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Abstract—Consider the problem of scheduling a set of sporadic
tasks on a multiprocessor system to meet deadlines using a task-
splitting scheduling algorithm. Task-splitting (also called semi-
partitioning) scheduling algorithms assign most tasks to just one
processor but a few tasks are assigned to two or more processors,
and they are dispatched in a way that ensures that a task never
executes on two or more processors simultaneously. A certain
type of task-splitting algorithms, called slot-based task-splitting,
is of particular interest because of its ability to schedule tasks
at high processor utilizations. We present a new schedulability
analysis for slot-based task-splitting scheduling algorithms that
takes the overhead into account and also a new task assignment
algorithm.

Keywords-Multiprocessor scheduling, task-splitting, schedula-
bility analysis, real-time system overheads

I. INTRODUCTION

Some years ago, technology constraints forced processor
manufacturers to switch from uniprocessor to multiprocessor
architectures. Nowadays, multiprocessors implemented on a
single chip (called multicores) are the preferred platform for
many real-time applications. However, real-time scheduling
theory for uniprocessors is considered mature but real-time
scheduling theory for multiprocessors is an emerging research
field.

Traditionally, real-time scheduling algorithms for multipro-
cessors were categorized as either global or partitioned. Global

scheduling algorithms store tasks in one global queue, shared
by all processors. Tasks can migrate from one processor to
another; that is, a task can be preempted during its execution
and resume its execution on another processor. At any moment,
the m highest-priority tasks are selected for execution on the
m processors. Some algorithms of this kind achieve an utiliza-
tion bound of 100% but generate too many preemptions. Parti-

tioned scheduling algorithms partition the task set and assign
all tasks in a partition to the same processor. Hence, tasks
cannot migrate between processors. Such algorithms involve
few preemptions but their utilization bound is at most 50%.

In recent years, the research community created another cat-
egory of real-time scheduling algorithms called task-splitting

or semi-partitioning [1], [2], [3], [4], [5], [6], [7], [8], [9]. The
key idea of these algorithms is that they assign most tasks
to just one processor but some tasks (called split tasks) are
assigned to two or more processors. Uniprocessor dispatchers
are used on each processor but they are modified to ensure

that a split task never executes on two or more processors
simultaneously.

Of particular interest is the class of task-splitting algorithms
which subdivide time into timeslots. Each timeslot in turn
consists of processor reserves (i.e. time windows) carefully
positioned at a respective time offset from the beginning of
a timeslot. A split task is assigned to two or more processor
reserves located on different processors, and the placement of
these reserves in time is statically assigned (relative to the
beginning of a timeslot) so that no two reserves serving the
same split task overlap in time. At present, this scheduling
theory depends on a set of assumptions that have no bearing
on a real operating system. So, taking advantage of such
a scheduling algorithm requires modeling these real-world
effects into the schedulability analysis. Therefore, in this paper,
we present new schedulability analysis for slot-based task
splitting, accounting for overheads, and a new task assignment
algorithm.

The rest of this paper is structured as follows. Section II
presents a particular type of task-splitting scheduling algorithm
called slot-based; to better illustrate this kind of scheduling
algorithm, an example is provided (and used throughout the
paper). In Section III the most important overheads of the
slot-based task-splitting scheduling algorithm are described,
and a new schedulability test is defined, taking into account
those overheads. The new schedulability test is applied to the
example and the results are presented in Section IV. Section V
proposes a new task assignment algorithm which uses the new
schedulability test. Finally, Section VI concludes the paper.

II. SLOT-BASED TASK-SPLITTING

Before describing in detail the slot-based scheduling algo-
rithm [2] let us present the system model and assumptions as
well as some important definitions. We consider real-time sys-
tems composed by m identical processors and n independent
tasks (i.e. sharing no resources except for processors). Tasks
of the task set τ are uniquely indexed in the range 1..n and
processors in the range 1..m. A task τi is characterized by
worst-case execution time Ci, minimum inter-arrival time Ti

and relative deadline Di. We assume 0 ≤ Ci ≤ Di. If Di is
not stated, then ∀i : Di = Ti. The utilization of task τi is
defined as ui = Ci

Ti
and the system utilization Us is defined

as Us = 1
m ·

∑n
i=1 ui.



Each task τi generates a potentially infinite sequence of
jobs. The jth job of τi (denoted τi,j) becomes ready to execute
at arrival time ai,j and completes execution at finishing time
fi,j . The absolute deadline of job τi,j is computed as di,j =
ai,j + Di; a deadline is missed if fi,j>di,j . The arrival times
of any two consecutive jobs differ by at least Ti time units.

For convenience we define TMIN = min(T1, T2, ..., Tn).
A designer-set parameter δ controls the frequency of migration
of tasks assigned to two processors. Based on this parameter,
the duration of the timeslot is computed as S = TMIN

δ .
Also, a parameter used to size the reserves is computed as
α = 1

2 −
√

δ · (δ + 1) + δ and parameter SEP (which guides
task assignments and is equal to the utilization bound of the
algorithm) is computed as SEP = 4 · (

√

δ · (δ + 1) − δ) − 1.
To better illustrate the slot-based task-splitting scheduling

algorithm [2], let us consider an example. Consider a system
with 4 processors (m=4) and 7 tasks (n=7) as specified by
Table I. Let δ=4, which implies that SEP=0.8885. As with
partitioned scheduling, this scheduling scheme can be divided
into two algorithms: an offline algorithm for task assignment
and an online dispatching algorithm.

A. Task Assignment Algorithm

Tasks whose utilization exceeds SEP (henceforth called
heavy tasks) are each assigned to a dedicated processor. Then,
the remaining tasks are assigned to the remaining processors
in a manner similar to next-fit bin packing [10]. Assignment
is done in such a manner that the utilization of processors
is exactly SEP. Task splitting is performed whenever a task
causes the utilization of the processor to exceed SEP. In this
case, this task is split between the current processor p and
by the next one (p + 1). Let us apply the task assignment

Task C T u

τ1 4.5000 5.0000 0.9000
τ2 3.5000 6.0000 0.5833
τ3 3.5000 6.5000 0.5385
τ4 4.0000 8.0000 0.5000
τ5 3.0000 7.0000 0.4286
τ6 3.0000 8.0000 0.3750
τ7 1.5000 8.5000 0.1765

TABLE I
TASK SET (TIME UNIT ms)

algorithm to the system previously described. Since τ1 is a
heavy task it is assigned to a dedicated processor (P1). τ2 is
assigned to processor (P2), but assigning task τ3 to processor
P2 would cause the utilization of processor P2 to exceed SEP
(0.5833+0.5385 > 0.8885). Therefore, task τ3 is split between
processor P2 and processor P3. A portion (0.3052) of task τ3 is
assigned to processor P2, just enough to make the utilization of
processor P2 equal to SEP (0.5833 + 0.3052 = 0.8885). This
part is referred as uhi[P2] and the remaining portion (0.2332)
of task τ3 is assigned to processor P3, which is referred to
as ulo[P3]. Fig. 1 shows the final task set assignment to the
processors. We can observe: (i) processor P1 is a dedicated

processor executing only task τ1; (ii) tasks τ2, τ4, τ6 and
τ7 (henceforth called non-split tasks) execute on only one
processor; and (iii) tasks τ3 and τ5 are split tasks.

The P2 and P3 processors that have been assigned split tasks
have time windows (called reserves) where these split tasks
have priority over other tasks assigned to these processors. The
length of the reserves are chosen such that no temporal overlap
occurs (either (i) between reserves of the same split task on
different processors or (ii) between reserves of different split
tasks on the same processor), the split tasks can be scheduled,
and also all non-split tasks can meet deadlines.

0% SEP 100%

P1

P2

P3

P4

τ1

τ2 τ3

τ3 τ4 τ5

τ5 τ6 and τ7

Processor capacity

Fig. 1. Tasks assignment to processors.

Time is divided into timeslots of length S and non-dedicated

processors (i.e. executing more than one task) usually execute
split and non-split tasks. For such a processor p, the timeslot
might be divided into three parts. The first x time units are
reserved for executing the first split task on that processor; the
last y time units are reserved for executing the second split
task on that processor. The execution of the first (respectively,
second) split task on processor p can be perceived as the
execution of a task with utilization ulo[p] (respectively, uhi[p]).
The remaining part of the timeslot (henceforth denoted as N )
is used to execute non-split tasks assigned to processor p and
its length is computed as N [p] = S − x[p] − y[p].

Reserves x[p + 1] and y[p] for each split task τi must be

sized such that x[p+1]+y[p]
S = Ci

Ti
. Depending on the phasing of

the arrival and deadline of τi relative to timeslot boundaries,
the fraction of time available for τi between its arrival and
deadline may differ from x[p+1]+y[p]

S , since a split task only
executes during the reserves. Consequently, it is necessary to
inflate reserves by α in order to always meet deadlines: x[p] =
S · (α+ulo[p]) and y[p] = S · (α+uhi[p]). Table II shows the
timeslot composition of each processor. The timeslot length is
S = TMIN

δ = 5.0000
4 = 1.2500.

CPU x N y

P1 0.0000 1.2500 0.0000
P2 0.0000 0.8337 0.4163
P3 0.3264 0.6947 0.2289
P4 0.3764 0.8736 0.0000

TABLE II
TIMESLOT COMPOSITION OF EACH PROCESSOR (ms)



B. Dispatching Algorithm

On a dedicated processor, dispatching is trivial: whenever
the (only) task is ready, it executes. On a non-dedicated pro-
cessor, the dispatching algorithm works over the timeslot of
each processor and whenever the dispatcher is running, it
checks to find the time elapsed in the current timeslot:

• If the current time falls within a reserve (x[p] or y[p]) and
if the assigned split task is ready to be executed, then the
split task is scheduled to run on the processor. Otherwise,
the ready non-split task with the earliest deadline is
scheduled to execute on the processor.

• If the current time does not fall within a reserve, the ready
non-split task with the earliest deadline is scheduled to
run on the processor. Otherwise, if there is no ready non-
split task ready to be executed then no task is selected,
i.e., processor remains idle.

Fig. 2 shows an execution timeline of the task set example.
It assumes that all tasks arrive at time t = 0. Task execution
is represented by a rectangle labeled with the task’s name. A
black circle indicates the end of execution of a task. As it can
be seen, the split tasks execute only within reserves (marked
x and y). For instance, task τ3 on processor P2 executes only
inside its reserves. Outside its reserves, it does not use the
processor, even if the processor is idle. In contrast, the non-
split tasks execute mainly outside the reserves (x and y) but
potentially also within the reserves, in particular when there
is no split task ready to be executed. There are two clear
situations in Fig. 2 that illustrate this. First (marked a), task
τ7 executes at the beginning of the timeslot, which begins at
6.25, because split task τ5 has finished its execution on the
previous timeslot. Second (marked b), split task τ5 finishes its
execution a bit earlier than the end of its reserve (that finishes
at 6.25) and hence there is some available time on the reserve,
which is used by non-split task τ4.

III. DISCREPANCY BETWEEN THEORY AND

PRACTICE:IMPLEMENTATION ON LINUX KERNEL 2.6.34

Based on the design principles defined in [11], we have
implemented the algorithm [2] in the Linux kernel 2.6.34 (the
reader is referred to [12]).

In this section we introduce the real-world effects on the
schedulability theory. Let us denote τ [p] as a set of non-split
tasks (τns[p]) and split tasks (τs[p]) assigned to processor p.

We will deal with heavy tasks later. The Demand Bound
Function (dbf ) [13] gives an upper bound on the required
amount of execution time by a task set τ [p] on processor p over
a time interval of length L. In the context of pure partitioned
scheduling (and arbitrary deadlines), it is computed as follows:

dbfτ [p](L, p) =
∑

i∈τ [p]

max

(

0,

⌊

L − Di

Ti

⌋

+ 1

)

· Ci (1)

In the context of implicit-deadline task sets (meaning that
Ti = Di for every task τi) the previous equation becomes:

dbfτ [p](L, p) =
∑

i∈τ [p]

⌊

L

Ti

⌋

· Ci (2)

Similarly (in the context of partitioned scheduling), the
Supply Bound Function (sbf ) gives a lower bound on the
amount of execution time supplied to the task set assigned
to processor p over a time interval of length L without any
constraint and is computed as follows:

sbfτ [p](L, p) = L (3)

Intuitively, a partitioned real-time system is schedulable if
dbf(L, p) ≤ sbf(L, p), on every processor p and for every
interval length L > 0.

Next, we will describe how the demand- and supply-bound
are adapted for the task splitting scheme in consideration [2],
before getting into incorporating the various overheads that
occur in practice.

A. Schedulability test without overheads

Let us consider the schedulabity test of the slot-based
scheduling algorithm without any constraints. The time re-
quired to execute τns[p] is given by:

dbfτns[p](L, p) =
∑

i∈τns[p]

⌊

L

Ti

⌋

· Ci (4)

The time supplied for the execution of non-split tasks on
processor p over a time interval of length L is lower-bounded
by:

sbfτns[p](L, p) =

⌊

L

S

⌋

· N [p]+

max

(

0,

(

L −

⌊

L

S

⌋

· S

)

− (x[p] + y[p])

)

(5)

Analogously, the processor demand, over a time interval of
length L, by a task τi split between processors p and p + 1,
is computed as follows:

dbfτi
(L, p) = max

(

0,

⌊

L − (y[p] + x[p + 1])

S

⌋

·

(y[p] + x[p + 1])

)

(6)

Intuitively, this corresponds to modelling the two reserves
of the split task as a single task with C = D = y[p] + x[p +
1] (i.e. arriving with zero laxity) and a period of S, which
migrates between processors p and p + 1 during execution.
For a task τi split between processors p and p + 1 a lower
bound for the supply of processor time (from both processors,
in an alternating manner) is given by:



0 t

S S S S S S

P1

P2

P3

P4

1.25 2.50 3.75 5.00 6.25 7.50

τ1

τ2 τ2 τ2 τ2 τ2

y y y y y

τ3 τ3 τ3 τ3 τ3

x x x x x

τ3 τ3 τ3 τ3 τ3τ4 τ4 τ4 τ4 τ4 τ4

y y y y y

τ5 τ5 τ5 τ5 τ5

x x x x x

τ5 τ5 τ5 τ5 τ5τ6 τ6 τ6 τ6 τ7 τ7

a

b

Fig. 2. Execution timeline

sbfτi
(L) =

⌊

L

S

⌋

· (y[p] + x[p + 1])+

max

(

0,

(

L −

⌊

L

S

⌋

· S

)

−

(S − (y[p] + x[p + 1]))

)

(7)

B. Release Jitter (RelJ)

Before describing the release jitter let us explain the release
procedure in our implementation. This procedure is supported
by a red-black binary tree and a high resolution timer per
processor. All non-ready jobs are stored in the release binary
tree sorted by the arrival time and the timer is set up to expire
with the earliest arrival time. This way, the release of each job
is done by the processor that the job is assigned to. Note that
there is always a drift between the time instant when the timer
should expire and the time instant at which the timer fires.

relJi,j (release Jitter of job τi,j), denotes the difference
in time from when the job τi,j should arrive (the arrival time
ai,j) until it is enqueued into the ready queue, the release time
(ri,j). Then the timer callback enqueues job into the ready
queue, and this is the release time (ri,j) of job τi,j . Fig. 3(a)
ilustrates the relJi,j and its relation with other parameters.

We define RelJ as an upper bound on the value of any
relJi,j ∀i, j. In that case, RelJ effectively “adds” to the
execution of a task τi. Therefore we amend the derivation
of the dbf to:

dbfτns[p](L, p) =
∑

i∈τns[p]

⌊

L

Ti

⌋

· (Ci + RelJ) (8)

dbfτi
(L, p) = max

(

0,

⌊

L − (y[p] + x[p + 1] + RelJ)

S

⌋

·

(y[p] + x[p + 1] + RelJ)

)

(9)

C. Reserve Jitter (ResJ)

Another type of jitter, specific to slot-based task-splitting
scheduling algorithms, concerns the (implementation-related)

deviations from strict periodicity in the starting/ending of the
reserves. Fig. 3(b) shows resJi,j , which represents the reserve

jitter of job τi,j and denotes the discrepancy between the time
when the job τi,j should (re)start executing (at the beginning of
the reserve A, where A could be x[p], N [p] or y[p]) and when
it actually (re)starts. It should be mentioned that the timers
are set up to fire when the reserve should begin but there is
always a drift between this time and the time instant at which
the timer fires. Then the timer callback executes and, in most
cases, sets the currently executing task to be preempted, which
triggers the invocation of the dispatcher. Then the dispatcher
selects a new task for execution, according to the dispatching
algorithm. Note that, when the timer callback executes, as
mentioned, it sets the current task to be preempted and also
sets up the beginning of the next reserve. In order to avoid
cumulative drift, this is done considering the theoretical (ideal)
behaviour, therefore the expiration time for the timer is using
as a point of reference the time that the timer callback should
have ideally executed (i.e. not considering any delays). In
practice, this means that the execution time of each reserve
is reduced by resJi,j , consequently the amount of time that
could be supplied for execution decreases.

Let us define ResJ as an upper bound on the value of any
resJi,j ∀i, j. Then, for the set of non-split tasks on a processor
p, the sbf is given by:

sbfτns[p](L, p) =

⌊

L

S

⌋

· (N [p] − ResJ)+

max

(

0,

(

L −

⌊

L

S

⌋

· S

)

− (x[p] + y[p] + ResJ)

)

(10)

Similarly, for a task τi split between processors p and p+1:

sbfτi
(L, p) =

⌊

L

S

⌋

· (y[p] + x[p + 1] − ResJ)+

max

(

0,

(

L −

⌊

L

S

⌋

· S

)

−

(S − (y[p] + x[p + 1] + ResJ))

)

(11)
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(c) Context switch jitter.

Fig. 3. Jitter sources.

D. Context Switch (CtswJ)

Context switching is the procedure that swaps the currently
executing job with another job, of higher priority. Since we
have already accounted (via the term ResJ) for the context-
switching overheads at the reserve boundary, here we only
need (additionally) consider the overheads of the context
switches generated by the EDF scheduling decisions. As a
rough (pessimistic) estimate, the number of context switches
over a time interval of length L is upper bounded by twice the
number of job releases during that interval. This is because,
under EDF, context switches occur either when some job is
released or when it completes – but not every job release will
cause a context switch. Fig. 3(c) illustrates the context switch

jitter (ctswJi,j) of job τi,j .
According to the dispatching algorithm, non-split tasks may

be preempted, because they are scheduled according to EDF
and usually more than one task shares the reserve N [p].
However, a split task executes at the highest priority within
its reserves, therefore it cannot be preempted by other (i.e.
non-split) tasks. As mentioned in Section II, non-split tasks
could still execute within x[p] and y[p] reserves whenever the
respective split tasks are not ready to execute. Any preemp-
tions suffered by non-split tasks during their execution inside
x[p] and y[p] reserves need not be accounted for because they
occur within time intervals that have been excluded from the
calculation of the respective sbf .

Let us define CtswJ as an upper bound on the value of
any ctswJi,j ∀i, j. Then, for τns[p], the set of non-split tasks
on processor p, the dbf is computed as:

dbfτns[p](L, p) =
∑

i∈τns[p]

⌊

L

Ti

⌋

·(Ci+RelJ+2·CtswJ) (12)

Similarly, for a task τi split between processors p and p+1:

dbfτi
(L, p) = max

(

0,

⌊

L − (y[p] + x[p + 1] + RelJ + 2 · CtswJ)

S

⌋

·

(y[p] + x[p + 1] + RelJ + 2 · CtswJ)

)

(13)

E. Interrupts

Let us assume that there is a limited number of interrupts
(denoted by nint) on the system and they are the events with
the highest priority; that is, whenever an interrupt is fired, the
processor stops what is doing (for instance, stops the execution
of a job) to execute the Interrupt Service Routine (ISR) of that
interrupt. This way, the interrupts increase the time required
to execute a job. Hence, we will add the time consumed by
interrupts to the dbf equation. Let us define T int

i as the inter-
arrival time of interrupt i and Cint

i as the worst-case execution
time to execute the respective ISR. Let Λint[p] be an upper
bound on the amount of time spent executing the ISRs on
processor p over a time interval of length L. Then:

Λint[p](L, p) =
∑

i∈nint[p]

⌈

L

T int
i

⌉

· Cint
i (14)

Therefore, we amend the derivation of the dbf for the set
of non-split tasks on processor p (τns[p]) to:

dbfτns[p](L, p) =
∑

i∈τns[p]

⌊

L

S

⌋

· (Ci + RelJ + 2 · CtswJ)+

Λint[p] (15)

Similarly, for a task τi split between processors p and p+1 :

dbfτi
(L, p) = Λint[p] + max

(

0,

⌊

L − (y[p] + x[p + 1] + RelJ + 2 · CtswJ)

Ti

⌋

·

(y[p] + x[p + 1] + RelJ + 2 · CtswJ)

)

(16)

F. Heavy tasks

Heavy tasks (tasks whose utilisation ui exceeds SEP) exe-
cute on a dedicated processor, facing no contention. Conse-
quently, there is no need to divide time into timeslots. Hence,
the sbf does not need to incorporate the ResJ . Therefore the
sbf is given by Equation 3. Similarly, since a heavy task is
the only task on its processor, it is never preempted by any
other task. Hence, the dbf for a heavy task τi is computed as:



dbfτi
(L, p) =

⌊

L

S

⌋

· (Ci + RelJ + CtswJ) + Λint[p] (17)

IV. EVALUATION

We have conducted a set of experiments (with random
task sets) that took approximately eight hours in a quad-
core machine operating at 2.67 GHz. Adopting the real-time
theory principles; that is, considering the worst case values
(maximum execution time and minimum inter-arrival time
values) we have collected the values of RelJ , ResJ and
CtswJ metrics (see Table III). We also collected the values
(worst case execution and the inter-arrival time) of the Tick
interrupt and the interrupt 20 (irq20). The latter is related to
the hard disk. As it is known, Tick is a periodic timer interrupt
used by the system to do a set of operations. One of them is
the possibility to invoke the scheduler. The periodicity of that
timer is defined by a Linux Kernel macro HZ. In our system,
we have set HZ equal to 1000, which means a periodicity of
approximately 1 ms. We have disabled the tickless and also the
CPU frequency scaling Linux kernel features, nevertheless, the
minimal inter-arrival time collected was 0.1690 ms. However,
the average is approximatelly 1 ms. To evaluate the impact of
interrupts we have set up a controlled experiment by reducing
the number of interrupts. We ran the experiments using the
runlevel 1 with network connection and the filesystem journal
mechanism disabled. Nevertheless, the worst case execution
time of the irq20 was 0.0652 ms and the minimal inter-arrival
time of that interrupt was 0.1271 ms, which leads to a required
utilization of 0.5125 (0.0652

0.1271 ). Since, this kind of interrupts
can be configured to be managed by one specific processor,
we suggest assigning all interrupts to a dedicated processor
which would not execute any application task. However, this
is not possible for Tick. In fact, each processor has its own
Tick, and therefore we must incorporate its overhead into the
schedulability tests.

Metric RelJ RelJ CtswJ Tick irq 20

C 0.0153 0.0110 0.0059 0.0117 0.0652
T - - - 0.1690 0.1271

TABLE III
OVERHEAD TIME VALUES (ms)

Let us apply the schedulability test to the task set presented
in Section II. Let us assume that the system is composed by
one more processor (five processors), which is responsible for
managing all interrupts. Fig. 4 plots the schedulability test of
the τns[P2] in a time interval L (length 50 ms) and as it can
be seen there are two points (time 42 and 48) where the dbf is
higher than sbf , and therefore the system is not schedulable.

According to the original scheduling algorithm TMIN
is computed as the minimal interarrival time of all tasks
(TMIN = min(T1, T2, · · · , Tn)) and the timeslot length as
S = TMIN

δ . For executing heavy tasks, there is no need to
divide the time into timeslots. Then, the Ti of the heavy
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Fig. 4. Schedulability test fail.

tasks need not be considered, when computing TMIN. Con-
sequently, S could be potentially larger, if the Ti of these
tasks were the smallest. Note that, a larger timeslot reduces
the impact of the overhead ResJ on the scheduling algorithm.
For instance, in the task set under study if we exclude T1

thus,TMIN was equal to T2
δ = 6

4 = 1.5000 and as it can be
seen from Fig. 5 the schedulabity test for τns[P2] in a time
interval L (length 50 ms) succeeds.
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Fig. 5. Schedulability test succeed.

V. NEW TASK ASSIGNMENT ALGORITHM

Taking these overheads into account we defined a new task
assigning algorithm (see Fig. 6). First, we classify tasks as
heavy (if ui exceeds SEP) or light (otherwise). Next, we order
tasks such that τi with i in 1..L are all heavy and τi with i in
L+1..n are all light. L is the number of heavy tasks. A failure
must be declared, if L exceeds the number of processors (m)
or if L=m and there is at least one light task to be assigned.
After this, we assign the L heavy tasks to L processors. Note
that, to each processor only one task is assigned. However, a
failure is declared if the dbf of any task (subset) exceeds the
sbf . We proceed computing the TMIN (using only light tasks)
and the timeslot length (S). Finally, we assign the light tasks to
the processors, in a manner similar to next-fit bin packing: If
upon assigning a task to the current processor p, its utilization
would not exceed SEP, then the task is assigned as non-split
task. Otherwise, the task is split between processors p and
p+1. Note that, the schedulability is guarranteed by invoking
the schedulability test for each task assignment (for both split
and non-split tasks); if the test fails, failure is declared.



1. for p := 1 to m do 33. for i := L + 1 to n do
2. U [p] := 0; 34. if (ulo[p] + uns[p] + Ci/Ti ≤ SEP) then
3. uns[p] := 0; 35. τns[p] := τns[p] + τi;
4. ulo[p] := 0; 36. if (dbfτns[p](L, p) ≤ sbfτns[p](L, p), ∀L ) then
5. uhi[p] := 0; 37. τi.processorid1 := p;
6. τns[p] := 0; 38. τi.processorid2 := p;
7. end for 39. uns[p] := uns[p] + Ci/Ti;
8. 40. else

9. Let τheavy denote the set of tasks such that Ci/Ti > SEP 41. τns[p] := τns[p] − τi;

10. Let τ light denote the set of tasks such that Ci/Ti ≤ SEP 42. if (p = m)

11. L := |τheavy|; 43. declare FAILURE;

12. Order tasks such that τi with i in 1..L are all in τheavy 44. end if;

13. and τi with i in L+1..n are all in τ light 45. uhi[p] = max(u) such that:
14. 46. predicate
15. if (L > m) OR ((L = m) AND (n ≥ m + 1)) 47. uhi[p] ≥ 0 AND
16. declare FAILURE; 48. uhi[p] ≤ Ci/Ti AND
17. end if 49. ulo[p + 1]:=Ci/Ti − uhi[p] AND
18. 50. τi.processor id1 := p AND
19. for i := 1 to L do 51. τi.processor id2 := p + 1 AND
20. p := i; 52. (dbfτns[p](L, p) ≤ sbfτns[p](L, p), ∀L) AND
21. if (dbfτ[p](L, p) ≤ sbfτ[p](L, p), ∀L ) then 53. (dbfτi

(L, p) ≤ sbfτi
(L, p), ∀L )

22. U [p] = Ci/Ti; 54. end predicate
23. τi.processor id1 := p; 55. ulo[p + 1]:=Ci/Ti − uhi[p];
24. τi.processor id2 := p; 56. τi.processor id1 := p;
25. else 57. τi.processor id2 := p + 1;
26. declare FAILURE; 58. p := p + 1;
27. end if; 59. end if
28. end for 60. else
29. 61. same as lines 42 to 58
30. p := L + 1; 62. end if
31. TMIN:=min(TL+1, TL+2, ..., Tn); 63. end for
32. S=TMIN/δ; 64. declare SUCCESS;

Fig. 6. The new algorithm for assigning tasks to processors.

VI. CONCLUSION

To our best knowledge this is the first approach to define
a schedulability test taking into account real-world overheads
for slot-based task-splitting. Using an implementation of slot-
based scheduling algorithm [2] in Linux kernel 2.6.34 we have
identified the most important overheads that such scheduling
algorithm incurs. We modeled all these overheads and defined
a new schedulability test taking into account these overheads
as well as a new task assignment to processor algorithm.

In future work, we will consider dependent tasks to evaluate
the impact of real-time synchronization protocols on slot-based
task-splitting scheduling algorithms.
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