

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Mechanisms for Reflection-based
Monitoring of Real-Time Systems

Ricardo BARBOSA
Luis Miguel PINHO

HURRAY-TR-0420
Ju y-2004

elatór o
técnic

e
r

chnic
eport
al
l

i
o

Mechanisms for Reflection-based Monitoring of Real-
Time Systems

Ricardo BARBOSA, Luis Miguel PINHO
IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340509
E-mail: { rbarbosa, lpinho}@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract:
Monitoring is a very important aspect to consider when developing real-time systems.
However, it is also important to consider the impact of the monitoring mechanisms in the
actual application. The use of Reflection can provide a clear separation between the real-time
application and the implemented monitoring mechanisms, which can be introduced (reflected)
into the underlying system without changing the actual application part of the code.
Nevertheless, controlling the monitoring system itself is still a topic of research. The
monitoring mechanisms must contain knowledge about “how to get the information out”.
Therefore, this paper presents the ongoing work to define a suitable strategy for monitoring
real-time systems through the use of Reflection.

Mechanisms for Reflection-based Monitoring of Real-Time Systems

Ricardo Barbosa, Luís M. Pinho
Polytechnic Institute of Porto, Porto, Portugal

{rbarbosa, lpinho}@dei.isep.ipp.pt

Abstract

Monitoring is a very important aspect to consider when

developing real-time systems. However, it is also important to
consider the impact of the monitoring mechanisms in the
actual application. The use of Reflection can provide a clear
separation between the real-time application and the
implemented monitoring mechanisms, which can be
introduced (reflected) into the underlying system without
changing the actual application part of the code. Nevertheless,
controlling the monitoring system itself is still a topic of
research. The monitoring mechanisms must contain
knowledge about “how to get the information out”. Therefore,
this paper presents the ongoing work to define a suitable
strategy for monitoring real-time systems through the use of
Reflection.

1 Introduction

Not too long ago, machines were controlled by mechanical
systems. Today, almost all airplanes are controlled through fly-
by-wire systems and cars have already started to integrate
automated driving control systems. The mechanical
instruments that once controlled these systems are increasingly
being replaced by complex pieces of software [1]. The
problem is that the same reliability and safety that the
mechanical parts provided is also expected from this software.

To fight this increase in the demand for fault tolerant and
reliable software systems, in the last few years an effort was
made to create new tools and theories that approach these
problems in straightforward way. Fields of research go from
testing techniques to software development standards. From all
these research fields, one that is particularly important, and that
is still much unexploited, is monitoring [1].

In order not only to perform testing for verification and
validation of critical software, but also to observe the runtime
behaviour of the system after deployment, monitoring services
are needed that provide sufficient information about the state
of the system [2]. Monitoring must be considered as a key

factor in real-time systems, both during the development and
deployment phases.

In [3], the motivation for the separation of the monitoring
mechanisms from the application is provided. From the
development process to the actual design and implementation
of both real-time system and monitoring mechanisms, the
advantages are considerable and must be taken into account. A
clear separation in the real-time application development can
be achieved, and through the use of computational reflection
the desired monitoring mechanisms can be introduced
(reflected) into the underlying system without changes to the
application code.

 Nevertheless, the concrete strategy to use for the reflection
mechanisms must be further researched, in order to better
understand their impact on the deployed systems. Although the
use of reflection in real-time systems has already been
considered [4] in order to deal with dynamic task scheduling,
the underlying impact on the determinism of the system is still
far from being understood. One of the important issues to also
take into account is the necessity to consider features which
are usually in the domain of the underlying operating system.

Therefore, this paper presents the ongoing work to define a
framework for reflection-based monitoring in real-time
systems. The paper is structured as follows. Section 2 presents
some basic concepts of monitoring and reflection, which are
later integrated in Section 3, where the reflection framework
for monitoring is briefly described. Afterwards, Sections 4 and
5 outline the basic mechanisms and strategies that can be used
in this framework. Finally, Section 6 provides some
considerations on the required further research.

2 Basic Concepts

2.1 Monitoring

Monitoring is the collecting of run time information about
the system that cannot be obtained by static analysis [5]. An
important aspect to have in mind is the concept of
intrusiveness. It is important to observe the system without
influencing it, meaning that the act of observation cannot
disturb in any way the system being monitored. Another

important aspect to have in mind is the non deterministic effect
of observing the system through the addition of code lines
(software), many times called Heisenberg uncertainty
principle or probe effect [1]. In order to adequately observe the
run-time behaviour of the system it is necessary to give
particular attention to the impact of any additional monitoring
instrumentation, so that it does not interfere with the system’s
behaviour (or at least that this interference is deterministic).

An important issue to consider is the clear identification of
what information to monitor. A large amount of information
extracted from the system, may imply extra burden in its
functioning, and intrusive issues may arise [6]. On the other
hand if too little information is extracted there may be a lack
on precision and may not be enough to make a consistent
judgement on what is actually happening in the system.

Basically, the information that can (or must) be monitored
can be divided into three groups: Data Flow (internal and
external), Control Flow (execution and timing) and Resources
(memory and execution resources) [1]. Data Flow information
concerns the inputs and outputs of each component of the
system, also allowing determining what are the intermediately
computed values and/or program state that are not visible
through the predefined interface. Control Flow information,
allows determining at what time and in what order are events
received and handled in the system, to determine which, when
and in what order tasks are starting, pre-empting and finishing,
and to access the kernel specific scheduling and overheads.
Finally, Resources information allows determining the kernel
internal state, and the utilization of memory, CPU, and other
system resources.

After identifying the particular information to monitor, it is
also important to determine when to monitor. There are several
approaches to deal with this issue, but commonly the
collection of data can be triggered by events, since the system
under monitoring can be described as a series of state changes.
Events like thread creation or termination and context switch
can be used to trigger data collection [6].

2.2 Computational Reflection

Reflection is a concept by which a component provides
observation and control of its own internal structure and
behaviour to the outside world [7][8]. When introducing
reflection, two levels of information must be considered: base
level and meta or reflective level.

The structural and behavioural information of an object
model is called reified information or meta information. This
information is handled by the meta-objects. The set of meta-
objects in a reflective system is called the meta level and any
changes on the handling of this information by the meta-
objects are reflected to the associated object.

The set of objects in a reflective system is called the base
level [7]. In order for both levels to work correctly, a protocol

for communication must be provided. This “communication”
protocol between the meta-object and object is called meta-
object protocol [7]. This protocol must be predefined, thus any
interaction made between the object and the correspondent
meta-object is fixed. The link between the meta-object and the
object can either be fixed statically at compile time (or load
time), or a more flexible approach can be used by runtime
linking [7][8].

Two models for computational reflection are commonly
presented [8]. In the Structural model, the meta level is
constituted by meta-classes. Meta-classes have the structural
description of the objects at base level. When this information
is modified, the structure of the objects at the base level is
modified accordingly. In the Behavioural model, the objects at
meta level (meta-objects) are similar to normal objects and
contain all reflective information. A class of a meta-object is
called meta-object class. A meta-object is activated when the
corresponding base level object is invoked. When this
happens, the associated meta-object executes the
corresponding meta-method. This method determines the
actions to be developed and passes control to the base level
object. An interesting concept in this model is the Reflection
Tower or N-Metalevel Architecture [7][8]: a meta-object is
also an object, thus it can have an associated meta-object.

The important aspect to have in mind is the action of
passing control between the object and the meta-object. For
this, the messages made to the object at base level must be
intercepted [2]: whenever a message is send to a base level
object, the object redirects control to the corresponding meta
level object. At meta level, the object executes the associated
behaviour and then returns control back to the base level
object. Three strategies for redirecting control are known [6]:
class reflection, method reflection and object reflection.

3 The Reflection-based Framework

The reflection-based framework for monitoring [3] is a
direct application of the reflective concept to real-time systems
monitoring. As presented in Figure 1, the in the intended
monitoring mechanism is separated from the real-time
application code. Afterwards, depending on which reflective
approach is used, the monitoring features are “inserted” into
the system.

This separation diminishes the probability of introducing
error-inducing code and also improves any debugging process
by removing code. With this framework, emphasis is given to
the concept of monitoring, providing a conceptual separation
between the real time kernel code and the monitoring code.

Since the reflective mechanisms must be provided either by
the underlying operating system [9] or by the programming
language itself [10], the monitoring system programmers do
not need to know how the underlying system is implemented.

Nevertheless, they do need to know the name of the classes,
objects and/or methods, and the type of mechanisms that are
available.

Figure 1. Reflection-based Framework

4 The Monitoring Mechanisms

The meta-program contains all monitoring mechanisms.
Optimization issues must be taken into account when
developing all these mechanisms. An interesting concept to
have in mind is grouping. Higher levels of abstraction can be
achieved if similar mechanisms are grouped. Figures 2 to 4
provide examples of the foreseen monitoring mechanisms,
grouped by Data Flow, Control Flow and Resources. Each one
of these groups contains the actual classes that implement the
basic monitoring mechanisms.

Through the used of computational reflection concept of
Reflection Tower, it would also be possible to afterwards add
user defined requirements-based mechanisms to the already
existing (this way actually improving the monitoring model).
Nevertheless, it is still necessary to consider the impact on the
system’s overall timing analysis.

Figure 2. Data Flow group

Figure 3. Control Flow group

Figure 4. Resources Group

For instance, if it was decided for a particular application
to add monitoring features to the Resources group, a class
containing the desired mechanisms could be created and
incorporated in the group. Another option would be to create
a different class and use it instead of one of the already
existent.

5 Strategies for Interception

In order to redirect control to the meta level, it is necessary
to intercept messages passed between base level objects. This
interception mechanism must be implemented either by the
programming language or by the underlying (operating)
system. An important issue to note is that, based on the
monitoring requirements of the actual application (which
information to monitor), a decision must be taken on the best
fit reflective strategy. For instance, if it is necessary monitoring
a particular characteristic of all tasks, class reflection should be
used. This way, all tasks will acquire the reflective behaviour
and consequently, the monitoring capabilities (Figure 5).

Figure 5. Using class reflection

If instead, a particular method is of interest, method
reflection may be used (Figure 6). This way monitoring can
be optimized. Finally, if monitoring a particular set of objects,
object reflection should be used (Figure 7). For the same
reasons of method reflection, this strategy also allows the
optimization of code, by monitoring only the desired objects.

Class Memory

MemoryUsedByTasks()
MemoryUsedByKernel()
MemoryusedByInterruptRoutines()
...

Class SystemState

WaitingTasks()
ExecutingTask()
BlockedTasks()
...

Class CPU

CPUProcessingTime()
...

Class Input

TaskInputParameters()
ResourceInputParameter()
...

Class
AuxiliaryValues TaskInternalValues()
ResourceInternalValues()
...

Class Output

TaskOutputReturnValue()
ResourceOutputState()
...

Class IOTiming

TaskInputTimingResult()
TaskOutputTimingResult()
TaskInputParameterOrder()
...

Class Interrupts

InterruptsTriggered()
InterruptsTimings()
InterferedTasks()

Class TaskSwitch

StartedTasks()
StartedTasksOrder()
StartedTasksTiming()
...

Method A()
Method B()

Class Task

Method GetInfo()

Class Monitor

Meta-Object Class Base Level Class

Meta-object Monitor

GetInfo()

Method A()

Method B()

Task X1

Task X2

Base – Meta Association

Instance-of

Reflection Mechanism

Real Time
Kernel

Meta-program

(Monitoring
Mechanisms)

Real Time
Application

Compiler

Loader

Virtual Machine

Real Time
System Code

Executable Code

Run-Time Changes

Run time Reflection

Compile time Reflection

Load time Reflection

Although the most adequate mechanism should be chosen
based on the actual subject of monitoring, it is necessary to
consider that the overall analysis of the system must also be
possible. Therefore, it is also necessary to analyse the used
mechanisms in terms of determinism (not only time, but also
memory).

Figure 6. Using method reflection

Figure 7. Using object reflection

It is not possible to provide a straightforward heuristic for
a generic system. A possible approach would be to handle all
objects in the system as equals, monitoring all of them
similarly. Nevertheless, a better approach is to increase the
quantity and quality of monitoring, based on some
particular(s) constraint(s) of the monitored object or set of
objects.

For the first case, monitoring strategies may be compiled
into a table where, depending on the type of object, a specific
strategy may be adopted. For instance, all shared resources of
the system could have monitoring capabilities through class
reflection strategy. In the second case, more refined criteria
are used, in order to optimize the system behaviour. For
instance, only particular objects, e.g. critical system tasks,
could be provided with full monitoring (using object
reflection). The same assumptions can be made for shared
resources, etc.

Therefore, particular attributes may have impact on the
used strategy. The advantages driven from the choice of

strategy must thus be considered for each application and
monitoring information.

6 Discussion and Future Work

The work presented in this paper is still the focus of
ongoing research. Although not new, the two different
concepts: monitoring and reflection, are still far from being
integrated in real-time systems. Although, several advantages
have already been identified, the impact of the monitoring
mechanisms within the application must be further
considered. In particular, the deterministic effect has not been
tackled yet. It is necessary to provide bounds on the impact of
the mechanisms, in order to guarantee the system’s timing
analysis.

Although not within the focus of this work, the use of the
object-oriented approach in real-time systems is still open for
discussion. Object-oriented is inherent to reflection, thus its
use requires further advances on this separate line of research.
It is also obvious that, in the real-time area, there are very few
available technologies of use.

The current work is the enhancement of the monitoring
requirements, and the design of the monitoring groups and
mechanisms. Afterwards, with a full knowledge of the
requirements, the needs and impact of the mechanisms will be
further researched. The final phase will be the implementation
of the framework.

7 References

[1] H. Thane, Monitoring, Testing and Debugging of Distributed
Real Time Systems, Ph.D. Thesis, MRTC Report 00/15, 2000.

[2] S. Chodrow, F. Jahanian, M. Donner, Run Time Monitoring of
Real Time Systems, Proc. International Real-Time Systems
Symposium, 1991, pp. 74-83.

[3] R. Barbosa, L. M. Pinho, Monitoring of Real Time Systems: a
case for Reflection?, Polytechnic Institute of Porto Technical
Report HURRAY-TR-0413, April 2004. Available online at:
http://www.hurray.isep.ipp.pt

[4] S. Mitchell, A. Wellings, A. Burns, "Developping a Real-Time
Metaobject Protocol", Proc. of the IEEE Workshop on Object-
Oriented Real-Time Dependable Systems, 1997.

[5] J. Tsai, Y. Bi, S. Yang, Smith, R., Distributed Real-Time
Systems - Monitoring, Visualization, Debugging, and Analysis,
John Wiley & Sons, New York, USA, 1996.

[6] M. Gergeleit, A Monitoring-based Approach to Object Oriented
Real Time Computing, Ph.D. Thesis, Dec. 2001.

[7] J.C. Fabre, Object Orientation And Fault Tolerant Systems – An
Overview and Some Examples, LAAS Report 98088, 1998.

[8] C. Marcos, Design Patterns as First Class Entities, Ph.D.
Thesis, UNICEN University, 2001.

[9] J. Stankovic, K. Ramamritham, A Reflective Architecture for
Real-Time Operating Systems, Advances in Real-Time Systems,
Prentice Hall, 1993.

[10] S. Chiba, A Metaobject Protocol for C++, Proc. Object-
Oriented Programming Systems, Languages and Applications,
1995, pp. 285-299.

Method A()
Method B()
(REf)

Class Task

Method GetObjInfo()

Class Monitor

Base Level Class

Meta-object Monitor

GetObjInfo()

Method A()

Task X1

Task X2

Method A()

(Non Reflected Object)

 (Reflected Object)

Base – Meta Association

Instance-of

Reflection Mechanism

Meta-Object Class

(Non Reflected)

Method A()
Method B()
(REf)

Class Task

Method GetMetInfo()

Class Monitor

Meta-Object Class Base Level Class

Meta-object Monitor

GetMetInfo()

Method A()

Task X1

Method B()

Base – Meta Association

Instance-of

Reflection Mechanism

