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Abstract 
Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal of 
meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they can 
migrate between processors. We propose an algorithm with a utilization bound of 66% and with few 
preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization 
bound of 100%. 
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Abstract 

Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal 

of meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they 

can migrate between processors. We propose an algorithm with a utilization bound of 66% and with few 

preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization 

bound of 100%. 

1. Introduction 

Consider the problem of preemptive scheduling of n periodically arriving tasks on m identical processors. A task τi can 

arrive at any time when it arrives for the first time, but then it arrives periodically with a period Ti. Every time task τi 

arrives, it needs to execute Ci time units before it arrives again. A processor can execute at most one task at a time, and a 

task cannot execute on two or more processors simultaneously. The utilization is defined as Us = (1/m) × ∑Ci /Ti. The 

utilization bound UBA of an algorithm A is the maximum number such that if Us ≤ UBA then all tasks meet their deadlines 

when scheduled by algorithm A. 

The design space of preemptive multiprocessor scheduling algorithms can be categorized as partitioned or global 

scheduling [1, 2]. Global scheduling algorithms store in one queue (shared among all processors) all tasks that have arrived 

but have not finished their execution. At any time instant the m highest-priority tasks in that queue are selected for 

execution on the m processors using preemption and migration if necessary. In contrast, partitioned scheduling algorithms 

partition the set of tasks such that all tasks in a partition are assigned to the same processor. Tasks are not allowed to 

migrate from one processor to another processor, and hence the multiprocessor scheduling problem is transformed into m 

uniprocessor scheduling problems. This simplifies scheduling and schedulability, since a large number of results available 

for uniprocessor scheduling can then be reused. Unfortunately, all partitioned multiprocessor scheduling algorithms have a 

utilization bound of 50% or less [3]. Conversely, global scheduling can achieve a utilization bound of 100% by using a 
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family of algorithms called pfair scheduling [4, 5]. Regrettably, this utilization bound comes at a price: all task parameters 

must be multiples of a time quantum, and in every time quantum a new task is selected for execution. As a result, the 

number of preemptions can be significantly high. We believe (as does Baker [6]) that it is desirable to achieve a higher 

(>50%) utilization bound without incurring the cost of an undesirable number of preemptions. 

Therefore, in this paper we propose a multiprocessor scheduling algorithm with a utilization bound of 66%. It causes 

provably few preemptions: the number of preemptions divided by the number of jobs is at most 4. Of those algorithms in 

previous works that achieve the utilization bound (66%) of our algorithm, none of them has a finite number that bounds the 

number of preemptions divided by the number of jobs. 

The remainder of this paper is organized as follows. Section 2 presents our new algorithm. Section 3 proves its 

utilization bound and Section 4 proves an upper bound on the number of preemptions per job. Section 5 offers discussion 

on previous work and conclusions. 

2. The new algorithm 

In order to understand the design of the new algorithm, we will first (in Section 2.1) consider partitioned scheduling of a 

specific task set example, with the purpose of stressing how partitioned scheduling may perform poorly. The reasoning on the 

example will provide the guiding principles on the design of the proposed new scheduling algorithm, which will then be 

formally presented in Sections 2.2 and 2.3. 

2.1. Understanding the problem 
Consider the following partitioned scheduling example: m processors and n = m + 1 tasks τi with Ti = 1 and  

Ci = 0.5 + ε.  

In partitioned scheduling, tasks cannot migrate; they are assigned to a processor and always execute there. Since n > m, 

there is one processor which is assigned two or more tasks. Therefore, the utilization of this processor will be at least 1 + 

2ε, and this is more than 100%. Essentially, by choosing m → ∞ and ε → 0 the task set will have Us → 0.5 and, above all, a 

deadline is missed. Hence, the utilization bound of every partitioned scheduling algorithm is 50% or less. 

This example stresses the fact that deadlines can be missed simply because a task could not be assigned to a processor, 

although there was plenty of idle time in the overall system. The idle time was spread out on different processors and could not 

be used. However, if in the same previous example a task is split into two sub-tasks and these sub-tasks are assigned to two 

different processors, then it is possible to assign tasks such that the utilization on every processor reaches 100%.  
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Figure 1: Schedule for the example task set using task splitting 

 
Note, however, that sub-tasks of the same task cannot execute simultaneously. A solution to this is a uniprocessor 

scheduling algorithm that is aware of tasks on other processors, so that a sub-task on one processor is not executed (even 

partially) at the same time as its corresponding sub-task on another processor. 

Let us denote the two sub-tasks of a task τi as τi´ and τi″. Note that τi´ and τi″  will have the same periods and will arrive at 

the same time. When a task (or sub-task) arrives on any processor, let t0 denote the arrival time, and let t1 denote the time of the 

next arrival of a job on any processor. Task τi´ executes (Ci´ / Ti´) × (t1 − t0) time units without preemption and starts executing 

at time t0. Task τi″ executes (Ci″ / Ti″ ) × (t1 − t0) time units without preemption and finishes execution at time t1. Note that τi´ 

and τi″ execute on different processors and their executions will not overlap in time since the original task τi had Ci /Ti ≤ 1 and 

hence Ci´ / Ti´ + Ci″ / Ti″ ≤ 1. We schedule these sub-tasks with the highest priority. The other tasks are scheduled according to 

EDF and have lower priority than the sub-tasks. Applying this approach to the same task set example, would correspond to the 

schedule illustrated in Figure 1. There are three tasks {τ1, τ2, τ3}, with Ti = 1 and  

Ci = 0.5 + ε.  These tasks are scheduled on two processors (m = 2): P1 and P2. The task τ2 has been split into two sub-tasks, 

τ2´ and τ2″, with T2´ = T2″ = 1 and C2´ = 0.5 - ε, C2″ = 2ε. Using the task splitting approach the task set is schedulable while it 

would not be using partitioned scheduling. 

  

time

time0 1

τ2´ executing 

τ2″ executing 

τ1 executing 

P1

P2

τ1 arrivals 
τ2 arrivals 
τ3 arrivals 

Legend: 

τ3 executing 

task arrival 
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Legend: 

τ3 executing 

task arrival 

 
Figure 2:  Using mirroring on the example in Figure 1 decreases the number of preemptions 

 
In the approach illustrated in Figure 1, task τi´ is always executed at the beginning of the time interval between any two job 

arrivals while task τi″  is executed at the end of that time interval. However, by mirroring the schedule of the split tasks in half 

of the time intervals fewer preemptions would result. Figure 2 illustrates this for the same task set example. 

2.2. Task assignment 
We will now describe a general algorithm for assigning tasks to processors and scheduling tasks on a uniprocessor. The 

algorithm for assigning tasks to processors is given as pseudo-code in Algorithm 1 (Figure 3). The algorithm assigns tasks to 

processors such that on all processors the utilization does not exceed 100%. It has a parameter k which should be selected by 

the designer such that 1 ≤ k ≤ m. The algorithm treats heavy and light tasks differently. A task τi is heavy if  

Ci /Ti > SEP, otherwise it is light. SEP means separator. The value of SEP is computed at line 4 in Algorithm 1, by calling a 

function described in Algorithm 3 (Figure 5). SEP will be used later on in Lemma 1 (Section 3), and the rationale for how to 

select it will be better perceived there. For the moment it is sufficient to realize that we select SEP as: 

⎪⎩

⎪
⎨
⎧

=

<
+=

mk

mk
k

k
SEP

1
1  

(1) 

First, the algorithm assigns heavy tasks to their own dedicated processors (at lines 10-13 in Algorithm 1). Doing so at 

this early stage in the algorithm improves performance, since the rest of it is devoted to dealing with the light tasks. The 

main  
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1. for p in 1..m do 
2.   U[p] := 0  τ[p] := {} 
3. end for 
4. SEP := calc_SEP 
5. Let τheavy denote the set of tasks with Ci/Ti>SEP 
6. Let τlight denote the set of tasks with Ci/Ti<=SEP 
7. L := |τheavy| 
8. Order tasks such that τi with i in 1..L are all in τheavy  and τi with i 

 in L+1..n are all in τlight 
9. if |τheavy|<=m then 
10.   for i in 1..L do 
11.     p := i 
12.     τ[p] := τ[p] ∪{τi}        U[p] := U[p] + Ci/Ti 
13.   end for 
14.   if |τlight|>0 then 
15.     if L+1<=m then 
16.       p := L+1 
17.       for i in L+1..n do 
18.         if U[p]+Ci/Ti<=1 then 
19. τ[p] := τ[p] ∪{τi} U[p] := U[p] + Ci/Ti            
20.         else 
21.           if +1<=m then  p
22. if (p-L) mod k=0 then             
23.               p := p+1 
24.             τ[p] := τ[p] ∪{τ  
25.             else 

i}        U[p] := U[p] + Ci/Ti  

26.               split task τi into τi´ and τi″ such that 
                       Ti´ = Ti  
                       Ti″ = Ti
                       Ci´ = (1- U[p])*Ti´ 
                       Ci″ = (Ci/Ti-Ci´/Ti´)*Ti″ 

27.               τ[p]   := τ[p]∪{τi´}         U[p]   := U[p]   + Ci´/Ti´ 
28.               τ[p+1] := τ[p+1]∪{τi″}        U[p+1] := U[p+1] + Ci″/Ti″ 
29.                 p+1 p :=
30.           end if   
31.           else 
32.             declare FAILURE 
33.           end if 
34.         end if 
35.       end for 
36.     else  
37.       declare FAILURE 
38.     end if 
39.   else    
40.     declare SUCCESS 
41.   end if 
42. else 
43.   declare FAILURE 
44. end if 

 

Figure 3:  Algorithm 1 (for task assignment) 

idea of the algorithm is that there is a current processor, with index p and tasks are considered one by one; index i denotes 

the current task. The task currently under consideration is attempted to be assigned to the current processor p. This is 

performed at line 18 in Algorithm 1. If the condition stated in that line (a schedulability test for EDF [7]) is true then the 

task can be assigned to processor p. If the condition is false, the task is split into two portions (at line 26) and assigned to 

the current processor p and processor p + 1 (lines 27-28). Then the processor with a higher index is considered (line 29). 
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1. for ocessors with index  in 1..L:  pr  p
2.   when the system starts do 
3.     do nothing 
4.   end do 
5.   when a task arrives on processor p do 
6.     execute that task 
7.   end do 
8.  
9. for ocessors with index  in L+1..m:  pr  p
10.   when the system starts do 
11.     mirrorflag[p]:= false 
12.     minindex[p]:=L+⎣(p-L)/k⎦*k+1 
13.     maxindex[p]:=L+⎣(p-L)/k⎦*k+k 
14.     if maxindex[p]>m then 
15.       maxindex[p]:= m 
16.     end if    
17.     wait until all processors with index within range 

        minindex[p]..maxindex[p] have reached this line 
18.   end do 
19.   when any task arrives on a processor with index in [minindex[p]..maxindex[p]] do 
20.     t0:=current time      
21.     t1:=next time a task arrives on a processor with index within range 

        minindex[p]..maxindex[p] 
22.     call calc_splitted_tasks // here we calculate timea_and_timeb 

                              // we also calculate firsttask and lasttask 
23.     if firsttask[p]=NULL then 
24.       idle processor p during [t0,timea[p]) 
25.     else 
26.       execute firsttask[p] on processor p during [t0,timea[p]) 
27.     end if 
28.     call schedule_tasks_with_EDF 
29.     if lasttask[p]=NULL then 
30.       idle processor p during [timeb[p],t1) 
31.     else 
32.       execute lasttask[p] on processor p during [timeb[p],t1) 
33.     end if 
34.     mirrorflag[p]:=not (mirrorflag[p]) 
35.   end do 

 

Figure 4:  Algorithm 2 (run-time dispatching) 

 
As already pointed out, the algorithm assigns heavy tasks to some processors and light tasks to some other processors. L 

separates these tasks: heavy tasks are assigned to processors with indexes ranging from 1 up to L, while light tasks are assigned 

to processors with indexes ranging from L + 1 up to m. The light tasks are assigned to different groups of processors, and there 

are at most k processors in a group. Processors with indexes in the range {L + 1..L + k} correspond to one group. Processors 

with indexes in the range {L + k + 1..L + 2k} correspond to another group, and so forth. If a task is attempted to be assigned to 

the last processor in a group and it fails, then it is not split; instead it is simply assigned to the next processor in a new group. 

Lines 23-24 take care of this situation in Algorithm 1. This ensures that tasks in one group do not interact with tasks in another 

group. This algorithm is actually similar to the next-fit bin-packing algorithm [2]. It differs however since task splitting is 

permitted in our approach. 
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1. procedure calc_splitted_tasks is 
2. begin 
3.   if mirrorflag[p] then 
4.     if there is a task τi´ assigned 

        to processor p then 
5.       lasttask[p]:= τi´ 
6.       lastdur[p]:= (Ci´/Ti´)*(t1-t0) 
7.     else   
8.       lasttask[p]:= NULL 
9.       lastdur[p] := 0 
10.     end  
11.     if there is a tas τ ″ assigned k i  
            to processor p then 
12.       firsttask[p] := τi″     
13.       firstdur[p]:=(Ci″/Ti″)*(t1-t0) 
14.     else 
15.       firsttask[p]:= NULL 
16.       firstdur[p]:= 0 
17.     end 
18.   else 
19.     if there is a tas τ  assigned k i´
            to processor p then 
20.       firsttask[p]:= τ ´ i

21.       firstdur[p]:=(Ci´/Ti´)*(t1-t0) 
22.     else 
23.       firsttask[p] := NULL 
24.       firstdur[p]:= 0 
25.     end 
26.     if there is a task τ ″ assigned i

            to processor p then 
27.         lasttask[p]:= τi″  
28.         lastdur[p]:=(Ci″/Ti″)*(t1-t0) 
29.     else 
30.       lasttask[p]:= NULL 
31.       lastdur[p] := 0 
32.   end   
33.   end if 
34.   timea[p]:= t0+firstdur[p] 
35. meb[p]:= t1-lastdur[p]   ti
36. end 
37.  

 
 
 
 
 

38. procedure schedule_tasks_with_EDF is 
39. begin 
40.   let ready[p] denote the set of 

      tasks τ[p]\{firsttask[p],lasttask[p]} 
          such that they have a job which 
          has arrived at t0 or earlier 
          but the job has remaining 
          execution at time t0  
41.   t[p]:= timea[p] 
42.   execute_entire_job[p]:=true 
43.   while execute_entire_job[p] do 
44.     current_task[p]:= dequeue the 

       task with the least 
       absolute deadline from 
       ready[p] 

45.     if current_task[p]=NULL then 
46.       execute_entire_job[p]:= false 
47.     else 
48.       remain[p] := the remaining execution 
           time of the job of current_task 
49.       if t[p]+remain[p]<=timeb[p] then 
50.         execute_entire_job[p]:=true 
51.         execute the job of current_task 
52.           during [t[p],t[p]+remain[p]) 
53.         t[p]:=t[p]+remain[p] 
54.       else 
55.         execute_entire_job[p]:=false 
56.       end if 
57.     end if 
58.   end while 
59.   if current_task[p]=NULL then 
60.     idle processor p until timeb[p] 
61.   else 
62.     execute the job of current_task 
          during [t[p], timeb[p]) 
63. end if   
64. end 
65.  
66. function calc_SEP return real is 
67. begin 
68.   if k<m then 
69.     urn k/(k+1) ret
70.   else 
71.     return 1 
72.   end if 
73. end 

 

Figure 5:  Algorithm 3 (auxiliary procedures and functions)
 

2.3. Dispatching 
We will now turn our attention to the problem of run-time dispatching. Our approach was already informally described in 

Section 2.1, and will now be more formally described through Algorithm 2 (Figure 4). Algorithm 2 calls two subroutines; these 

are described in Algorithm 3 (Figure 5). All variables in Algorithm 2 and Algorithm 3 are global variables. The dispatching of 

heavy tasks is described on lines 1-7 in Algorithm 2. It entails a simple approach: whenever a task arrives, it executes on its 

assigned processor. 

A light task is assigned to a group of processors, and whenever a task arrives in that group of processors, dispatchers are 

executed on all processors in that group. t0 denotes the time when a task arrives, and t1 denotes the time when any task in 

that group arrives next. This is computed on lines 20-21 within Algorithm 2. After that, Algorithm 2 calculates two time 
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instants, timea and timeb, when tasks should be preempted. One of the split tasks is executed before timea (line 26) 

and the other split task is executed after timeb (line 32). During the time span [timea,timeb) the non-split tasks are 

scheduled according to EDF. This is performed by the subroutine schedule_tasks_with_EDF described within 

Algorithm 3. If a non-split task finishes its execution during the time span [timea,timeb) then the next non-split task 

with the earliest deadline is selected. We denote the approach consisting of the use of Algorithms 1, 2 and 3 as EKG 

approach, as a short-hand notation for EDF with task splitting and k processors in a group. 

3. Proving the utilization bound 

The aim of this section is to prove that the utilization bound of the EKG approach is SEP (as given by Equation (1), in Section 2.2). In 

order to do this, in Section 3.1, we prove that the task assignment scheme (Algorithm 1) declares success for all task sets with 

utilization lower than or equal to the utilization bound. Lemma 2 states it and Lemma 1 is used to prove it. We also prove 

certain properties of the distribution of the execution of the task assignment in Lemmas 3-4.  

In Section 3.2 we show that if the properties assured by the task assignment scheme are true, then using the dispatcher 

(Algorithm 2) will enable all tasks to meet their deadlines. This proves the utilization bound and  

Theorem 1 states this. 

3.1. Task assignment 

Lemma 1. If Algorithm 1 declares failure then the task set satisfies Us > SEP. 

Proof: One possibility is that the algorithm declared failure on line 43. If so, then all tasks that were assigned to 

processors had Ci / Ti > SEP. Since there are m + 1 or more tasks, it follows that: 

( ) SEPmSEP
mT

C
m

n

i i

i >+××>∑
=

111
1

 (2) 

Another possibility is that the algorithm declared failure on line 37. If this was the case then all m processors were 

assigned heavy tasks and then there was a light task in the task set that could not be assigned. This would imply the 

following: 

SEPmSEP
mT

C
m

n

i i

i =××>∑
=

11
1

 (3) 

Yet another possibility would be that the algorithm declared failure on line 32. Before that it must have been a task 

(denoted with index f) that was considered (i = f) on line 18, and the condition on that line was evaluated false. We 
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observe that the utilization of the task set is no less than the sum of the utilization of all the processors when 

Algorithm 1 declared failure added to the utilization of the task f. Thus, it follows that: 

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝
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+⎟⎟

⎠

⎞
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f
m

p

n
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i

T
C
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C
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Inequality (4) can be re-written as follows to better express the fact that the overall utilization is equal to the sum of the 

utilizations of each individual sub-set of processors: 

[ ] [ ]
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Since all processors p with indexes 1 ≤ p ≤ L have U[p] > SEP and U[m] + Cf / Tf > 1 (because the algorithm declared 

failure), inequality (5) can be re-written as follows: 

[ ]
( ) ( )( )
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 (6) 

Let us now consider the set of processors p with index L + 1 ≤ p ≤ m − 1. There are (m – L – 1) of these processors. 

For some of these processors, the condition at line 22 in Algorithm 1 resulted true. This happens when (p – L) mod k = 

0. For the task i, considered to be assigned to processor p, it must have been that U[p] + Ci / Ti  > 1. Actually there are  

⎣(m − L − 1) / k⎦ of such processors. Since task i is light then U[p] > (1 − SEP). The other processors have U[p] = 1 

when Algorithm 1 declared failure (the lines 26 and 27 guarantee that). Taking this reasoning into account, we can 

now state the following: 
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We can obtain a lower bound on the right-hand side of (7). For details, see Appendix A in [8] . This gives us: 

SEP
T
C

m

n

i i

i >∑
=1

1  (8) 

All cases where Algorithm 1 could have declared failure have been explored. If Algorithm 1 declares failure then 

inequalities (2), (3) and (8) enforce that Us > SEP. This proves Lemma 1.  

  
Lemma 2. If a task set satisfies Us ≤ SEP and Algorithm 1 is used then Algorithm 1 declares success. 

Proof: Follows from Lemma 1 and the fact that Algorithm 1 terminates on every input.     

  
Lemma 3. If Algorithm 1 declares success then ∀p: U[p] ≤ 1. 
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Proof: For those processors p with p ≤ L, the claim that U[p] ≤ 1 follows from the fact that Ci / Ti ≤ 1 and the 

observation that Algorithm 1 lines 10-13 only assigns one task to each processor. For those processors p with  

p ≥ L + 1, the claim U[p] ≤ 1 follows from the actions taken by Algorithm 1 in line 18, line 24 and lines 26-28. 

  
Lemma 4. If Algorithm 1 declares success then ∀τi that is split, Ci´ / Ti´ + Ci″ / Ti″ ≤ 1. 

Proof: Follows from line 26 in Algorithm 1 and the fact that before a task is split it satisfied the condition Ci / Ti ≤ 1.  

  

3.2. Dispatching 

Lemma 5. Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive 

during (t0, t1). If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and Algorithm 2 is used to 

schedule tasks on each processor in the group, then a task τi that was split by Algorithm 1 never executes on two or more 

processors simultaneously during the time span [t0, t1). 

Proof: Let p denote the processor to which τi´ is assigned, and let p + 1 denote the processor to which τi″ is 

assigned. From Algorithm 2 it holds, for every processor p and every processor q, that mirrorflag[p]= 

mirrorflag[q], since mirrorflag[p] changes only when a task arrives. We will consider two cases. 

Case 1. mirrorflag[p]=false during the time span [t0, t1). 

From Algorithm 2, τi´ will execute during [t0, timea) on processor p and τi″ will execute during [timeb, t1) 

on processor p + 1. An assumption associated to the lemma is that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1. Hence: 

( )( )´´´/´´/1)(0 01 iiii TCTCtt +−×−≤  (9) 

which can be re-written as follows: 

´)´/)((´´)´´/)((0 010011 iiii TCtttTCttt ×−+−×−−≤  (10) 

From Algorithm 3 (lines 34-35), the two terms in (10) correspond to timea and timeb, and therefore it results 

that (10) can be re-written as follows: 

timeatimeb −≤0  (11) 

Clearly, from (11), timea ≤ timeb and this assures that τi´ and τi″ do not execute simultaneously during the 

time span [t0, t1). 

Case 2. mirrorflag[p]=true the time span [t0, t1) 

The reasoning is similar to Case 1.  
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Thus, regardless of which one of the two cases is true, it holds that a split task does not execute simultaneously on two 

or more processors.  

  

Lemma 6. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to 

schedule tasks on each processor in the group) then a task never executes on two or more processors simultaneously. 

Proof: We will prove this lemma by proving that an arbitrary task τi never executes on two or more processors 

simultaneously. 

Case 1. The task τi was not split by Algorithm 1. 

Case 1a). τi is assigned to a processor p with p ≤ L. This task is assigned to a processor and does not execute on 

any other processor. Hence τi never executes on two or more processors simultaneously. 

Case 1b). τi is assigned to a processor p with L + 1 ≤ p. This case is similar to Case 1a); but on a processor p that 

satisfies L + 1 ≤ p there may be other tasks executing. Nevertheless, the reasoning in Case 1a) can be used in this 

case too, and thus supporting that a task τi never executes on two or more processors simultaneously. 

Case 2. The task τi was split by Algorithm 1. 

Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive 

during (t0, t1). From Lemma 5 it results that τi´ and τi″ never execute simultaneously during [t0, t1). This argument 

can be repeated for every time interval between any two consecutive task arrivals, and hence it results that τi never 

executes simultaneously on two or more processors. 

Therefore, regardless of which one of the cases is true, the lemma holds. 

  

Lemma 7. Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive 

during (t0, t1). If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to 

schedule tasks on each processor in the group) then a task τi that was split by Algorithm 1 executes (Ci / Ti) × (t1 − t0) time units 

during [t0, t1). 

Proof: Let p denote the processor to which τi´ is assigned, and let p + 1 denote the processor to which τi″ is 

assigned. From Algorithm 2, and for every processor p and every processor q, it holds that 

mirrorflag[p]=mirrorflag[q] since mirroflag[p] changes only when a task arrives. 

We will consider two cases. 
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Case 1. mirrorflag[p]=false during the time span [t0, t1). 

From Algorithm 2, it results that τi´ executes during [t0, timea) on processor p and τi″ executes during  

[timeb, t1) on processor p + 1. Hence, the amount that τi executes during [t0, t1) is given by: 

( ) ( )01 ttimeatimebt −+−  (12) 

As reasoned previously in the proof of Lemma 5, Algorithm 2 states that: 

⎩
⎨
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×−−=
×−+=

´´/)(
´/)(

´´
011

´
010

ii

ii

TCttttimeb
TCttttimea  (13) 

and hence, (12) can be re-written as follows: 

´´´´
01

´´
01 /)(/)( iiii TCttTCtt ×−+×−  (14) 

Since from Algorithm 1 (line 26) a split task τi was split such that Ci´ / Ti´ + Ci″ / Ti″ = Ci / Ti and Ti´ = Ti″ = Ti, then 

the amount of execution performed by τi during the time interval [t0, t1) is given by: 

ii TCtt /)( 01 ×−  (15) 

Case 2. mirrorflag[p]=true during the time span [t0, t1) 

The reasoning is similar to Case 1. 

Thus, and regardless of which case occurs, the statement of the lemma is obtained.  

  

Lemma 8. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to 

schedule tasks on each processor in the group) then deadlines are met for all tasks τi such that  

(τi is assigned to a processor p with L + 1 ≤ p) ∧ (τi is not split). 

Proof: We will make definitions and algebraic manipulations in the first part of the proof and use them to prove the 

lemma by contradiction in a second part of the proof. 2. 

1. Let τnot_split[p] denote the set of tasks such that each task in τnot_split[p] is (τi is assigned a processor p with  

L + 1 ≤ p) ∧ (τi is not split). Let τa´ denote the prime-task assigned to processor p and let τb″ denote the bis-task 

assigned to processor p. Note that τa´ and τb″ do not belong to the same original task. From Algorithm 1 it results 

that: 
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 (16) 

which can be re-written as follows: 
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Both sides of inequality (17) can be multiplied by S, where S is any positive real number. In doing it and applying 

an algebraic re-writing, the following inequality holds: 
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2. Let us now consider the task set τnot_split[p], and prove that all tasks in τnot_split[p] meet their deadlines. We prove it 

using contradiction. Suppose that a task in τnot_split[p] missed a deadline. Let us study the busy period [9] before the 

first deadline miss. Our busy period is defined slightly different from the definition in [9]; our busy period starts 

when a task arrives and ends when the first deadline miss occurs. During this time period, it is permitted that 

processor p is idle. However it must be that ready[p] (see line 40 in Algorithm 3) is non-empty. Just before the 

beginning of the busy period, ready[p] (line 40 in Algorithm 3) is empty. Since the tasks in τnot_split[p] are 

scheduled with preemptive EDF (pseudo-code in Algorithm 3 – Figure 5) it results that for a deadline miss to 

occur, it must have been that there is a time interval Q such that (Q is a subset of our busy period) ∧ (Q starts when 

a task arrives and ends when the deadline is missed) ∧ (the supply of processing time [9] for the tasks in τnot_split[p] 

during Q was less than the demand of processing time from tasks in τnot_split[p] during Q.). Let LQ denote the length 

of Q. It is known that the demand is calculated as follows: 
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 (19) 

Let us consider a time interval [t0, t1) such that at time t0, a task arrives and at time t1 a task arrives but during  

(t0, t1) no tasks arrive. Let us consider a task τa´ and a task τb´ which are split tasks and are assigned to the same 

processor p. Note that they do not belong to the same original task. It holds that the task τa´ executes for  

(Ca´ / Ta´)×(t1 − t0) time units and the task τb´ executes for (Cb″ / Tb″)×(t1 − t0) time units. This holds for every such 

time [t0, t1). Hence, the supply of processing time for the tasks in τnot_split[p] in the time interval [t0, t1) is given by: 
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This is true regardless of the value of mirror[p]. Observe that the time interval Q can be subdivided into 

intervals where inequality (20) can be applied. The repeated application of (20) to all those intervals yields that the 

supply of processing time for the task in τnot_split[p] during Q is: 
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It is known from previous research [9] that since a deadline is missed the demand exceeded the supply. Hence the 

following inequality will hold: 
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But this contradicts (18). Hence, all deadlines of tasks in τnot_splitted[p] are met.  

  

Lemma 9. If (∀p: U[p] ≤ 1) and (for all split tasks it holds that Ci´ / Ti´ + Ci″ / Ti″ ≤ 1) and (Algorithm 2 is used to 

schedule tasks on each processor in the group) then all deadlines are met. 

Proof: We will prove this lemma by proving that an arbitrary task τi meets its deadline. 

Case 1. The task τi was not split in Algorithm 1. 

Case 1a). τi is assigned to a processor p with p ≤ L. 

There are no other tasks on this processor. Since Ci ≤ Ti, the task meets its deadlines. 

Case 1b). τi is assigned to a processor p with L + 1 ≤ p. 

It results from Lemma 8 that τi meets its deadlines. 

Case 2. The task τi was split in Algorithm 1. 

Consider a time interval [t0, t1) such that a task arrives at time t0 and a task arrives at time t1 but no tasks arrive 

during (t0, t1). From Lemma 7 it results that τi executes (Ci / Ti)×(t1 − t0) time units during [t0, t1). This argument 

can be repeated for every time interval between two task arrivals, and hence it results that τi meets all its deadlines.  

Therefore, regardless of which one of the cases is true, the lemma holds. 

  

We will finalise Section 3 by stating the following theorem. 

Theorem 1. If a task set satisfies the condition Us ≤ SEP and EKG is used, then all deadlines are met and a task never 

executes on two or more processors simultaneously. 
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Proof: It follows from Lemma 6 and Lemma 9.  

  

4. Proving a bound on the number of preemptions 

In this section we will state (Theorem 2) a bound on the number of preemptions divided by the number of jobs for the entire 

task set. Its proof depends on Lemma 10, which studies the special case of tasks in one group of processors. We let lcm denote 

the least common multiple of periods of the tasks. Since Lemma 10 and Theorem 2 makes claims about the number of 

preemptions per job, it is necessary to define whether a split task is one task or two tasks; analogously for jobs. In this section, 

in Lemma 10 and Theorem 2, we say that if a task is split then it is counted as one task. The jobs from these tasks are split. We 

count such a split job as one job. We think this is the right way of counting because the splitting of tasks and jobs is only used 

internally in the scheduling algorithm; the application does not know that a task or a job is split. 

Lemma 10. Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. Consider the processors in one of 

the groups consisting of k processors. We claim that the number of preemptions during [0, lcm) divided by the number of jobs that 

executed during [0, lcm) is at most 2k. 

Proof: See Appendix B in [8].   

Theorem 2. Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. We claim that the number of 

preemptions during [0, lcm) divided by the number of jobs that executed during [0, lcm) is at most 2k. 

Proof:  From Lemma 10 we know that for the groups with k processors, the number of preemptions divided by the number 

of jobs is at most 2 × k. The last group may consist of less than k processors; nevertheless, it holds that the number of 

preemptions divided by the number of jobs is at most 2 × k. The processors with index p ≤ L have only one task per 

processor so no preemptions can occur there. Taking these three facts together imply that the number of preemptions on all 

processors during [0, lcm) divided by the number of jobs during [0, lcm) in the entire task set is no greater than 2 × k.   

5. Conclusions 

We have presented an algorithm to schedule tasks to meet deadlines on a multiprocessor. By selecting k = 2, Theorem 1 

tells us that the utilization bound of the algorithm is 66% and Theorem 2 tells us that it causes at most 4 preemptions per job 

on average per hyperperiod. A higher value of k, gives a higher utilization bound at the expense of more preemptions. By 

selecting k = m we obtain that the utilization bound is 100%. 

Pfair scheduling algorithms [4, 5] and the algorithm BF [10] have a utilization bound of 100%. Unfortunately neither of 

them have proven bounds on the number of preemptions per job. Several algorithms were presented by Khemka and 
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Shyamasundar for multiprocessor scheduling with a high utilization bound and few preemptions [11]. They offered a bound on 

the number of preemptions as a function of the greatest common divisor of the periods of all tasks in the task set. 

Unfortunately, for some task sets the bound on the number of preemptions divided by the number of jobs approaches infinity. 

This happens for task sets with periods selected as Ti  = (q + i):th prime number and where q approaches infinity. As already 

pointed out, with our algorithm this cannot happen. 
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Appendix A: Algebraic rewriting 
Consider the following inequality. 
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Simplifying yields: 
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Consider two cases: 

Case 1. k<m 

Observing that ⎣x⎦≤x yields: 
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Using (1) gives us that the RHS is unchanged if L changes. Hence, selecting L=0 does not change the RHS. This gives 

us: 
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Using (1) again yields: 
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Case 2. k=m. 

Observing that  ⎣(m-L-1)/k⎦=0 yields:  
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and observing that according to (1) with k=m, we have SEP=1. This gives us: 
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Hence regardless of whether Case 1 or Case 2 is true, we obtain that: 
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Appendix B: Proof of a lemma 

Lemma 10. If a task is split let us consider that as one task in this lemma and if the job from such a task is split then this job is 

only considered as one job.  

Consider the case when all tasks arrive at time 0 and they are scheduled using EKG. Consider the processors in one of the groups 

consisting of k processors. We claim that the number of preemptions during [0, lcm) divided by the number of jobs that executed 

during [0, lcm) is at most 2k. 

Proof: The tj denote the j:th time that a task arrives on the group of processors during the time interval [0,lcm). As an 

illustration of tj we have: t1=0 and t2=min{Ti}.  

We will first (in 1. below) prove an upper bound on the number of preemptions during [t1,tj) and then (in 2. below) prove a lower 

bound on the number of jobs that arrive during [t1,tj). 

1. We claim (for 2≤j) it holds that: 

k.*2*1)-(j

 )jt,1[t during spreemption ofnumber  The

≤

 (23) 

We will prove it using induction. 

Base case. We claim that (23) is true for j=2. 

Proof of the case case. Consider [t1,t2) All tasks arrive at time t1 and it may cause context switches. But since the tasks 

have not executed before t1, it is not a preemption. Algorithm 2 computes two times timea and timeb where 

preemptions may occur. It may cause preemptions on all k processors in the group. If a non-splitted task finishes 

execution during (timea,timeb) then there will be a context switch but this is not a preemption. Hence we obtain that 

during [t1,t2) there is at most 2*k preemptions in the group during [t1,t2). 

The induction step. We claim that if (23) is true for j=q where 2≤q then (23) is true for j=q+1. 

Proof of the induction step. We know that the number of preemptions during [t1,tq) is at most (q-1)*2*k. Let us now 

consider the time interval [tq,tq+1).  

Consider [tq,tq+1). According to Algorithm 2, there are two instants when preemptions can occur timea and timeb. 

One might think that a preemption can also occur at tq if tq≠timea. This is not correct though. To see this, consider the 

case where tq≠timea. Then it follows that tq<timea. Let us divide this into two further cases. 

Case 1. Firsttask[p] arrived at tq. 

There may be a context switch at tq but since the job of firsttask[p] has not executed before this context 

switch, it is not a preemption. 

19 



Case 2. Firsttask[p] did not arrive at tq. 

Then it holds that firsttask[p] executed before just before tq because of mirroring and hence it is not 

preempted at time tq. 

We conclude that if tq≠timea[p] then there is no preemption at tq.on processor p. 

 

Since there are k processors in a group, there can be at most 2k preemptions in a group during [tq,tq+1). Adding those 

preemptions to the preemptions during [t1,tq) we obtain that the number of preemptions during [t1,tq+1) is at most (q-

1)*2*k+2k=((q+1)-1)*2*k. This is the statement of the induction step, so the induction step is proven. 

 

Using the base case, the induction step and performing induction on j we obtain (23) is true. 

2. We claim (for 2≤j) it holds that: 

1-j 

 )jt,1[t during arrive that jobs ofnumber  The

≥

 (24) 

The claim (24) is true because every time interval [tj,tj+1) starts and ends with the arrival of at least one job. 

Combining (23) and (24) yields: 

k×≤ 2
 )t,[t during arrive that jobs ofnumber  The

)t,[t during spreemption ofnumber  The

j1

j1  (25) 

We know that a task arrives at time lcm. Hence there is a j such that tj=lcm. By applying t1=0 and tj=lcm on (25) we obtain 

the statement of the lemma.  
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