

Multiprocessor real-t ime scheduling with
a few migrating tasks

Technical Report

CISTER-TR-131204

Version:

Date: 12-05-2013

J. Augusto Santos-Jr.

George Lima

Konstantinos Bletsas

Shinpei Kato

Technical Report CISTER-TR-131204 Multiprocessor real-time scheduling with a few migrating tasks

© CISTER Research Unit
www.cister.isep.ipp.pt

1

Multiprocessor real-time scheduling with a few migrating tasks
J. Augusto Santos-Jr., George Lima, Konstantinos Bletsas, Shinpei Kato

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
We present HIME, a new EDF-based semi-partitioned scheduling algorithm which allows at most one migrating
task per processor. In a system with m processors, this arrangement limits the migrating tasks to at most m/2 and
the number of migrations per job to at most m-1. HIME has a utilisation bound of at least 74.9%, and can be
configured to achieve 75%, the theoretical limit for semi-partitioned schemes with at most m/2 migrating tasks.
Experiments show that the average system utilisation achieved by HIME is about 95%.

Multiprocessor real-time scheduling with a few
migrating tasks

J. Augusto Santos-Jr.∗, George Lima∗, Konstantinos Bletsas† and Shinpei Kato‡
∗Computer Science Department, Federal University of Bahia, Brazil

†CISTER/INESC-TEC, ISEP, Porto, Portugal
‡Information Engineering Department, Nagoya University, Japan

Abstract—We present HIME, a new EDF-based semi-
partitioned scheduling algorithm which allows at most one
migrating task per processor. In a system with m processors,
this arrangement limits the migrating tasks to at most m/2 and
the number of migrations per job to at most m−1. HIME has
a utilisation bound of at least 74.9%, and can be configured to
achieve 75%, the theoretical limit for semi-partitioned schemes
with at most m/2 migrating tasks. Experiments show that the
average system utilisation achieved by HIME is about 95%.

1. INTRODUCTION

Algorithms for scheduling n sporadic tasks on m identical
processors to meet deadlines were traditionally classified as
partitioning or global scheduling [11]. Partitioning divides
the task set into disjoint subsets; each subset is assigned to
a respective processor and scheduled by some uniprocessor
algorithm such as Earliest-Deadline-First (EDF) and Fixed
Priority Scheduling (FPS). Global scheduling maintains a
single run queue for all tasks and, at any given instant, the m
highest priority tasks execute, each on one of the m processors.
Hence, under global scheduling, tasks may migrate, even
halfway through the execution. Partitioning offers simplicity
and reuse of techniques from uniprocessor scheduling but
disallowing migrations inherently limits the utilisation bound
to 50% at most [11]. Conversely, some global scheduling
algorithms achieve a utilisation bound of 100% at the expense
of higher scheduling overheads and/or scalability issues.

The novel semi-partitioning paradigm aims to combine the
best aspects of partitioning (efficient implementation; low dis-
patching overheads) with those of global scheduling (efficient
use of available processing capacity). Various semi-partitioned
scheduling schemes have been devised. A few are based on
fixed-priority scheduling but most are based on EDF, some of
which achieve high schedulability [4], [5], [9]. However, what
is left open for the semi-partitioning paradigm is a utilisation

bound problem. It is a trade-off that algorithms designed
to meet a high utilisation bound pay the cost of migration
overheads [5] while simplified algorithms compromise the
worst-case schedulability, if not the average schedulability [4],
[9]. In this paper we follow this trend, describing a highly
efficient semi-partitioned EDF-based approach reducing the
number of migrating tasks as compared to the start-of-art.

Contribution: In this work, we formulate a new semi-
partitioned scheduling algorithm called HIME, which stands
for HIghest-priority Migration managed by EDF. HIME allows

at most one migrating task per processor and employs very
simple dispatching: a migrating task always executes at the
highest priority over all other tasks, which are scheduled by
EDF. This can be achieved using a standard uniprocessor EDF
scheduler, via manipulation of the deadline of the migrating
task on each processor (i.e., reporting a shorter deadline to
the scheduler, as in [5]). Allowing at most one migrating task
per processor means that there may exist no more than m/2
migrating tasks. Additionally, as will become evident, no job
may migrate more than m − 1 times. Such a design makes
good sense, since having frequent migrations and/or too many
migrating tasks may in practice lead to degraded performance,
due to increased contention on processor caches.

For HIME, we prove a least utilisation bound of 74.9%,
which can be raised to 75% with a simple optimisation; this
matches, as we also prove, the theoretical limit for the class
of algorithms with at most ⌊m/2⌋ migrating tasks.

Organisation: Section 2 first presents the underlying princi-
ples of HIME and next the algorithm itself. Section 3 contains
the theoretical derivation of the least utilisation bound of
HIME. Section 4 describes possible improvements. Section 5
experimentally assesses the scheduling potential of HIME vs.

that of other schemes. Our conclusions are drawn in Section 6.

2. DESCRIPTION OF HIME

A. Task model

We consider a set Γ of n independent sporadic tasks (τ1 to
τn) scheduled on m identical processors (P1 to Pm). A task
τi is denoted by a tuple (Ci, Ti), where Ci ≤ Ti represents its
worst-case execution time and Ti is its minimum inter-arrival
time, also called period. The utilisation of a task τi is denoted

by ui
def
= Ci/Ti while that of an overall task set Γ′ ⊆ Γ is

denoted by U(Γ′)
def
=
∑

τi∈Γ′ ui.
If a task τi arrives at time t, it must be granted Ci units

of processor time within [t, t + Ti). Namely, we assume an
implicit-deadline task model. During their execution, tasks
may be preempted and may migrate between processors but
each individual task is not allowed to execute at the same
time on distinct processors. The actual costs of preemptions
and migrations are outside the scope of this paper.

B. Task splitting and migration

As aforementioned, under HIME, no processor is used by
more than one migrating task. This arrangement breaks up

the system into multiple clusters (disjoint sets of processors),
each of which may contain a single respective migrating task
(Figure 1). Within each cluster, the migrating task always
executes at the highest priority over other tasks and uses each
of the processors for a specific fraction of its execution time,
after which it simply migrates to the next processor.

Fig. 1. An example of clustered task splitting

The amount of a respective fraction of its overall worst-
case execution time that a migrating task may spend on each
processor is calculated offline, during the task assignment and
splitting stage. While it is desirable to maximise that fraction
for an efficient processor utilisation, the interference by the
migrating task should not compromise the schedulability of
background (i.e., non-migrative) tasks. Therefore, each “piece”
of a migrating task is sized according to a uniprocessor
schedulability test. Although this test is only sufficient (unlike
the exact tests used by conceptually related algorithms EDF-
WM [9] and C=D [5]), it is polynomial in time complexity and,
as we will show, performs well. Additionally, our derivation
of the utilisation bound of HIME depends on this particular
test, presented next:

Theorem 1 (Basic sufficient schedulability test): Let τ0 be
a task scheduled at the highest priority on some processor
Pp, together with a set Γp of implicit-deadline background
tasks, scheduled under EDF. Additionally, assume that T0 ≤
Tj, ∀τj ∈ Γp. Then, no deadlines can be missed as long as

u0 ≤
1− U(Γp)

1 + U(Γp)
(1)

Proof: It is known from Theorem 3 in [12] and [13]
(ported as Theorem 7 in the Appendix) that, for the case
described above, no deadlines can be missed if

u0 ≤
1− U(Γp)

1 + U(Γp)
⌊

minτj∈Γp
Tj

T0

⌋

Since T0 ≤ minτj∈Γp
Tj (from the assumption), the above

sufficient condition for schedulability can be relaxed to (1).
When applying the above schedulability test in order to size

a piece of a split task, the task τ0 in Theorem 1 corresponds
to the split task piece and Γp corresponds to the set of non-
migrative tasks assigned to processor Pp. Then, for a task τi

split over k processors (Pq to Pq+k−1), its piece on processor
Pp is sized such that its utilisation up

i is

up
i =

{

σ(U(Γp))
def
= 1−U(Γp)

1+U(Γp)
, for the first k − 1 pieces;

ui −
∑q+k−2

p=q up
i , for the last (kth) piece.

(2)

Note however that Equation (2) is only safe if Ti ≤ Tj ,
∀τj ∈ Γp, reflecting the assumptions of Theorem 1. The offline
task assignment and splitting algorithm (examined in detail in
Section 2-C), ensures this by design, by selecting as migrating
task the task with the shortest interarrival time on each cluster.

Of use, is also the following, more conservative, formula
for sizing up

i :

Lemma 1: It is safe to set up
i to α(U(Γp))

def
= 2(

√
2− 1)−

U(Γp) instead of σ(U(Γp)).
Proof: From Theorem 1, processor Pp is schedulable if

up
i ≤ σ(U(Γp)). In turn, U(Γp) + σ(U(Γp)) = U(Γp) +

1−U(Γp)
1+U(Γp)

= U2+1
1+U(Γp)

and, using standard differential calculus

(see Remark 5 in the Appendix), the minimum of this expres-
sion over U(Γp) ∈ [0, 1] is 2(

√
2− 1).

Intuitively, Lemma 1 states that the least schedulable proces-
sor utilisation in the presence of multiple EDF-scheduled back-
ground tasks (under interference of a single higher-priority
task) is lower-bounded by the respective least utilisation bound
when there is just a single background task – or equivalently
the least utilisation bound of 2(

√
2−1) for two tasks scheduled

by rate-monotonic [10]. In that same seminal paper, Liu and
Layland had explored this exact mixed scheduling model, and
although they had stopped short of identifying the asymptotic
bound, they made a similar conjecture1.

C. Outline of task assignment and splitting

The high-level pseudocode in Figure 2 outlines the task
assignment and splitting procedure. The tasks (indexed by
non-increasing utilisation) are integrally assigned, one by one,
using First-Fit bin-packing, until either all tasks are assigned
or some task τi cannot be integrally assigned to any processor,
with schedulability preserved subject to existing task assign-
ments. At that point, the algorithm resorts to task splitting.

For the purposes of task splitting, a variable q holds the
index of the first processor onwards from which the next
cluster is to be formed. Prior to task splitting, processors
Pq to Pm are re-indexed in terms of non-decreasing U(Γp)
(line 6). One naive way of proceeding, at this point, would be
to attempt to split τi (the same task that could not be assigned
integrally, earlier) in k pieces (as many as needed) over
processors Pq , Pq+1, . . ., Pq+k−1 respectively, sizing each
piece such that each processor remains schedulable. However,
this approach includes a problem. Namely, the piece sizing
formula (2) relies on the migrating task having a T no greater

1Quoting from [10]: “Although a closed form expression for the least upper
bound to processor utilization has not been found for the mixed scheduling
algorithm, this example strongly suggests that the bound is considerably less
restrictive for the mixed scheduling algorithm than for the fixed priority rate-
monotonic scheduling algorithm. The mixed scheduling algorithm may thus
be appropriate for many applications.”

1. //tasks are indexed by non-increasing ui

2. int q=1; //stores index of processor to split onwards from
3. for (each task τi)
4. {try assigning τi integrally to some processor in {P1, . . . , Pm} using First-Fit;
5. if (τi could not be assigned to any processor with

schedulability preserved, subject to existing assignments)

6. {re-index processors Pq to Pm by non-decreasing utilisation;
7. k′=select_processors_for_next_cluster(); //returns upper bound on cluster size
8. j= index_of_task_with_shortest_T_in(Γq ∪ . . . ∪ Γq+k′−1);
9. if (Ti > Tj)

10. {undo_assignment_of(τj);
11. assign τi to the processor Pr where τj was previously assigned;
12. re-index processors Pq to Pq+k′−1 by non-decreasing U(Γp); //if affected by swap

13. }
14. else //it is τi that will be split
15. j=i;

16. int k=split_task(τj); //from Pq onwards, using Eq. (2) to size pieces;
17. if (k==0) //signifies that we ran out of processors!
18. return(FAILURE);
19. else

20. q=q+k; //k is the number of processors over which τj was split
21. }
22. }

//this line is reached only if all tasks were assigned (integrally or split)
23. return(SUCCESS);

Fig. 2. Pseudocode for task assignment/splitting stage of the HIME scheduling algorithm

than that of any other task, on any of the processors that it
uses. In other words, the migrating task must have the shortest
T on its cluster – and this may not be the case for τi, since
the task set is indexed (line 1) by non-increasing utilisation
(u), not by non-increasing interarrival time (T). Although this
could be resolved by indexing the tasks by non-increasing T
instead, this would degrade the utilisation bound. Hence, we
proceed differently:

Via a technique explained later (Section 2-D), we obtain
(line 7) an upper bound k′ on the number of processors needed
for the next cluster before the identity of the split task is
even decided. In the worst case, it could be all m − q + 1
candidate processors (Pq to Pm). This bound k′ is calculated
by function select processors for next cluster(), which, also
reindexes the processors such that Pq to Pq+k′−1 are really
the ones we want for the next cluster (in terms of what’s best
for the utilisation bound).

Now that the processors in the next cluster are known, we
can check whether Ti ≤ Tj, ∀τj∈Γq∪. . .∪Γq+k′−1. If this
holds, then τi is chosen as the task to split; else, we do a task

swap (lines 8-12):

Let τj be the task with the minimum interarrival time over
Γq ∪ . . . ∪ Γq+k′−1 and let Pr be the processor where it was
assigned. As a next step, the assignment of τj is undone;
τi is assigned to Pr in its place; and τj is selected as the
task to split over the cluster under formation. Note that this
swap is always possible (i.e., safe for the schedulability of Pr)
because ui ≤ uj , from the task ordering); hence U(Γr) cannot
increase as a result. Next, the task selected (τj , without loss of
generality) is split up in pieces, assigned to Pq onwards and
sized according to Equation (2). This splitting is performed

by function split task(τj), invoked at line 16. The specific
internal workings of this function are presented in pseudocode
in Figure 4. Similarly, they perform some processor reindexing
and a local optimisation for choosing the processor for the last
piece of the split task.

Note that since k′ is only an upper bound on the number
(k) of processors of the cluster under formation, we may
eventually need fewer processors than that. In any case, after
τj is split, variable q is incremented by k (line 20).

After completing the assignment of a split task and the
formation of the respective cluster, the algorithm continues
with the assignment of remaining tasks, resorting to splitting,
in the manner described, whenever needed. The algorithm can
only fail if some task τj cannot be split over the remaining
processors (line 18).

D. Properties of cluster formation

The correctness of the algorithm of Figure 2 and the
utilisation bound proven in Section 3 rely on an upper bound k′

for the number of processors in the cluster, computed before

its formation. This bound k′ is derived using the algorithm
in Figure 3. To summarise, that function computes k′ by
“pretending” that (i) the task to be split is τi (i.e., the same
task which earlier could not be assigned integrally) and (ii) that
its pieces on each processor can be sized using the function
σ(U(Γp)) (as defined in Equation (2)), even if its Ti is not

the smallest in the cluster under formation. For the last (k′
th

)
processor, the conservative sizing formula α(U(Γp)) from
Lemma 1 is used instead, for resilience in case of a task swap.

The fact that this derivation of k′ is safe, is proven by
Lemma 3, which relies on Lemma 2:

1. int select_processors_for_next_cluster()
2. {//Pq .. Pm already indexed by U(Γp) ↑
3. int k′=1;
4. int p=q; //the new cluster starts from Pq

5. float U=ui; //u of τi that could not be assigned integrally

//the loop below calculates a provisional estimate for k′

//and identifies the first k′ − 1 processors
6. while ((U>σ(U(Γp))) AND (p ≤ m))
7. {//consider Pp as member of the next cluster
8. U=U-σ(U(Γp));
9. k′=k′+1;

10. p=p+1;
11. }
12. //provisional k′ has been calculated; now, attempting

//a local optimisation for the last (k′
th

) processor

//Pq ..Pm are indexed by U(Γp) ↑, hence also by α(U(Γp)) ↓
//The loop below identifies the Pp with the highest U(Γp),
//among those with α(U(Γp)) >U (if any exist).

13. for (p=m; p≥q+k′-1; p--) //traverse Pm → Pq+k′−1
14. {if (α(U(Γp)) ≥U) //if the last piece fits, acc. to test of Lem. 1
15. break;
16. }
17. if (p≥q+k′-1)
18. {reindex Pp to become Pq+k′−1;

//maintaining relative order of other processors
19. return k′;
20. }
21. else //no such processor found
22. return m-q+1;
23. }

Fig. 3. Pseudocode for selecting processors for the next cluster

Lemma 2: Whenever the algorithm of Figure 2 resorts to
task-splitting, just before select processors for next cluster()
is invoked, it holds that U(Γp) > 1

2 , ∀q ≤ p ≤ m.

Proof: There exist two complementary cases: If (Case 1)
ui >

1
2 , since every Pp ∈ {Pq . . . Pm} has at least one task

and each task τj assigned so far has uj ≥ ui, the claim holds.
Alternatively, if (Case 2) ui ≤ 1

2 , the claim follows from the
fact that τi could not be assigned integrally on any Pp.

Lemma 3: If, during the execution of function se-
lect processor for next cluster(), line 19 (Figure 3) is
reached, then, the subsequent call to the function split task()
will succeed in splitting the migrating task (whether this is the
task τi which could not be assigned integrally earlier or the
task τj with which it is swapped at lines 10-12 of Figure 2),
over (a subset of) the processors {Pq, . . . , Pq+k′−1} selected
by select processor for next cluster().

Proof: We identify two complementary cases, corre-
sponding to the branches of the “if-else” statement of line 5
(Figure 2). If (Case 1) τi (the task which could not be assigned
integrally) is the actual task to be split (“else” branch), the
proof is trivial. Therefore, we focus on Case 2, in which τi is
swapped with another task τj , and τj is split instead.

Let Pr be the processor (as reindexed by
select processors for next cluster()) where τj was initially
assigned. Moreover let Ubef(Γp) denote the utilisation of
Γp before the swap of τj and τi and Uaft(Γp), respectively,

afterwards. Then, Sbef def
= 1− (Ubef(Γp)+ σ(Ubef(Γp))) and

1. int split_task(τj)
2. {reindex Pq..Pq+k′−1 by U(Γp)↑; //hence also σ(U(Γp)) ↓
3. C=Cj;
4. int p=1;
5. while (p ≤ k’)
6. {if (C/Tj ≤ σ(U(Γp)))
7. break; //local optimisation will be used for the last piece
8. else

9. {assign piece τq+p−1
j

with C
q+p−1
j =Ti*σ(U(Γp)) to Pq+p−1;

10. C=C-C
q+p−1
j ;

11. p=p+1;
12. }
13. }

14. if (p>k’) //we ran out of processors!
15. return 0;
16. else //assign last piece to most utilised processor possible
17. {int k=p; //k ≤ k’
18. for (p=m; p≥ q+k′-1; p--) //traverse Pm → Pq+k−1
19. {if (σ(U(Γp)) ≥C/Tj) //if the last piece fits, by test of Th. 1
20. reindex Pp to become Pq+k−1;

//maintaining relative order of other processors

21. assign piece τ
q+k−1
j with C

q+k−1
j =C to Pq+k−1;

22. return k; //size of cluster
23. }
24. }
25. }

Fig. 4. Pseudocode for task splitting

Saft def
= 1 − (Uaft(Γp) + σ(Uaft(Γp))) denote the fraction

of the capacity of Pp which is unusable for accommodating
additional task utilisation, respectively before/after the swap.

In order to show that the migrating task can be accommo-
dated over Pq to Pq+k′−1 even in the case of a task swap, it
suffices to show that

Saft
r − Sbef

r ≤ 3− 2
√
2− Sbef

q+k−1, (3)

wherein the right-hand side represents the slack on Pq+k−1

for accommodating (additional) utilisation by the migrating
task. This slack results from the capacity of Pq+k−1 for ac-
commodating migrating tasks being pessimistically calculated
by select processor for next cluster() as α(Ubef(Γp)) = (2−
2
√
2)− U(Γp), instead of σ(Ubef(Γp)).

Given that Saft
r − Sbef

r ≤ maxq+k−1
p=q Saft

p −minq+k−1
p=q Sbef

p

and maxq+k−1
p=q Saft

p ≤ 3−2
√
2 (from the fact that Uaft(Γj)+

σ(Uaft(Γj) is lower-bounded by 2(
√
2− 1)), it follows that:

Saft
r − Sbef

r ≤ 3− 2
√
2−

q+k−1
min
p=q

Sbef
p (4)

Given that Ubef(Γp) > 1
2 (Lemma 2) and that Sbef

p is

decreasing over [
√
2− 1, 1] (see Remark 5 in the Appendix),

it follows that minq+k−1
p=q Sbef

p ≥ Sbef
q+k−1, since the function

select processors for next cluster() selects processors in non-
decreasing order of Ubef(Γp). Combining this fact with Equa-
tion (4) yields Saft

r − Sbef
r ≤ 3− 2

√
2− Sbef

q+k−1.
Theorem 2: If the algorithm of Figure 2 declares success,

no task misses its deadline, when scheduled under our model.
Proof: By construction, since each successful task as-

signment (split or integral) preserves the schedulability of
previously assigned tasks; else failure is declared.

E. Ilustration

The allocation scheme of HIME is now illustrated.

Example 1: Let Γ be a task set to be scheduled on m =
4 processors composed of the following tasks: τ1 = τ2 =
(2.04, 3), τ3 = τ4 = (1.34, 2), and τ5 = (1.32, 2).
HIME first assigns the first four tasks integrally to distinct
processors and detects that τ5 cannot be assigned to a single
processor (Figure 2). The first part of Table I illustrates these
allocation steps. Then, HIME searches for processors so that a
migrating task can be accommodated. In this example, all four
processors are selected (Figure 3). Note that by Equation (2)
U(τ5) = 0.66 is greater than what is available on any group
of three processors after the first four tasks are allocated. As
the period of τ5 is not greater than the period of any other
already allocated tasks, it can be set as a migrating task.

TABLE I
TASK-TO-PROCESSOR ASSIGNMENT FOR EXAMPLE 1.

allocation of τ1, τ2, τ3, τ4
Processor P1 P2 P3 P4
Allocation {τ1} {τ2} {τ3} {τ4}
U(Γp) 0.6800 0.6800 0.6700 0.6700
σ(U(Γp)) 0.1904 0.1904 0.1976 0.1976

allocation of τ5
Allocation {τ1, τ15 } {τ2, τ25 } {τ3, τ35 } {τ4, τ45 }
U(Γp) + u

p
i 0.7962 0.8705 0.8676 0.8676

σ(U(Γp)) − up
i 0.1162 0.0 0.0 0.0

As will be shown in the next sections, the least upper bound
on system utilisation provided by HIME is not higher than
75%. However, as seen in Example 1, which requires 85% of
four processors, the average case is typically much higher.

3. UTILISATION BOUND

In this section, we prove the least utilisation bound of 74.9%
for for HIME. First, we need some intermediate results:

Remark 1: If a task τi cannot be assigned integrally subject
to existing assignments, then

ui + U(Γp) > 1, p = q, . . . ,m (5)

U(Γp
i) + U(Γp′

i) > 1, p, p′ = q, . . . ,m, p ̸= p′ (6)

Proof: From the bin-packing used.
Remark 2: If a task τj is split over k > 1 processors (Pq

to Pq+k−1) by the algorithm of Figure 2 under our system
model, then the following relations hold:

uj + U(Γp) > 1, p = q, . . . , q + k − 1 (7)

U(Γp
j) + U(Γp′

j) > 1 p, p′ = q, . . . , q + k − 1, p ̸= p′ (8)

q+k−2
∑

p=q

1− U(Γp)

1 + U(Γp)
< uj (9)

Proof: If τj was the task which earlier could not be
assigned integrally, (7) and (8) hold due to Remark 1. Else, if
τj was swapped with that task τi, (5) and (6) held for τi before
the task swap. The swap does have the effect of modifying the

U(Γr) of the processor Pr where τj was previously assigned;
however the fact that uj ≥ ui (from the task ordering) ensures
that (7) and (8) hold. Further, (9) follows from the fact that
τj requires k processors; k − 1 do not suffice.

Remark 3: Let x1, x2, . . . , xk be values such that 0 ≤ xj ≤
1, j = 1, 2, . . . , k. If x̄ = 1

k

∑k
j=1 xj , then

k
1− x̄

1 + x̄
≤

k
∑

j=1

1− xj

1 + xj
(10)

Proof: Let f(x) = 1−x
1+x

, 0 ≤ x ≤ 1. As f(x) is convex
in interval [0, 1], Jensen’s inequality [8] can be applied,

f(x̄) = f

(

1

k

k
∑

i=1

xj

)

≤
1

k

k
∑

i=1

f (xj)

Now, we start the derivation of the utilisation bound of
HIME. The next few lemmas explore particular cases; they
are combined by Theorem 3.

Lemma 4: If a migrating task τj is succesfully split over
k = 2 processors (Pq and Pq+1), under our system model and
the algorithm described earlier, then
ui+Ubef(Γq)+Ubef(Γq+1)=uj+Uaft(Γq)+Uaft(Γq+1)>

3
2 ,

where τi is the task which earlier could not be assigned
integrally (i.e., possibly, i ̸= j), and Ubef(Γp) and Uaft(Γp),
respectively, denote the value of U(Γp) before/after the task
swap (if one occured; else they coincide).

Proof: By design, ui + Ubef(Γq) + Ubef(Γq+1) = uj +
Uaft(Γq)+Uaft(Γq+1). The claim then follows from (7), (8).

Remark 4: Let τi be a task that could not be assigned
integrally at line 5 (Figure 2). Then, if function se-
lect processors for next cluster (Figure 3) subsequently re-

turns k′, it holds that ui >
∑q+k′−2

p=q σ(Ubef(Γp))
Proof: Given that select processor for next cluster()

“simulates” the splitting of τi over processors with Ubef(Γp)
(and function σ(U(Γp)) is used to size the first k′ − 1
pieces), (9) of Remark 2 (which is formulated for τj and
Uaft(Γp)) also holds for τi and Ubef(Γp), namely: ui >
∑q+k′−2

p=q σ(Ubef(Γp)).
Lemma 5: If, during the execution of function se-

lect processor for next cluster(), line 19 (Figure 3) is
reached, then

ui +
q+k′−1
∑

p=q

Ubef(Γp) > (k′ − 1)
1 + ū2

1 + ū
+ Ubef(Γq+k′−1)

(11)
where τi is the task that could not be integrallly assigned

earlier and ū
def
= 1

k′−1

∑q+k′−2
p=q Ubef(Γp).

Proof: From Remark 4:

q+k′−2
∑

p=q

1− Ubef(Γp)

1 + Ubef(Γp)
< ui.

Applying Remark 3, we obtain:

ui >
q+k′−2
∑

p=q

1− Ubef(Γp)

1 + Ubef(Γp)
≥ (k′ − 1)

1− ū

1 + ū

Therefore, ui +
q+k′−1
∑

p=q

Ubef(Γp) ≥

Ubef(Γq+k′−1) +
q+k′−2
∑

p=q

Ubef(Γp) + (k′ − 1)
1− ū

1 + ū

= Ubef(Γq+k′−1) + (k′ − 1)ū+ (k′ − 1)
1− ū

1 + ū

= (k′ − 1)
1 + ū2

1 + ū
+ Ubef(Γq+k′−1)

Lemma 6: If function select processors for next cluster()
selects k′ > 3 processors (Pq to Pq+k′−1) and function
split task(τj) indeed uses all of those (i.e., k = k′), to split
the migrating task τj in consideration , then

1

k − 1

q+k−2
∑

p=q

Ubef(Γp) >

√
17− 3

2
(12)

Proof: Let ū
def
= 1

k−1

∑q+k−2
p=q Ubef(Γp) and τi be the

task that could not be assigned integrally at line 5 (Figure 2).
From Remark 4:

ui >
q+k−2
∑

p=q

σ(Ubef(Γp)) =
q+k−2
∑

p=q

1− Ubef(Γp)

1− Ubef(Γp)

Rem. 3
=⇒ ui > (k − 1)

1− ū

1 + ū
(13)

Since tasks are assigned by non-increasing utilisation:
ui ≤ Ubef(Γp), ∀p ⇒ ui ≤ ū. Combining this with (13),

ū > (k − 1)
1− ū

1 + ū
⇒ ū2 + kū− (k − 1) > 0

⇒ ū >

√

k2 − 4(k − 1)− k

2
(14)

As the RHS of (14) is an increasing function of k, its

minimum occurs when k = 3. Therefore, ū >
√
17−3
2

Lemma 7: If function select processors for next cluster()
selects k′ > 3 processors and function split task(τj) uses just
k < k′ of those (Pq to Pq+k−1), to split the migrating task τj
in consideration, then

uj +
∑q+k−2

p=q Uaft(Γp)

k
>

5

6

Proof: Let τi be the task which could not be as-
signed integrally, just prior to the invocation of se-
lect processors for next cluster(). Reasoning similarly as in
the start of the proof of Lemma 6:

ui > (k′ − 1)
1− ū

1 + ū
(15)

where ū
def
= 1

k−1

∑q+k−2
p=q Ubef(Γp).

Combining the fact that ui +
∑q+k−1

p=q Ubef(Γp) = uj +
∑q+k−1

p=q Uaft(Γp), with (15), we obtain

uj +
q+k−1
∑

p=q

Uaft(Γp) > (k′ − 1)
1− ū

1 + ū
+ kν̄ (16)

where ν̄
def
= 1

k

∑q+k−1
p=q Ubef(Γp).

But from (6) (Remark 1) it follows that ū, ν̄ > 1
2 . Therefore,

via substitution to (16), we obtain:

uj +
q+k−1
∑

p=q

Uaft(Γp) >
k

2
+

k′ − 1

3

⇒
uj +

∑q+k−1
p=q Uaft(Γp)

k
>

1

2
+

k′ − 1

3k
(17)

Since k ̸> k′, the claim holds.

Lemma 8: If function select processors for next cluster()
selects k′ > 3 processors and function split task(τj) uses all
k = k′ of those to split the migrating task τj , then

uj +
∑q+k−1

p=q Uaft(Γp)

k
> 2

(√
17

3
− 1

)

(18)

Proof: In this scenario, function split task() works
with the same set of processors selected by function se-
lect processors for next cluster(). Thus,

uj +
∑q+k−1

p=q Uaft(Γp)

k
=

ui +
∑q+k−1

p=q Ubef(Γp)

k

where τi is the task that could not be integrally assigned to a
processor (line 5, Figure 2). Combining this with Lemma 5:

uj +
∑q+k−1

p=q Uaft(Γp)

k
>

k − 1

k

1 + ū2

1 + ū
+

Ubef(Γq+k−1)

k

We know from the search order (line 2 in Figure 3)
used in function select processors for next cluster() that
Ubef(Γq+k−1) ≥ ū and from Lemma 6 we have that ū >
√
17−3
2 . Substituting these values in the RHS of the above

inequality leads to (18).

Lemma 9: Let k′ be the number of processors returned by
select processor for next cluster() (Figure 2, line 7), when
some task τi could not be integrally assigned in line 4. Then,
if HIME subsequently fails (line 18) upon attempting to split a

task τj , it holds that uj +
∑q+k′−1

p=q Uaft(Γp) > 2(
√
2− 1)k′.

Proof: This proof need not explore separate cases,
whether τj is the same task as τi (in which case Ubef(Γp) =
Uaft(Γp) for all Pp considered) or there is a task swap.

HIME returns failure when function split task(τj) returns
k = 0 because k′ processors were not sufficient to assign τj
as a migrating task. This means that

uj >
q+k′−1
∑

p=q

σ(Uaft(Γp))

Hence

q+k′−1
∑

p=q

Uaft(Γp) + uj >
q+k′−1
∑

p=q

(

Uaft(Γp) + σ(Uaft(Γp))
)

As the expression Uaft(Γp) + σ(Uaft(Γp)) is lower-bounded
by 2(

√
2 − 1) for any Uaft(Γp) ∈ [0, 1] , the lemma follows.

Theorem 3: A set of tasks Γ is schedulable on m processors

if U(Γ) ≤
(√

17
3 − 1

)

2m.

Proof: Consider a task set Γ with U(Γ) ≤
(√

17
3 − 1

)

2m. We show that if the algorithm fails to schedule

Γ, then U(Γ) >
(√

17
3 − 1

)

2m, which is a contradiction.

Assume that the algorithm declares failure at some point.
Let Γ′′ be the set of tasks assigned succesfully (integrally or by
splitting) before the failure. From Lemmas 7 and 8 we know
that all clusters successfully formed by the algorithm up to

that point are utilised above
(√

17
3 − 1

)

2. From Lemma 9 we

also know that, if the task τj which the algorithm attempted
to split over the last candidate cluster {Pq, . . . , Pm} were to
be assigned there (shedulability considerations aside), then the
resulting utilisation of that cluster would exceed 2(

√
2 − 1).

In turn, 2(
√
2− 1) >

(√
17
3 − 1

)

2.

This means that, U(Γ′′∪{τj}) >
(√

17
3 − 1

)

2m. Given that

Γ′′ ∪ {τj} ⊆ Γ, it then follows that U(Γ) >
(√

17
3 − 1

)

2m.

4. OPTIMISATIONS

A. Improving average-case performance

Since the sufficient test of Theorem 1, on which the formula
(2) for sizing subtasks is based, is pessimistic, a better formula
(for use inside the function split task(τj)) would improve
average-case performance while preserving the utilisation
bound of HIME. Below, we present such a formula, combi-
ning different polynomial time-complexity schedulability tests.
Theorem 4 summarises some results of interest from [12]
and [13]:

Theorem 4: Let Γp = {τ1, τ2, . . . , τn} be a set of back-
ground tasks scheduled by EDF on a processor Pp under
interference of a high priority task τ0 = (C0, T0) with
T0 ≤ Ti, i = 1, 2, . . . , n. No tasks miss their deadlines if

u0
def
= C0/T0 is upper-bounded by

σ(Γp, T0) = max{σ1(Γp, T0),σ2(Γp, T0),σ3(Γp, T0)} (19)

where

σ1(Γp, T0) = 1−
∑

τi∈Γp

Ci
⌊

Ti

T0

⌋

T0

(20)

σ2(Γp, T0) =
1− U(Γp)

1 + U(Γp)
⌊

minτi∈Γp
(Ti)

T0

⌋

(21)

σ3(Γp, T0) = min
τi∈Γp

(σ′(Γp, Ti, T0)) (22)

where

σ′(Γp, Ti, T0) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1− U(Γp)
⌈

Ti
T0

⌉

T0
Ti

if
1−U(Γp)
⌈

Ti
T0

⌉

T0
Ti

≤
Ti
T0

−

⌊

Ti
T0

⌋

1−
U(Γp)
⌊

Ti
T0

⌋

T0
Ti

otherwise

(23)

Proof: Eqs. (20) and (21) stem from Tests 2 and 3
of [12] (or [13]), respectively. As they establish sufficient
schedulability tests, any of them can be individually used. In
detail:

From Test 2 (Theorem 2) from [12] and [13], a sufficient
condition for schedulability is

u0 +
∑

τi∈Γp

⎛

⎝

Ti
⌊

Ti

T0

⌋

T0

ui

⎞

⎠ ≤ 1 ⇔

u0 ≤ 1−
∑

τi∈Γp

⎛

⎝

Ti
⌊

Ti

T0

⌋

T0

Ci

Ti

⎞

⎠⇔

u0 ≤ 1−
∑

τi∈Γp

Ci
⌊

Ti

T0

⌋

T0

= σ1(Γp, T0)

From Test 3 (Theorem 3) from [12] and [13], a sufficient
condition for schedulability is

⎛

⎝

U(Γp)
⌊

minτi∈Γp (Ti)

T0

⌋ + 1

⎞

⎠u0 + U(Γp) ≤ 1 ⇔

⎛

⎝

U(Γp)
⌊

minτi∈Γp (Ti)

T0

⌋ + 1

⎞

⎠u0 ≤ 1− U(Γp) ⇔

u0 ≤
1− U(Γp)
U(Γp)

⌊

minτi∈Γp
(Ti)

T0

⌋ + 1
= σ2(Γp, T0)

As we will now proceed to show, Equation (22) can also
be used for the same purposes.

Let τ0 and τ ′i be two tasks with their periods being T0

and Ti and their run-times being C0 and C′
i = U(Γp)Ti,

respectively. According to the RM priority assignment, τ0 has
higher priority than that of τ ′i . In a critical time zone of τ ′i ,

there are
⌈

Ti

T0

⌉

requests for τ0. Let us now adjust C′
i to fully

utilise the available processor time within the critical time
zone. Two cases occur:

Case 1. The run-time C0 is short enough that all requests
for τ0 within the critical time zone of Ti are completed before
the second request for τ ′i . That is,

⌊

Ti

T0

⌋

T0 + C0 ≤ Ti ⇒ u0 =
C0

T0
≤

Ti

T0
−
⌊

Ti

T0

⌋

Thus, the largest possible value of C′
i is C′

i ≤ Ti−C0

⌈

Ti

T0

⌉

.

The corresponding processor utilisation factor is

U(Γp) + uo = 1 + uo

(

1− T0
Ti

⌈

Ti

T0

⌉)

⇒

uo = 1−U(Γp)
⌈

Ti
T0

⌉

T0
Ti

Case 2. The execution of the
⌈

Ti

T0

⌉

th request for τ0 overlaps

the second request for τ ′i . In this case, u0 > Ti

T0
−
⌊

Ti

T0

⌋

. It

follows that the largest possible value of C′
i is

C′
i = −C0

⌊

Ti

T0

⌋

+ Ti

⌊

Ti

T0

⌋

and the corresponding utilisation factor is

U(Γp) + uo =
T0
Ti

⌊

Ti

T0

⌋

+ u0

(

1− T0
Ti

⌊

Ti

T0

⌋)

⇒

uo = 1−
U(Γp)
⌊

Ti

T0

⌋

T0
Ti

The cases above correspond to what is stated in Equation (23).
Therefore, the minimum processor utilisation available consid-
ering each task τi ∈ Γp yields Equation (22), as required.

B. Improving the least upper bound

It can be shown (see Theorem 5 below) that for algorithms
constrained to no more than ⌊m

2 ⌋ migrating tasks, the highest
possible least upper bound on processor utilisation is 75%.
Since HIME and other algorithms (e.g., Clustered C=D [14])
are subject to this constraint, this bound also applies to it.

Theorem 5: If no more than ⌊m/2⌋ migrating tasks are
allowed in a system with m identical processors, then the least
upper bound on processor utilisation cannot exceed 0.75m.

Proof: We construct a particular unschedulable system
with an even number of processors m and with utilisation
barely above 0.75m. Let Γ = {τ1, . . . , τn} be the set of tasks
to be scheduled on m processors with n = 1.5m+ 1 and for
any τi ∈ Γ, ui = 0.5+ϵ. As there cannot be more than ⌊0.5m⌋
migrating tasks, m + 1 tasks have to be partitioned. This is
impossible, so the system cannot be scheduled. The utilisation
of this system is given by:

U(Γ)

m
=

0.5 + ϵ

m
(1.5m+ 1) = (0.5 + ϵ)

(

3

2
+

1

m

)

For ϵ ≈ 0, limm→∞
U(Γ)
m = 3

4 , as required.
HIME brings about an additional constraint, namely the

number of migrating tasks per processor is limited to at most
one. In this section we show, however, that this additional
constraint of HIME need not prevent it from matching the
theoretical bound of 75%. To show this result we describe a
possible configuration for HIME, modifying the way the first
piece of a migrating task is dealt with.

The configuration procedure can be outlined as follows. As-
sume that a migrating task τs = (Cs, Ts) is assigned to cluster

{Pq, . . . , Pq+k−1}, with k > 2 and
∑q+k−1

p=q U(Γp) < 0.75k.
Call this a spoiler task. From Theorem 4 it is known that
the lower the period of the migrating task, the higher the

fraction of its utilisation that may safely be assigned to a given
processor. Using this observation, we show that halving the
period of the first piece of τs suffices to make HIME achieve
at least 75% of processor utilisation. Intuitively, by “spreading
out” in time the processing demand by the migrating task
on that processor, this arrangement allows the latter to be
better utilised. Specifically, without loss of generality, let
τps = (Cp

s , Ts), p = 1, 2, . . . , k, be the pieces of the spoiler
task τs. Consider the first piece, (C1

s , Ts). If we halve the
period of just this first piece (T ′1

s = Ts/2) (while leaving that
of other pieces unchanged), then, after this transformation, the
first piece becomes (C′1

s , 0.5Ts), with C′1
s capable of being

set to at least
C1

s+Ck
s

2 (but typically more), with no detriment
to schedulability. This, in turn, may reduce the number of
processors that τs uses from k to k − 1. This scenario is
illustrated in Figure 5 for k = 3.2 As can be seen, the first
piece of τs is executed twice before migrating. Also, note that
although this strategy generates an additional preemption on
the first processor of a cluster, it may reduce the number of
migrations by one due to increasing C′1

s , as mentioned above.
As Figure 5 illustrates, the approach described is only

applicable if the sum of execution times of all pieces of the
migrating task but the first one does not exceed T

2 . That is,
for any spoiler task τs = (Cs, Ts), Cs minus what is executed
by the first piece (τ1s) must not exceed Ts

2 . Taking Cs=usTs,

Cs − σ

(

Uaft(Γq),
Ts

2

)

Ts

2
!

Ts

2
⇒

us !
1 + σ

(

Uaft(Γq), 0.5Ts

)

2
(24)

Next, we show that HIME achieves at least 75% of processor
utilisation if the proposed modification is carried out in clusters
fulfilling Condition (24). Clusters with k = 2 processors are
addressed in Lemma 4, which establishes a lower bound of
exactly 75%. For k > 3, we show in Lemmas 10 and 11 that
this bound is greater than 75%.

Solely for better readability, since Lemmas 10 and 11 are
formulated in the context of a particular cluster, we assume
(without loss of generality) that the spoiler task is split over
processors P1, . . . , Pk.

Lemma 10: Let τs = (Cs, Ts) be a spoiler task allocated on
k > 2 processors by Figure 2. If Condition (24) holds and τ1 is

executed with period Ts/2, then
∑k

p=1 U
aft(Γp)+us > 0.75k

provided that σ(U(Γp), Ts) ≥ 1−U(Γp)

1+
U(Γp)

⌊Tmin
Ts

⌋
.

Proof: We first derive lower bounds on the utilisation of
Uaft(Γ1) + σ(Uaft(Γ1)) and Uaft(Γp) + σ(Uaft(Γp)), p =
2, . . . , k − 1. Then, we compute the least upper bound on us

using the derived lower bounds.
By Function split task(), we know that

Uaft(Γp)+up
s = Uaft(Γp)+σ(Uaft(Γp), Ts), p = 1, . . . , k−1

2From the proof of Theorem 3 it is known that HIME achieves a least upper
bound lower than 75% only in clusters of k = 3 processors. In this section
we present the approach for k ≥ 3 for the sake of generalisation.

(a) Executing τs = (Cs, Ts) on three processors, where Cs = C1
s +

C2
s + C3

s .

(b) Executing τs on two processors by halving the period of the first
sub-task subject to: C′1

s + C2
s ≤ Ts

2 , where Cs = 2C′1
s + C2

s .

Fig. 5. Dealing with spoiler task τs = (Cs, Ts) in HIME so that its least
upper bound is maximised.

Let x =
⌊

Tmin

Ts

⌋

, where Tmin is the minimum period of tasks

in ∪k
p=1Γp. By the fact that σ(Uaft(Γp), Ts) ≥ α(Uaft(Γp)),

Uaft(Γp) + up
s ≥Uaft(Γp) +

1− Uaft(Γp)

1 + Uaft(Γp)
x

(25)

Minimizing the right hand side of Inequality (25) yields

Uaft(Γp) + up
s ≥ 2

√

x2 + x− 2x (26)

As Tmin ≥ Ts and τ1s is executed with period Ts

2 , (26) gives

Uaft(Γ1) + u1
s ≥ 2

√
6− 4 and Uaft(Γp) + up

s ≥ 2
√
2− 2 for

p = 2, . . . , k − 1. We now need a lower bound on Uaft(Γk).

As function select processors for next cluster() selects
processors in non-decreasing order of Ubef(Γp), we can safely
state that Ubef(Γk) ≥ Ubef(Γp), p ≤ k. Therefore, using the
result from Lemma 6 we have that Ubef(Γk) ≥ Ubef(Γk−1) ≥
0.5(

√
17 − 3). This implies that Uaft(Γk) ≥ 0.5(

√
17 − 3).

Conservatively assuming that uk
s ≈ 0,

Uaft(Γk) + uk
s > 0.5(

√
17− 3) (27)

Now, to compute a lower bound on the utilisation of the entire
cluster, we have

∑k
p=1 U

aft(Γp) + us

k
>

2
√
6− 4 + (k − 2)(2

√
2− 2) + 0.5

(√
17− 3

)

k
(28)

Since the above equation is increasing on k, the least upper
bound occurs when k = 3, implying that

∑k
p=1 U

aft(Γp) + us

k
>

√
2 + 2

√
6 + 0.5(

√
17− 3)− 6

3
≈ 0.762

Lemma 11: Let τs = (Cs, Ts) be a migrating task allocated
on k > 2 processors by the algorithm of Figure 2. If Condition
(24) does not hold, then

∑k
p=1 U

aft(Γp) + us > 0.75k

provided σ(U(Γp), Ts) ≥ 1−U(Γp)

1+
U(Γp)

⌊Tmin
Ts

⌋
.

Proof: Using α as a lower bound on σ and from the fact
that Condition (24) does not hold,

us >
1 + 1−Uaft(Γ1))

1+
Uaft(Γ1)

2

2
=

4− Uaft(Γ1)

2Uaft(Γ1) + 4
(29)

Now consider τi the task used by Function se-
lect processors for next cluster() (line 5 of Figure 3) and Pk

the last processor selected by this function. For the case that
k < k′, Lemma 7 already establishes that the utilisation of the
cluster in consideration exceeds 75%. Therefore, it suffices to
show the same for the case that k = k′.

Consider two complementary cases: ui = us and ui ̸= us.
We will show that in either case, Uaft(Γ1) ≤ Ubef(Γk) and
us ≤ Ubef(Γk) (and proceed from there).

Case 1 (ui = us): Then, from the task ordering us ≤
Ubef(Γk) and from the processor indexing by order of non-
decreasing U(Γp) (and since Uaft(Γp) = Ubef(Γp) for ev-
ery processor in the cluster when there is no task swap)
Uaft(Γ1) = Ubef(Γ1) ≤ Ubef(Γk).

Case 2 (ui ̸= us): It holds that Uaft(Γ1) ≤ Uaft(Γk) due
to the processor reindexing; since Uaft(Γp) ≤ Ubef(Γp) for
every processor in the cluster (due to us ≥ ui, from the task
ordering), it then follows that Uaft(Γ1) ≤ Ubef(Γk).

Additionally, since us is an element of some Γp before
the task swap and Ubef(Γk) ≥ Ubef(Γp) for every Γp in the
cluster, it follows that Ubef(Γk) ≥ us.

Therefore, considering that, in either case, Ubef(Γk) ≥ us

and Ubef(Γk) ≥ Uaft(Γ1) and that the RHS of (29) is
decreasing on Uaft(Γ1), it follows that

Ubef(Γk) >
4− Ubef(Γk)

2Ubef(Γk) + 4

Using V as a short-hand for Ubef(Γk), we get:

V >
4− V

2V + 4
⇒ 2V 2 + 4V > 4− V ⇒ 2V 2 + 5V − 4 > 0

Solving the above quadratic inequality gives V >
√
57−5
4 .

Using this value for Ubef(Γk) in Equation (11) and consid-
ering Lemma 6 which states that the average utilisation of the

other k−1 processors in the cluster is not less than
√
17−3
2 , we

find that
us+

∑k
p=1 Uaft(Γp)

k
> 0.75 (since for k = k′ it holds

that us +
∑k

p=1 U
aft(Γp) = ui +

∑k′

p=1 U
bef(Γp)).

Theorem 6: A sporadic task set Γ with U(Γ) ≤ 0.75m
is schedulable by HIME on m identical processors provided
that, on each cluster for which Condition (24) holds, the first
sub-task of the migrating task is executed twice as frequently
as its other subtasks and Equation (21) is used by function
split task() to size subtasks.

Proof: From Lemma 11, the clusters with k≥3 for which
Condition (24) does not hold are utilised above 75% anyway.
Hence, the proof is immediate from Lemmas 4 and 10.

C. On overcoming the drawbacks of clustering

Having at most one migrating task per processor is con-
ceptually the arrangement closest to the simplicity of pure
partitioning and is also “gentle” towards processor caches.
Yet, as shown, even this small degree of migration permits the
design of algorithms with a utilisation bound as high as 75%
– a theoretical limit matched by HIME. Still, the clustering
resulting from this arrangement introduces a form of bin-
packing-related fragmentation. Namely, the last processor in
each cluster may have unutilised spare capacity.

One could overcome this drawback of clustering by reusing
this capacity for additional migrating tasks on those cluster-
final processors, whenever necessary (i.e., in an attempt to
accommodate any remaining unassigned tasks). This approach
would undo the clustering but would dominate (clustered)
HIME, while also inheriting its utilisation bound. Yet, although
we outline this design possibility, the focus of this paper is to
characterise the scheduling potential of the simpler model (at
most one migrating task per processor) described so far.

D. Illustration

Positive effects related to using some optimisation strategies
discussed in Section 4 are now illustrated. More specifically,
we focus here on applying the results of Theorem 4 for average
case improvements. To do that we use the following example:

Example 2: Let Γ be a set of tasks composed of the same
five tasks as in Example 1 and a sixth task τ6 = (1.92, 3).

The allocation of the first four tasks takes place exactly as
in Example 1. Also, when selecting the processors to which
τ5 should be assigned, all four processors are selected. These
initial allocation steps are indicated in first three lines of Table
I, repeated in Table II for reference.

However, since the task-split procedure now uses function
(19), processors capacity can be better utilised. Indeed, both
τ5 and τ6 can be split into two pieces each, forming clusters
{τ3, τ4, τ5} and {τ1, τ2, τ6}, respectively. Notice that either
Equation (20) or Equation (22) informs us that both clusters
can safely use 100% of the assigned processors.

5. ASSESSMENT

The semi-partitioning paradigm underlies several new
scheduling algorithms. Here we compare HIME with some
relevant prior work.

TABLE II
TASK-TO-PROCESSOR ASSIGNMENT FOR EXAMPLE 2.

allocation of τ1, τ2, τ3, τ4
Processor P1 P2 P3 P4
Allocation {τ1} {τ2} {τ3} {τ4}
U(Γp) 0.6800 0.6800 0.6700 0.6700
σ(U(Γp)) 0.1904 0.1904 0.1976 0.1976
σ(U(Γp), T5) – – 0.3300 0.3300
σ(U(Γp), T6) 0.3200 0.3200 – –

allocation of τ5 and τ6
Allocation {τ1, τ16 } {τ2, τ26 } {τ3, τ35 } {τ4, τ45 }
U(Γp) + u

p
i 1.0 1.0 1.0 1.0

A. Related work

We focus on algorithms EDF-fm [1], SPA2 [7], EDF-WM
[9], C=D [5], and NPS-F [4]. The former four employ task
prioritisation or migration control strategies similar to HIME

whereas the latter provides the best theoretical bounds on
schedulability.

HIME, SPA2, EDF-WM and C=D are based on job-split
task-dispatching. When a job is released, a condition is setup
specifying when the job should migrate to another processor.
Usually this condition is a respective execution time threshold
for the migrating job on each processor. SPA2 uses Rate-
Monotonic [10] and schedules migrating tasks at the top
priority. Its utilisation bound is 69.3%. EDF-WM and C=D
use local EDF schedulers for each processor and establish time
precedence constraints among sub-tasks via virtual deadlines.
In C=D a migrating task executes at the top priority on
all its processors but one; hence migrating tasks may suffer
interference on just one processor. Although the task allocation
schemes of EDF-WM and C=D differ, they both rely on
pseudo-polynomial schedulability tests. For one variant of
C=D, a utilisation bound of 72.2% was proven [14]; For
others [5] we only know that it cannot be higher that 75% [14].

HIME works similarly to other scheduling algorithms. For
example, EDF-fm [1] also uses EDF to schedule non-migrating
tasks and migrating tasks are scheduled with higher priority.
Differently from HIME, though, EDF-fm aims at soft real-
time and migrates tasks at job boundaries. HIME scheduling
rules ressemble a clustered variant [14] of C=D [5], but with
migrating tasks always prioritised over non-migrating ones. By
comparison, under C=D (clustered or non-clustered), this does
not hold on the last processor that a task migrates to. HIME

and both variants of C=D also differ in the task-to-processor
allocation scheme used.

NPS-F instead assigns tasks to servers (some partitioned;
some split), which are scheduled with fairness. The schedule
is organised into equal timeslots, synchronised across all
processors. The slot size is a trade-off between theoretical
system schedulability and runtime overhead: small timeslots
imply higher schedulability bounds but higher scheduling
overheads. If such costs are disregarded, NPS-F can be tuned
for schedulability bounds arbitrarily close to 100%. In practice,
the achievable system utilisation may be quite lower [3].

B. Experimental evaluation

The overall behavior of HIME against selected work is
summarised in Figure 6. Each point represents an average
of 1, 000 randomly generated task sets. The graphs plot the
fraction of schedulable task sets for each algorithm (and
respective schedulability test). For other m (not shown), the
results followed similar patterns.

Only task set utilisations in the range 70%-97.5% were
considered, since task sets with lower values of utilisation
are all schedulable by HIME. All synthetic task sets were
generated according to the procedure described by Emberson
et al. [6], ensuring that processor utilisation follows a uniform
distribution. Task periods were generated according to a log-
uniform integer distribution in the interval [10, 1000].

Let the factor β = n/m be a parameter to characterise the
kind of generated task set. We considered 1 < β ≤ 2.5 so as
to prevent HIME from taking advantages of getting the whole
system partitioned upon task allocation, which often happens
when generated task utilisation tends to be too small. As for
the values of n, were considered: n = m+1; n = 2m−1; and
n = 2.5m. The first criterion expresses the minimum number
of tasks that makes it possible to define one migrating task.
The second represents the minimum number of tasks that may
lead to m − 1 migrating tasks, which may be possible for
NPS-F, EDF-WM and C=D. The third criterion is to cover
scenarios with the maximum value considered for β.

HIME was compared against C=D (EDF Split then
Pack(DD-MinD)) [5], EDF-WM/DP and NPS-FΩ [3], [4].
For each algorithm we chose the version that gives the best
performance. Further, although SPA2 [7] is a polynomial
and low-overhead scheme, it presents a lower schedulability
bound since it follows Liu and Layland’s utilisation bound.
Partitioned EDF following the First-Fit bin-packing heuristic
was considered to illustrate to what extent the semi-partitioned
scheduling approaches improve system schedulability. Also,
we only performed NPS-FΩ in our experiments when parti-
tioned EDF does not find a partition for the given task set,
as recommended [4]. The task allocation order for these two
approaches follow the decreasing task utilisation scheme since
it is known that this gives NPS-F the best performance [4].

The utilisation bound of NPS-F depends on the timeslot,
which in turn is inversely proportional to an integer parameter
δ. A job of a migrating task with period T migrates up to
⌈T/δ⌉ times. The experiments used 1 ≤ δ ≤ 4, corresponding
to utilisation bounds of 75%-90% of m. Higher δ are not cost-
effective due to the increasing task-preemption costs.

As seen in Figure 6, HIME outperforms EDF-WM and
slightly trails C=D for high values of utilisation. Also, the
schedulability rates of HIME and NPS-FΩ are comparable. As
the overhead in NPS-F (not considered here) is often high [3]
and job-based split-task dispatching offers fewer preemptions
[2], the results indicate that HIME is a cost-effective approach.
Note that NPS-F is the only semi-partitioned approach with
provably better schedulability guarantees than HIME. For
better visualisation, Table III highlights some data from Figure

6 for high utilisation values.

TABLE III
SOME DATA FROM FIGURE 6 FOR m = 16.

n = 17 n = 31 n = 40
0.95 0.975 0.95 0.975 0.95 0.975

EDF-WM 0.577 0.127 0.875 0.332 0.945 0.615
NPS-FΩ(δ = 4)/DU 1 1 1 0.991 1 1

C = D 1 1 1 1 1 1
HIME 1 1 1 0.932 1 1

With respect to HIME trailing C=D (even if slightly) in
terms of scheduling potential in the experiments, despite its
utilisation bound, we note the following: First, although the
utilisation bound of HIME (75%) is higher than the least
utilisation bounds so far proven for any of the variants of
C=D, the exact utilisation bound of C=D is still unknown.
Hence, although we know that it cannot exceed 75% (for any
of its variants [14]) whether or not it is in fact less than is still
an open question. Second, HIME was compared with the best-
performing configuration of C=D (EDF Split then Pack(DD-
MinD)), which is non-clustered. Hence, it does not suffer
from the fragmentation penalty inherent in clustering, when
the scheduling capacity of the last processor in the cluster
is not exhausted. Third, C=D employs an exact test when
sizing subtasks instead of the polynomial schedulability test
used by HIME. Finally, it is worth of notice that C=D does
not dominate HIME nor vice versa. For example, Example 2
is not managed by C=D.

6. CONCLUSION

We have presented HIME, a new semi-partitioned schedul-
ing algorithm suitable for multiprocessor real-time systems
with high processor utilisation. Systems utilised up to 74.9%
are guaranteed to be schedulable by HIME and an optimised
variant of HIME further boosts this bound to 75%. Since 75%,
as we showed, is a theoretical limit on utilisation bounds for
the class of algorithms with at most m/2 migrating tasks,
HIME closed one of the open problems in the literature.
Our experimental evaluation of theoretical schedulability also
demonstrated that HIME schedules virtually all systems utili-
sed up to 95% or more. Given the low-overhead characteristics
of semi-partitioning, we consider HIME a useful contribution
to a grander vision of multiprocessor real-time systems.

Acknowledgements

This work has received financial support from the funding
agencies CNPq and CAPES. This work was partially sup-
ported by National Funds through FCT (Portuguese Founda-
tion for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Opera-
tional Programme ’Thematic Factors of Competitiveness’),
within projects Ref. FCOMP-01-0124-FEDER-022701 (CIS-
TER) and ref. FCOMP-01-0124-FEDER-020536 (SMARTS).

REFERENCES

[1] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based Scheduling
Algorithm for Multiprocessor Soft Real-Time Systems. In Proc. 17th
Euromicro Conference on Real-Time Systems, pages 199–208, 2005.

C=D
EDF-WM

NPS-FΩ(δ = 4)/DU
NPS-FΩ(δ = 3)/DU
NPS-FΩ(δ = 1)/DU

HIME

EDF-FF/DU

System utilization

S
u

cc
es

s
ra

ti
o

0.950.90.850.80.750.7

1

0.8

0.6

0.4

0.2

0

(a) m = 16, n = 17 (β ≈ 1.06)

C=D
EDF-WM

NPS-FΩ(δ = 4)/DU
NPS-FΩ(δ = 3)/DU
NPS-FΩ(δ = 1)/DU

HIME

EDF-FF/DU

System utilization

S
u

cc
es

s
ra

ti
o

0.950.90.850.80.750.7

1

0.8

0.6

0.4

0.2

0

(b) m = 16, n = 31 (β ≈ 1.94)

C=D
EDF-WM

NPS-FΩ(δ = 4)/DU
NPS-FΩ(δ = 3)/DU
NPS-FΩ(δ = 1)/DU

HIME

EDF-FF/DU

System utilization

S
u

cc
es

s
ra

ti
o

0.950.90.850.80.750.7

1

0.8

0.6

0.4

0.2

0

(c) m = 16, n = 40 (β = 2.5)

Fig. 6. Schedulability ratio for m = 16 processors with β = (1, 2.5].

[2] B. Andersson and L. M. Pinho. Implementing Multicore Real-Time
Scheduling Algorithms Based on Task Splitting Using Ada 2012. In
Reliable Software Technology - Ada-Europe 2010, volume 6106, pages
54 – 67. Springer Berlin / Heidelberg, 2010.

[3] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is semi-partitioned
scheduling practical? In Proc. 23rd Euromicro Conf. Real-Time Systems,
pages 125–135, 2011.

[4] K. Bletsas and B. Andersson. Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound. Real-Time Systems,
47(4):319–355, 2011.

[5] A. Burns, R. Davis, P. Wang, and F. Zhang. Partitioned EDF Scheduling
for Multiprocessors using a C=D Scheme. Real-Time Systems, 48(1):3–
33, 2011.

[6] P. Emberson, R. Stafford, and R. Davis. Techniques for the Syn-
thesis of Multiprocessor Tasksets. In 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Syst.
(WATERS’10), pages 6–11, 2010.

[7] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor
scheduling with liu and layland’s utilization bound. In Proceedings of
the 16th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 165–174, 2010.

[8] J. Jensen. Sur les Fonctions Convexes et les Inégalités entre les Valeurs
Moyennes. Acta Mathematica, 30:175–193, 1906.

[9] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling
of sporadic task systems on multiprocessors. In Proc. 21st Euromicro
Conference on Real-Time Systems (ECRTS), pages 249–258, 2009.

[10] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment. J. of ACM, 20(1):46–61, 1973.

[11] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, 43(4), 2011.

[12] J. A. Santos-Jr. and G. Lima. Sufficient schedulability tests for edf-
scheduled real-time systems under interference of a high priority task. In
Proc. of the 2nd Brazilian Symposium on Computer Systems Engineering
(SBESC), pages 131–136, 2012.

[13] J. A. Santos-Jr., G. Lima, and K. Bletsas. Efficient schedulability tests
for real-time embedded systems with urgent routines. Design Automation
for Embedded Systems, pages 1–20, August 2013.

[14] J. A. Santos-Jr., G. Lima, and K. Bletsas. On the processor utilisation
bound of the C=D scheduling algorithm. In Real-time systems: the past,
the present, and the future (Alanfest 2013), http://www.cs.unc.edu/
˜baruah/AlanFest/Procs.pdf, pages 119–132, 2013.

APPENDIX

Theorem 7 (Port of Theorem 3 from [12] [13]): Let Γp =
{τ1, . . . , τn} be a set of background tasks scheduled by EDF
on a processor and τ0 be the highest-priority task with T0 ≤
minτi∈Γp

Ti. There is no deadline miss provided that

⎛

⎝

U(Γp)
⌊

minτi∈Γp (Ti)

T0

⌋ + 1

⎞

⎠u0 + U(Γp) ≤ 1 (30)

Proof: Let tϕ be the available time for executing Γp

within a time interval L. From Theorem 8 in [4], if (31) holds
∀L ≥ minτi∈Γp

Ti, then all deadlines by Γp are met:

LU(Γp) ≤ tϕ ⇒ U(Γp) ≤
tϕ

L
(31)

The minimum values of tϕ occur when τ0 is periodically
activated. Also, the values of L for minimizing the RHS of
Equation (31) occur when the start/ending of the interval L
coincide with the arrival/completion of τ0, respectively. This is
because if L further increases by ϵ, 0 < ϵ ≤ T0−C0, the value
of tϕ is also increased by ϵ. In turn, if L decreased by a positive
amount ϵ < C0, tϕ is kept constant. In other words, the values
of L to be considered are given by L = (k+j)T0+C0, where

k =
⌊

minτi∈Γp (Ti)

T0

⌋

and j ∈ Z+. In this case, for each time

interval of size T0, there are (T0−C0) time units available for
executing tasks in Γp, which leads to tϕ = (k+ j)(T0 −C0).
Rewriting Eq. (31),

U(Γp) ≤
(k + j)(T0 − C0)

(k + j)T0 + C0
=

(k + j)(T0 − u0T)

(k + j)T0 + u0T0
(32)

The right-hand side of Eq. (32) is an increasing function of j.
For j = 0, Eq. (32) becomes Eq. (30), as required.

Remark 5: The expression Sbef def
= 1 − (Ubef(Γp) +

σ(Ubef(Γp))) is a decreasing function of Ubef(Γp) over
[
√
2− 1, 1].

Proof:

Sbef def
= 1−

(

Ubef(Γp) + σ(Ubef(Γp))
)

= 1− Ubef(Γp)−
1− Ubef(Γp)

1 + Ubef(Γp)

=
Ubef(Γp)− (Ubef(Γp))2

1 + Ubef(Γp)

Via first-order differentiation, we obtain

dSbef

dUbef(Γp)
=

−(Ubef(Γp))2 − 2Ubef(Γp) + 1

(Ubef(Γp) + 1)2

Since the denominator of the derivative is always positive,
dSbef

dUbef (Γp)
is negative over the same interval that its numerator

is negative. In turn, numerator is a second-order polynomial
whose roots are: −1±

√
2. Hence, it is negative over (−∞, −

1−
√
2) ∪ (

√
2− 1, ∞), and so is dSbef

dUbef (Γp)
. Therefore Sbef

is a decreasing function of Ubef(Γp) over [
√
2− 1, 1].

