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Abstract 
Energy consumption is a major concern in modern real-time embedded systems and leakage current is a main 
contributor to it. To deal with the leakage current, several procrastination approaches have been proposed in the 
past in order to reduce the energy consumption. These approaches approximate the procrastination interval for 
the ease of analysis and sub-optimally utilise the potential to reduce the energy consumption. This paper presents 
an optimal method to determine the procrastination interval of each task and generalise the task-model that also 
covers the constrained deadline tasks. Analytical and experimental results show the superiority of the proposed 
techniques. In the best case, the proposed technique extends the average sleep interval up to 75% and decrease 
the energy consumption in idle state up to 55% over the state-of-the-art. 
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ABSTRACT
Energy consumption is a major concern in modern real-time em-
bedded systems and leakage current is a main contributor to it. To
deal with the leakage current, several procrastination approaches
have been proposed in the past in order to reduce the energy con-
sumption. These approaches approximate the procrastination inter-
val for the ease of analysis and sub-optimally utilise the potential
to reduce the energy consumption. This paper presents an optimal
method to determine the procrastination interval of each task and
generalise the task-model to cover the constrained deadline tasks.
Analytical and experimental results show the superiority of the pro-
posed technique. In the best case, the proposed technique extends
the average sleep interval up to 75% and decrease the energy con-
sumption in idle state up to 55% over the state-of-the-art.

1. INTRODUCTION
Researchers have been studying uniprocessor embedded systems

which consist of a finite number of recurring processes (referred
to as “tasks” hereafter) for over forty years now. For such sys-
tems, each task is commonly characterized by parameters such as
its worst-case execution requirement, its activation rate, and its
temporal deadline reflecting its timing constraint. Over this pe-
riod of time, they have come up with a number of very important
results, develop some useful algorithmic techniques and built up
an entire body of intuitions. Taken together, these results, tech-
niques and intuitions have allowed system designers to come up
with a very good understanding of the manner in which uniproces-
sor embedded systems behave. However, the emerging application
requirements in the embedded systems arena have increased dra-
matically over the past years in terms of computing demands, need
of reduced size and weight. Furthermore, besides having specific
functional requirements, many embedded systems have stringent
timing requirements (the system is then referred to as “real-time”
(RT) embedded system). The RT embedded system domains in-
clude (but are not limited to) air-traffic control, aerospace, automo-
tive, wind turbines, railway control systems, medical, factory au-
tomation, mobile phones and military equipment. Among these RT
systems, hard RT systems are those for which violating any timing
requirement can entail severe consequences, e.g., it can damage the
system, lead to substantial economic loss, or even harm people or
threaten human lives. Throughout this paper, hard RT embedded
systems that have limited power supply are considered. This addi-
tional energy constrain is induced by battery power mobile device,
limited or intermittent power supply for example. Even when the
application is technically feasible upon the targeted platform in the
sense that the platform can provide a sufficient computing capacity
for the execution of the application, it has become unreasonable to
expect to implement such a system without addressing the issue of

minimizing its power and energy consumption. To this end, chip
manufacturers are putting considerable efforts in this direction and
this aim aligns neatly with the desired “wish-list” of most embed-
ded systems.

There are two main sources of energy consumption in embedded
systems: the dynamic power dissipation which is related to the cur-
rent that flows when the switching of transistors takes place at run-
time and the leakage power dissipation which is proportional to the
current that flows regardless of gate switching. Since CMOS tech-
nology miniaturisation has increased the sub-threshold leakage cur-
rent of modern processors exponentially to an extent where leakage
power dissipation may dominate the dynamic power consumption,
this factor can no longer be considered as negligible. This fact has
been identified as a major concern in the International Technol-
ogy RoadMap For Semiconductors 2010 Update under special top-
ics [16]. To reduce the impact of leakage current, hardware vendors
have provided multiple sleep states with reduced transition over-
heads (energy/time) when compared to previous processors, which
can be exploited by the system designer to shut-down certain parts
of the processor.

A well known approach used at system level to reduce the leak-
age power dissipation is called procrastination scheduling. The
main idea behind this technique consists of delaying the execution
of the processor already in sleep state as much as possible while
ensuring the timing constraints of all tasks are met. As such, the
number of sleep transitions are decreased and consequently the en-
ergy overhead is minimized. Many power saving algorithms based
on procrastination scheduling [17,19,21] approximate the procras-
tination interval of tasks. This leads to sub-optimal energy savings.
This research fills this gap.

The contribution of this paper is twofold. First, it presents an
optimal method to compute the procrastination interval of the tasks
for the implicit deadline task model and then it extends the results
to a more general case, i.e., the sporadic constrained deadline task

model where the temporal deadline of each task is allowed to be
less than or equal to its activation rate. In sporadic task model, two
consecutive instances of a task are separated by at least a minimum
inter-arrival time.

One dimensional sensitivity analysis is used to show the optimal-
ity of the procrastination interval determined through the proposed
method. It considers the so-called feasible region of the system

in the C-Space and the fundamental notion of the allowance (“the
maximum acceptable deviation of a task parameter” [20]) of the
worst-case execution requirement of each task [11]. These two
concepts are used together to compute the maximum allowance
on top of the worst-case execution requirement of each task. The
maximum allowances are used in turn to compute the maximum
feasible delay that the system can undergo and finally, the delay



is compared against the determined procrastination interval in the
proposed method to show the optimality.

The rest of the paper is organizes as follows. Section 2 and Sec-
tion 3 present state-of-the-art and the system model used in this
paper, respectively. Section 4 explains the limitations of the state-
of-the-art while determining the procrastination interval and pro-
vides a new method to improve it over the existing solutions. The
optimality of the proposed method along with its extension to the
constrained deadline task model is also discussed in this section.
The complexity of the proposed approach is presented in Section 5,
which is followed by extensive simulation results presented in Sec-
tion 6. The discussion is concluded in Section 7.

2. RELATED WORK
Leakage-aware scheduling was first addressed by Lee et al. [21]

for periodic hard real-time systems. They proposed two differ-
ent solutions: the leakage control earliest deadline first algorithm
(LC-EDF) and the leakage control dual priority algorithm (LC-
DP) for dynamic and static priority schemes, respectively. LC-EDF

initiates the sleep state when the system becomes idle and delays
the next busy interval to extend the sleep interval. This algorithm
combines short idle intervals in the schedule to generate long sleep
intervals and saves transition overheads. LC-DP works on the same
mechanism for the static priority schedulers. The proposed algo-
rithm needs external specialised hardware to manage such mecha-
nism online. Baptiste [4] developed a polynomial time algorithm
to minimise the static power consumption and transition overhead
of the non DVFS system with unit sized RT aperiodic tasks.

Some efforts were made to combine the leakage-aware schedul-
ing with DVFS to minimise the overall energy consumption. Irani
et al. [15] considered shutdown in combination with DVFS and
proposed a 3-competitive1 offline and a constant-competitive ratio
online algorithm. They assume a continuous spectrum of avail-
able frequencies, an execution model with an inverse relation of
frequency with execution time and an external hardware. Niu and
Quan [25] addressed the dynamic and leakage power consumption
simultaneously on a DVFS enabled processor for hard real-time
systems. Their proposed algorithm is based on the latest arrival
time of jobs estimated by expanding the schedule for the hyper-
period. It cannot be used online due to extensive analysis over-
head. The algorithm works with a given set of jobs with constrained
deadlines. However, in real-time system it is common to have se-
quence of infinite job releases and their restrictive approach does
not support such a model. Jejurikar et al. [19] improved LC-EDF

and integrated it with DVFS to minimise the total power consump-
tion. They also determined the critical speed ⌘

crit

that provides the
lower bound on the processor frequency to minimize the energy
consumption per cycle. They proved that the procrastination inter-
val determined by their algorithm is always greater than or equal to
the one estimated by the LC-EDF algorithm. Nevertheless, they
did not relax on the requirement of the additional hardware.

Jejurikar et al. [17] showed that LC-DP originally proposed by
Lee et al. [21] may cause some of the tasks to miss their dead-
lines. They improved the original algorithm and combined it with
their DVFS algorithm to reduce both dynamic and static power con-
sumption. However, their system model is based on the same as-
sumptions [19, 21]. Later on Chen and Kuo [7] determined some
timing anomalies in the work of Jejurikar et al. [17] and showed that
their approach still might lead to some tasks missing their dead-

1An algorithm is termed as competitive if its competitive ratio,
i.e., ratio between the performance of the algorithm and the opti-
mal offline algorithm, is bounded by a constant number.

lines. They proposed another two phase algorithm that estimates
the frequency and the procrastination interval offline, and predicts
shutdown instances online. The task not executing for their worst
case execution time generates spare capacity in the schedule slack.
The slack reclamation algorithm (SRA) of Jejurikar and Gupta [18]
reclaims such slack which is used to further procrastinate or slow
down the execution of the tasks to minimise the energy. Their pro-
posed slack distribution policy either assigns entirely the dynami-
cally reclaimed slack to slowdown or distributes it between slow-
down and procrastination. SRA also needs an external hardware
to implement the algorithm. Huang et al. [13, 14] estimated the
procrastination interval for a device to activate the shutdown by
predicting future events using RT calculus [27] and ensuring the
system schedulability through RT interfaces [28].

The scope of this paper is the procrastination scheduling [18,19,
21]. In this framework, the procrastination interval is revisited on
the arrival of each task during the sleep interval. The estimated
procrastination interval depends on the task-properties. This re-
search aims to provide a new mechanism to reduce the pessimism
involved in the state-of-the-art while estimating the procrastina-
tion interval and to extend the results to the sporadic task-model
with constrained deadlines. Last but not least, the sensitivity analy-
sis [2,3,29] provides tools to compute the tolerance over the execu-
tion time and the deadline reductions of the tasks. These techniques
can also be tweaked and used to compute the procrastination inter-
val of a task.

3. SYSTEM MODEL
The sporadic constrained deadline task model is assumed in this

research, where a task-set ⌧ def

= h⌧
1

, ⌧
2

, . . . , ⌧
`

i is composed of `
independent tasks. Each task ⌧

i

generates a potentially infinite se-
quence of jobs and is characterised by a 3-tuple ⌧

i

= hC
i

, D
i

, T
i

i,
where C

i

is the worst-case execution time, D
i

is the relative dead-
line and T

i

� D
i

is the minimum inter-arrival time between two
consecutive jobs of ⌧

i

. These parameters are real-valued and given
with the following interpretation. The kth job j

i,k

of ⌧
i

is defined
as j

i,k

def

= hr
i,k

, c
i,k

, d
i,k

i, where r
i,k

is the absolute release time
(r

i,k

� r
i,k�1

� T
i

), c
i,k

 C
i

is the actual execution time and
d
i,k

def

= r
i,k

+ D
i

is the absolute deadline. The hyper-period L⇤

of ⌧ is defined as the least common multiple of the tasks periods,
i.e., L⇤ def

= LCM {T
1

, T
2

, · · · , T
`

}. The notion of LCM is ex-
tended to real numbers as follows:

LCM(a, b)
def

= inf{x 2 R
+

: 9p, q 2 N
+

, x = pa = qb}

(see [6] for further details). The utilisation of task ⌧
i

is U
i

def

=

C
i

T
i

and the system utilisation is U def

=

X

8⌧i2⌧

C
i

T
i

. Tasks are scheduled

using the earliest deadline first algorithm (EDF) [22].
This work assumes a single processor which has active and idle

states with power consumption of P
A

and P
I

, respectively. A set of
N sleep states with different characteristics is assumed. Each sleep
state S

n

def

= hP
n

, tr
n

, E
n

i, where P
n

is the power consumption
in the sleep state and E

n

is the energy overhead associated to a
complete sleep transition. A sleep state has the transition overhead
time of going into a sleep state and the wake-up transition overhead
from a sleep state to an active state. For the sake of simplicity, it
is assumed these two transition overheads are equal and denoted as
tr

n

. Each sleep state has a break-even-time bet
n

computed through
known approaches [1, 8, 9]. The definition of bet

n

implies that the
system will save energy if a sleep state S

n

is initiated for more than
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Figure 1: “Accumulated delays under EDF scheduling [21]”

bet
n

. A processor completes its transition once initiated.

4. PROCRASTINATION INTERVAL
Initially, this work assumes implicit deadline task model i.e.,

D
i

= T
i

, 8⌧
i

2 ⌧ , to compare against the state-of-the-art which
was designed for this model. Later in Section 4.5, this restriction
is relaxed to a more general case, i.e., the constrained deadline
task model, where tasks may have deadlines less than their peri-
ods (D

i

 T
i

). Formally, the procrastination interval is defined as
follows.

DEFINITION 1 (PROCRASTINATION INTERVAL). The procras-

tination interval is the maximum time interval allowed to delay

the execution of the ready tasks without violating any timing con-

straints of the system.

The longer duration of such an interval is desired in procrastina-
tion algorithms to reduce the energy consumption. Before present-
ing our procrastination technique, existing ones are discussed.

4.1 Limitations of the Existing Procrastination
Approaches

In the leakage-aware procrastination scheduling, Lee et al. [21]
initially proposed the online mechanism LC-EDF. To understand
the basic principle behind this algorithm, let us consider the ex-
ample given in Figure 1, taken from the work of Lee et al. [21].
Assume that task ⌧

k

is the first which arrives in a sleep mode and
has a deadline D

k

. The procrastination interval �
k

of ⌧
k

is com-

puted with the condition
X

8⌧i2⌧ :i 6=k

C
i

T
i

+

C
k

+�

k

T
k

= 1. Suppose

t is the current time then the timer is initialised with t + �

k

to
wake-up the system. After the timer initialisation, a procrastina-
tion interval is only recomputed when a newly arrived task has the
highest priority when compared to other tasks in the ready queue.
For instance, after �

k

 �

k

time units, ⌧
b

arrives with a deadline
D

b

< D
k

; a new procrastination interval t +�

b

is determined as
X

8⌧i2⌧ :i/2{k,b}

C
i

T
i

+

C
k

+ �
k

T
k

+

C
b

+�

b

T
b

= 1. The wake-up timer

is reset to t+�

b

. Similarly, for any other task ⌧
j

with the highest
priority when compared to the tasks in the ready queue, the procras-
tination interval �

j

in the sleep state of a processor is determined
by using Equation 1, where lp(j) is the indices of the tasks ar-
rived before ⌧

j

and have deadlines longer than ⌧
j

. In this equation,
�
i

is the interval between an arrival of any job of task ⌧
i

(having
highest priority at that instant) and any next task arrival having pri-
ority higher than ⌧

i

in the system’s sleep state. The limitations of
LC-EDF are the increased online complexity to maintain a track
of �

i

and considering the utilisation of the low priority tasks.

X

8⌧i2⌧ :i/2lp(j),i 6=j

C
i

T
i

+

X

i2lp(j)

C
i

+ �
i

T
i

+

C
j

+�

j

T
j

= 1 (1)
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Figure 2: Schedule with ⌧
1

= h2, 4, 4i, ⌧
2

= h3, 7, 7i and
⌧
3

= h0.25, 14, 14i

Jejurikar et al. [19] proposed an offline method to compute the
procrastination interval for each task and thus reducing the online
complexity. In the online phase, the first task that arrives in sleep
mode initialises the wake-up timer ⇣ with its procrastination inter-
val. The timer ⇣ counts down with every clock cycle. If another
task (say ⌧

n

) arrives before the timer expires, the timer value is ad-
justed as follows: ⇣  min(⇣, t+Z

n

), where t is the current time.
They proposed Theorem 1 to estimate the procrastination intervals
of the tasks offline, where ⌘

k

is the frequency of the processor. The
value of ⌘

k

is set to 1, i.e., maximum frequency, for the ease of
presentation. They also proved, it is superior to LC-EDF method
to compute the procrastination intervals.

THEOREM 1. [19] Given tasks in ⌧ are ordered in non-decreasing

order of their periods, the procrastination algorithm guarantees all

task deadlines if the procrastination interval Z
i

of each task ⌧
i

sat-

isfies the following two conditions:

8⌧
i

2 ⌧,
Z

i

T
i

+

X

8⌧k2⌧ :ki

1

⌘
k

C
k

T
k

 1 (2)

and 8k < i, Z
k

 Z
i

(3)

While computing the procrastination interval for task ⌧
i

, Jejurikar
et al. [19] only considers the utilisation of the tasks having priority
greater than or equal to ⌧

i

(assuming a synchronous release of all
tasks also known as critical instant in literature). Moreover, if any
of the low priority task produce a low procrastination interval when
compared to the high priority tasks, the procrastination interval of
all the high priority tasks are readjusted by considering Equation 3.
This latter equation is driven by the online approach of Jejurikar et
al. (see [19] for details). Though the proposed method has its mer-
its as it reduces the set of tasks considered for the procrastination of
each task, its limitation is that it approximates the procrastination
intervals by considering their utilisations. let us demonstrate this
shortcoming with the following example.

Example 1: Assume a task-set consisting of three tasks ⌧
1

=

h2, 4, 4i, ⌧
2

= h3, 7, 7i and ⌧
3

= h0.25, 14, 14i. Rearranging
Equation 2, Z

i

can be computed with Equation 4 as given below.

Z
1

= (1� 2

4

)4 = 2

Z
2

= (1� 2

4

� 3

7

)7 = 0.5

Z
3

= (1� 2

4

� 3

7

� 0.25

14

)14 = 0.75

Final values after applying Equation 3 are Z
1

= 0.5, Z
2

= 0.5 and
Z

3

= 0.75.

Z
i

=

0

@

1�
X

8⌧k2⌧ :ki

C
k

T
k

1

AT
i

(4)
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Figure 3: Demand Bound Function of the example

Figure 2 shows the schedule for the aforementioned example.
With a careful observation it can be seen that the procrastination
interval of ⌧

1

, ⌧
2

and ⌧
3

can be extended to 1, 1 and 1.5 time units
respectively without causing any deadline misses in the system,
which represents 50% gain over the method used by Jejurikar et
al. [19]. This example illustrates that substantial energy gains can
be achieved by improving the method to compute the procrastina-
tion intervals of the tasks.

4.2 Proposed Approach: Demand Bound Func-
tion Based Procrastination (PDBF)

The demand bound function (DBF) [5, 26] is used in this paper
to compute the procrastination interval of the tasks in the context of
uniprocessor scheduling. The DBF is an abstraction of the compu-
tation requirements of tasks which has been observed to correlate
very closely with schedulability property of the task-set.

DEFINITION 2. (DBF [5]): The demand for any constrained

deadline task ⌧
i

and positive time t, denoted by DBF(⌧
i

, t), is the

maximum cumulative execution requirement of jobs of task ⌧
i

in

any interval of length t. Formally, DBF(⌧
i

, t) is presented in Equa-

tion 5.

8t � 0, DBF(⌧
i

, t)
def

=

✓�

t�D
i

T
i

⌫

+ 1

◆

· C
i

(5)

From Equation 5, it is easy to see that DBF(⌧
i

, t) is a step-case
function in t with first step occurring at time t = D

i

and subse-
quent steps separated by exactly T

i

time units. The DBF for the
whole task-set is DBF(⌧, t)

def

=

X

⌧i2⌧

DBF(⌧
i

, t). The DBF based

procrastination (PDBF) scheme achieves extended sleep intervals
for any task-set. For instance, consider the DBF of the aforemen-
tioned example in Figure 3. Three stair case functions show the
DBF of ⌧

1

, ⌧
1

+ ⌧
2

and ⌧
1

+ ⌧
2

+ ⌧
3

. The straight line with a slope
of 1 represents the supply bound function (SBF) of the processor.

PDBF uses the same logic as the one given in Theorem 1, i.e., syn-
chronous release of all tasks sorted in a non-decreasing order of
their deadlines and computes the procrastination interval of a task
with DBF instead of considering tasks utilisations. Indeed when
D

i

 T
i

the utilisation is no longer a good metric for the com-
putation requirement of the tasks whereas the PDBF approach is
easily extensible. To compute the maximum procrastination inter-
val of a task ⌧

i

, the PDBF approach subtracts the demand of the

task ⌧
i

along with the demand of the all higher priority jobs from

the SBF. It has to be noted that this difference is computed between
the first deadline of task ⌧

i

and the end of the hyper-period (the rea-
son is explained in Theorem 2). Due to the stair case property of
the DBF, it is sufficient to compute the difference at the deadlines.
Let �

i

represents the minimum difference of SBF and the demand,
then for the given example, �

1

= 2, �
2

= 1 and �
3

= 1.5. How-
ever, Theorem 1 does not allow to have procrastination interval of
⌧
1

greater than that of ⌧
2

, therefore, the value of �
1

is scaled down
to 1 as well, which implies �

1

= 1, �
2

= 1 and �
3

= 1.5. When
D

i

= T
i

, the DBF(⌧
i

, t) of task ⌧
i

presented in Equation 5 can be
rewritten as shown in Equation 6.

DBF

I

(⌧
i

, t) =

�

t

T
i

⌫

C
i

as t � 0 (6)

THEOREM 2. Given tasks in ⌧ are ordered in a non-decreasing

order of their relative deadlines, the PDBF scheme preserves all

task deadlines, if the maximum procrastination interval of task ⌧
i

,

denoted by �
i

, is computed with Equation 7 while respecting the

condition given in Equation 8.

�
i

def

= min8⌧
j

2 ⌧ : j  i, 8t � 0

n

t�
P

8⌧k2⌧ :ki

DBF

I

(⌧
k

, t)
o

(7)

= min8⌧
j

2 ⌧ : j  i, 8t 2M

n

t�
P

8⌧k2⌧ :ki

j

t

Tk

k

C
k

o

where M =

n

n
j

T
j

:

l

Ti
Tj

m

 n
j


j

L

⇤

Tj

ko

8k < i, �
k

 �
i

(8)

PROOF SKETCH. Suppose a task ⌧
i

arrives in the sleep state.
The timer is set to the procrastination interval computed with Equa-
tion 7 respecting the condition given in Equation 8. The time in-
terval to wake up the system can only be decreased with an arrival
of new task. This procrastination interval can be seen as additional
task ⌧

proc

with a priority equal to the highest priority task, execu-
tion time equal to the wake-up sleep interval and it executes be-
fore the next busy period. Equation 8 ensures that all the tasks
with deadlines greater than or equal to ⌧

i

will have procrastina-
tion interval greater than or equal to �

i

. Therefore, ⌧
proc

will not
increase the system demand beyond the SBF in the presence of
low priority tasks. Furthermore, the higher priority tasks can only
shorten the execution time of ⌧

proc

(i.e., procrastination interval)
on their arrival to respect their deadlines and the deadlines of the
other tasks. The sleep interval is bounded by the procrastination
interval of the first task and it only decreases with the new arrivals,
therefore, based on the previous logic it will not affect any high
priority task. Moreover, it is also sufficient to only consider the
deadlines in an interval [D

i

, L⇤
] as the procrastination interval of a

task is only considered when it has the highest priority on its arrival
in the ready queue.

4.3 Procrastination Interval Improvement
The best known maximum procrastination interval is the one de-

rived in Jejurikar et al. [19] method for each task in the state-of-
the-art. This is objected by considering the worst-case scenario



i.e., critical instant. This section shows that the procrastination in-
terval computed for any task through PDBF will always be greater
than or equal to Z

i

(see Lemma 1).

LEMMA 1. Given tasks in ⌧ are ordered in a non-decreasing

order of their relative deadlines, the procrastination interval �
i

for any task ⌧
i

computed with PDBF scheme is always greater

than or equal to the procrastination interval Z
i

computed through

Jejurikar et al. [19] method, i.e.,
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where M =

⇢

n
j

T
j

:

⇠

T
i

T
j

⇡

 n
j


�

L⇤

T
j

⌫�

PROOF. Assume, all the tasks are sorted in non-decreasing order
of their periods/deadlines. To prove the inequality given in Equa-
tion 9, we need to show that for all the deadlines between the first
deadline of task ⌧

i

and the hyper-period L⇤, the procrastination
interval computed with PDBF is greater than or equal to Z

i

. Je-
jurikar et al. [19] computes Z

i

on the deadline of the task under
consideration. To compare these two approaches, their functions
are interpolated for all points in the demand bound function. To
achieve this, let us consider the example depicted in Figure 2, a

straight line is drawn between two points A(T
i

, T
i

X

8⌧k2⌧ :ki

C
k

T
k

)

and B(L⇤, L⇤
X

8⌧k2⌧ :ki

C
k

T
k

) as shown in Figure 4. Note: Fig-

ure 4 only shows it for �
2

and Z
2

. The slope of this line is equal to
X

8⌧k2⌧ :ki

U
k

. In order to demonstrate that �
i

� Z
i

, it is sufficient

to prove this inequality in interval [T
i

, L⇤
] (see Theorem 2). This

interval is divided into two cases.

a) At time instances T
i

and L⇤, i.e., the deadline of ⌧
i

and the
hyper-period respectively.

b) An interval between time instant T
i

and L⇤, i.e., (A,B).

Case a) At the first time instant T
i

, Equation 10 compares the two
approaches.

T

i

�
X

8⌧k2⌧ :ki

�
T

i

T

k

⌫
C

k

�

0

@1�
X

8⌧k2⌧ :ki

C

k

T

k

1

A
T

i

(10)

( �
X

8⌧k2⌧ :ki

�
T

i

T

k

⌫
C

k

� �
X

8⌧k2⌧ :ki

C

k

T

k

T

i

(
����X

8⌧k2⌧ :ki

�
T

i

T

k

⌫

⇢⇢Ck


����X

8⌧k2⌧ :ki

T

i

T

k

⇢⇢Ck

(
�
T

i

T

k

⌫


✓
T

i

T

k

◆
(11)

Equation 11 shows that at time instant T
i

, Equation 9 holds. The
same reasoning can be applied at time instant L⇤ (i.e., by replacing
the T

i

with L⇤ in Equation 10).
Case b: As already mentioned in the beginning of this proof, the

demand of Jejurikar et al. [19] in an interval (A,B) is computed
with a straight line of slope

X

8⌧k2⌧ :ki

U
k

and is compared against

DBF at all deadlines. The equation of the line is y = mx + c,
where m is a slope and c is a y-intercept. The y-intercept is
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Figure 4: Procrastination Interval for ⌧
2

zero (i.e., c = 0) as the line passes through origin. Hence, the
demand determined through the Jejurikar et al. [19] method is given
in Equation 12.

y = x
X

8⌧k2⌧ :ki

C
k

T
k

(12)

Now consider any deadline that lies in between T
i

and L⇤ and
then compare its y-coordinate to show that the demand of such
deadlines lies below or on the line as the one given in Equation 12.

Assume t 2 M = {n
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T
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}. M de-

scribes the set of all the deadlines between T
i

and L⇤. As such
n
j

T
j

will be a deadline in an interval (A,B) and its demand is
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T
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T
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(Equation 6). Let us put the deadline n
j

T
j

in the x-coordinate of Equation 12 to get the resulting demand of

Jejurikar et al. [19] and compare it against
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as given in Equation 13.
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Equation 14 is always true as x � bxc , 8x. Thus, the curve
of DBF is always below or on the line for all the deadlines in any
interval (A,B).

As the demand of Jejurikar et al. [19] method for all deadlines in
the interval [A;B] (case a and b) are greater than or equal to DBF,
the lemma follows.
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Figure 5: DBF vs SRA

4.4 Minimum Idle interval Improvements
The minimum bound on the idle period in the schedule is an

important metric in procrastination scheduling to select the most
efficient sleep state S

n

offline. It is the length of the shortest idle
interval in the schedule and all the idle intervals will be greater than
or equal to this bound. To reduce the online complexity, a proces-
sor can choose its sleep state based on this interval that minimises
the energy consumption in sleep state while respecting the temporal
constraint. By maximising the minimum bound on the idle period,
system increase the chance to use the better sleep states (when sys-
tem has more than one sleep state [1]) which in turn reduces the
energy consumption. Therefore, it is also important to maximise
the minimum bound on the idle interval.

LEMMA 2. Given tasks in ⌧ are ordered in a non-decreasing

order of their relative deadlines, the minimum idle period guar-

anteed by PDBF scheme is always greater than or equal to the

minimum idle period guaranteed by Jejurikar et al. [19].

PROOF. Assume all the tasks are sorted in non-decreasing order
of their periods/deadlines. The minimum procrastination interval
Z

min

determined through Jejurikar et al. [19] algorithm is equal
to Z

min

= min

8⌧i2⌧

Z
i

. Similarly, the minimum idle period guaran-

teed by the PDBF scheme �
min

= min

8⌧i2⌧

�
i

. To prove the above

mentioned lemma, one needs to prove Equation 15.
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where M =
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In order to prove this inequality, we have to show that for t  L⇤

the demand of the given task-set will remain below or will be equal
to the demand computed by Jejurikar et al. [19] method, where

t 2 M =

⇢

n
j

T
j

: 1  n
j


�

L⇤

T
j

⌫

, 8⌧
j

2 ⌧

�

. In order words,

all the deadlines are checked for the difference. To interpolate the
demand computed by Jejurikar et al. the demand on the neighbour-
ing deadlines of a task are connected with a straight line. Finally,
the demand beyond the last period is extended with a line having a
slope equal to the system utilisation. For instance, Figure 5 shows
the demand of the given example with both DBF and the procras-
tination algorithm proposed by [19]. For Jejurikar et al. [19] algo-
rithm, the demand of the tasks computed on their first deadline are
represented with A, B and C points. Points A and B are connected
with a straight line to compare against all the deadlines in the DBF

happening in between these two points. Similarly, B and C points
are connected, and the demand beyond C for procrastination algo-
rithm is extended with a line having a slope equal to the utilisation
of the task-set.

Since the DBF needs to be checked at more instances than A,B
and C in the procrastination algorithm, we need to consider con-
straints. The objective is to find the minimal distance with the unity
line and the demand. For all intervals between successive points
A,B and C, it is true that the smallest gap between the unity line
and the demand within this interval of those can be found in either
of the two delimiting points (for example, for interval [A,B], the
smallest gap can either occur at A or B). Since U  1, and it is ev-
ident that beyond the largest period, the largest gap can be found at
the largest period point. In order to demonstrate that the gap com-
puted with the DBF based value is always greater than or equal to
that of procrastination algorithm [19] it is sufficient to show that
the DBF test dominates in the following cases.

a) First deadline of every tasks

b) The demand computed by the DBF is always smaller than the
connecting lines of the first deadline of all tasks.

Case a) To get the first deadline of every task, we set t = T
i

in
Equation 15,
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Equation 16 shows for the first case that Equation 15 holds.
Case b) The proof of this case is made by induction on the tasks

indices. Suppose that ⌧
i�1

is the task preceding ⌧
i

. This case
checks Equation 15 for all the deadlines that exist between T
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and T
i

, i.e.,
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Equation 17 is the general form of the equation of a line between
two points (x

1

, y
1

) and (x
2

, y
2

). In the representation of the DBF,
the x-axis and y-axis represent the time and the demand, respec-
tively. Let us assume the coordinates at the deadlines of ⌧

i�1

and ⌧
i

are (x
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, y
1

) =
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A, respectively. To find the equation be-

tween these two points, substitute their coordinates into Equation 17
correspondingly as shown in Equation 18.
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Now consider any deadline that lies in between the deadlines of
⌧
i�1

and ⌧
i

(i.e., between (x
1

, y
1

) and (x
2

, y
2

)). It is shown that
the demand (y-coordinate) of such deadlines will be below or on
the line given in Equation 19. To this end, let us say that any dead-
line between (x

1

, y
1

) and (x
2

, y
2

) is specified by (x
m

, y
m

)
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of this selected point (x
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, y
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) into Equation 19 and compare the
resulting value of the y-coordinate with its y

m

. If it is greater than
or equal to y

m

then DBF is below or on the line. The resulting ex-
pression is shown in Equation 20.
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Point (x
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, y
m

) is in between T
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and T
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, therefore the factor
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Obviously, n
j

T
j

� T
i�1

is greater than 0 as n
j

T
j

> T
i�1

.
Hence, all the deadlines such that

8⌧
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2 ⌧, t 2M = {T
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k

T
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 T
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}

lie below the line represented by Equation 19.
As the difference computed between the supply and the demand

for all deadlines (case a and b) are greater than or equal to their

corresponding difference computed through Jejurikar et al. [19] al-
gorithm, lemma follows.

4.5 Extensions to the constrained deadline task
model

The state-of-the-art procrastination algorithms [19,21] cannot be
extended for constrained deadline task model (D

i

 T
i

) in their
current form. One of the advantages of the PDBF approach is
it straight forward extension to this model. For the constrained
deadline task model, Equation 7 can be rewritten in its general form
by replacing DBF
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, t) with DBF(⌧
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, t) as given Equation 22,
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Similarly, the minimum idle interval for constrained deadline task
model is given in Equation 23, where
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4.6 Optimality of PDBF

The sensitivity analysis [11,20] is used to determine the optimal

2

minimum idle interval and the optimal procrastination interval for
each task, i.e., the maximum interval that can be derived with no
deadline miss. These optimal values of minimum idle interval and
maximum procrastination interval are later shown to be equivalent
to Equation 23 and Equation 22, respectively. In the sensitivity
analysis framework, task parameters (WCETs, deadlines or peri-
ods) of a feasible system are allowed to vary in a feasible region
while maintaining the system schedulability. The boundaries of the
feasible region gives the optimal parameters beyond which task-
set becomes unschedulable. When deadlines and periods are fixed,
such a feasible region for the task WCET parameters is known as
C-space region. Hermant and George [12] proposed the optimal
scaling factor ↵ to determine the maximum WCET of the tasks
such that they are on the boundary of the feasible C-space region,
presented in Lemma 3.

LEMMA 3. (Taken from [12])

↵ =

1

max

⇣
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t2[Dmin,L

⇤
)

DBF(⌧,t)

t

⌘ (24)

COROLLARY 1. ↵ � 1 for a feasible system.

PROOF. Assuming a feasible system by EDF upon a uniproces-
sor platform, U  1. Moreover, DBF(⌧, t)  t

8t>0

=) DBF(⌧,t)

t


1. Therefore, sup

t2[Dmin,L

⇤
)

DBF(⌧,t)

t

 1. As both quantities in
the denominator of ↵ are less than 1, it follows that ↵ � 1.

Before going into further details, recall that the allowance is the
maximum acceptable deviation of a task parameters. That is, for
instance, the deviation of the task WCETs in the C-Space assum-
ing that periods and deadlines are fixed. Lemma 3 allows to add
2
Maximal without violating any temporal constraint



Algorithm 1 Minimum Idle Interval Determination
Inflation Phase:

1: Compute ↵ with Lemma 3.
2: Inflate each job by (↵� 1)C

i

3: Generate a schedule for its hyper-period
Deflation phase:

4: for all Jobs from last to first (with respect to execution) do
5: Suppose the selected job is j

i,k

and t
s

is the start time of
its execution

6: for all Jobs executing before t
s

do
7: Suppose j

l,n

is the job executing before t
s

8: Move j
l,n

by min{(↵ � 1)C
i

, �}, where � is the dif-
ference between d

l,n

and time instant where j
l,n

starts its exe-
cution.

9: end for
10: end for

Packing Phase:
11: for all Jobs from First to Last do
12: if !First Job then
13: Move job to the left as much as possible respecting its

release instant
14: end if
15: end for
16: Assume, synchronous release happens at time instant t

sync

and first instant of execution starts at time instant t
first

, then
�
min

= t
first

� t
sync

an extra allowance of ↵C
i

� C
i

= (↵ � 1)C
i

to the WCET of
each job. This work proposes an algorithm that exploits the scaling
factor ↵ to determined the minimum idle interval and then later on
shows its optimality. The pseudo-code is given in Algorithm 1. It
can be divided into three phases. 1) Inflation Phase: All the jobs in
the hyper-period are inflated in this phase with extra allowance to
achieve the maximum utilisation while keeping the system schedu-
lable. 2) Deflation Phase: In this phase, each job deflates and al-
lows the schedule on its left to shift right by a maximum time in-
terval equal to the deflation of the previously visited jobs. All the
deadlines are respected and jobs are tackled one by one starting
from the last job towards the first one in the complete hyper-period.
The maximum difference between the first job from the first exe-
cution instant and time of synchronous release gives the minimum
idle interval. 3) Packing Phase: This phase is applied on the shifted
schedule developed in the deflated phase, as a work-conserving
scheduler3(EDF) is used in this work. All the other jobs exclud-
ing the first one are shifted from the right to the left respecting their
release times.

To elaborate on the given algorithm let us consider an example
of a system consisting of three tasks ⌧

1

= h1, 4, 5i, ⌧
2

= h1, 4, 6i
and ⌧

3

= h1, 7, 10i. The task-set has ↵ = 2. The different phases
of the algorithm are illustrated in Figure 6. In the inflation phase,
all the tasks inflate their execution by (↵�1)C

i

. It is evident in the
inflation phase that an addition of any ✏ > 0 to the C

i

of any task
will make system unschedulable. In the deflation phase, all the jobs
are deflated and moved to the right respecting their deadline con-
straint. The packing phase considers the work-conserving property
of the scheduler and moves all the jobs towards left while adding a
delay of �

min

after the synchronous release.

THEOREM 3. The minimum idle period determined with Algo-

rithm 1 for a constrained deadline task-set is optimal.

3The processor is never idle when there is a job in the ready queue.
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Figure 6: Example to illustrate Algorithm 1

PROOF. ↵ gives the maximum allowance to a job to extend it ex-
ecution, which is optimal by Lemma 3. In the inflation phase, any
job cannot be further inflated by any ✏ > 0 without missing a dead-
line. In the deflation phase, Algorithm 1 shifts the schedule to the
right respecting all the deadlines by choosing min{(↵ � 1)C

i

, �}
that guarantees that none of the deadlines are missed during this
process. As the schedule cannot be shifted for more than the sum
of inflated time interval in the system, therefore, by construction,
this leads to �

min

which is then the optimal minimum idle interval
in the whole schedule.

The procrastination interval of each specific task ⌧
i

can be de-
termined with the above mentioned Algorithm 1 by considering
the task along with those with a higher priority. The determined
procrastination interval should satisfy the condition given in Equa-
tion 8. Furthermore, the value of ↵ mentioned in Equation 24 is de-
termined for the whole task-set. In this case, tasks having a priority
higher than or equal to the task under consideration are considered.
The modified form of ↵ mentioned in Equation 25 should be used
while determining the individual procrastination interval of the task
with Algorithm 1.

↵

def

= 1

max

✓P
8⌧k2⌧:ki Ui,supt2

[

Dmin,L⇤
)

P
8⌧k2⌧:ki DBF(⌧i,t)

t

◆

(25)

THEOREM 4. Let ⌧ be a constrained deadline task-set. The

procrastination interval for any task in ⌧ determined through Al-

gorithm 1 is optimal.

PROOF. The proof directly follows from Theorem 3.

COROLLARY 2. The procrastination interval computed with Al-

gorithm 1 is equivalent to PDBF.

PROOF. The minimum idle interval �
min

computed with Algo-
rithm 1 is the maximum procrastination interval that a system can
achieve after the synchronous task release. Any additional time
✏ > 0 to this interval will cause a deadline miss. Similarly, the
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minimum idle interval computed with PDBF also does not further
allow to procrastinate after the synchronous release. Hence, these
two intervals are equivalent, which in turn also shows the optimal-
ity of PDBF.

The same logic mentioned in above corollary holds for the pro-
crastination interval of the individual tasks.

5. COMPLEXITY COMPARISON
The complexity of the state-of-the-art approaches as well as that

of the proposed approach to compute the procrastination interval
can be categorised as offline and online complexity. The offline
complexity of the LC-EDF algorithm [21] is zero as all the compu-
tations are performed online. Jejurikar et al. [19] methods has an
offline complexity of O(`2). The PDBF approach has an offline

complexity of O(`h), where h =

X

8⌧i2⌧

L⇤

T
i

is the number of jobs

in the hyper-period.
The online complexity of the PDBF approach and Jejurikar’s

method is the same and equals to O(`). The LC-EDF algorithm
has an online complexity of O(`2). This implies that the external
hardware designed for Jejurikar’s method can also be used for the
PDBF approach as both work on the same principle. On the one
hand, the procrastination based energy saving algorithms proposed
for Jejurikar’s method can be easily integrated with the PDBF ap-
proach without any extra effort. On the other hand, the LC-EDF
algorithm needs complex external hardware due to the mechanism
used to compute procrastination interval online.

6. EVALUATION
The discrete event simulator SPARTS (Simulator for Power Aware

and Real-Time Systems) [23, 24] is used to evaluate the effective-
ness of the PDBF approach. SPARTS is used with the parame-
ters mentioned in Table 1, where underlines values are the default
values if not mentioned in the description of the experiment. The
parameters Cb and � are used to generate wide variety of different
tasks and their subsequent varying jobs. Suppose, Cb

i

and �

i

are
the helper variables to provide the bounds on the best-case execu-
tion time (BCET) and sporadic delay of a task respectively. Then
Cb

i

and �

i

are randomly selected for the given tasks in interval
C

i

· [Cb, 1] and T
i

· [�, 1] respectively. Similarly, the actual exe-
cution time and sporadic delay of the individual jobs are randomly

Table 1: Overview of Simulator Parameters

Parameters Values
Task-set sizes |⌧ | 2 {10, 20, . . . , 50, . . . , 100}
T
min

2 {30, 40, . . . , 100}
PUB 2 {1.1, 1.2, . . . , 1.5, . . . , 5}
BCET Limit Cb 2 {0.2, 0.25, . . . , 1}
Sporadic Delay Limit � 2 {0, 0.05, . . . , 1}

Table 2: Different Sleep States Parameters

No. Power Mode tr
n

(µs) bet
n

(µs) P
n

E
n

1. Doze 5 225 3.7 42
2. Nap 100 450 2.6 950
3. Sleep 200 800 2.2 1980
4. Deep Sleep 500 1400 0.6 5750
5. Typical 0 0 4.7 0
6. Maximum - - 12.1 -

selected from the following intervals [Cb

i

, C
i

] and [T
i

, T
i

+ �

i

] re-
spectively. The periods of the task-set are chosen from an interval,
T
min

[1,PUB], where T
min

it the lower bound and PUB (Period
Upper Bound) is the variable used to define the upper bound on
the interval. Each task-set with different parameters mentioned in
Table 1 is simulated for 100 times with different seed values to the
random number generator and averaged. The simulation time of
each task-set is 100sec.

The SRA algorithm [18] is an energy saving approach that takes
procrastination intervals of the tasks determined through Jejurikar’s
method as an input. For a fair comparison, the same algorithm
is used by just replacing the input phase with PDBF determined
procrastination intervals. For simplicity sake, it is assumed that all
the slack in the schedule (spare capacity) is reserved for the shut-
down of the processor. Both variation of SRA are implemented
in SPARTS and their sleep state is selected offline based on their
respective minimum idle interval. It has already been shown in the
state-of-the-art that SRA performs better than LC-EDF, hence, this
section restrict the comparison to SRA.

The power model used for simulations is based on the Freescale
PowerQUICC III Integrated Communications Processor MPC8536
[10]. The power consumption values are taken from its data sheet
for different modes (Maximum, Typical, Doze, Nap, Sleep, Deep
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Sleep). The core frequency of 1500 MHz and core voltage of 1.1V
is used for all the experiments. The transition overheads are not
mentioned in their data sheet, therefore, the transition overhead are
assumed for four different sleep states. The transition overhead of
the typical mode that corresponds to the idle state in our system
model is considered negligible. The power values given in Table 2
sum up core power and platform power consumption. More details
are available in the reference manual [10].

Figure 7 presents the gain of PDBF over SRA with respect to
average sleep interval for different values of U and PUB. The
average sleep interval is computed by accumulating the idle time
in the scheduling and dividing it by the number of sleep states.
The gain of PDBF increases with an increase in system utilisation.
Furthermore, the gain also increases by widening the interval to
select T

i

of the tasks. At low utilisation PDBF and SRA have
enough slack to initiate longer sleep intervals. However, with an
increase in system utilisation, the slack in the system decreases,
and the procrastination intervals lengths have a high impact on the
sleep intervals. Another reason for a high gain at high utilisation is
the difference of minimum idle interval between SRA and PDBF.
It has been shown in Lemma 2 that �

min

� Z
min

. Therefore,
SRA starts to lose efficient sleep states at high utilisation, causing
its frequent switching. In the best case, the average increase in the

sleep interval is approximately 75%.
The gain in average sleep interval is also computed by varying

the utilisation against the BCET Limit Cb as shown in Figure 8.
Mostly, the gain occurs due to an increase in system utilisation,
while the variation in Cb has a minute effect at a very high utilisa-
tion of 0.95. As both algorithms use the same mechanism to man-
age the slack, the difference is negligible. The change in sporadic
delay limit � is also observed in the experiments against differents
values of U . The effect of � is negligible as well. The variation
in task-set size is demonstrated in Figure 9 against different values
of U . In the best case (i.e., |⌧ | = 100), the gain reaches to 75%.
It is evident that the increase in task-set size increases the gain in
average sleep interval. This can be explained as follows. The pro-
crastination interval of a high priority task is always bounded by its
low priority tasks. The difference between the procrastination in-
tervals of different tasks between PDBF and SRA has a cascading
effect. For instance, a low priority task ⌧

i

having a procrastination
interval Z

i

smaller than that of a high priority task will have its Z
i

scaled down due to the condition Equation 3. If Z
i

< �
i

, then not
only the difference exists at level ⌧

i

but also 8⌧
k

: k < i. Larger
task-set size has higher probability to get this cascading effect.

The active energy consumption of the system is the same in SRA

and PDBF as only a single active state is assumed in this work.



The difference comes in the energy consumption of the system in
idle intervals and termed as reducible energy consumption (REC).
The gain of PDBF over SRA with respect to REC is compared
for different parameters against system utilisation as demonstrated
in Figure 10, Figure 11 and Figure 12. In the best case, the gain
in REC is approximately 55%. All the graphs have more or less
similar trends as explained in the description of their corresponding
results with average sleep intervals.

7. CONCLUSIONS
The PDBF technique is optimal to compute the procrastination

intervals of a given task-set. It has been shown theoretically and
experimental that PDBF dominates over SRA. The average sleep
interval can be increased up to 75%, while the REC can be raised
up to 55%. The online complexity of PDBF is the same when
compare to that of SRA. The relaxation to the constrained deadline
task model is an additional benefit of the proposed approach. In
the future, it is intended to extend this procrastination algorithm
to heterogeneous multicore platforms and also for the dependent
task-set model.
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