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Abstract 
Energy consumption is a major concern in modern real-time embedded systems and leakage current is a main 
contributor to it. To deal with the leakage current, several procrastination approaches have been proposed in the 
past in order to reduce the energy consumption. These approaches approximate the procrastination interval for 
the ease of analysis and sub-optimally utilise the potential to reduce the energy consumption. This paper presents 
an optimal method to determine the procrastination interval of each task and generalise the task-model to cover 
the constrained deadline tasks. Analytical and experimental results show the superiority of the proposed 
technique. In the best case, the proposed technique extends the average sleep interval up to 75% and decreases 
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ABSTRACT
Energy consumption is a major concern in modern real-time em-
bedded systems and leakage current is a main contributor to it. To
deal with the leakage current, several procrastination approaches
have been proposed in the past in order to reduce the energy con-
sumption. These approaches approximate the procrastination inter-
val for the ease of analysis and sub-optimally utilise the potential
to reduce the energy consumption. This paper presents an optimal
method to determine the procrastination interval of each task and
generalise the task-model to cover the constrained deadline tasks.
Analytical and experimental results show the superiority of the pro-
posed technique. In the best case, the proposed technique extends
the average sleep interval up to 75% and decreases the energy con-
sumption in idle state up to 55% over the state-of-the-art.

1. INTRODUCTION
Researchers have been studying uniprocessor embedded systems

which consist of a finite number of recurring processes (referred
to as “tasks” hereafter) for over forty years now. For such sys-
tems, each task is commonly characterised by parameters such as
its worst-case execution requirement, its activation rate, and its
temporal deadline reflecting its timing constraint. Over this pe-
riod of time, they have come up with a number of very important
results, developed some useful algorithmic techniques and built up
an entire body of intuitions. Taken together, these results, tech-
niques and intuitions have allowed system designers to come up
with a very good understanding of the manner in which uniproces-
sor embedded systems behave. However, the emerging application
requirements in the embedded systems arena have increased dra-
matically over the past years in terms of computing demands, need
of reduced size and weight. Furthermore, besides having specific
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functional requirements, many embedded systems have stringent
timing requirements (the system is then referred to as “real-time”
(RT) embedded system). The RT embedded system domains in-
clude (but are not limited to) air-traffic control, aerospace, automo-
tive, railway control systems, medical, factory automation, mobile
phones and military equipment. Among these RT systems, hard
RT systems are those for which violating any timing requirement
can entail severe consequences, e.g., it can damage the system, lead
to substantial economic loss, or even harm people or threaten hu-
man lives. Throughout this paper, hard RT embedded systems that
have limited power supply are considered. This additional energy
constraint is induced by battery power mobile device, limited or in-
termittent power supply for example. Even when the application is
technically feasible upon the targeted platform in the sense that the
platform can provide a sufficient computing capacity for the execu-
tion of the application, it has become unreasonable to expect to im-
plement such a system without addressing the issue of minimising
its power and energy consumption. To this end, chip manufacturers
are putting considerable efforts in this direction and this aim aligns
neatly with the desired “wish-list” of most embedded systems.

There are two main sources of energy consumption in embed-
ded systems: the dynamic power dissipation which is related to the
current that flows when the switching of transistors takes place at
run-time and the leakage power dissipation which is proportional
to the current that flows regardless of gate switching. Since CMOS
technology miniaturisation has increased the sub-threshold leakage
current exponentially to an extent where leakage power dissipation
may dominate the dynamic power dissipation, this factor can no
longer be considered as negligible. This fact has been identified as a
major concern in the International Technology RoadMap For Semi-
conductors 2010 Update under special topics [17]. To reduce the
impact of leakage current, hardware vendors have provided mul-
tiple sleep states with reduced transition overheads (energy/time)
when compared to previous processors, which can be exploited by
the system designer to shut-down certain parts of the processor.

Procrastination scheduling is commonly used at system level to
reduce the leakage power dissipation. In this technique the execu-
tion of the processor already in sleep state is delayed as much as
possible while ensuring the timing constraints of all tasks are met.
As such, the number of sleep transitions are decreased and con-
sequently the energy overhead is minimised. Many power saving
algorithms based on procrastination scheduling [18,20,21] approx-
imate the procrastination interval of tasks leading to sub-optimal
energy savings. This research fills this gap.

The contribution of this paper is twofold. First, it presents an
optimal method to compute the procrastination interval of the tasks
for the implicit deadline task model and then it extends the results
to a more general case, i.e., the sporadic constrained deadline task



model where the temporal deadline of each task is allowed to be
less than or equal to its activation rate. In sporadic task model, two
consecutive instances of a task are separated by at least a minimum
inter-arrival time.

The rest of the paper is organized as follows. Section 2 and Sec-
tion 3 present the state-of-the-art and the system model used in this
paper, respectively. Section 4 explains the limitations of the state-
of-the-art while determining the procrastination interval and pro-
vides a new method to improve it over the existing solutions. The
optimality of the proposed method along with its extension to the
constrained deadline task model is also discussed in this section.
The complexity of the proposed approach is presented in Section 5,
which is followed by extensive simulation results presented in Sec-
tion 6. The discussion is concluded in Section 7.

2. RELATED WORK
Leakage-aware scheduling was first addressed by Lee et al. [21]

for periodic hard real-time systems. They proposed two differ-
ent solutions: the leakage control earliest deadline first algorithm
(LC-EDF) and the leakage control dual-priority algorithm (LC-
DP) for dynamic and static priority schemes, respectively. LC-EDF
initiates the sleep state when the system becomes idle and delays
the next busy interval to extend the sleep interval. This algorithm
combines short idle intervals in the schedule to generate long sleep
intervals and saves transition overheads. LC-DP works on the same
mechanism for the static priority schedulers. The proposed algo-
rithm needs external specialised hardware to manage such mecha-
nism online. Baptiste [5] developed a polynomial time algorithm
to minimise the static power consumption and transition overhead
of the non DVFS system with unit-sized RT aperiodic tasks.

Some efforts were made to combine the leakage-aware schedul-
ing with DVFS to minimise the overall energy consumption. Irani
et al. [16] considered shutdown in combination with DVFS and
proposed a 3-competitive1 offline and a constant-competitive ratio
online algorithm. They assume a continuous spectrum of avail-
able frequencies, an execution model with an inverse relation of
frequency with execution time and an external hardware. Niu and
Quan [25] addressed the dynamic and leakage power consumption
simultaneously on a DVFS enabled processor for hard real-time
systems. Their proposed algorithm is based on the latest arrival
time of jobs estimated by expanding the schedule for the hyper-
period. It cannot be used online due to extensive analysis over-
head. The algorithm works with a given set of jobs with constrained
deadlines. However, in real-time system it is common to have se-
quence of infinite job releases and their restrictive approach does
not support such a model. Jejurikar et al. [20] improved LC-EDF
and integrated it with DVFS to minimise the total power consump-
tion. They also determined the critical speed ⌘

crit

that provides
the lower bound on the processor frequency to minimise the energy
consumption per cycle. They proved that the procrastination inter-
val determined by their algorithm is always greater than or equal to
the one estimated by the LC-EDF algorithm. Nevertheless, they
did not relax on the requirement of the additional hardware.

Jejurikar et al. [18] showed that LC-DP originally proposed by
Lee et al. [21] may cause some of the tasks to miss their dead-
lines. They improved the original algorithm and combined it with
their DVFS algorithm to reduce both dynamic and static power con-
sumption. However, their system model is based on the same as-
sumptions [20, 21]. Later on Chen and Kuo [8] determined some

1An algorithm is termed as competitive if its competitive ratio,
i.e. ratio between the performance of the algorithm and the opti-
mal offline algorithm, is bounded by a constant number.

timing anomalies in the work of Jejurikar et al. [18] and showed that
their approach still might lead to some tasks missing their dead-
lines. They proposed another two-phase algorithm that estimates
the frequency and the procrastination interval offline, and predicts
shutdown instances online. The task not executing for its worst
case execution time generates spare capacity in the schedule slack.
The slack reclamation algorithm (SRA) of Jejurikar and Gupta [19]
reclaims such slack which is used to further procrastinate or slow
down the execution of the tasks to minimise the energy. Their pro-
posed slack distribution policy either assigns entirely the dynami-
cally reclaimed slack to slowdown or distributes it between slow-
down and procrastination. SRA also needs an external hardware to
implement the algorithm.

Chetto and Chetto [10] worked on identification of temporal lo-
cality and duration of idle intervals for the periodic task model.
Later, these results were extended by Silly to the scheduling of pe-
riodic and soft aperiodic tasks with resource constraints [28], and
provided a framework for the scheduling of periodic and non pre-
emptable tasks [11]. These works have tackled the similar problem
as the one addressed in this paper with the different objective to
co-schedule the aperiodic tasks in the presence of periodic task-set.
Huang et al. [14,15] estimated the procrastination interval for a de-
vice to activate the shutdown by predicting future events using RT
calculus [29] and ensured schedulability with RT interfaces [30].

The scope of this paper is the procrastination scheduling [19–
21]. In this framework, the procrastination interval is revisited on
the arrival of each task during the sleep interval. The estimated
procrastination interval depends on the task-properties. This re-
search aims to provide a new mechanism to reduce the pessimism
involved in the state-of-the-art while estimating the procrastination
interval and to extend the results to the sporadic constrained dead-
lines task-model. Last but not least, the sensitivity analysis [3,4,31]
provides tools to compute the tolerance over the execution time and
the deadline reductions of the tasks. These techniques can also be
tweaked and used to compute the procrastination interval of a task.

3. SYSTEM MODEL
The sporadic constrained deadline task model is assumed in this

research, where a task-set ⌧ def
= h⌧1, ⌧2, . . . , ⌧`i is composed of `

independent tasks. Each task ⌧
i

generates a potentially infinite se-
quence of jobs and is characterised by a 3-tuple ⌧

i

= hC
i

, D
i

, T
i

i,
where C

i

is the worst-case execution time, D
i

is the relative dead-
line and T

i

� D
i

is the minimum inter-arrival time between two
consecutive jobs of ⌧

i

. These parameters are real-valued and given
with the following interpretation. The kth job j

i,k

of ⌧
i

is defined
as j

i,k

def
= hr

i,k

, c
i,k

, d
i,k

i, where r
i,k

is the absolute release time
(r

i,k

� r
i,k�1 � T

i

), c
i,k

 C
i

is the actual execution time and
d
i,k

def
= r

i,k

+ D
i

is the absolute deadline. The hyper-period L⇤

of ⌧ is defined as the least common multiple of the tasks periods,
i.e. L⇤ def

= LCM {T1, T2, · · · , T`

}. The notion of LCM is ex-
tended to real numbers as follows:

LCM(a, b)
def
= inf{x 2 R+ : 9p, q 2 N+, x = pa = qb}

(see [7] for further details). The utilisation of task ⌧
i

is U
i

def
=

C
i

T
i

and the system utilisation is U
def
=

P

8⌧i2⌧

Ci
Ti

. Tasks are sched-
uled using the earliest deadline first algorithm (EDF) [22] and pre-
emption is allowed at no cost or penalty.

This work assumes a single processor which has active and idle
states with power consumption of P

A

and P
I

, respectively. A set of
N sleep states with different characteristics is assumed. Each sleep
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Figure 1: “Accumulated delays under EDF scheduling [21]”

state S
n

def
= hP

n

, tr
n

, E
n

i, where P
n

is the power consumption
in the sleep state and E

n

is the energy overhead associated to a
complete sleep transition. A sleep state has the transition overhead
time of going into a sleep state and the wake-up transition overhead
from a sleep state to an active state. For the sake of simplicity, it
is assumed these two transition overheads are equal and denoted as
tr

n

. Each sleep state has a break-even-time bet
n

computed through
known approaches [1,9,12]. The definition of bet

n

implies that the
system will save energy if a sleep state S

n

is initiated for more than
bet

n

. A processor completes its transition once initiated.

4. PROCRASTINATION INTERVAL
Initially, this work assumes implicit deadline task model i.e.,

D
i

= T
i

, 8⌧
i

2 ⌧ , to compare against the state-of-the-art which
assumes this model. Later in Section 4.5, this restriction is relaxed
to a more general case, i.e., the constrained deadline task model,
where tasks may have deadlines less than their periods (D

i

 T
i

).
Formally, the procrastination interval is defined as follows.

DEFINITION 1 (PROCRASTINATION INTERVAL). The procras-
tination interval is the maximum time interval allowed to delay
the execution of the ready tasks without violating any timing con-
straints of the system.

The longest duration of such an interval is desired to reduce the
energy consumption. Before presenting our procrastination tech-
nique, existing ones are discussed.

4.1 Limitations of the Existing Procrastination
Approaches

In the leakage-aware procrastination scheduling, Lee et al. [21]
initially proposed the online mechanism LC-EDF. To understand
the basic principle behind this algorithm, let us consider the ex-
ample given in Figure 1, taken from the work of Lee et al. [21].
Assume that task ⌧

k

is the first which arrives in a sleep mode and
has a deadline D

k

. The procrastination interval �
k

of ⌧
k

is com-

puted with the condition
X

8⌧i2⌧ :i 6=k

C
i

T
i

+
C

k

+�
k

T
k

= 1. Suppose

t is the current time then the timer is initialised with t + �
k

to
wake-up the system. After the timer initialisation, a procrastina-
tion interval is only recomputed when a newly arrived task has the
highest priority when compared to other tasks in the ready queue.
For instance, after �

k

 �
k

time units, ⌧
b

arrives with a deadline
D

b

< D
k

; a new procrastination interval t + �
b

is determined

as
X

8⌧i2⌧ :i/2{k,b}

C
i

T
i

+
C

k

+ �
k

T
k

+
C

b

+�
b

T
b

= 1. The wake-up

timer is reset to t + �
b

. Similarly, for any other task ⌧
j

with the
highest priority when compared to the tasks in the ready queue, the
procrastination interval �

j

in the sleep state of a processor is de-
termined by using Equation 1, where lp(j) is the set of indices of
the tasks arrived before ⌧

j

and with deadlines longer than ⌧
j

. In
this equation, �

i

is the interval between an arrival of any job of task
⌧
i

(having highest priority at that instant) and any next task arrival
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0 7 14 21 28

0 14 28
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Figure 2: Schedule with ⌧1 = h2, 4, 4i, ⌧2 = h3, 7, 7i and
⌧3 = h0.25, 14, 14i

having priority higher than ⌧
i

in the system’s sleep state. The limi-
tations of LC-EDF are the increased online complexity to maintain
a track of �

i

and considering the utilisation of the low priority tasks.
X

8⌧i2⌧ :i/2lp(j),i 6=j

C
i

T
i

+
X

i2lp(j)

C
i

+ �
i

T
i

+
C

j

+�
j

T
j

= 1 (1)

Jejurikar et al. [20] proposed an offline method to compute the
procrastination interval for each task and thus reducing the online
complexity. In the online phase, the first task that arrives in sleep
mode initialises the wake-up timer ⇣ with its procrastination inter-
val. The timer ⇣ counts down with every clock cycle. If another
task (say ⌧

n

) arrives before the timer expires, the timer value is
adjusted as follows: ⇣  min(⇣, t + Z

n

), where t is the current
time and Z

n

is the procrastination interval. They proposed Theo-
rem 1 to estimate the procrastination intervals of the tasks offline,
where ⌘

k

is the frequency of the processor. The value of ⌘
k

is set
to 1, i.e., maximum frequency, for the ease of presentation. They
proved that their derived technique is superior to LC-EDF method
to compute the procrastination intervals.

THEOREM 1. [20] Given tasks in ⌧ are ordered in non-decreasing
order of their periods, the procrastination algorithm guarantees all
task deadlines if the procrastination interval Z

i

of each task ⌧
i

sat-
isfies the following two conditions:

8⌧
i

2 ⌧,
Z

i

T
i

+
X

8⌧k2⌧ :ki

1
⌘
k

C
k

T
k

 1 (2)

and 8k < i, Z
k

 Z
i

(3)

While computing the procrastination interval for task ⌧
i

, Jejurikar
et al. [20] only considers the utilisation of the tasks having priority
greater than or equal to ⌧

i

(assuming a synchronous release of all
tasks also known as critical instant in literature). Moreover, if any
of the low priority task produce a low procrastination interval when
compared to the high priority tasks, the procrastination interval of
all the high priority tasks are readjusted by considering Equation 3.
This latter equation is driven by the online approach of Jejurikar et
al. (see [20] for details). Though the proposed method has its mer-
its as it reduces the set of tasks considered for the procrastination of
each task, its limitation is that it approximates the procrastination
intervals by considering their utilisations. Let us demonstrate this
shortcoming with the following example.

Example 1: Assume a task-set consisting of three tasks ⌧1 =
h2, 4, 4i, ⌧2 = h3, 7, 7i and ⌧3 = h0.25, 14, 14i. Rearranging
Equation 2, Z

i

can be computed with Equation 4 as given below.

Z1 = (1� 2
4
)4 = 2

Z2 = (1� 2
4
� 3

7
)7 = 0.5

Z3 = (1� 2
4
� 3

7
� 0.25

14
)14 = 0.75



Final values after applying Equation 3 are Z1 = 0.5, Z2 = 0.5 and
Z3 = 0.75.

Z
i

=

0

@1�
X

8⌧k2⌧ :ki

C
k

T
k

1

AT
i

(4)

Figure 2 shows the schedule for the aforementioned example.
With a careful observation it can be seen that the procrastination in-
terval of ⌧1, ⌧2 and ⌧3 can be extended to 1, 1 and 1.5 time units re-
spectively without causing any deadline miss in the system, which
represents 50% gain over the method used by Jejurikar et al. [20].
This example illustrates that substantial energy gains can be achieved
by improving the method to compute the procrastination intervals
of the tasks.

4.2 Proposed Approach: Demand Bound Func-
tion Based Procrastination (PDBF)

The demand bound function (DBF) [6, 26] is used in this paper
to compute the procrastination interval of the tasks in the context of
uniprocessor scheduling. The DBF is an abstraction of the compu-
tation requirements of tasks which has been observed to correlate
very closely with schedulability property of the task-set.

DEFINITION 2. (DBF [6]): The demand for any constrained
deadline task ⌧

i

and positive time t, denoted by DBF(⌧
i

, t), is the
maximum cumulative execution requirement of jobs of task ⌧

i

in
any interval of length t. Formally, DBF(⌧

i

, t) is presented in Equa-
tion 5.

8t � 0, DBF(⌧
i

, t)
def
=

✓�

t�D
i

T
i

⌫

+ 1

◆

· C
i

(5)

From Equation 5, it is easy to see that DBF(⌧
i

, t) is a step-case
function in t with first step occurring at time t = D

i

and subse-
quent steps separated by exactly T

i

time units. The DBF for the
whole task-set is DBF(⌧, t)

def
=

X

⌧i2⌧

DBF(⌧
i

, t). The DBF based

procrastination (PDBF) scheme achieves extended sleep intervals
for any task-set. For instance, consider the DBF of the aforemen-
tioned example in Figure 3. Three stair case functions show the
DBF of ⌧1, ⌧1+ ⌧2 and ⌧1+ ⌧2+ ⌧3. The straight line with a slope
of 1 represents the supply bound function (SBF) of the processor.

PDBF uses the same logic as the one given in Theorem 1, i.e.,
synchronous release of all tasks sorted in a non-decreasing order of
their deadlines and computes the procrastination interval of a task
with DBF instead of considering tasks utilisations. Indeed when
D

i

 T
i

the utilisation is no longer a good metric for the com-
putation requirement of the tasks whereas the PDBF approach is
easily extensible. To compute the maximum procrastination inter-
val of a task ⌧

i

, the PDBF approach subtracts the demand of the
task ⌧

i

along with the demand of the all higher priority jobs from
the SBF. It has to be noted that this difference is computed between
the first deadline of task ⌧

i

and the end of the hyper-period (the rea-
son is explained in Theorem 2). Due to the stair-case property of
the DBF, it is sufficient to compute the difference at the deadlines.
Let �

i

represent the minimum difference of SBF and the demand,
then for the given example, �1 = 2, �2 = 1 and �3 = 1.5. How-
ever, Theorem 1 does not allow to have procrastination interval of
⌧1 greater than that of ⌧2, therefore, the value of �1 is scaled down
to 1 as well, which implies �1 = 1, �2 = 1 and �3 = 1.5. When
D

i

= T
i

, the DBF(⌧
i

, t) of task ⌧
i

presented in Equation 5 can be
rewritten as shown in Equation 6.

DBF
I

(⌧
i

, t) =

�

t

T
i

⌫

C
i

as t � 0 (6)
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THEOREM 2. Given tasks in ⌧ are ordered in a non-decreasing
order of their relative deadlines, the PDBF scheme preserves all
task deadlines, if the maximum procrastination interval of task ⌧

i

,
denoted by �

i

, is computed with Equation 7 while respecting the
condition given in Equation 8.

�
i

def
= min
8⌧

j

2 ⌧ : j  i, 8t � 0

8

<

:

t�
X

8⌧k2⌧ :ki

DBF
I

(⌧
k

, t)

9

=

;

(7)

= min
8⌧

j

2 ⌧ : j  i, 8t 2M(i, j)

8

<

:

t�
X

8⌧k2⌧ :ki

�

t

T
k

⌫

C
k

9

=

;

where M(i, j) =
n

n
j

T
j

:
l

Ti
Tj

m

 n
j


j

L

⇤

Tj

ko

8k < i, �
k

 �
i

(8)

PROOF SKETCH. Suppose a task ⌧
i

arrives in the sleep state.
The timer is set to the procrastination interval computed with Equa-
tion 7 respecting the condition given in Equation 8. The time in-
terval to wake up the system can only be decreased with an arrival
of new task. This procrastination interval can be seen as an addi-
tional task ⌧

proc

with a priority equal to the highest priority task,
execution time equal to the wake-up sleep interval and it executes
before the next busy period. Equation 8 ensures that all the tasks
with deadlines greater than or equal to ⌧

i

will have procrastina-
tion interval greater than or equal to �

i

. Therefore, ⌧
proc

will not
increase the system demand beyond the SBF in the presence of
low priority tasks. Furthermore, the higher priority tasks can only
shorten the execution time of ⌧

proc

(i.e., procrastination interval)
on their arrival to respect their deadlines and the deadlines of the
other tasks. The sleep interval is bounded by the procrastination
interval of the first task and it only decreases with the new arrivals,
therefore, based on the previous logic it will not affect the schedula-
bility of any high priority task. Moreover, it is sufficient to consider
the deadlines in the interval [D

i

, L⇤] as the procrastination interval
of a task is only considered when it has the highest priority on its
arrival in the ready queue.



4.3 Procrastination Interval Improvement
The best known maximum procrastination interval is the one de-

rived in Jejurikar et al. [20] method for each task in the state-of-
the-art. This is obtained by considering the worst-case scenario
i.e., critical instant. This section shows that the procrastination in-
terval computed for any task through PDBF will always be greater
than or equal to Z

i

(see Lemma 1).

LEMMA 1. Given tasks in ⌧ are ordered in a non-decreasing
order of their relative deadlines, the procrastination interval �

i

for any task ⌧
i

computed with PDBF scheme is always greater
than or equal to the procrastination interval Z

i

computed through
Jejurikar et al. [20] method, i.e.,

min
8⌧

j

2 ⌧ : j  i, 8t 2M(i, j)
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where M(i, j) =

⇢

n
j

T
j

:

⇠

T
i

T
j

⇡

 n
j


�

L⇤

T
j

⌫�

PROOF. Assume, all the tasks are sorted in non-decreasing order
of their periods/deadlines. To prove the inequality given in Equa-
tion 9, we need to show that for all the deadlines between the first
deadline of task ⌧

i

and the hyper-period L⇤, the procrastination
interval computed with PDBF is greater than or equal to Z

i

. Je-
jurikar et al. [20] computes Z

i

on the deadline of the task under
consideration. To compare these two approaches, their functions
are interpolated for all points in the demand bound function. To
achieve this, let us consider the example depicted in Figure 2, a

straight line is drawn between two points A(T
i

, T
i

X

8⌧k2⌧ :ki

C
k

T
k

)

and B(L⇤, L⇤
X

8⌧k2⌧ :ki

C
k

T
k

) as shown in Figure 4. This figure

illustrates the approximation by the straight line while the actual
demand with the staircase function. Note: Figure 4 only shows it
for �2 and Z2. The slope of this line is equal to

P

8⌧k2⌧ :ki

U
k

.
To demonstrate that �

i

� Z
i

, it is sufficient to prove this inequality
in [T

i

, L⇤] (see Theorem 2). This interval is divided into two cases.

a) At time instances T
i

and L⇤, i.e., the deadline of ⌧
i

and the
hyper-period respectively.

b) An interval between time instant T
i

and L⇤, i.e., (A,B).

Case a) At the first time instant T
i

, Equation 10 compares the two
approaches.
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Equation 11 shows that at time instant T
i

, Equation 9 holds. The
same reasoning can be applied at time instant L⇤ (i.e., by replacing
the T

i

with L⇤ in Equation 10).
Case b: As already mentioned in the beginning of this proof,

the demand of Jejurikar et al. [20] in an interval (A,B) is com-
puted with a straight line of slope

P

8⌧k2⌧ :ki

U
k

and is com-
pared against DBF at all deadlines. The equation of the line is
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Figure 4: Procrastination Interval for ⌧2

y = mx + c, where m is a slope and c is a y-intercept. The
y-intercept is zero (i.e., c = 0) as the line passes through the ori-
gin. Hence, the demand determined through the Jejurikar et al. [20]
method is given in Equation 12.

y = x
X

8⌧k2⌧ :ki

C
k

T
k

(12)

Now consider any deadline that lies in between T
i

and L⇤ and
then compare its y-coordinate to show that the demand of such
deadlines lies below or on the line as the one given in Equation 12.

Assume t 2 M(i, j) = {n
j

T
j

:

⇠

T
i

T
j

⇡

< n
j

<

�

L⇤

T
j

⌫

}. M(i, j)

describes the set of all the deadlines between T
i

and L⇤. As such
n
j

T
j

will be a deadline in an interval (A,B) and its demand is
X

8⌧k2⌧ :ki

�

n
j

T
j

T
k

⌫

C
k

(Equation 6). Let us put the deadline n
j

T
j

in the x-coordinate of Equation 12 to get the resulting demand of

Jejurikar et al. [20] and compare it against
X

8⌧k2⌧ :ki

�

n
j

T
j

T
k

⌫
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k

as given in Equation 13.
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Equation 14 is always true as x � bxc , 8x. Thus, the curve
of DBF is always below or on the line for all the deadlines in any
interval (A,B).

As the demand of Jejurikar et al. [20] method for all deadlines in
the interval [A;B] (case a and b) are greater than or equal to DBF,
the lemma follows.



4.4 Minimum Idle interval Improvements
The minimum bound on the idle period in the schedule is an

important metric in procrastination scheduling to select the most
efficient sleep state S

n

offline. It is the length of the shortest idle
interval in the schedule and all the idle intervals will be greater than
or equal to this bound. To reduce the online complexity, a proces-
sor can choose its sleep state based on this interval that minimises
the energy consumption in sleep state while respecting the temporal
constraint. By maximising the minimum bound on the idle period,
system increase the chance to use the better sleep states (when sys-
tem has more than one sleep state [1]) which in turn reduces the
energy consumption. Therefore, it is also important to maximise
the minimum bound on the idle interval.

LEMMA 2. Given tasks in ⌧ are ordered in a non-decreasing
order of their relative deadlines, the minimum idle period guar-
anteed by PDBF scheme is always greater than or equal to the
minimum idle period guaranteed by Jejurikar et al. [20].

PROOF. Assume all the tasks are sorted in non-decreasing order
of their periods/deadlines. The minimum procrastination interval
Z

min

determined through Jejurikar et al. [20] algorithm is equal
to Z

min

= min
8⌧i2⌧

Z
i

. Similarly, the minimum idle period guaran-

teed by the PDBF scheme �
min

= min
8⌧i2⌧

�
i

. To prove the above

mentioned lemma, one needs to prove Equation 15.
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where M(i, j) =

(

n
j

T
j

:

& min
8⌧i2⌧
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Tj

'

 n
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
j

L

⇤
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k

)

In order to prove this inequality, we have to show that for t  L⇤

the demand of the given task-set will remain below or will be equal
to the demand computed by Jejurikar et al. [20] method, where

t 2 M(i, j) =

⇢

n
j

T
j

: 1  n
j


�

L⇤

T
j

⌫�

. In order words, all

the deadlines are checked for the difference. To interpolate the de-
mand computed by Jejurikar et al. the demand on the neighbouring
deadlines of a task are connected with a straight line. Finally, the
demand beyond the last period is extended with a line having a
slope equal to the system utilisation. Figure 5 shows the demand
of the given example with both DBF and the procrastination algo-
rithm proposed by [20]. For Jejurikar et al. [20] algorithm, the de-
mand of the tasks computed on their first deadline are represented
with A, B and C points. Points A and B are connected with a
straight line to compare against all the deadlines in the DBF hap-
pening in between these two points. Similarly, B and C points are
connected, and the demand beyond C for procrastination algorithm
is extended with a line having a slope equal to the utilisation of the
task-set.

Since the DBF needs to be checked at more instances than A,B
and C in the procrastination algorithm, we need to consider con-
straints. The objective is to find the minimal distance with the unity
line and the demand. For all intervals between successive points
A,B and C, it is true that the smallest gap between the unity line
and the demand within these intervals can be found either of the
two delimiting points (for example, for interval [A,B], the small-
est gap can either occur at A or B). Since U  1, it is evident
that beyond the largest period, the largest gap can be found at the
largest period point. In order to demonstrate that the gap computed
with the DBF based value is always greater than or equal to that of
procrastination algorithm [20] it is sufficient to show that the DBF
test dominates in the following cases.
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Figure 5: DBF vs SRA

a) First deadline of every task

b) The demand computed by the DBF is always smaller than the
connecting lines of the first deadline of all tasks.

Case a) To get the first deadline of every task, we set t = T
i

in
Equation 15,
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Equation 16 shows for the first case that Equation 15 holds.
Case b) Suppose that ⌧

i�1 is the task preceding ⌧
i

. This case
checks Equation 15 for all the deadlines that exist between T

i�1

and T
i

, i.e.,
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Equation 17 is the general form of the equation of a line between
two points (x1, y1) and (x2, y2). In the representation of the DBF,



the x-axis and y-axis represent the time and the demand, respec-
tively. Let us assume the coordinates at the deadlines of ⌧

i�1 and ⌧
i

are (x1, y1) =
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1

A, respectively. To find the equation be-

tween these two points, substitute their coordinates into Equation 17
correspondingly as shown in Equation 18.
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Now consider any deadline that lies in between the deadlines of
⌧
i�1 and ⌧

i

(i.e., between (x1, y1) and (x2, y2)). It is shown that
the demand (y-coordinate) of such deadlines will be below or on
the line given in Equation 19. To this end, let us say that any dead-
line between (x1, y1) and (x2, y2) is specified by (x

m

, y
m

)
def
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A. Substitute the x-coordinate

of this selected point (x
m

, y
m

) into Equation 19 and compare the
resulting value of the y-coordinate with its y

m

. If it is greater than
or equal to y

m

then DBF is below or on the line. The resulting ex-
pression is shown in Equation 20.
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Point (x
m

, y
m

) is in between T
i�1 and T
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, therefore the factor
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Hence, it follows that
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Obviously, n
j

T
j

� T
i�1 is greater than 0 as n

j

T
j

> T
i�1.

Hence, all the deadlines such that

8⌧
k

2 ⌧, t 2M(i, k) = {T
i�1  n

k

T
k

 T
i

}

lie below the line represented by Equation 19.
As the difference computed between the supply and the demand

for all deadlines (case a and b) are greater than or equal to their
corresponding difference computed through Jejurikar et al. [20] al-
gorithm, lemma follows.

4.5 Extensions to the constrained deadline task
model

The state-of-the-art procrastination algorithms [20,21] cannot be
extended for constrained deadline task model (D

i

 T
i

) in their
current form. One of the advantages of the PDBF approach is
it straight forward extension to this model. For the constrained
deadline task model, Equation 7 can be rewritten in its general form
by replacing DBF

I

(⌧
k

, t) with DBF(⌧
k

, t) as given Equation 22,
where the set M(i, j) is substituted by
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Similarly, the minimum idle interval for constrained deadline task
model is given in Equation 23, where
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Equation 23 aligns with the results provided by of Chetto et
al. [10, 11, 28] on the slack time estimation to schedule the ape-
riodic task in the presence of periodic task-set.

4.6 Optimality of PDBF

In this section, it is shown that the minimum feasible sleep inter-
val of a task-set and the procrastination interval of individual tasks
determined through PDBF is optimal, i.e., maximal without violat-
ing any temporal constraint. The optimal procrastination interval
as well as the minimum feasible sleep interval can be determined
by using techniques borrowed from the sensitivity analysis frame-
work [13] or Chetto et al. [11]. However, due to space limitations,
the DBF-based analysis is used to circumvent this issue. The in-
terested readers are directed to the technical report [2] for a formal
proof using the sensitivity analysis.

THEOREM 3. The minimum idle period determined by the PDBF
approach for a constrained deadline task-set is optimal.

PROOF. Since sleep transitions are taken in idle intervals, only
the critical instant has to be considered. Lemma 2 demonstrates that
�
min

� Z
min

and the chosen sleep interval is safe i.e., no deadline
is missed in the resulting schedule. Hence, �

min

is not optimistic.
At the same time the DBF based analysis demonstrates a concrete
scheduling scenario. Thus, �

min

is clearly not pessimistic, as the
derived value by the PDBF approach can actually occur. Since the
derived sleep interval �

min

is at the same time neither pessimistic
nor optimistic, it is safe and optimal, thus the theorem follows.

THEOREM 4. The procrastination interval determined by the
PDBF approach for individual task in a constrained deadline task
model is optimal.

PROOF. In this case, instead of considering the whole task-set
⌧ , only the set of tasks with a priority greater than or equal the
current one are taken into account. Theorem 2 shows that it is suf-
ficient to consider only the set of deadlines after the first deadline
of the task under analysis, including the first deadline of the task
as well. Afterwards, the proof follows the same principle as that of
Theorem 3 where the given procrastination interval has been shown
neither optimistic nor pessimistic.
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Figure 7: Variation in Cb (Sleep Interval)

5. COMPLEXITY COMPARISON
The complexity of the state-of-the-art approaches as well as that

of the proposed approach to compute the procrastination interval
can be categorised as offline and online complexity. The offline
complexity of the LC-EDF algorithm [21] is zero as all the com-
putations are performed online. Jejurikar et al. [20] method has an
offline complexity of O(`2). The PDBF approach has an offline
complexity of O(`h), where h =

P

8⌧i2⌧

L

⇤

Ti
is the number of

jobs in the hyper-period.
The online complexity of the PDBF approach and Jejurikar’s

method is the same and equals to O(`). The LC-EDF algorithm
has an online complexity of O(`2). This implies that the external
hardware designed for Jejurikar’s method can also be used for the
PDBF approach as both work on the same principle. On the one
hand, the procrastination based energy saving algorithms proposed
for Jejurikar’s method can be easily integrated with the PDBF ap-
proach without any extra effort. On the other hand, the LC-EDF
algorithm needs complex external hardware due to the mechanism
used to compute procrastination interval online.

6. EVALUATION
The discrete event simulator SPARTS (Simulator for Power Aware

and Real-Time Systems) [23, 24] is used to evaluate the effective-
ness of the PDBF approach. SPARTS is used with the parameters
mentioned in Table 1, where underlined values are the default val-
ues if not mentioned otherwise in the description of the experiment.
The parameters Cb and � are used to generate wide variety of dif-
ferent tasks and their subsequent varying jobs. Suppose, Cb

i

and
�
i

are the helper variables to provide the bounds on the best-case
execution time (BCET) and sporadic delay of a task respectively.
Then Cb

i

and �
i

are randomly selected for the given tasks in inter-
val C

i

· [Cb, 1] and T
i

· [�, 1] respectively. Similarly, the actual exe-
cution time and sporadic delay of the individual jobs are randomly
selected from the following intervals [Cb

i

, C
i

] and [T
i

, T
i

+ �
i

] re-
spectively. The periods of the task-set are chosen from an interval,
T
min

[1,PUB], where T
min

it the lower bound and PUB (Period
Upper Bound) is the variable used to define the upper bound on
the interval. Each task-set with different parameters mentioned in
Table 1 is simulated for 100 times with different seed values to the
random number generator and averaged. The simulation time of
each task-set is 100sec.

The SRA algorithm [19] is an energy saving approach that takes
procrastination intervals of the tasks determined through Jejurikar’s
method as an input. For a fair comparison, the same algorithm

Table 1: Overview of Simulator Parameters
Parameters Values
Task-set sizes |⌧ | 2 {10, 20, . . . , 50, . . . , 100}
T
min

2 {30, 40, . . . , 100}
PUB 2 {1.1, 1.2, . . . , 1.5, . . . , 5}
BCET Limit Cb 2 {0.2, 0.25, . . . , 1}
Sporadic Delay Limit � 2 {0, 0.05, . . . , 1}

Table 2: Different Sleep States Parameters
No. Power Mode tr

n

(µs) bet
n

(µs) P
n

E
n

1. Doze 5 225 3.7 42
2. Nap 100 450 2.6 950
3. Sleep 200 800 2.2 1980
4. Deep Sleep 500 1400 0.6 5750
5. Typical 0 0 4.7 0
6. Maximum - - 12.1 -

is used by just replacing the input phase with PDBF determined
procrastination intervals. For simplicity sake, it is assumed that all
the slack in the schedule (spare capacity) is reserved for the shut-
down of the processor. Both variations of SRA are implemented
in SPARTS and their sleep state is selected offline based on their
respective minimum idle interval. It has already been shown in the
state-of-the-art that SRA performs better than LC-EDF, hence, this
section restrict the comparison to SRA.

The power model used for simulations is based on the Freescale
PowerQUICC III Integrated Communications Processor MPC8536
[27]. The power consumption values are taken from its data sheet
for different modes (Maximum, Typical, Doze, Nap, Sleep, Deep
Sleep). The core frequency of 1500 MHz and core voltage of 1.1V
is used for all the experiments. The transition overheads are not
mentioned in their data sheet, therefore, they are assumed for four
different sleep states. The transition overhead of the typical mode
that corresponds to the idle state in our system model is considered
negligible. The power values given in Table 2 sum up core power
and platform power consumption. More details are available in the
reference manual [27].

Figure 6 presents the gain of PDBF over SRA with respect to
average sleep interval for different values of U and PUB. The
average sleep interval is computed by accumulating the idle time
in the scheduling and dividing it by the number of sleep states.
The gain of PDBF increases with an increase in system utilisation.
Furthermore, the gain also increases by widening the interval to
select T

i

of the tasks. At low utilisation PDBF and SRA have
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Figure 8: Variation in |⌧ | (Sleep Interval)
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Figure 10: Variation in Cb (REC)
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Figure 11: Variation in |⌧ | (REC)

enough slack to initiate longer sleep intervals. However, with an
increase in system utilisation, the slack in the system decreases,
and the procrastination intervals lengths have a high impact on the
sleep intervals. Another reason for a high gain at high utilisation is
the difference of minimum idle interval between SRA and PDBF.
It has been shown in Lemma 2 that �

min

� Z
min

. Therefore,
SRA starts to lose efficient sleep states at high utilisation, causing
its frequent switching. In the best case, the average increase in the
sleep interval is approximately 75%.

The gain in average sleep interval is also computed by varying
the utilisation against the BCET Limit Cb as shown in Figure 7.
Mostly, the gain occurs due to an increase in system utilisation,
while the variation in Cb has a minute effect at a very high utilisa-
tion of 0.95. As both algorithms use the same mechanism to man-
age the slack, the difference is negligible. The change in sporadic
delay limit � is also observed in the experiments against different
values of U . The effect of � is negligible as well. The variation in
task-set size is demonstrated in Figure 8 against different values of
U . In the best case (i.e., |⌧ | = 100), the gain reaches 75%. It is ev-
ident that the increase in task-set size increases the gain in average
sleep intervals. This can be explained as follows. The procrasti-
nation interval of a high priority task is always bounded by its low
priority tasks. The difference between the procrastination intervals
of different tasks between PDBF and SRA has a cascading effect.
For instance, a low priority task ⌧

i

having a procrastination interval

Z
i

smaller than that of a high priority task will have its Z
i

scaled
down due to Equation 3. If Z

i

< �
i

, then not only the difference
exists at level ⌧

i

but also 8⌧
k

: k < i. Larger task-set size has
higher probability to get this cascading effect.

The active energy consumption of the system is the same in SRA
and PDBF as only a single active state is assumed in this work.
The difference comes in the energy consumption of the system in
idle intervals and termed as reducible energy consumption (REC).
The gain of PDBF over SRA with respect to REC is compared
for different parameters against system utilisation as demonstrated
in Figure 9, Figure 10 and Figure 11. In the best case, the gain
in REC is approximately 55%. All the graphs have more or less
similar trends as explained in the description of their corresponding
results with average sleep intervals.

7. CONCLUSIONS
The PDBF approach is optimal to compute the procrastination

intervals of a given task-set. It has been shown theoretically and
experimental that PDBF dominates over SRA. The average sleep
interval can be increased up to 75%, while the REC can be raised
up to 55%. The online complexity of PDBF is the same when
compare to that of SRA. The relaxation to the constrained deadline
task model is an additional benefit of the proposed approach. In
the future, it is intended to extend it to heterogeneous multicore
platforms and also to the dependent task model.
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