

Multiprocessor Scheduling with Few
Preemptions

Böjrn Andersson
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-060811

Version: 1.0

Date: August 2006

Multiprocessor Scheduling with Few Preemptions
Böjrn ANDERSSON, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal of
meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they can
migrate between processors. We propose an algorithm with a utilization bound of 66% and with few
preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization
bound of 100%.

Multiprocessor Scheduling with Few Preemptions

Björn Andersson and Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson,emt}@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal

of meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they

can migrate between processors. We propose an algorithm with a utilization bound of 66% and with few

preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization

bound of 100%.

1. Introduction

Consider the problem of preemptive scheduling of n periodically arriving tasks on m identical processors. A task τi can

arrive at any time when it arrives for the first time, but then it arrives periodically with a period Ti. Every time task τi

arrives, it needs to execute Ci time units before it arrives again. A processor can execute at most one task at a time, and a

task cannot execute on two or more processors simultaneously. The utilization is defined as Us = (1/m) × ∑Ci /Ti. The

utilization bound UBA of an algorithm A is the maximum number such that if Us ≤ UBA then all tasks meet their deadlines

when scheduled by algorithm A.

The design space of preemptive multiprocessor scheduling algorithms can be categorized as partitioned or global

scheduling [1, 2]. Global scheduling algorithms store in one queue (shared among all processors) all tasks that have arrived

but have not finished their execution. At any time instant the m highest-priority tasks in that queue are selected for

execution on the m processors using preemption and migration if necessary. In contrast, partitioned scheduling algorithms

partition the set of tasks such that all tasks in a partition are assigned to the same processor. Tasks are not allowed to

migrate from one processor to another processor, and hence the multiprocessor scheduling problem is transformed into m

uniprocessor scheduling problems. This simplifies scheduling and schedulability, since a large number of results available

for uniprocessor scheduling can then be reused. Unfortunately, all partitioned multiprocessor scheduling algorithms have a

utilization bound of 50% or less [3]. Conversely, global scheduling can achieve a utilization bound of 100% by using a

1

family of algorithms called pfair scheduling [4, 5]. Regrettably, this utilization bound comes at a price: all task parameters

must be multiples of a time quantum, and in every time quantum a new task is selected for execution. As a result, the

number of preemptions can be significantly high. We believe (as does Baker [6]) that it is desirable to achieve a higher

(>50%) utilization bound without incurring the cost of an undesirable number of preemptions.

Therefore, in this paper we propose a multiprocessor scheduling algorithm with a utilization bound of 66%. It causes

provably few preemptions: the number of preemptions divided by the number of jobs is at most 4. Of those algorithms in

previous works that achieve the utilization bound (66%) of our algorithm, none of them has a finite number that bounds the

number of preemptions divided by the number of jobs.

The remainder of this paper is organized as follows. Section 2 presents our new algorithm. Section 3 proves its

utilization bound and Section 4 proves an upper bound on the number of preemptions per job. Section 5 offers discussion

on previous work and conclusions.

2. The new algorithm

In order to understand the design of the new algorithm, we will first (in Section 2.1) consider partitioned scheduling of a

specific task set example, with the purpose of stressing how partitioned scheduling may perform poorly. The reasoning on the

example will provide the guiding principles on the design of the proposed new scheduling algorithm, which will then be

formally presented in Sections 2.2 and 2.3.

2.1. Understanding the problem
Consider the following partitioned scheduling example: m processors and n = m + 1 tasks τi with Ti = 1 and

Ci = 0.5 + ε.

In partitioned scheduling, tasks cannot migrate; they are assigned to a processor and always execute there. Since n > m,

there is one processor which is assigned two or more tasks. Therefore, the utilization of this processor will be at least 1 +

2ε, and this is more than 100%. Essentially, by choosing m → ∞ and ε → 0 the task set will have Us → 0.5 and, above all, a

deadline is missed. Hence, the utilization bound of every partitioned scheduling algorithm is 50% or less.

This example stresses the fact that deadlines can be missed simply because a task could not be assigned to a processor,

although there was plenty of idle time in the overall system. The idle time was spread out on different processors and could not

be used. However, if in the same previous example a task is split into two sub-tasks and these sub-tasks are assigned to two

different processors, then it is possible to assign tasks such that the utilization on every processor reaches 100%.

2

Figure 1: Schedule for the example task set using task splitting

Note, however, that sub-tasks of the same task cannot execute simultaneously. A solution to this is a uniprocessor

scheduling algorithm that is aware of tasks on other processors, so that a sub-task on one processor is not executed (even

partially) at the same time as its corresponding sub-task on another processor.

Let us denote the two sub-tasks of a task τi as τi´ and τi″. Note that τi´ and τi″ will have the same periods and will arrive at

the same time. When a task (or sub-task) arrives on any processor, let t0 denote the arrival time, and let t1 denote the time of the

next arrival of a job on any processor. Task τi´ executes (Ci´ / Ti´) × (t1 − t0) time units without preemption and starts executing

at time t0. Task τi″ executes (Ci″ / Ti″) × (t1 − t0) time units without preemption and finishes execution at time t1. Note that τi´

and τi″ execute on different processors and their executions will not overlap in time since the original task τi had Ci /Ti ≤ 1 and

hence Ci´ / Ti´ + Ci″ / Ti″ ≤ 1. We schedule these sub-tasks with the highest priority. The other tasks are scheduled according to

EDF and have lower priority than the sub-tasks. Applying this approach to the same task set example, would correspond to the

schedule illustrated in Figure 1. There are three tasks {τ1, τ2, τ3}, with Ti = 1 and

Ci = 0.5 + ε. These tasks are scheduled on two processors (m = 2): P1 and P2. The task τ2 has been split into two sub-tasks,

τ2´ and τ2″, with T2´ = T2″ = 1 and C2´ = 0.5 - ε, C2″ = 2ε. Using the task splitting approach the task set is schedulable while it

would not be using partitioned scheduling.

time

time0 1

τ2´ executing

τ2″ executing

τ1 executing

P1

P2

τ1 arrivals
τ2 arrivals
τ3 arrivals

Legend:

τ3 executing

task arrival

3

τ1 arrivals
τ2 arrivals
τ3 arrivals

time

time0 1

P1

P2

τ2´ executing

τ2″ executing

τ1 executing

Legend:

τ3 executing

task arrival

Figure 2: Using mirroring on the example in Figure 1 decreases the number of preemptions

In the approach illustrated in Figure 1, task τi´ is always executed at the beginning of the time interval between any two job

arrivals while task τi″ is executed at the end of that time interval. However, by mirroring the schedule of the split tasks in half

of the time intervals fewer preemptions would result. Figure 2 illustrates this for the same task set example.

2.2. Task assignment
We will now describe a general algorithm for assigning tasks to processors and scheduling tasks on a uniprocessor. The

algorithm for assigning tasks to processors is given as pseudo-code in Algorithm 1 (Figure 3). The algorithm assigns tasks to

processors such that on all processors the utilization does not exceed 100%. It has a parameter k which should be selected by

the designer such that 1 ≤ k ≤ m. The algorithm treats heavy and light tasks differently. A task τi is heavy if

Ci /Ti > SEP, otherwise it is light. SEP means separator. The value of SEP is computed at line 4 in Algorithm 1, by calling a

function described in Algorithm 3 (Figure 5). SEP will be used later on in Lemma 1 (Section 3), and the rationale for how to

select it will be better perceived there. For the moment it is sufficient to realize that we select SEP as:

⎪⎩

⎪
⎨
⎧

=

<
+=

mk

mk
k

k
SEP

1
1

(1)

First, the algorithm assigns heavy tasks to their own dedicated processors (at lines 10-13 in Algorithm 1). Doing so at

this early stage in the algorithm improves performance, since the rest of it is devoted to dealing with the light tasks. The

main

4

5

1. for p in 1..m do
2. U[p] := 0 τ[p] := {}
3. end for
4. SEP := calc_SEP
5. Let τheavy denote the set of tasks with Ci/Ti>SEP
6. Let τlight denote the set of tasks with Ci/Ti<=SEP
7. L := |τheavy|
8. Order tasks such that τi with i in 1..L are all in τheavy and τi with i

 in L+1..n are all in τlight
9. if |τheavy|<=m then
10. for i in 1..L do
11. p := i
12. τ[p] := τ[p] ∪{τi} U[p] := U[p] + Ci/Ti
13. end for
14. if |τlight|>0 then
15. if L+1<=m then
16. p := L+1
17. for i in L+1..n do
18. if U[p]+Ci/Ti<=1 then
19. τ[p] := τ[p] ∪{τi} U[p] := U[p] + Ci/Ti
20. else
21. if +1<=m then p
22. if (p-L) mod k=0 then
23. p := p+1
24. τ[p] := τ[p] ∪{τ
25. else

i} U[p] := U[p] + Ci/Ti

26. split task τi into τi´ and τi″ such that
 Ti´ = Ti
 Ti″ = Ti
 Ci´ = (1- U[p])*Ti´
 Ci″ = (Ci/Ti-Ci´/Ti´)*Ti″

27. τ[p] := τ[p]∪{τi´} U[p] := U[p] + Ci´/Ti´
28. τ[p+1] := τ[p+1]∪{τi″} U[p+1] := U[p+1] + Ci″/Ti″
29. p+1 p :=
30. end if
31. else
32. declare FAILURE
33. end if
34. end if
35. end for
36. else
37. declare FAILURE
38. end if
39. else
40. declare SUCCESS
41. end if
42. else
43. declare FAILURE
44. end if

Figure 3: Algorithm 1 (for task assignment)

idea of the algorithm is that there is a current processor, with index p and tasks are considered one by one; index i denotes

the current task. The task currently under consideration is attempted to be assigned to the current processor p. This is

performed at line 18 in Algorithm 1. If the condition stated in that line (a schedulability test for EDF [7]) is true then the

task can be assigned to processor p. If the condition is false, the task is split into two portions (at line 26) and assigned to

the current processor p and processor p + 1 (lines 27-28). Then the processor with a higher index is considered (line 29).

6

1. for ocessors with index in 1..L: pr p
2. when the system starts do
3. do nothing
4. end do
5. when a task arrives on processor p do
6. execute that task
7. end do
8.
9. for ocessors with index in L+1..m: pr p
10. when the system starts do
11. mirrorflag[p]:= false
12. minindex[p]:=L+⎣(p-L)/k⎦*k+1
13. maxindex[p]:=L+⎣(p-L)/k⎦*k+k
14. if maxindex[p]>m then
15. maxindex[p]:= m
16. end if
17. wait until all processors with index within range

 minindex[p]..maxindex[p] have reached this line
18. end do
19. when any task arrives on a processor with index in [minindex[p]..maxindex[p]] do
20. t0:=current time
21. t1:=next time a task arrives on a processor with index within range

 minindex[p]..maxindex[p]
22. call calc_splitted_tasks // here we calculate timea_and_timeb

 // we also calculate firsttask and lasttask
23. if firsttask[p]=NULL then
24. idle processor p during [t0,timea[p])
25. else
26. execute firsttask[p] on processor p during [t0,timea[p])
27. end if
28. call schedule_tasks_with_EDF
29. if lasttask[p]=NULL then
30. idle processor p during [timeb[p],t1)
31. else
32. execute lasttask[p] on processor p during [timeb[p],t1)
33. end if
34. mirrorflag[p]:=not (mirrorflag[p])
35. end do

Figure 4: Algorithm 2 (run-time dispatching)

As already pointed out, the algorithm assigns heavy tasks to some processors and light tasks to some other processors. L

separates these tasks: heavy tasks are assigned to processors with indexes ranging from 1 up to L, while light tasks are assigned

to processors with indexes ranging from L + 1 up to m. The light tasks are assigned to different groups of processors, and there

are at most k processors in a group. Processors with indexes in the range {L + 1..L + k} correspond to one group. Processors

with indexes in the range {L + k + 1..L + 2k} correspond to another group, and so forth. If a task is attempted to be assigned to

the last processor in a group and it fails, then it is not split; instead it is simply assigned to the next processor in a new group.

Lines 23-24 take care of this situation in Algorithm 1. This ensures that tasks in one group do not interact with tasks in another

group. This algorithm is actually similar to the next-fit bin-packing algorithm [2]. It differs however since task splitting is

permitted in our approach.

7

1. procedure calc_splitted_tasks is
2. begin
3. if mirrorflag[p] then
4. if there is a task τi´ assigned

 to processor p then
5. lasttask[p]:= τi´
6. lastdur[p]:= (Ci´/Ti´)*(t1-t0)
7. else
8. lasttask[p]:= NULL
9. lastdur[p] := 0
10. end
11. if there is a tas τ ″ assigned k i
 to processor p then
12. firsttask[p] := τi″
13. firstdur[p]:=(Ci″/Ti″)*(t1-t0)
14. else
15. firsttask[p]:= NULL
16. firstdur[p]:= 0
17. end
18. else
19. if there is a tas τ assigned k i´
 to processor p then
20. firsttask[p]:= τ ´ i

21. firstdur[p]:=(Ci´/Ti´)*(t1-t0)
22. else
23. firsttask[p] := NULL
24. firstdur[p]:= 0
25. end
26. if there is a task τ ″ assigned i

 to processor p then
27. lasttask[p]:= τi″
28. lastdur[p]:=(Ci″/Ti″)*(t1-t0)
29. else
30. lasttask[p]:= NULL
31. lastdur[p] := 0
32. end
33. end if
34. timea[p]:= t0+firstdur[p]
35. meb[p]:= t1-lastdur[p] ti
36. end
37.

38. procedure schedule_tasks_with_EDF is
39. begin
40. let ready[p] denote the set of

 tasks τ[p]\{firsttask[p],lasttask[p]}
 such that they have a job which
 has arrived at t0 or earlier
 but the job has remaining
 execution at time t0
41. t[p]:= timea[p]
42. execute_entire_job[p]:=true
43. while execute_entire_job[p] do
44. current_task[p]:= dequeue the

 task with the least
 absolute deadline from
 ready[p]

45. if current_task[p]=NULL then
46. execute_entire_job[p]:= false
47. else
48. remain[p] := the remaining execution
 time of the job of current_task
49. if t[p]+remain[p]<=timeb[p] then
50. execute_entire_job[p]:=true
51. execute the job of current_task
52. during [t[p],t[p]+remain[p])
53. t[p]:=t[p]+remain[p]
54. else
55. execute_entire_job[p]:=false
56. end if
57. end if
58. end while
59. if current_task[p]=NULL then
60. idle processor p until timeb[p]
61. else
62. execute the job of current_task
 during [t[p], timeb[p])
63. end if
64. end
65.
66. function calc_SEP return real is
67. begin
68. if k<m then
69. urn k/(k+1) ret
70. else
71. return 1
72. end if
73. end

Figure 5: Algorithm 3 (auxiliary procedures and functions)

2.3. Dispatching
We will now turn our attention to the problem of run-time dispatching. Our approach was already informally described in

Section 2.1, and will now be more formally described through Algorithm 2 (Figure 4). Algorithm 2 calls two subroutines; these

are described in Algorithm 3 (Figure 5). All variables in Algorithm 2 and Algorithm 3 are global variables. The dispatching of

heavy tasks is described on lines 1-7 in Algorithm 2. It entails a simple approach: whenever a task arrives, it executes on its

assigned processor.

A light task is assigned to a group of processors, and whenever a task arrives in that group of processors, dispatchers are

executed on all processors in that group. t0 denotes the time when a task arrives, and t1 denotes the time when any task in

that group arrives next. This is computed on lines 20-21 within Algorithm 2. After that, Algorithm 2 calculates two time

8

instants, timea and timeb, when tasks should be preempted. One of the split tasks is executed before timea (line 26)

and the other split task is executed after timeb (line 32). During the time span [timea,timeb) the non-split tasks are

scheduled according to EDF. This is performed by the subroutine schedule_tasks_with_EDF described within

Algorithm 3. If a non-split task finishes its execution during the time span [timea,timeb) then the next non-split task

with the earliest deadline is selected. We denote the approach consisting of the use of Algorithms 1, 2 and 3 as EKG

approach, as a short-hand notation for EDF with task splitting and k processors in a group.

3. Proving the utilization bound

The aim of this section is to prove that the utilization bound of the EKG approach is SEP (as given by Equation (1), in Section 2.2). In

order to do this, in Section 3.1, we prove that the task assignment scheme (Algorithm 1) declares success for all task sets with

utilization lower than or equal to the utilization bound. Lemma 2 states it and Lemma 1 is used to prove it. We also prove

certain properties of the distribution of the execution of the task assignment in Lemmas 3-4.

In Section 3.2 we show that if the properties assured by the task assignment scheme are true, then using the dispatcher

(Algorithm 2) will enable all tasks to meet their deadlines. This proves the utilization bound and

Theorem 1 states this.

3.1. Task assignment

Lemma 1. If Algorithm 1 declares failure then the task set satisfies Us > SEP.

Proof: One possibility is that the algorithm declared failure on line 43. If so, then all tasks that were assigned to

processors had Ci / Ti > SEP. Since there are m + 1 or more tasks, it follows that:

() SEPmSEP
mT

C
m

n

i i

i >+××>∑
=

111
1

 (2)

Another possibility is that the algorithm declared failure on line 37. If this was the case then all m processors were

assigned heavy tasks and then there was a light task in the task set that could not be assigned. This would imply the

following:

SEPmSEP
mT

C
m

n

i i

i =××>∑
=

11
1

 (3)

Yet another possibility would be that the algorithm declared failure on line 32. Before that it must have been a task

(denoted with index f) that was considered (i = f) on line 18, and the condition on that line was evaluated false. We

9

observe that the utilization of the task set is no less than the sum of the utilization of all the processors when

Algorithm 1 declared failure added to the utilization of the task f. Thus, it follows that:

[] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×> ∑∑

== f

f
m

p

n

i i

i

T
C

pU
mT

C
m 11

11 (4)

Inequality (4) can be re-written as follows to better express the fact that the overall utilization is equal to the sum of the

utilizations of each individual sub-set of processors:

[] []
() ()()

[]
() ()()

[]
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
++++×> ∑∑∑∑∑

=≠−∧−≤≤+=−∧−≤≤+≤≤= mp f

f

kLpmpLkLpmpLLp

n

i i

i

T
C

pUpUpUpU
mT

C
m 0mod110mod1111

11 (5)

Since all processors p with indexes 1 ≤ p ≤ L have U[p] > SEP and U[m] + Cf / Tf > 1 (because the algorithm declared

failure), inequality (5) can be re-written as follows:

[]
() ()()

[]
() ()()

⎟⎟
⎠

⎞
++⎜⎜

⎝

⎛
+××> ∑∑∑

≠−∧−≤≤+=−∧−≤≤+=

111
0mod110mod111 kLpmpLkLpmpL

n

i i

i pUpUSEPL
mT

C
m

 (6)

Let us now consider the set of processors p with index L + 1 ≤ p ≤ m − 1. There are (m – L – 1) of these processors.

For some of these processors, the condition at line 22 in Algorithm 1 resulted true. This happens when (p – L) mod k =

0. For the task i, considered to be assigned to processor p, it must have been that U[p] + Ci / Ti > 1. Actually there are

⎣(m − L − 1) / k⎦ of such processors. Since task i is light then U[p] > (1 − SEP). The other processors have U[p] = 1

when Algorithm 1 declared failure (the lines 26 and 27 guarantee that). Taking this reasoning into account, we can

now state the following:

()⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
+⎥⎦

⎥
⎢⎣
⎢ −−

−−−+−×⎥⎦
⎥

⎢⎣
⎢ −−

+××>∑
=

1111111
1 k

LmLmSEP
k
LmSEPL

mT
C

m

n

i i

i (7)

We can obtain a lower bound on the right-hand side of (7). For details, see Appendix A in [8] . This gives us:

SEP
T
C

m

n

i i

i >∑
=1

1 (8)

All cases where Algorithm 1 could have declared failure have been explored. If Algorithm 1 declares failure then

inequalities (2), (3) and (8) enforce that Us > SEP. This proves Lemma 1.

Lemma 2. If a task set satisfies Us ≤ SEP and Algorithm 1 is used then Algorithm 1 declares success.

Proof: Follows from Lemma 1 and the fact that Algorithm 1 terminates on every input.

Lemma 3. If Algorithm 1 declares success then ∀p: U[p] ≤ 1.

10

Proof: For those processors p with p ≤ L, the claim that U[p] ≤ 1 follows from the fact that Ci / Ti ≤ 1 and the

observation that Algorithm 1 lines 10-13 only assigns one task to each processor. For those processors p with

p ≥ L + 1, the claim U[p] ≤ 1 follows from the actions taken by Algorithm 1 in line 18, line 24 and lines 26-28.

Lemma 4. If Algorithm 1 declares success then ∀τi that is split, Ci´ / Ti´ + Ci″ / Ti″ ≤ 1.

Proof: Follows from line 26 in Algorithm 1 and the fact that before a task is split it satisfied the condition Ci / Ti ≤ 1.

3.2. Dispatching

Lemma 5. Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive

during (t0, t1). If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and Algorithm 2 is used to

schedule tasks on each processor in the group, then a task τi that was split by Algorithm 1 never executes on two or more

processors simultaneously during the time span [t0, t1).

Proof: Let p denote the processor to which τi´ is assigned, and let p + 1 denote the processor to which τi″ is

assigned. From Algorithm 2 it holds, for every processor p and every processor q, that mirrorflag[p]=

mirrorflag[q], since mirrorflag[p] changes only when a task arrives. We will consider two cases.

Case 1. mirrorflag[p]=false during the time span [t0, t1).

From Algorithm 2, τi´ will execute during [t0, timea) on processor p and τi″ will execute during [timeb, t1)

on processor p + 1. An assumption associated to the lemma is that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1. Hence:

()()´´´/´´/1)(0 01 iiii TCTCtt +−×−≤ (9)

which can be re-written as follows:

´)´/)((´´)´´/)((0 010011 iiii TCtttTCttt ×−+−×−−≤ (10)

From Algorithm 3 (lines 34-35), the two terms in (10) correspond to timea and timeb, and therefore it results

that (10) can be re-written as follows:

timeatimeb −≤0 (11)

Clearly, from (11), timea ≤ timeb and this assures that τi´ and τi″ do not execute simultaneously during the

time span [t0, t1).

Case 2. mirrorflag[p]=true the time span [t0, t1)

The reasoning is similar to Case 1.

11

Thus, regardless of which one of the two cases is true, it holds that a split task does not execute simultaneously on two

or more processors.

Lemma 6. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to

schedule tasks on each processor in the group) then a task never executes on two or more processors simultaneously.

Proof: We will prove this lemma by proving that an arbitrary task τi never executes on two or more processors

simultaneously.

Case 1. The task τi was not split by Algorithm 1.

Case 1a). τi is assigned to a processor p with p ≤ L. This task is assigned to a processor and does not execute on

any other processor. Hence τi never executes on two or more processors simultaneously.

Case 1b). τi is assigned to a processor p with L + 1 ≤ p. This case is similar to Case 1a); but on a processor p that

satisfies L + 1 ≤ p there may be other tasks executing. Nevertheless, the reasoning in Case 1a) can be used in this

case too, and thus supporting that a task τi never executes on two or more processors simultaneously.

Case 2. The task τi was split by Algorithm 1.

Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive

during (t0, t1). From Lemma 5 it results that τi´ and τi″ never execute simultaneously during [t0, t1). This argument

can be repeated for every time interval between any two consecutive task arrivals, and hence it results that τi never

executes simultaneously on two or more processors.

Therefore, regardless of which one of the cases is true, the lemma holds.

Lemma 7. Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive

during (t0, t1). If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to

schedule tasks on each processor in the group) then a task τi that was split by Algorithm 1 executes (Ci / Ti) × (t1 − t0) time units

during [t0, t1).

Proof: Let p denote the processor to which τi´ is assigned, and let p + 1 denote the processor to which τi″ is

assigned. From Algorithm 2, and for every processor p and every processor q, it holds that

mirrorflag[p]=mirrorflag[q] since mirroflag[p] changes only when a task arrives.

We will consider two cases.

12

Case 1. mirrorflag[p]=false during the time span [t0, t1).

From Algorithm 2, it results that τi´ executes during [t0, timea) on processor p and τi″ executes during

[timeb, t1) on processor p + 1. Hence, the amount that τi executes during [t0, t1) is given by:

() ()01 ttimeatimebt −+− (12)

As reasoned previously in the proof of Lemma 5, Algorithm 2 states that:

⎩
⎨
⎧

×−−=
×−+=

´´/)(
´/)(

´´
011

´
010

ii

ii

TCttttimeb
TCttttimea (13)

and hence, (12) can be re-written as follows:

´´´´
01

´´
01 /)(/)(iiii TCttTCtt ×−+×− (14)

Since from Algorithm 1 (line 26) a split task τi was split such that Ci´ / Ti´ + Ci″ / Ti″ = Ci / Ti and Ti´ = Ti″ = Ti, then

the amount of execution performed by τi during the time interval [t0, t1) is given by:

ii TCtt /)(01 ×− (15)

Case 2. mirrorflag[p]=true during the time span [t0, t1)

The reasoning is similar to Case 1.

Thus, and regardless of which case occurs, the statement of the lemma is obtained.

Lemma 8. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to

schedule tasks on each processor in the group) then deadlines are met for all tasks τi such that

(τi is assigned to a processor p with L + 1 ≤ p) ∧ (τi is not split).

Proof: We will make definitions and algebraic manipulations in the first part of the proof and use them to prove the

lemma by contradiction in a second part of the proof. 2.

1. Let τnot_split[p] denote the set of tasks such that each task in τnot_split[p] is (τi is assigned a processor p with

L + 1 ≤ p) ∧ (τi is not split). Let τa´ denote the prime-task assigned to processor p and let τb″ denote the bis-task

assigned to processor p. Note that τa´ and τb″ do not belong to the same original task. From Algorithm 1 it results

that:

[]
1"

_

"

´

´

≤++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

∈ b

b

a

a

pi i

i

T
C

T
C

T
C

splitnotτ

 (16)

which can be re-written as follows:

13

[] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

∈
"

_

"

´

´

1
b

b

a

a

pi i

i

T
C

T
C

T
C

splitnotτ

 (17)

Both sides of inequality (17) can be multiplied by S, where S is any positive real number. In doing it and applying

an algebraic re-writing, the following inequality holds:

[]
∑

∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×≤×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
>∀

pi b

b

a

a
i

i

i

splitnot T
C

T
C

SC
T

TS
S

_

11:0
τ

 (18)

2. Let us now consider the task set τnot_split[p], and prove that all tasks in τnot_split[p] meet their deadlines. We prove it

using contradiction. Suppose that a task in τnot_split[p] missed a deadline. Let us study the busy period [9] before the

first deadline miss. Our busy period is defined slightly different from the definition in [9]; our busy period starts

when a task arrives and ends when the first deadline miss occurs. During this time period, it is permitted that

processor p is idle. However it must be that ready[p] (see line 40 in Algorithm 3) is non-empty. Just before the

beginning of the busy period, ready[p] (line 40 in Algorithm 3) is empty. Since the tasks in τnot_split[p] are

scheduled with preemptive EDF (pseudo-code in Algorithm 3 – Figure 5) it results that for a deadline miss to

occur, it must have been that there is a time interval Q such that (Q is a subset of our busy period) ∧ (Q starts when

a task arrives and ends when the deadline is missed) ∧ (the supply of processing time [9] for the tasks in τnot_split[p]

during Q was less than the demand of processing time from tasks in τnot_split[p] during Q.). Let LQ denote the length

of Q. It is known that the demand is calculated as follows:

[]
∑

∈

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −

pi
i

i

i

splitnot

C
T

TLQ
_

1
τ

 (19)

Let us consider a time interval [t0, t1) such that at time t0, a task arrives and at time t1 a task arrives but during

(t0, t1) no tasks arrive. Let us consider a task τa´ and a task τb´ which are split tasks and are assigned to the same

processor p. Note that they do not belong to the same original task. It holds that the task τa´ executes for

(Ca´ / Ta´)×(t1 − t0) time units and the task τb´ executes for (Cb″ / Tb″)×(t1 − t0) time units. This holds for every such

time [t0, t1). Hence, the supply of processing time for the tasks in τnot_split[p] in the time interval [t0, t1) is given by:

()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−×−

´´

´´

´

´

01 1
b

b

a

a

T
C

T
C

tt (20)

14

This is true regardless of the value of mirror[p]. Observe that the time interval Q can be subdivided into

intervals where inequality (20) can be applied. The repeated application of (20) to all those intervals yields that the

supply of processing time for the task in τnot_split[p] during Q is:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−× ´´

´´

´

´

1
b

b

a

a

T
C

T
C

LQ (21)

It is known from previous research [9] that since a deadline is missed the demand exceeded the supply. Hence the

following inequality will hold:

[] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×>×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −∑
∈

´´

´´

´

´

11
_ b

b

a

a

pi
i

i

i

T
C

T
CLQC

T
TLQ

splitnotτ

 (22)

But this contradicts (18). Hence, all deadlines of tasks in τnot_splitted[p] are met.

Lemma 9. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to

schedule tasks on each processor in the group) then all deadlines are met.

Proof: We will prove this lemma by proving that an arbitrary task τi meets its deadline.

Case 1. The task τi was not split in Algorithm 1.

Case 1a). τi is assigned to a processor p with p ≤ L.

There are no other tasks on this processor. Since Ci ≤ Ti, the task meets its deadlines.

Case 1b). τi is assigned to a processor p with L + 1 ≤ p.

It results from Lemma 8 that τi meets its deadlines.

Case 2. The task τi was split in Algorithm 1.

Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive

during (t0, t1). From Lemma 7 it results that τi executes (Ci / Ti)×(t1 − t0) time units during [t0, t1). This argument

can be repeated for every time interval between two task arrivals, and hence it results that τi meets all its deadlines.

Therefore, regardless of which one of the cases is true, the lemma holds.

We will finalise Section 3 by stating the following theorem.

Theorem 1. If a task set satisfies the condition Us ≤ SEP and EKG is used, then all deadlines are met and a task never

executes on two or more processors simultaneously.

15

Proof: It follows from Lemma 6 and Lemma 9.

4. Proving a bound on the number of preemptions

In this section we will state (Theorem 2) a bound on the number of preemptions divided by the number of jobs for the entire

task set. Its proof depends on Lemma 10, which studies the special case of tasks in one group of processors. We let lcm denote

the least common multiple of periods of the tasks. Since Lemma 10 and Theorem 2 makes claims about the number of

preemptions per job, it is necessary to define whether a split task is one task or two tasks; analogously for jobs. In this section,

in Lemma 10 and Theorem 2, we say that if a task is split then it is counted as one task. The jobs from these tasks are split. We

count such a split job as one job. We think this is the right way of counting because the splitting of tasks and jobs is only used

internally in the scheduling algorithm; the application does not know that a task or a job is split.

Lemma 10. Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. Consider the processors in one of

the groups consisting of k processors. We claim that the number of preemptions during [0, lcm) divided by the number of jobs that

executed during [0, lcm) is at most 2k.

Proof: See Appendix B in [8].

Theorem 2. Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. We claim that the number of

preemptions during [0, lcm) divided by the number of jobs that executed during [0, lcm) is at most 2k.

Proof: From Lemma 10 we know that for the groups with k processors, the number of preemptions divided by the number

of jobs is at most 2 × k. The last group may consist of less than k processors; nevertheless, it holds that the number of

preemptions divided by the number of jobs is at most 2 × k. The processors with index p ≤ L have only one task per

processor so no preemptions can occur there. Taking these three facts together imply that the number of preemptions on all

processors during [0, lcm) divided by the number of jobs during [0, lcm) in the entire task set is no greater than 2 × k.

5. Conclusions

We have presented an algorithm to schedule tasks to meet deadlines on a multiprocessor. By selecting k = 2, Theorem 1

tells us that the utilization bound of the algorithm is 66% and Theorem 2 tells us that it causes at most 4 preemptions per job

on average per hyperperiod. A higher value of k, gives a higher utilization bound at the expense of more preemptions. By

selecting k = m we obtain that the utilization bound is 100%.

Pfair scheduling algorithms [4, 5] and the algorithm BF [10] have a utilization bound of 100%. Unfortunately neither of

them have proven bounds on the number of preemptions per job. Several algorithms were presented by Khemka and

16

Shyamasundar for multiprocessor scheduling with a high utilization bound and few preemptions [11]. They offered a bound on

the number of preemptions as a function of the greatest common divisor of the periods of all tasks in the task set.

Unfortunately, for some task sets the bound on the number of preemptions divided by the number of jobs approaches infinity.

This happens for task sets with periods selected as Ti = (q + i):th prime number and where q approaches infinity. As already

pointed out, with our algorithm this cannot happen.

References

[1] J. Leung and J. Whitehead, "On the Complexity of Fixed-priority Scheduling of Periodic Real-Time Tasks,"
Performance Evaluation, Elsevier Science, vol. 22, pp. 237-250, 1982.

[2] S. K. Dhall and C. L. Liu, "On a real-time scheduling problem," Operations Research, vol. 26, pp. 127-140, 1978.
[3] D.-I. Oh and T. P. Baker, "Utilization Bounds for N-Processor Rate Monotone Scheduling with Static Processor

Assignment," Real Time Systems Journal, vol. 15, pp. 183-192, 1998.
[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, "Proportionate Progress: A Notion of Fairness in

Resource Allocation," Algorithmica, vol. 15, pp. 600-625, 1996.
[5] J. Anderson and A. Srinivasan, "Mixed Pfair/ERfair Scheduling of Asynchronous Periodic Tasks," Journal of

Computer and System Sciences, vol. 68, pp. 157-204, 2004.
[6] T. P. Baker, "Comparison of Empirical Success Rates of Global vs. Partitioned Fixed-Priority EDF Scheduling for

Hard Real Time," Department of Computer Science, Florida State University, Tallahassee, FL 32306 July 2005.
[7] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,"

Journal of the ACM (JACM), vol. 20, pp. 46-61, 1973.
[8] B. Andersson and E. Tovar, "Multiprocessor Scheduling with Few Preemptions," IPP Hurray Research Group,

Polytechnic Institute of Porto, Portugal HURRAY-TR-060811, Available at
http://www.hurray.isep.ipp.pt/privfiles/tr-hurray-060811.pdf, August 2006.

[9] S. K. Baruah, R. Howell, and L. Rosier, "Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor," Real-Time Systems, pp. 301-324, 1990.

[10] D. Zhu, D. Mossé, and R. Melhem, "Multiple-Resource Periodic Scheduling Problem: how much fairness is
necessary?," presented at 24th IEEE International Real-Time Systems Symposium, 2003.

[11] A. Khemka and R. K. Shyamasundar, "Multiprocessor Scheduling of Periodic Tasks in a Hard Real-Time
Environment," presented at International Parallel Processing Symposium, 1992.

17

http://www.hurray.isep.ipp.pt/privfiles/tr-hurray-060811.pdf

Appendix A: Algebraic rewriting
Consider the following inequality.

()

⎟⎟
⎠

⎞
+⎥⎦

⎥
⎢⎣
⎢ −−

−−−

⎜⎜
⎝

⎛
+−×⎥⎦

⎥
⎢⎣
⎢ −−

+××>∑
=

111

1111
1

k
LmLm

SEP
k
LmSEPL

mT
C

m

n

i i

i

Simplifying yields:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+×⎥⎦

⎥
⎢⎣
⎢ −−

−××>∑
=

LmSEP
k
LmSEPL

mT
C

m

n

i i

i 111
1

Consider two cases:

Case 1. k<m

Observing that ⎣x⎦≤x yields:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+×⎟

⎠
⎞

⎜
⎝
⎛ −−

−××>∑
=

LmSEP
k
LmSEPL

mT
C

m

n

i i

i 111
1

Using (1) gives us that the RHS is unchanged if L changes. Hence, selecting L=0 does not change the RHS. This gives

us:

SEP
mk

m
T
C

m

n

i i

i ××⎟
⎠
⎞

⎜
⎝
⎛ −

−>∑
=

1111
1

Using (1) again yields:

()1
111

1 +×
−

−>∑
= km

m
T
C

m

n

i i

i

Simplifying yields:

() () () SEP
k

k
km

km
km
km

T
C

m

n

i i

i =
+

=
+×

×
>

+×
+×

>∑
= 111

11
1

Case 2. k=m.

Observing that ⎣(m-L-1)/k⎦=0 yields:

()LmSEPL
mT

C
m

n

i i

i −+××>∑
=

11
1

and observing that according to (1) with k=m, we have SEP=1. This gives us:

11
1

>∑
=

n

i i

i

T
C

m

Hence regardless of whether Case 1 or Case 2 is true, we obtain that:

SEP
T
C

m

n

i i

i >∑
=1

1

18

Appendix B: Proof of a lemma

Lemma 10. If a task is split let us consider that as one task in this lemma and if the job from such a task is split then this job is

only considered as one job.

Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. Consider the processors in one of the groups

consisting of k processors. We claim that the number of preemptions during [0, lcm) divided by the number of jobs that executed

during [0, lcm) is at most 2k.

Proof: The tj denote the j:th time that a task arrives on the group of processors during the time interval [0,lcm). As an

illustration of tj we have: t1=0 and t2=min{Ti}.

We will first (in 1. below) prove an upper bound on the number of preemptions during [t1,tj) and then (in 2. below) prove a lower

bound on the number of jobs that arrive during [t1,tj).

1. We claim (for 2≤j) it holds that:

k.*2*1)-(j

)jt,1[t during spreemption ofnumber The

≤

 (23)

We will prove it using induction.

Base case. We claim that (23) is true for j=2.

Proof of the case case. Consider [t1,t2) All tasks arrive at time t1 and it may cause context switches. But since the tasks

have not executed before t1, it is not a preemption. Algorithm 2 computes two times timea and timeb where

preemptions may occur. It may cause preemptions on all k processors in the group. If a non-splitted task finishes

execution during (timea,timeb) then there will be a context switch but this is not a preemption. Hence we obtain that

during [t1,t2) there is at most 2*k preemptions in the group during [t1,t2).

The induction step. We claim that if (23) is true for j=q where 2≤q then (23) is true for j=q+1.

Proof of the induction step. We know that the number of preemptions during [t1,tq) is at most (q-1)*2*k. Let us now

consider the time interval [tq,tq+1).

Consider [tq,tq+1). According to Algorithm 2, there are two instants when preemptions can occur timea and timeb.

One might think that a preemption can also occur at tq if tq≠timea. This is not correct though. To see this, consider the

case where tq≠timea. Then it follows that tq<timea. Let us divide this into two further cases.

Case 1. Firsttask[p] arrived at tq.

There may be a context switch at tq but since the job of firsttask[p] has not executed before this context

switch, it is not a preemption.

19

Case 2. Firsttask[p] did not arrive at tq.

Then it holds that firsttask[p] executed before just before tq because of mirroring and hence it is not

preempted at time tq.

We conclude that if tq≠timea[p] then there is no preemption at tq.on processor p.

Since there are k processors in a group, there can be at most 2k preemptions in a group during [tq,tq+1). Adding those

preemptions to the preemptions during [t1,tq) we obtain that the number of preemptions during [t1,tq+1) is at most (q-

1)*2*k+2k=((q+1)-1)*2*k. This is the statement of the induction step, so the induction step is proven.

Using the base case, the induction step and performing induction on j we obtain (23) is true.

2. We claim (for 2≤j) it holds that:

1-j

)jt,1[t during arrive that jobs ofnumber The

≥

 (24)

The claim (24) is true because every time interval [tj,tj+1) starts and ends with the arrival of at least one job.

Combining (23) and (24) yields:

k×≤ 2
)t,[t during arrive that jobs ofnumber The

)t,[t during spreemption ofnumber The

j1

j1 (25)

We know that a task arrives at time lcm. Hence there is a j such that tj=lcm. By applying t1=0 and tj=lcm on (25) we obtain

the statement of the lemma.

20

	rtcsa06-multi.pdf
	hurray-tr-060811-cover.pdf
	

