

MARS: a toolset for the safe and secure

deployment of heterogeneous distributed

systems

Conference Paper

*CISTER Research Centre

CISTER-TR-221101

2022/12/05

Giann Nandi*

David Pereira*

José Proença*

José Santos

Lourenço A. Rodrigues

André Lourenço

Eduardo Tovar*

Conference Paper CISTER-TR-221101 MARS: a toolset for the safe and secure deployment of ...

© 2022 CISTER Research Center
www.cister-labs.pt

1

MARS: a toolset for the safe and secure deployment of heterogeneous distributed

systems

Giann Nandi*, David Pereira*, José Proença*, José Santos, Lourenço A. Rodrigues, André Lourenço,
Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: giann@isep.ipp.pt, drp@isep.ipp.pt, pro@isep.ipp.pt, josepedrosantos.2001@gmail.com, lar@cardio-id.com, arl@cardio-id.com,

emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

This work discusses the ongoing development of a toolset named MARS aimed to ease the process of safely

deploying runtime verification monitors into distributed micro-ROS and ROS2 nodes. The work is motivated by a

use case in the health and automotive domains and covers safety/security concerns around the manipulation of
sensitive biometric data.

MARS: a toolset for the safe and secure

deployment of heterogeneous distributed systems

Giann Spilere Nandi1, David Pereira1, José Proença1, José Santos2,

Lourenço A. Rodrigues2, André Lourenço2 and Eduardo Tovar1

Abstract—This work discusses the ongoing development of
a toolset named MARS aimed to ease the process of safely
deploying runtime verification monitors into distributed micro-
ROS and ROS2 nodes. The work is motivated by a use case in
the health and automotive domains and covers safety/security
concerns around the manipulation of sensitive biometric data.

Index Terms—Safety, Security, Runtime Verification, ROS2,
micro-ROS

I. Introduction

Artificial Intelligence (AI) has been one of the main drivers

of innovation in recent years. Its contributions impacted, and

continue to impact, several research fields and application

domains, including automotive, robotics, and health [16].

Although efforts towards porting AI to extremely resource-

constrained devices were made in recent years [1], a large

portion of these devices cannot yet process complex AI

algorithms in a timely manner locally. A common approach

to overcome this limitation is to offload the more resource-

intensive tasks to more robust distributed nodes. However,

dependable distributed applications may still demand that all

network participants comply with safety, security, and real-

time requirements.

Developers implementing distributed systems that must

comply with such requirements will inevitably face challenges

such as how to configure nodes to communicate with other

heterogeneous nodes; how to make sure that messages are

not disclosed nor manipulated by unauthorized participants

(especially in the context of resource-constrained devices); and

how to guarantee that data collection and processing is correct

and executed in a timely manner.

This work discusses the development of the Monitoring

Architecture Specification Language (MARS), a domain-

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER
Research Unit (UIDP/UIDB/04234/2020); also by FCT within project EC-
SEL/0016/2019 and from the ECSEL Joint Undertaking (JU) under grant
agreement No 876852. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and Austria, Czech Repub-
lic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey. We would also
like to thank Antonio Rodriguez and Pablo Garrido from eProsima for their
collaboration in development of the secure custom transport layer of MARS.
Disclaimer: This document reflects only the author’s view and the Commission
is not responsible for any use that may be made of the information it contains)

1CISTER Research Centre in Real-Time and Embedded Computing Sys-
tems, Polytechnic Institute of Porto, Rua Alfredo Allen, 535, 4200-135, Porto,
Portugal. {giann,drp,pro,emt}@isep.ipp.pt

2CardioID Technologies Lda, Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emídio Navarro 1, Room E.06 1959-007 Lisboa, Portugal
{jfs, lar, arl}@cardio-id.com

specific language with an associated toolset, introduced on

[12], capable of: (i) specifying ROS2-compatible distributed

system architectures, (ii) specifying and generating runtime

monitors that evaluate a system’s correctness while also

guaranteeing that their associated overhead will not disrupt

the target system’s safety requirements, and (iii) generating

components that communicate through secure channels. By

achieving these goals, we facilitate the process of safely

deploying runtime verification monitors into real-time systems,

providing a way for teams of engineers with no background

in formal methods to deploy runtime monitors in their sys-

tems while also providing evidence that these monitors will

not disrupt the system’s safety with respect to its real-time

constraints.

We contextualize and motivate the use of MARS with a

use case in the health and automotive domains developed in

the context of the VALU3S European R&D project in collab-

oration with CardioID, a Portuguese company specialized in

the analysis and integration of human hearts’ biometric data

into innovative solutions. The use case builds up on top of

a generic and adaptable architecture with a newly developed

and publicly available TLS 1.3-based transport that encrypts

and authenticates the communication between micro-ROS [17]

and ROS2 [18] devices.

II. CardioWheel Use Case

We start by describing our motivating use case provided by

CardioID, called CardioWheel, used to guide and validate the

development efforts of the MARS language and toolset.

AG

C1: ESP32

R1: RPi 4 B

DDS SECURITY

D1

ROS2
micro-ROS

DDS

DDS

DDS-XRCE + TLS 1.3

AI

D2H

M1

M2

M4 M5M3

Fig. 1. Node C1 collects, pre-processes, and transmits heart beat signals to
R1 over a wireless channel. R1 is analyzes it and forwards results to a set of
trusted nodes in the cloud, represented by D1 and D2. The channel between
C1 and R1 is secured by our custom transport based on TLS 1.3 and the
DDS-XRCE standard.

In CardioWheel, the heart-beat signals of a vehicle’s driver

are collected, transmitted wirelessly, and analyzed by AI

algorithms. Figure 1 illustrates the system’s underlying dis-

tributed architecture: a sensor, powered by an Espressif ESP32

microcontroller (C1), is placed in the steering wheel of the

vehicle to collect and send aggregated data to a Raspberry PI

4 Model B (R1), which receives it and analyses it using a

trained AI model while interacting with remote nodes D1/D2.

While the communication between R1 and D1/D2 complies

with the underlying middleware [5] of the full fledged ROS2,

C1 uses a stripped-down version called micro-ROS, specially

developed to comply with the restrictions of (extremely)

resource-constrained devices that have as little memory as

32kB of RAM and 256kB of flash and can run on top of

real-time operating systems like FreeRTOS.1 The information

collected by C1 to allows R1 to provide:

• Biometric Authentication: by analyzing the user’s elec-

trocardiogram (ECG) signals, R1 can authenticate and

validate a user’s identity analogously to what is done with

fingerprints [10].

• Heart Monitoring: although unique to every person,

ECG signals share common traits that could indicate

various body conditions, including heart anomalies, levels

of fatigue, and emotional distress [10].

After authenticating the driver, the CardioWheel’s inferred

levels of fatigue could provide warning signals and potentially

adapt parameters during assisted driving. It is important to

mention that the quality of the analysis performed by R1

is heavily dependent on the quality of the signals fed to it,

requiring C1 to provide low signal-noise readings at high

frequency (around 1kHZ). Given the automotive context and

the safety hazards that an incorrect system behavior could

cause, CardioWheel deploys runtime monitors (M1 - M5 in

Fig. 1) to check for incorrect system behavior.

Due to the sensitive content of the transmitted data, security

and privacy measures are required to protect against cyberat-

tacks. While the communication of R1 with D1 and D2 can

be secured by employing the DDS Security protocol [6], no

similar option is available to the communication between C1

and R1, leaving the communication channel between C1 and

R1 susceptible to attacks coming from a malicious user H,

like (i) tampering with the data transmitted to R1, possibly

leading genuine heart problems to be misclassified as a healthy

heart behaviour; and (ii) eavesdropping on sensitive health

information, disclosing a user’s health condition. We address

this lack of security with a newly developed transport, which

is discussed in the next section.

III. MARS and Its Associated Toolset

Our work on MARS includes developing a specification

language and a back-end. The specification language com-

pactly and precisely captures both the distributed architecture

(including communication channels) and a set of runtime

1We point the reader to the current list of supported hardware by micro-
ROS for further details: https://micro.ros.org/docs/overview/hardware/

visual + textual
explanation

FRET

step 1

FRETish
requirement

Copilot
specification

standalone
C monitor code

pmLTL +
variables

Ogma Copilot

step 2

step 3

Fig. 2. Workflow adopted by the Ogma tool to synthesize runtime verification
monitors from requirements written in the near-natural language of FRETish.

monitors designed to verify safety properties that were too

complex to verify statically. The back-end configures the

communication channels with the required security levels,

generates correct-by-construction runtime monitors, and safely

instruments these monitors into a target system

The design of the specification language is ongoing work,

partially documented in previous work [12]. This paper fo-

cuses on the back-end, i.e., on how to: (i) generate runtime

monitors from formal specifications, (ii) check if the compu-

tational overhead caused by these monitors does not disrupt

the system’s real-time schedulability, and (iii) introduce se-

cure communication channels for resource-constrained devices

within a micro-ROS/ROS2 distributed environment. Below we

address each of these points and clarify the type of systems

we support.

Supported Systems Although in the CardioWheel use case

we focused on a single application compatible with MARS,

we envision our work to easily suit multiple applications as

long as they fit into a generic system model. More specifically,

we support distributed systems whose nodes comply with the

DDS-XRCE [7], the communication middleware for micro-

ROS, and DDS [5], the communication middleware for ROS2.

Supporting these standards allows excellent flexibility in de-

signing distributed heterogeneous applications while adopting

the widespread publish-subscribe message exchange pattern.

With micro-ROS, developers can have (extremely) resource-

constrained devices actively interacting with other ROS2 and

DDS-compatible nodes in the cloud by publishing and sub-

scribing to topics of interest. On top of that, developers

can enforce deterministic and timely behavior on micro-ROS

nodes by employing scheduling algorithms to manage the

execution of each node’s task sets. Finally, MARS focuses

on supporting the deployment of software monitors that, at

runtime, verify if the system/application complies with a set

of formal specifications provided by the user.

Correct-by-Construction Monitor Generation Manually

specifying a monitor using formal semantics is error-prone and

requires a formal background, usually not present in typical

engineering teams. We facilitate the process of specifying and

implementing runtime monitors by integrating into MARS

tools like Ogma [13] and rmtld3synth [4] that synthesize

C/C++ code from specifications written in near-natural lan-

guages.

https://micro.ros.org/docs/overview/hardware/

DDS-XRCE + TLS 1.3

ESP32

C1

Intel i7-4770

R1
ii

iiiiv

i

Measurements Setup

Archer C20

Fig. 3. Setup used to measure the round-trip delay of a message sent by
C1. The figure illustrates the hardware used and points to the four additional
steps performed by the system when compared to the default transport used
by micro-ROS.

To shed some light on the process behind it, we illustrate

in Figure 2 the step-by-step workflow of Ogma to transform a

specification into a monitor. The workflow starts by receiving

as input a requirement written in FRETish [3] describing what

needs to be verified in the system and the variables that support

such verification. FRET [3] then takes the requirement and

variables and provides visual and textual explanations of how

the requirement translates to Past-time Metric Linear Temporal

Logic (pmLTL) [9]. Ogma then takes the pmLTL formula

and associated variables and generates a Copilot [15] monitor

specification. Finally, Copilot takes the specification as input

and generates the standalone C monitor that MARS will use

for its formal analyses and subsequent instrumentation and

compilation.

Safe Instrumentation of Runtime Monitors Coupling

runtime monitors into a system inevitably incur some compu-

tational overhead. In the case of real-time systems, adding a

monitor means another task for the real-time operating system

to schedule. Depending on its computational impact, adding a

monitor could disrupt the system’s schedulability and result in

unsafe behavior. MARS addresses this concern by employing

schedulability analysis algorithms that check the feasibility of

scheduling the original task set in addition to the instrumented

set of monitors.

Our initial efforts focus on the classical schedulability

analysis of simple and static task sets. However, we are also

investigating scenarios with systems supporting unbounded

mode changes where tasks can be added/removed/have their

scheduling parameters modified [2], [8]. For instance, we are

currently experimenting with how to verify if a system is

schedulable after an unbounded number of mode changes

considering the residual accumulative impact that each mode

transition can have on the overall schedulability analysis.

Secure Communication Channels MARS addresses the lack

of security in the communication between micro-ROS and

ROS2 nodes by including in its toolset a newly developed

and open-source2 transport based on TLS 1.3 developed in

collaboration with eProsima.3 The transport allows micro-ROS

and ROS2 nodes to authenticate and encrypt their message

2https://bitbucket.org/mars-language/
3Developer and maintainer of micro-ROS.

Fig. 4. Round-trip delays measured from 4500 messages sent over 10 identical
experiments using the standard micro-ROS transport and 4500 messages sent
over 10 identical experiments using our custom TLS 1.3-based transport. The
presented histogram shows the minimum and the average round trip delay for
each message among all the 10 runs of the experiment for each transport.

exchanges with little to no modifications to the system’s

original behavior. The transport combines the open-source

wolfSSL4 library and the micro-ROS API for custom trans-

ports developed by eProsima.

Initial benchmarks, illustrated in Figure 4, show an ap-

proximate 2-millisecond difference (minimum and average)

between the round-trip delay measured of a message sent

using the default UDP-based transport of micro-ROS and

our transport, which offers the reliability of TCP and the

encryption and authentication of TLS 1.3. The hardware setup

for the experiments consists of an ESP32, a TPLink router

Archer 20, and an Ubuntu Desktop 20.04 equipped with an

Intel 4770 processor.

The round-trip delay is the time difference between the

timestamp of when C1 receives a message mi and the times-

tamp when C1 sends the same mi message. In total, we ran

ten experiments using the UDP transport and ten experiments

using our custom transport. In each experiment, we measured

the round-trip delay of 450 messages. Figure 4 shows the

minimum and the average of each mi message sent in the

network among the ten experiments of each transport layer

such that 1 ≥ i ≤ 450.

The approximate 2-milliseconds of difference between the

two transport layers reflects the overhead caused by the

additional reliability guarantees from TCP and the four extra

steps, illustrated in Figure 3, that the system needs to perform

after the handshake between C1 and R1: i) encryption of mi

by C1; ii) decryption of mi by R1; iii) encryption of mi by R1;

iv) decryption of mi by C1.

IV. RelatedWork and Conclusion

Several works in the literature address the automatic gener-

ation of runtime verification monitors from formal specifica-

tions. For instance, the work by Perez et al. [14] uses Ogma to

generate monitors for ROS2 nodes, and the work of Meredith

et al. [11] generates monitors for Java and hardware descrip-

tion languages. However, these approaches do not address the

impact of generated software monitors in the context of real-

time systems and are incompatible with commercial off-the-

4https://www.wolfssl.com/docs/tls13/

https://bitbucket.org/mars-language/
https://www.wolfssl.com/docs/tls13/

shelf microcontrollers and microprocessors, which is precisely

the novelty of our work.

By having the harsh resource constraints of these devices

in mind, this work presents the current status of the MARS

toolset, which is meant to ease the safe instrumentation

and deployment of runtime verification monitors in micro-

ROS/ROS2/DDS-based distributed systems. More specifically,

we discussed the back-end improvements that enable the

generation of formally-specified monitors, the employment

of formal verification algorithms on the integration of these

monitors into real-time systems, and the newly developed

secure transport for micro-ROS. The results were motivated

and validated by an industrial use case representing the generic

system model supported by MARS: a set of micro-ROS nodes

with real-time and safety requirements that communicate via

publish-subscribe message exchanges that comply with the

underlying communication middleware ROS2 and other DDS-

based nodes.

References

[1] Francesco Alongi, Nicolo Ghielmetti, Danilo Pau, Federico Terraneo,
and William Fornaciari. Tiny neural networks for environmental pre-
dictions: An integrated approach with miosix. In SMARTCOMP 2020.
IEEE.

[2] Hyeongboo Baek, Kang G. Shin, and Jinkyu Lee. Response-time
analysis for multi-mode tasks in real-time multiprocessor systems. IEEE

Access, 8:86111–86129, 2020.

[3] Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Press-
burger, and Aaron Dutle. A compositional proof framework for fretish
requirements. In Proceedings of the 11th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2022, page 68–81,
New York, NY, USA, 2022. Association for Computing Machinery.

[4] André de Matos Pedro, Jorge Sousa Pinto, David Pereira, and
Luís Miguel Pinho. Runtime verification of autopilot systems using
a fragment of MTL-

∫
. International Journal on Software Tools for

Technology Transfer, 20(4):379–395, August 2017.

[5] OBJECT MANAGEMENT GROUP. Data distribution service (dds)
specification version 1.4. http://www.omg.org/spec/DDS/1.4, 2015.

[6] OBJECT MANAGEMENT GROUP. Dds security specification version
1.1. https://www.omg.org/spec/DDS-SECURITY/1.1/ , 2018.

[7] OBJECT MANAGEMENT GROUP. Dds for extremely resource con-
strained environments 1.0. https://www.omg.org/spec/DDS-XRCE/1.0,
2020.

[8] Wen-Hung Huang and Jian-Jia Chen. Techniques for schedulability
analysis in mode change systems under fixed-priority scheduling. In
2015 IEEE 21st International Conference on Embedded and Real-Time

Computing Systems and Applications. IEEE, August 2015.

[9] Martin Leucker and César Sánchez. Regular linear temporal logic.
In Theoretical Aspects of Computing – ICTAC 2007, pages 291–305.
Springer Berlin Heidelberg, 2007.

[10] André Lourenço, Ana Priscila Alves, Carlos Carreiras, Rui Policarpo
Duarte, and Ana Fred. CardioWheel: ECG biometrics on the steering
wheel. In Machine Learning and Knowledge Discovery in Databases,
pages 267–270. Springer International Publishing, 2015.

[11] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen,
and Grigore Roşu. An overview of the MOP runtime verification
framework. International Journal on Software Tools for Technology

Transfer, 14(3):249–289, April 2011.

[12] Giann Spilere Nandi, David Pereira, José Proença, and Eduardo Tovar.
Work-in-progress: a DSL for the safe deployment of runtime monitors
in cyber-physical systems. In RTSS 2020, USA 2020. IEEE, 2020.

[13] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, and
Dimitra Giannakopoulou. Automated translation of natural language
requirements to runtime monitors. In Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 387–395. Springer International
Publishing, 2022.

[14] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alexander Will, and
Patrick J. Martin. Monitoring ros2: from requirements to autonomous
robots. 2022.

[15] Lee Pike, Sebastian Niller, and Nis Wegmann. Runtime verification
for ultra-critical systems. In International Conference on Runtime

Verification, pages 310–324. Springer, 2011.
[16] Pramila P. Shinde and Seema Shah. A review of machine learning and

deep learning applications. In ICCUBEA. IEEE, August 2018.
[17] Jan Staschulat, Ralph Lange, and Dakshina Narahari Dasari. Budget-

based real-time executor for micro-ros, 2021.
[18] George Stavrinos. ROS2 for ROS1 users. In Studies in Computational

Intelligence, pages 31–42. Springer International Publishing, August
2020.

http://www.omg.org/spec/DDS/1.4
https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.omg.org/spec/DDS-XRCE/1.0

	Introduction
	CardioWheel Use Case
	MARS and Its Associated Toolset
	Related Work and Conclusion
	References

