑

τi∈H2(τ,1) ui,2. If U1 >
∣

∣P 1(π)
∣

∣ or U2 >
∣

∣P 2(π)
∣

∣ then the task set is intra-migrative infeasible as this violates the condition in
Expression (3).

Second, solve the formulation, MILPTYPE(L(τ, 1),π, U1, U2), of Figure 2 for assigning
tasks in L(τ, 1). In this formulation, each variable, yvi,t (t ∈ {1, 2}), indicates the assign-
ment of task τi to type-t processors. The variable Z denotes the average used capacity
of either type-1 or type-2 processors, whichever is greater, and is set as the objective
function to be minimized. If Z ≤ 1 then a successful intra-migrative assignment is
obtained else the task set is intra-migrative infeasible as it violates Expression (3).

Recall that, we are interested in obtaining a non-migrative (i.e., task-to-processor)
assignment. However, this two-step algorithm where the “Heavy” tasks are assigned
first and then the “Light” tasks are assigned by solving the MILP formulation (of Fig-
ure 2) gives us a task-to-processor-type assignment. Hence, we need to convert this
task-to-processor-type assignment into a task-to-processor assignment. However, for
some task sets, it may be the case that a feasible task-to-processor-type assignment ex-
ists but not a feasible task-to-processor assignment. As a result of this, the two-step al-
gorithm can sometimes indicate that a feasible task-to-processor-type assignment exist
for those task sets which do not have a feasible task-to-processor assignment. To illus-
trate this, let us apply this two-step algorithm on our earlier example (see Table II).
It first partitions the tasks as follows: H1(τ, 1) = {τ1, τ2, τ3} and H2(τ, 1) = {τ4}. Then,
it assigns all the H1(τ, 1) tasks to type-1 processors and H2(τ, 1) tasks to type-2 pro-
cessors. As a result, we obtain: Z = 0.765 indicating that a feasible task-to-processor-
type assignment exists. But, we cannot convert this assignment into a feasible task-
to-processor assignment (since for this task set there is no feasible task-to-processor
assignment as illustrated earlier). To avoid such undesirable scenarios, we use cuts.

Observe that, for the example under consideration, the problem with the returned
task-to-processor-type assignment (considering the fact that this must be converted
to a task-to-processor assignment) is that three tasks with utilization 0.51 on type-1
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Minimize zv subject to the following constraints:

C1.
∑

τi∈ts yvi,1 × ui,1 +
∑

τi∈pa1 ui,1 ≤
∣

∣P 1 (pl)
∣

∣× zv
C2.

∑

τi∈ts yvi,2 × ui,2 +
∑

τi∈pa2 ui,2 ≤
∣

∣P 2 (pl)
∣

∣× zv
C3. ∀τi ∈ ts : yvi,1 + yvi,2 = 1
C4.

∑

τi∈fun(ts∪ pa1, 1) yvi,1 ≤
∣

∣P 1 (pl)
∣

∣

C5.
∑

τi∈fun(ts∪ pa2, 2) yvi,2 ≤
∣

∣P 2 (pl)
∣

∣

C6. ∀τi ∈ ts: yvi,1 is a real number ≥ 0
C7. ∀τi ∈ ts: yvi,2 is a real number ≥ 0

Fig. 3. TLPCUT(ts, pl, pa1, pa2, fun) — LP formulation with cuts for assigning tasks in ts to processor types
in pl.

processors are assigned to two type-1 processors. We know that such an assignment is
task-to-processor infeasible as the number of tasks assigned on type-1 processors with
their utilizations greater than 0.5 cannot exceed the number of processors of type-1.
Analogous property holds for type-2 processors. Hence, we add these two observations
as two separate constraints in the MILP formulation (of Figure 2) — these constraints
cut the feasible region of the optimization problem without losing any solution that is
of interest to us (which is a feasible task-to-processor assignment).

Also, as described earlier, solving an MILP formulation is time consuming. However,
an LP formulation can be solved in polynomial time though [Karmakar 1984]. So,
the MILP formulation for assigning tasks in L is relaxed to an LP formulation to be
able to solve it in polynomial-time. This relaxed LP formulation along with the two
cuts is obtained by the function TLPCUT

(

L(τ, 1), π, H1(τ, 1), H2(τ, 1), ah
)

as shown in
Figure 3. In this LP formulation, variables zv and yvi,t have the same meaning as the
corresponding variables, Z and yvi,t, in the MILP formulation (of Figure 2) and the first
three constraints are the same as well. The fourth and fifth constraints represent the
cuts that we have added and the sixth and seventh constraints (are relaxed versions of
fourth and fifth constraints in Figure 2) assert that a task can either be integrally or
fractionally assigned to processor types.

The proposed algorithm which is discussed in the next section uses this Linear Pro-
gram formulation (which is based on cuts).

4. THE NEW ALGORITHM: LPC
The pseudo-code for the proposed algorithm, LPC, is listed in Algorithm 1. LPC uses a
variant of First-Fit bin-packing scheme where heavy tasks are assigned first — pseudo-
code for this First-Fit bin-packing variant, FFhf , is shown in Algorithm 2.

The algorithm, LPC, for assigning the tasks in τ to processors in π works as follows.

(1) Partition the task set τ into H12(τ, 2/3), H1(τ, 2/3), H2(τ, 2/3) and L(τ, 2/3) as
shown in Expression (4)–(7).

(2) Set aside three processors of type-1 (denoted by set rp). Then solve the LP for-
mulation, TLPCUT

(

L(τ, 2/3), π′, H1(τ, 2/3), H2(τ, 2/3), aot
)

, for assigning tasks in
L(τ, 2/3) to processor types, where π′ = π \ rp. In the solution returned by the LP
solver, let (i) L1 and L2 denote the subset of tasks in L(τ, 2/3) that are integrally
assigned to type-1 and type-2 processors, respectively and (ii) τF denote the subset
of tasks in L(τ, 2/3) that are fractionally assigned between processors of type-1 and
type-2 (we later show that |τF | ≤ 3).

(3) Assign the tasks in H1(τ, 2/3)∪L1 to type-1 processors and H2(τ, 2/3)∪L2 to type-2
processors using the First-Fit bin-packing variant, FFhf .

(4) Assign each of the (at most three) tasks in τF to a unique processor in rp.
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ALGORITHM 1: LPC: The new task assignment algorithm for two-type heterogeneous multi-
processor platforms based on linear program with cuts

Input : A task set τ and a two-type platform π
Output: An assignment of tasks to processors indicated by matrix X
// Let Y denote a matrix in which the algorithm stores the information about the assignment

of tasks to processor types
1 Set each element in X and Y to zero
2 Select any subset of three processors of type-1 from π and let rp denote this set of processors
3 Let π′ denote a platform π \ rp
4 Partition the task set τ into subsets H12(τ, 2/3), H1(τ, 2/3), H2(τ, 2/3) and L(τ, 2/3) as shown in

Expressions (4)–(7).
5 if (H12(τ, 2/3) = ∅) then
6 foreach (τi ∈ H1(τ, 2/3)) do yi,1 := 1
7 foreach (τi ∈ H2(τ, 2/3)) do yi,2 := 1
8 ⟨Y V, zv, f⟩ := solve(TLPCUT(L(τ, 2/3),π′,H1(τ, 2/3),H2(τ, 2/3), aot))
9 if (f = feasible) then

10 foreach (τi ∈ L(τ, 2/3)) do yi,1 := yvi,1
11 foreach (τi ∈ L(τ, 2/3)) do yi,2 := yvi,2
12 z := zv
13 if (z ≤ 2/3) then
14 τF := {τi ∈ L(τ, 2/3) : yi,1 > 0 ∧ yi,2 > 0}
15 τA := FFhf (τF, π, rp, 1)

16 if (τA = τF) then
17 L1 := {τi ∈ L(τ, 2/3) : yi,1 = 1} L2 := {τi ∈ L(τ, 2/3) : yi,2 = 1}
18 τ1 := L1∪H1(τ, 2/3) τ2 := L2∪H2(τ, 2/3)
19 if (aot(τ1, 1) ≤

∣

∣P1 (π)
∣

∣− | rp |) then
20 if (aot(τ2, 2) ≤

∣

∣P2 (π)
∣

∣) then
21 τA1 := FFhf (τ1, π, P 1 (π) \ rp, 1)

22 τA2 := FFhf (τ2, π, P 2 (π), 2)

23 if (τA1 = τ1) then
24 if (τA2 = τ2) then
25 declare SUCCESS
26 else
27 declare FAILURE
28 end
29 else
30 declare FAILURE
31 end
32 else
33 declare FAILURE
34 end
35 else
36 declare FAILURE
37 end
38 else
39 declare FAILURE
40 end
41 else
42 declare FAILURE
43 end
44 else
45 declare FAILURE
46 end
47 else
48 declare FAILURE
49 end

Informally, choosing θ = 2/3 for partitioning the task set τ into four subsets (Step 1)
and then assigning the tasks in H1(τ, 2/3) and H2(τ, 2/3) to type-1 and type-2 proces-
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ALGORITHM 2: FFhf : A variant of First-Fit bin-packing (in which heavy utilization tasks are
assigned first)

Input : ts : a set of tasks, pl : a two-type platform, ps : a set of processors to assign the tasks in ts to, t :
type-id

Output: A task-to-processor assignment of tasks in ts to processors in ps of type t of platform pl
// Assumption: | aot(ts, t)| ≤ |ps|
// This algorithm modifies the variable X in the task assignment algorithm, LPC.
// pso is a local variable, a tuple that stores the set of processors in ps in a certain

order. The function first(pso) returns the first processor in pso and the function
next(pso,p) returns NULL if p is the last processor in pso, otherwise it returns the
processor after p in pso. tso is a local variable, a tuple that stores the set of tasks in
ts in a certain order.

1 at := ∅ // set ‘assigned tasks’ to empty
2 Order the processors in the set ps in some order and assign it to the tuple pso
3 p := first(pso)
4 Order the tasks in the set aot(ts, t) in some order and assign it to the tuple tso
5 foreach (τi ∈ tso), in order do
6 xi,p := 1
7 at := at∪{τi}
8 p := next(pso,p)

// We will not run out of processors here because of the assumption | aot(ts, t)| ≤ |ps|.
Also, note that the main algorithm checks to ensure that when we call this algorithm,
this assumption is true

9 end
10 Order the tasks in the set ts \ aot(ts, t) in some order and assign it to the tuple tso
11 foreach (τi ∈ tso), in order do
12 p := first(pso)
13 while (τi is not in at ) do
14 if

(
∑

τj∈at xj,p × uj,t + ui,t ≤ 1
)

then

15 xi,p := 1
16 at := at∪{τi}
17 else
18 if (next(pso,p)=NULL) then
19 return at
20 else
21 p := next(pso,p)
22 end
23 end
24 end
25 end
26 return at

sors, respectively (Step 3), facilitates in creating an algorithm with the desired ap-
proximation ratio. Since we will compare the performance of our new algorithm versus
every other algorithm that uses processors of at most 2/3 the speed, it ensures that
each of the tasks in H1(τ, 2/3) and H2(τ, 2/3) is assigned to the same corresponding
processor type as under every other successful assignment algorithm. Also, using the
function aot while formulating the LP formulation (Step 2) serves the same purpose of
achieving the desired approximation ratio — details are provided later in the proofs.

5. THE PERFORMANCE OF THE NEW ALGORITHM
In this section, we show that if there exists a feasible task-to-processor assignment for
tasks in task set τ to processors on platform π, then LPC succeeds in finding such a
feasible task-to-processor assignment as well for tasks in τ to processors on a platform
π(1.5x+3p) in which each processor is 1.5 times faster and has 3 additional processors
than π. We prove this via a series of intermediate results.
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Let ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) denote the value of
the objective function obtained by solving the LP formulation,
TLPCUT(L(τ, 2/3),π,H1(τ, 2/3),H2(τ, 2/3), aot).

LEMMA 5.1. Consider a task set τ and a two-type platform π. Let τ ′ be defined as:

∀τ ′i ∈ τ ′ : u′
i,1 = ui,1 × 3/2 ∧ u′

i,2 = ui,2 × 3/2

It then holds that:

sched(OPT, τ ′,π) ⇒ ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

PROOF. We assume that the left-hand side predicate is true and show that the
right-hand side predicate is true as well. Since sched(OPT, τ ′,π) is true, it holds that:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∀p ∈ P 1 (π) :
∑

τ ′

i∈τ ′ xvi,p × u′
i,1 ≤ zv

I2. ∀p ∈ P 2 (π) :
∑

τ ′

i∈τ ′ xvi,p × u′
i,2 ≤ zv

I3. ∀τ ′i ∈ τ ′ :
∑

p∈P 1(π) xvi,p +
∑

p∈P 2(π) xvi,p = 1
I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P 1 (π) : xvi,p is an integer ∈ {0, 1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P 2 (π) : xvi,p is an integer ∈ {0, 1}

We can observe that there can be at most
∣

∣P 1 (π)
∣

∣ tasks (resp., at most
∣

∣P 2 (π)
∣

∣

tasks) τ ′i ∈ τ ′ with u′
i,1 > 1/2 (resp., u′

i,2 > 1/2) that are assigned to type-1 processors
(resp., type-2 processors). This gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize zv subject to the following constraints:

I1. ∀p ∈ P 1 (π) :
∑

τ ′

i∈τ ′ xvi,p × u′
i,1 ≤ zv

I2. ∀p ∈ P 2 (π) :
∑

τ ′

i∈τ ′ xvi,p × u′
i,2 ≤ zv

I3. ∀τ ′i ∈ τ ′ :
∑

p∈P 1(π) xvi,p +
∑

p∈P 2(π) xvi,p = 1
I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P 1 (π) : xvi,p is an integer ∈ {0, 1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P 2 (π) : xvi,p is an integer ∈ {0, 1}
I6.

∑

p∈P 1(π)

∑

τ ′

i∈τ ′:u′

i,1>1/2 xvi,p ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

p∈P 2(π)

∑

τ ′

i∈τ ′:u′

i,2>1/2 xvi,p ≤
∣

∣P 2 (π)
∣

∣

Let us rewrite the two last constraints by changing the order of summation on the
left-hand side. Also, for each of the first two constraints, let us add up the constraints.
This may change the feasible region but the feasible region increases in the sense that
each point that was feasible before is still feasible. This gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize zv subject to the following constraints:
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I1.
∑

p∈P 1(π)

∑

τ ′

i∈τ ′ xvi,p × u′
i,1 ≤ zv ×

∣

∣P 1 (π)
∣

∣

I2.
∑

p∈P 2(π)

∑

τ ′

i∈τ ′ xvi,p × u′
i,2 ≤ zv ×

∣

∣P 2 (π)
∣

∣

I3. ∀τ ′i ∈ τ ′ :
∑

p∈P 1(π) xvi,p +
∑

p∈P 2(π) xvi,p = 1
I4. ∀τ ′i ∈ τ ′ and ∀p ∈ P 1 (π) : xvi,p is an integer ∈ {0, 1}
I5. ∀τ ′i ∈ τ ′ and ∀p ∈ P 2 (π) : xvi,p is an integer ∈ {0, 1}
I6.

∑

τ ′

i∈τ ′:u′

i,1>1/2

∑

p∈P 1(π) xvi,p ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τ ′

i∈τ ′:u′

i,2>1/2

∑

p∈P 2(π) xvi,p ≤
∣

∣P 2 (π)
∣

∣

Once again, let us reorder the summation on the left-hand side of the two first
constraints. Also, extracting the utilization terms outside one of the summations
in the first two constraints and then replacing (i)

∑

p∈P 1(π) xvi,p with yvi,1 and (ii)
∑

p∈P 2(π) xvi,p with yvi,2 gives us:

The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize zv subject to the following constraints:

I1.
∑

τ ′

i∈τ ′ u′
i,1 × yvi,1 ≤ zv ×

∣

∣P 1 (π)
∣

∣

I2.
∑

τ ′

i∈τ ′ u′
i,2 × yvi,2 ≤ zv ×

∣

∣P 2 (π)
∣

∣

I3. ∀τ ′i ∈ τ ′ : yvi,1 + yvi,2 = 1
I4. ∀τ ′i ∈ τ ′: yvi,1 is an integer ∈ {0, 1}
I5. ∀τ ′i ∈ τ ′: yvi,2 is an integer ∈ {0, 1}
I6.

∑

τ ′

i∈τ ′:u′

i,1>1/2 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τ ′

i∈τ ′:u′

i,2>1/2 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

We partition τ ′ into H12(τ ’, 1), H1(τ ’, 1), H2(τ ’, 1) and L(τ ’, 1) as shown in Expres-
sions (4)–(7). Rewriting based on these partitions gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize zv subject to the following constraints:

I1.
∑

τ ′

i∈τ ′ u′
i,1 × yvi,1 ≤ zv ×

∣

∣P 1 (π)
∣

∣

I2.
∑

τ ′

i∈τ ′ u′
i,2 × yvi,2 ≤ zv ×

∣

∣P 2 (π)
∣

∣

I3. ∀τ ′i ∈ H12(τ ’, 1) : yvi,1 + yvi,2 = 1
I4. ∀τ ′i ∈ H1(τ ’, 1) : yvi,1 + yvi,2 = 1
I5. ∀τ ′i ∈ H2(τ ’, 1) : yvi,1 + yvi,2 = 1
I6. ∀τ ′i ∈ L(τ ’, 1) : yvi,1 + yvi,2 = 1
I7. ∀τ ′i ∈ H12(τ ’, 1) : yvi,1, yvi,2 are integers ∈ {0, 1}
I8. ∀τ ′i ∈ H1(τ ’, 1) : yvi,1, yvi,2 are integers ∈ {0, 1}
I9. ∀τ ′i ∈ H2(τ ’, 1) : yvi,1, yvi,2 are integers ∈ {0, 1}
I10. ∀τ ′i ∈ L(τ ’, 1) : yvi,1, yvi,2 are integers ∈ {0, 1}
I11.

∑

τ ′

i∈τ ′:u′

i,1>1/2 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I12.
∑

τ ′

i∈τ ′:u′

i,2>1/2 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Since zv ≤ 1, it follows that, ∀τi ∈ H1(τ ’, 1): yvi,1 = 1. Analogously, it follows that,
∀τi ∈ H2(τ ’, 1): yvi,2 = 1. Also, because zv ≤ 1, the set H12(τ ’, 1) must be empty. These
observations and rearrangement of the terms in the first two constraints gives us:
The value of the objective function for an optimal solution of the following optimization
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problem is ≤ 1:

Minimize zv subject to the following constraints:

I1.
∑

τ ′

i∈L(τ ’,1) u
′
i,1 × yvi,1 +

∑

τ ′

i∈H1(τ ’,1) u
′
i,1 ≤ zv ×

∣

∣P 1 (π)
∣

∣

I2.
∑

τ ′

i∈L(τ ’,1) u
′
i,2 × yvi,2 +

∑

τ ′

i∈H2(τ ’,1) u
′
i,2 ≤ zv ×

∣

∣P 2 (π)
∣

∣

I3. ∀τ ′i ∈ L(τ ’, 1) : yvi,1 + yvi,2 = 1
I4. ∀τ ′i ∈ L(τ ’, 1): yvi,1 is an integer ∈ {0, 1}
I5. ∀τ ′i ∈ L(τ ’, 1): yvi,2 is an integer ∈ {0, 1}
I6.

∑

τ ′

i∈H1(τ ’,1)∪L(τ ’,1):u′

i,1>1/2 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τ ′

i∈H2(τ ’,1)∪L(τ ’,1):u′

i,2>1/2 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

We can observe that if a task τ ′i ∈ H1(τ ’, 1) then it follows that the corresponding
task τi ∈ H1(τ, 2/3). Analogously for tasks in H2(τ, 2/3), H12(τ, 2/3) and L(τ, 2/3). Also,
doing the following substitution: u′

i,1 = ui,1 ×
3
2 and u′

i,2 = ui,2 ×
3
2 and then rewriting

the objective function and the first two and the last two constraints gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 1:

Minimize ( 23 × zv)× 3
2 subject to the following constraints:

I1.
∑

τi∈L(τ,2/3) ui,1 × yvi,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤ 2
3 × zv ×

∣

∣P 1 (π)
∣

∣

I2.
∑

τi∈L(τ,2/3) ui,2 × yvi,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ 2
3 × zv ×

∣

∣P 2 (π)
∣

∣

I3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
I4. ∀τi ∈ L(τ, 2/3): yvi,1 is an integer ∈ {0, 1}
I5. ∀τi ∈ L(τ, 2/3): yvi,2 is an integer ∈ {0, 1}
I6.

∑

τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Substituting 2
3 × zv by zt and since claiming zt × 3

2 ≤ 1 is equivalent to claiming

zt ≤ 2
3 , we obtain:

The value of the objective function for an optimal solution of the following optimization
problem is ≤ 2/3:

Minimize zt subject to the following constraints:

I1.
∑

τi∈L(τ,2/3) ui,1 × yvi,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤ zt×
∣

∣P 1 (π)
∣

∣

I2.
∑

τi∈L(τ,2/3) ui,2 × yvi,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ zt×
∣

∣P 2 (π)
∣

∣

I3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
I4. ∀τi ∈ L(τ, 2/3): yvi,1 is an integer ∈ {0, 1}
I5. ∀τi ∈ L(τ, 2/3): yvi,2 is an integer ∈ {0, 1}
I6.

∑

τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Substituting zt by zv gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 2/3:
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Minimize zv subject to the following constraints:

I1.
∑

τi∈L(τ,2/3) ui,1 × yvi,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤ zv ×
∣

∣P 1 (π)
∣

∣

I2.
∑

τi∈L(τ,2/3) ui,2 × yvi,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ zv ×
∣

∣P 2 (π)
∣

∣

I3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
I4. ∀τi ∈ L(τ, 2/3): yvi,1 is an integer ∈ {0, 1}
I5. ∀τi ∈ L(τ, 2/3): yvi,2 is an integer ∈ {0, 1}
I6.

∑

τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

I7.
∑

τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Note that the optimization problem above is an MILP. We can relax the constraint
on integrality of yvi,1 and yvi,2. This gives us a non-decreasing feasible region and
hence the value of the objective function at an optimal solution is non-increasing. This
gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 2/3:

Minimize zv subject to the following constraints:

C1.
∑

τi∈L(τ,2/3) ui,1 × yvi,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤ zv ×
∣

∣P 1 (π)
∣

∣

C2.
∑

τi∈L(τ,2/3) ui,2 × yvi,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ zv ×
∣

∣P 2 (π)
∣

∣

C3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
C4. ∀τi ∈ L(τ, 2/3): yvi,1 is a real number in [0, 1]
C5. ∀τi ∈ L(τ, 2/3): yvi,2 is a real number in [0, 1]
C6.

∑

τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

C7.
∑

τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Because of yvi,1 + yvi,2 = 1, it follows that yvi,1 ≤ 1 and yvi,2 ≤ 1. Hence, it is
unnecessary to state that yvi,1 and yvi,2 are real numbers in [0, 1]. Therefore, removing
them does not impact the feasible region and also does not impact the value of the
objective function at an optimal solution. This gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 2/3:

Minimize zv subject to the following constraints:

C1.
∑

τi∈L(τ,2/3) ui,1 × yvi,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤ zv ×
∣

∣P 1 (π)
∣

∣

C2.
∑

τi∈L(τ,2/3) ui,2 × yvi,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ zv ×
∣

∣P 2 (π)
∣

∣

C3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
C4. ∀τi ∈ L(τ, 2/3): yvi,1 is a real number ≥ 0
C5. ∀τi ∈ L(τ, 2/3): yvi,2 is a real number ≥ 0
C6.

∑

τi∈H1(τ,2/3)∪L(τ,2/3):ui,1>1/3 yvi,1 ≤
∣

∣P 1 (π)
∣

∣

C7.
∑

τi∈H2(τ,2/3)∪L(τ,2/3):ui,2>1/3 yvi,2 ≤
∣

∣P 2 (π)
∣

∣

Consider the following call to the TLPCUT function, i.e., TLPCUT

(

L(τ, 2/3), π,

H1(τ, 2/3), H2(τ, 2/3), aot
)

. This gives:
TLPCUT(L(τ, 2/3),π,H1(τ, 2/3),H2(τ, 2/3), aot) =

Minimize zv subject to the following constraints:
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C1.
∑

τi∈L(τ,2/3) yvi,1 × ui,1 +
∑

τi∈H1(τ,2/3) ui,1 ≤
∣

∣P 1 (π)
∣

∣× zv
C2.

∑

τi∈L(τ,2/3) yvi,2 × ui,2 +
∑

τi∈H2(τ,2/3) ui,2 ≤ |P 2 (π) |× zv
C3. ∀τi ∈ L(τ, 2/3) : yvi,1 + yvi,2 = 1
C4.

∑

τi∈aot(H1(τ,2/3)∪L(τ,2/3)) yvi,1 ≤
∣

∣P 1 (π)
∣

∣

C5.
∑

τi∈aot(H2(τ,2/3)∪L(τ,2/3)) yvi,2 ≤
∣

∣P 2 (π)
∣

∣

C6. ∀τi ∈ L(τ, 2/3): yvi,1 is a real number ≥ 0
C7. ∀τi ∈ L(τ, 2/3): yvi,2 is a real number ≥ 0

Note that the earlier optimization problem is same as TLPCUT(L(τ), π, H1(τ), H2(τ),
aot). This gives us:
The value of the objective function for an optimal solution of the following optimization
problem is ≤ 2/3:

TLPCUT(L(τ, 2/3),π,H1(τ, 2/3),H2(τ, 2/3), aot).

This gives us: ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3.

Hence, we have proven that:

sched(OPT, τ ′,π) ⇒

ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

This states the lemma.

COROLLARY 5.2. Consider a task set τ and a two-type platform π. Let τ ′ be defined
as:

∀τ ′i ∈ τ ′ : u′
i,1 = ui,1 × 3/2 ∧ u′

i,2 = ui,2 × 3/2

It then holds that:

sched(OPT, τ ′,π) ⇒

TLPCUT(L(τ, 2/3),π,H1(τ, 2/3),H2(τ, 2/3), aot) is feasible.

PROOF. This follows from Lemma 5.1.

LEMMA 5.3. For each input τ and π to Algorithm 1 it holds that: When line 9 has
finished execution, if the optimization problem is feasible then it holds that there are at
most three tasks in τ that are fractionally type-assigned.

PROOF. This follows from a well-known result about vertex solutions in Linear Pro-
gramming. For a detailed proof, see Appendix A.1.

LEMMA 5.4. Consider FFhf (ts, pl, ps, t) and assume that | aot(ts, t)| ≤ |ps|. If
∑

τi∈ts ui,t ≤ (2/3)× |ps| then it holds that the execution of FFhf returns at = ts

PROOF. We prove the claim by contradiction. Suppose that the lemma was incorrect.
Then there is a set of tasks (ts), a two-type platform (pl), a set of processors (ps) and a
type-id (t) for which it holds that:

∑

τi∈ts

ui,t ≤ (2/3)× |ps| (8)

and

FFhf returns a set ‘at’ that is a strict subset of ‘ts’ (9)
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Let us explore two cases:
Case (i): aot(at, t) ̸= aot(ts, t). Considering the execution of lines 1-9 and our assump-
tion that | aot(ts, t)| ≤ |ps|, we can see that this cannot happen.
Case (ii): aot(at, t) = aot(ts, t). If this case would have happened then there must have
been a task τi ∈ ts \ aot(ts, t) such that when executing line 14, it was the case that:

∀p ∈ ps, it holds that
∑

τj∈at

(xj,p × uj,t) + ui,t > 1 (10)

Because of Case (ii), it holds that when this line executed, τi has ui,t ≤ 1/3. Applying
it on Expression (10) yields:

∀p ∈ ps, it holds that
∑

τj∈at

(xj,p × uj,t) + 1/3 > 1 (11)

Rewriting Expression (11) and adding them yields:
∑

p∈ps

∑

τj∈at

(xj,p × uj,t) > 2/3× |ps|

Further rewriting of the above expression yields:
∑

τj∈at

uj,t

∑

p∈ps

xj,p > 2/3× |ps| (12)

Observe that, for each task, τj ∈ at, it holds that there is exactly one p ∈ ps such that
xj,p = 1. Hence, we have for each task, τj ∈ ts, it holds that:

∑

p∈ps xj,p = 1. Applying

this on Expression (12) yields:
∑

τj∈at

uj,t > 2/3× |ps| (13)

Combining Expression (9) and Expression (13) yields:
∑

τj∈ts

uj,t > 2/3× |ps|

This contradicts Expression (8).
Therefore, regardless of which case is true, it holds that, we obtain a contradiction.

Hence, the statement of the lemma is true.

LEMMA 5.5. There is no π and τ and τ ′ such that

∀τ ′i ∈ τ ′ : u′
i,1 = ui,1 × 3/2 and u′

i,2 = ui,2 × 3/2

and

sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

and

LPC declares FAILURE for inputs τ and π

PROOF. If the lemma would be incorrect then it holds that there is a π and τ and τ ′

such that

∀τ ′

i ∈ τ ′ : u′

i,1 = ui,1 × 3/2 and u′

i,2 = ui,2 × 3/2 (14)

and
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sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

(15)

and

LPC declares FAILURE for inputs τ and π (16)

Because of Expression (16), it must have been that one of the lines where the al-
gorithm declares FAILURE has been executed. We will first make a general remark
about a class of these failures and then explore each failure individually. For the case
that a failure happened at line 27,30,33,36,39,42 (Cases (1)-(6) below), we can reason
as follows:

LPC must have executed line 9; so, it must hold that f=‘feasible’. Hence,
TLPCUT

(

L(τ, 2/3), π′, H1(τ, 2/3), H2(τ, 2/3), aot
)

has a feasible solution. (Recall that
π′ = π \ rp, where rp is a set of three type-1 processors of π.)

Since the optimization problem is feasible, let us discuss the value of its objective
function. Recall that Lemma 5.1 states that: Consider a task set τ and a two-type plat-
form π. Let τ ′ be defined as:

∀τ ′

i ∈ τ ′ : u′

i,1 = ui,1 × 3/2 ∧ u′

i,2 = ui,2 × 3/2

It then holds that:

sched(OPT, τ ′,π) ⇒ ZTLPCUT(L(τ,2/3),π,H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

Applying Lemma 5.1 on a platform with three fewer processors of type-1 gives us:
Consider a task set τ and a two-type platform π. Let τ ′ be defined as:

∀τ ′

i ∈ τ ′ : u′

i,1 = ui,1 × 3/2 ∧ u′

i,2 = ui,2 × 3/2

It then holds that:

sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

⇒

ZTLPCUT(L(τ,2/3),mp(|P1(π)|−3,|P2(π)|,1,π),H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

We know that Expression (15) is true and since the left-hand side predicate of the
above implication is Expression (15), it follows that the right-hand side predicate of
the implication is true. This gives us:

ZTLPCUT(L(τ,2/3),mp(|P1(π)|−3,|P2(π)|,1,π),H1(τ,2/3),H2(τ,2/3),aot) ≤ 2/3

Hence, we have: z ≤ 2/3.
Therefore, for the case of failure on any of the lines 27, 30, 33, 36, 39 and 42, we have:

If the algorithm declares failure on line 27, 30, 33, 36, 39, 42

then it holds that: z ≤ 2/3 (17)

Let us now explore the individual cases:
Case (1): The algorithm declares failure on line 27. If this case would have hap-
pened then τA2 is a strict subset of τ2. Let us explore two cases:
Case (1a):

∑

τi∈τ2 ui,2 > (2/3) ×
∣

∣P 2 (π)
∣

∣. Since we experienced Case (1), it holds that
we have executed line 13 and evaluated its condition to true. Hence, we have:

z ≤ 2/3 (18)

Inspecting TLPCUT and knowing that z ≤ 2/3 gives us:
∑

τi∈L(τ,2/3)∪H2(τ,2/3)

yi,2 × ui,2 ≤ (2/3)×
∣

∣P 2 (π)
∣

∣ (19)
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Let us partition L(τ, 2/3) into L1 and L2 and applying it on Expression (19) gives us:
∑

τi∈L1∪L2∪H2(τ,2/3)

yi,2 × ui,2 ≤ (2/3)×
∣

∣P 2 (π)
∣

∣ (20)

Recall that the definition of L1 and L2 it holds that:

∀τi ∈ L1 : yi,1 = 1 (21)

∀τi ∈ L2 : yi,2 = 1 (22)

Recall in TLPCUT we have a constraint yi,1 + yi,2 = 1 and clearly our values of Y
satisfies that constraint. Applying this on Expression (21) gives us:

∀τi ∈ L1 : yi,2 = 0 (23)

Using Expression (23) on Expression (20) gives us:
∑

τi∈L2∪H2(τ,2/3)

yi,2 × ui,2 ≤ (2/3)×
∣

∣P 2 (π)
∣

∣ (24)

Because of Expression (22) and because of line 7 in our algorithm we obtain:
∑

τi∈L2∪H2(τ,2/3)

ui,2 ≤ (2/3)×
∣

∣P 2 (π)
∣

∣ (25)

Since τ2 = H2(τ, 2/3)∪L2, we get:
∑

τi∈τ2

ui,2 ≤ (2/3)×
∣

∣P 2 (π)
∣

∣ (26)

This contradicts the assumption of Case (1a).
Case (1b):

∑

τi∈τ2 ui,2 ≤ (2/3) ×
∣

∣P 2 (π)
∣

∣. From Lemma 5.4, we obtain that the bin-
packing scheme in FFhf algorithm would succeed to assign all the tasks and then we
would have τA2 = τ2. This contradicts the Case (1).

Case (2): The algorithm declares failure on line 30. If this case would have
happened then τA1 is a strict subset of τ1. The reasoning for this case is similar to the
above case (replace

∣

∣P 2 (π)
∣

∣ with
∣

∣P 1 (π)
∣

∣− 3).
Case (3): The algorithm declares failure on line 33. If this case would have

happened then | aot(τ2, 2)| >
∣

∣P 2 (π)
∣

∣. But then TLPCUT would be infeasible. And this
contradicts Expression (17).

Case (4): The algorithm declares failure on line 36. If this case would have
happened then | aot(τ1, 1)| >

∣

∣P 1 (π)
∣

∣ \ rp. But then TLPCUT would be infeasible. And
this contradicts Expression (17).

Case (5): The algorithm declares failure on line 39. If this case would have
happened then

τA is a strict subset of τF (27)

We know from Lemma 5.3 that in TLPCUT there are at most three fractionally type-
assigned tasks from L(τ, 2/3). And we know that the set rp has three processors of
type-1. Hence, it is possible to assign each task in τF to a unique processor in rp. And
indeed the execution of line 15, would therefore succeed and hence we would have:

τA = τF (28)

This contradicts Expression (27).
Case (6): The algorithm declares failure on line 42. From this case we obtain

z > 2/3. From Expression (17), we have, z ≤ 2/3. This contradicts the case.
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Case (7): The algorithm declares failure on line 45. If this case would have
happened then f ̸= ‘feasible’ and hence the optimization problem

TLPCUT(L(τ, 2/3),π
′,H1(τ, 2/3),H2(τ, 2/3), aot) is infeasible (29)

Recall from Expression (15) that the following predicate holds true:

sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

Applying this on Lemma 5.2 gives us:

sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

⇒

TLPCUT

(

L(τ, 2/3),mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
)

,

H1(τ, 2/3),H2(τ, 2/3), aot
)

is feasible.

This gives us that:

TLPCUT

(

L(τ, 2/3),mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
)

,

H1(τ, 2/3),H2(τ, 2/3), aot
)

is feasible.

Note that mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
)

and π′ have the same number of processors
of each type and these processors are from π. Applying this on the above expression
gives us:

TLPCUT

(

L(τ, 2/3),π′,H1(τ, 2/3),H2(τ, 2/3), aot
)

is feasible.

This contradicts Expression (29).
Case (8): The algorithm declares failure on line 48. If this case would have

happened then there was a task in H12 and this would contradict Expression (15).
We see that all cases where LPC declares FAILURE lead to contradiction. Hence the

lemma holds.

LEMMA 5.6. There is no π and τ such that

sched(OPT, τ,π)

and

LPC declares FAILURE with inputs

τ and mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

PROOF. This follows from the previous lemma (obtained after a series of algebraic
manipulations). For a detailed proof, see Appendix A.2.

THEOREM 5.7.

sched (OPT, τ,π) ⇒

sched
(

LPC, τ,mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
))

PROOF. Follows from Lemma 5.6 and the fact that when the algorithm declares
success, each processor is utilized to at most 100% and each task is integrally processor-
assigned.

Note: The additional three processors in the platform that the algorithm, LPC, uses
can either be of type-1 or type-2 or a combination of these two types. We have cho-
sen all the additional processors to be of type-1, for ease of explanation. The result
continues to hold for any combination of three additional processors as long as this in-
formation is input to the algorithm (so that it can form the remaining set of processors,
rp, accordingly — Step 2 in Algorithm 1).
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6. CONCLUSIONS AND DISCUSSION
The heterogeneous multiprocessor model is more generic than identical or uniform
multiprocessor model, in terms of the systems that it can accommodate. Hence, it is
interesting to study heterogeneous multiprocessor systems since a solution designed
for such systems can also be applied to identical and uniform multiprocessor systems.
In addition, two-type heterogeneous multiprocessor, which is a restricted version of
heterogeneous model, is increasingly becoming relevant [AMD Inc. 2012; Apple Inc.
2012; Intel Corp. 2013b; 2013c; Nvidia Inc. 2013; Qualcomm Inc 2013; Samsung Inc.
2013; Texas Instruments 2012; Alben 2013; Intel Corp. 2013a]. Scheduling real-time
tasks on two-type heterogeneous multiprocessors is a complex problem. In this work,
we address this problem via a task assignment algorithm with a proven approximation
ratio.

This work considered the problem of partitioning a given collection of implicit-
deadline sporadic tasks upon a two-type heterogeneous multiprocessor platform. For
this problem, a new algorithm, LPC, is proposed which provides the following guaran-
tee: if a task set has a feasible partitioning on a two-type platform then, LPC succeeds
in finding such a feasible partitioning as well but on a platform in which each proces-
sor is 1.5 times faster and has 3 additional processors. For systems with large number
of processors, LPC has a better approximation ratio than the prior state-of-the-art al-
gorithms. Also, to the best of our knowledge, this is the first work that utilizes cutting
planes to attain an algorithm with provably good performance for assigning real-time
tasks on heterogeneous multiprocessors.
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A. SUPPORTING LEMMAS AND PROOFS
A.1. Proof of Lemma 5.3
Here, we restate Lemma 5.3 from Section 5 (see page 15) and prove the same.

LEMMA A.1. For each input τ and π to Algorithm 1 it holds that: when line 9 has
finished execution, if the optimization problem is feasible then it holds that there are at
most three tasks in τ that are fractionally type-assigned.

PROOF. Suppose that the claim is false. Then it holds that there is a τ and π such
that if they are input to the function solve(TLPCUT) then solve(TLPCUT) outputs a
solution in which four or more tasks are fractionally type-assigned. Then it must have
been that in the solution output by solve(TLPCUT), there were four or more tasks τi
for which it holds that 0 < yvi,1 < 1 and 0 < yvi,2 < 1. Considering TLPCUT, we can
observe that it has 2|L | + 1 variables and 2L non-negativity constraints and |L | + 4
other constraints. Hence, in the vertex solution, there are at most |L | + 4 non-zero
variables [Baruah 2004b]. Let us explore two cases:
Case 1: zv = 0. If this is the case then the vertex optimal solution produced by
solve(TLPCUT) has all type-integral assignments and hence this contradicts the claim
that there were four of more fractionally type-assigned tasks.
Case 2: zv > 0. Since zv > 0, it follows that there are at most |L | + 3 non-zero yvi,t
values. Let Q denote the number of tasks that are fractionally type-assigned. From
our assumption that the lemma is false, it follows that Q ≥ 4. The number of non-zero
values of Y is exactly Q × 2 + (|L | − Q) because each fractionally type-assigned task
provides us with two non-zero variables in Y and each integrally type-assigned task
provides us with one non-zero variable in Y . Hence, we have:

Q ≥ 4 (30)

and

Q× 2 + (L−Q) ≤ L+3 (31)

Rewriting Expression (31) gives us:

Q ≤ 3 (32)

Expression (32) contradicts Expression (30). Thus it is impossible for the claim of
the lemma to be false and hence the lemma holds.

A.2. Proof of Lemma 5.6
Here, we restate Lemma 5.6 from Section 5 (see page 19) and prove the same.

LEMMA A.2. There is no π and τ such that

sched(OPT, τ,π)

and

LPC declares FAILURE with inputs τ and

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

PROOF. Recall that Lemma 5.5 states that:
“There is no π and τ and τ ′ such that

∀τ ′

i ∈ τ ′ : u′

i,1 = ui,1 × 3/2 and u′

i,2 = ui,2 × 3/2

and
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sched
(

OPT, τ ′,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

and

the algorithm LPC declares FAILURE for inputs τ and π”

Rewriting this so that it makes a statement about the same task set rather than two
different (but related) task sets gives us that:
“There is no π and τ such that

sched
(

OPT, τ,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 2/3,π
))

and

the algorithm LPC declares FAILURE for inputs τ and π”

Scaling the processor speeds of the two platforms that are compared gives us that:
“There is no π and τ such that

sched
(

OPT, τ,mp
(
∣

∣P 1 (π)
∣

∣− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

and

the algorithm LPC declares FAILURE for inputs τ and

mp
(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

”

Consider the statements above with π being replaced by
mp

(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π
)

. This gives us:
“There is no π and τ such that

sched
(

OPT, τ,mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|− 3,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,

1,mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))
)

and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|, 3/2,

mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))”

Note that the last parameter indicates the platform from which we get processors to
form a new platform. Hence the actual number of processors in the platform of the last
parameter does not matter. This gives us:
“There is no π and τ such that

sched
(

OPT, τ,mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|− 3,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,

1,mp(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 1,π))
)

and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|, 3/2,

mp(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 1,π))”
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Observe that mp
(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 1,π
)

= π. Applying that on the last parameter
yields:
“There is no π and τ such that

sched
(

OPT, τ,mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|− 3,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|, 1,π)
)

and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,

|P 2(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|, 3/2,π)”

Observe that
∣

∣P 2
(

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))
∣

∣=
∣

∣P 2 (π)
∣

∣. Applying that yields:
“There is no π and τ such that

sched
(

OPT, τ,mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|− 3,
∣

∣P 2 (π)
∣

∣ , 1,π)
)

and

the algorithm LPC declares FAILURE for inputs τ and

mp(|P 1(mp(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π))|,
∣

∣P 2 (π)
∣

∣ , 3/2,π)”

Analogous observation holds for type-1 processors, i.e.,
∣

∣P 1
(

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))
∣

∣ =
∣

∣P 1 (π)
∣

∣+ 3. Applying this yields:
“There is no π and τ such that

sched
(

OPT, τ,mp
(
∣

∣P 1 (π)
∣

∣+ 3− 3,
∣

∣P 2 (π)
∣

∣ , 1,π
))

and

the algorithm LPC declares FAILURE for inputs τ and

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

”

Clearly,
∣

∣P 1 (π)
∣

∣+ 3− 3 =
∣

∣P 1 (π)
∣

∣. Using it yields:
“There is no π and τ such that

sched
(

OPT, τ,mp
(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 1,π
))

and

the algorithm LPC declares FAILURE for inputs τ and

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

”

Observe that mp
(
∣

∣P 1 (π)
∣

∣ ,
∣

∣P 2 (π)
∣

∣ , 1,π
)

= π. Using it yields:
“There is no π and τ such that

sched (OPT, τ,π)

and

the algorithm LPC declares FAILURE for inputs τ and

mp
(
∣

∣P 1 (π)
∣

∣+ 3,
∣

∣P 2 (π)
∣

∣ , 3/2,π
)

”

This states the lemma.
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