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Abstract 

Over the past decade, Unmanned Aerial Vehicles (UAVs) have provided pervasive, efficient, and cost-effective 

solutions for data collection and communications. Their excellent mobility, flexibility, and fast deployment enable 
UAVs to be extensively utilized in agriculture, medical, rescue missions, smart cities, and intelligent transportation 

systems. Machine learning (ML) has been increasingly demonstrating its capability of improving the automation 
and operation precision of UAVs and many UAV-assisted applications, such as communications, sensing, and data 

collection. The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering 
UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive 

overview of ML techniques used in UAV operations and communications and identify the potential growth areas 
and research gaps. We emphasize the four key components of UAV operations and communications to which ML 

can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, 
trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools 

based on their applications to the four components and conduct gap analyses. This survey also takes a step 
forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and 
communications. It is revealed that different ML techniques dominate the applications to the four key modules of 

UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has 
been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and 

operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require 
significant attention before the full automation of UAVs and potential cooperation between UAVs and humans 

come to fruition.  
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UAV Unmanned Aerial Vehicle
VTOL Vertical Take Off and Landing
WPT Wireless Power transfer

1 INTRODUCTION

With their excellent mobility, versatility, and ability to cover
wide and harsh environments, unmanned aerial vehicles
(UAVs) have been increasingly proliferating with extensive
applications, as shown in Fig. 1. The Global UAV Market
has been projected to grow at a cumulative rate of 19.9%,
and generate a revenue of $55.649 billion from 2020 to 2027
[1]. In the past, UAVs were primarily used for surveillance
and reconnaissance in military applications [2], [3], [4]. With
the new trends in aerial photography and monitoring over
the past decade [5], UAVs have started to enable many civil
and commercial application domains. For example, UAVs
have been increasingly implemented in several monitor-
ing domains [6], such as marine [7], [8], traffic [9], [10],
public safety [11], [12], [13], and agriculture [14]. UAVs
are also extensively considered to extend the connectivity
and coverage of terrestrial communications systems, for
example, mobile cellular systems. They can serve as aerial
cellular base stations (BSs) [15], [16] or mobile repeaters
and transponders [17], [18] with radio transceivers to offer
connectivity and data services to users on the ground [19],
or deliver confidential messages [20].

In the emerging application of mobile edge comput-
ing (MEC), UAVs are considered to play the role of mobile
computing servers, providing a cost-effective alternative to
expensive physical computing infrastructure [21]. This is
attributed to the fact that commercially available UAVs are
increasingly computationally capable and equipped with
compact central processing unit (CPU) and graphics pro-
cessing unit (GPU) modules [22]. For instance, UAVs can
act as micro BSs and provide edge computing resources,
by dynamically moving over remote locations, where data
coverage is required, and computing resources need to be
provided on-demand [23], [24]. UAVs have been used as a
solution to support wireless networks during congestion,
especially in scenarios where the region has high traffic
peaks due to the temporal and spatial flow of users. ML
algorithms have been deployed to predict the strength and
quality of mobile networks and aid in real-time resource
allocation in regions suffering from the congestion effect
caused by the high density of users. UAVs act as mobile
computing servers that allow computationally restrictive
ground devices, e.g., internet-of-things (IoT) devices, to
offload their computationally intensive applications. The
optimization of the UAV trajectory and radio transmission
power of the ground devices contributes to maximizing the
different performance metrics of the offloaded computing
applications [22], [25]. By dispatching and placing the UAVs
at carefully selected locations, it is possible to increase the
throughput, coverage, and spectral efficiency.

In recent years UAVs have been vital in providing a com-
munication infrastructure in the aftermath of a disaster [26],
[27]. UAVs equipped with communication equipment can
be deployed to provide temporary communication infras-
tructure, enabling communication between rescue workers,

victims, and emergency responders. Apart from conduction
aerial surveys over the disaster affected areas, they can be
used to establish communication, delivering equipments,
and assisting in rescue operations.

1.1 Objectives of UAV Data Collection and Communi-

cations

UAVs have also been increasingly employed for data col-
lection or forwarding in remote, human-unfriendly envi-
ronments, where conventional terrestrial communication
infrastructures relying on persistent power supplies are
unavailable or unreliable [28]. In particular, one or multiple
UAVs hover over a geographical entity to capture and
process images or data from the ground sensors [29], [30].
Each UAV can adjust its flight trajectory and altitude to
physically approach a ground node, enjoying an excellent
line-of-sight (LoS) radio connection to improve the data rate
and save the energy of the ground node [31].

The typical objectives of UAV-assisted data collection
and communications include, but are not limited to,

• Richness of collected data: The richness of collected
data can be interpreted as system throughput; or
in other words, the capability of the UAVs to col-
lect data. By exploiting the richness of data, data-
driven approaches have been increasingly adopted to
optimize the design, operation, and maintenance of
cyber-physical systems (CPS), such as smart city [32]
and intelligent transport systems [33], [34]. The value
of data is increasingly recognized [35]. It is important
to minimize the data loss during the collection and
processing of data, thereby retaining useful infor-
mation and avoiding rare features from being over-
looked [36].

• Freshness and timeliness of collected data: While
freshness apparently adds value to data [37], timely
collection of data is crucial for systems relying on
UAVs to deliver data, such as systems deployed in
remote, human-unfriendly environments. This is due
to the finite batteries and buffers of devices in those
systems [38]. Many IoT devices deployed in remote,
human-unfriendly environments are (re)charged by
renewable energies scavenged from ambient sources,
such as polar power and wind, which are unreliable
and can experience unexpected shortages [39], [40].
Delayed data collection would not only cost the
freshness of the data but lead to buffer overflows and
subsequently data losses [41].

• Representativeness of collected data: Apart from
the richness and freshness, the representativeness of
data is critical to many data analytics and modeling
activities [42]. The representativeness refers to the re-
semblance of collected data to the entire dataset [42].
It is important to avoid the well-known overfitting
problem during data analytics and modeling.

• Reliability and dependability: Reliability is often
measured by the outage probability of transmis-
sions and heavily depends on the propagation chan-
nels [43]. Reliability can have a strong impact on
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Fig. 1: The paradigms of UAV-assisted IoT that demand variable quality-of-services ranging from guaranteed reliability,
minimal latency, the freshness of information, and energy efficiency.

the throughput and freshness of delay-sensitive data,
while data is sensitive to delays in many UAV-
assisted communications and data collection scenar-
ios. This is because the UAVs can quickly fly out of a
node’s communication coverage and the node must
withhold its transmission until the next opportunity
when the UAVs approach or pass by.

1.2 ML for UAV Operations

Machine learning (ML) enables systems to learn from data,
creates data-driven solutions, and has been increasingly ap-
plied online in distributed settings [44]. By associating UAVs
with ML, it is possible to add functionalities like processing
images for classification and segmentation, deciding the tra-
jectories of the drone, caching, scheduling, and monitoring
[45]. With ML helping around controlled mobility, trajecto-
ries, and adjustable altitudes, UAVs have become a suitable
candidate for enabling various IoT paradigms that need
an additional layer of artificial intelligence (AI) [46], [47].
Several application domains can sometimes feature a de-
pendent behaviour or be individual domains. For instance,
applications can utilize online perception from the UAV
imagery and then utilize it towards trajectory planning [48].
Also, ML can be solely used for the purpose of domains like
regeneration of features and interpretation [49]. Capabilities
such as feature extraction and prediction add a layer of AI
to the existing UAV-enabled monitoring applications.

The integration of ML into UAV platforms provides
many opening opportunities and new methods in various
domains, such as real-time monitoring, data collection and

processing, and prediction in computer/wireless networks,
smart cities, military, agriculture, and mining. It is reported
in [50] that the UAV and ML research for smart cities and
military use was accelerated by 40% in 2019. It is also
revealed that the UAV and ML research in other sectors,
such as agriculture, maritime monitoring, and infrastructure
monitoring, displays constant growth. The incorporation of
ML in these UAV-assisted applications can help improve the
quality of many applications and services.

ML has been used for resource management and trajec-
tory optimization of UAVs [51], [52], [53], [54], e.g., to extend
the UAVs’ cruise time. ML-based stochastic computational
offloading practices, e.g., [55], have been used to improve
the real-time resource allocation of MEC. Real-time resource
allocation algorithms have been used to maximize energy
efficiency by optimizing the energy-harvesting time and
power control for the considered communication embedded
in UAVs [56]. ML has also been employed for the joint
optimization of the UAV’s flight path, radio emission power,
and cached contents, striking a balance between energy
efficiency and latency [57], [58], [59]. ML frameworks, such
as those developed in [60] and [61], have been used to
optimize the UAV’s flight route and coordinate the ground
sensors’ data transmissions to maintain the freshness of
data; or in other words, to minimize the age of information
(AoI).

ML models can be vulnerable to attacks, such as data
poisoning, adversarial attacks, and model stealing [62]. An
attacker could manipulate the data used to train the ML
model, or modify the inputs to the model during operation,
causing the UAV to perform actions that are not intended.
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Fig. 2: Four key components of UAV control and operations: UAV perception and feature extraction, feature interpretation
and regeneration, trajectory and mission planning, and aerodynamic control and operation, to which ML techniques can
considerably contribute.

Therefore, there is a need to implement security measures
not limited to secure communication protocols, encryption
of data and models, and robust authentication mechanisms.
Efficient monitoring of the UAV behavior and the under-
lying ML algorithms can help to detect and respond to
potential security threats.

With predictive, mapping and regenerative capabilities,
ML-aided UAVs can aid in several domains of disaster
management, such as disaster detection where the regions
that are prone to disaster and are in need of relief measures
can be detected [63], disaster mapping where the disaster
regions can be mapped and reconstructed [64], weather and
climate change prediction to provide an early alarm in case
of a disaster [65], and disaster behavior prediction to predict
the spread and direction of disasters, such as forest fires [66].

In real-time decision-making applications, ML algo-
rithms can be trained to detect and recognize objects, which
helps the UAV systems adapt their trajectories and resource
allocation in real time. This capability to adapt the decisions
in real-time allows the UAVs to navigate through complex
environments and avoid obstacles with little to no human
intervention. Moreover, the ML algorithms are capable of
detecting anomalies in the data collected from sensors at
the UAV, allowing for quick identification and fast response
to potential counterfeits or security issues.

In line with the integrity of the data in a UAV-enabled
data collection and communication system, ML algorithms
can be used to analyze images and data collected by UAVs,
allowing for faster and more accurate identification of pat-
terns, anomalies, and trends [67]. With respect to reliability
and adaptive real-time decision-making, ML algorithms are
used to process and analyze data collected by UAVs in real-
time, allowing for real-time decision-making and adapting
the actions to changing conditions [68]. ML algorithms can
also analyze historical data and predict future trends, thus
allowing proactive decision-making and planning [69]. ML
algorithms can further customize the data collection pro-
cesses by the UAVs to retain the freshness and richness of
the data (i.e., the representativeness) of the data [70].

ML algorithms are used to analyze the richness of data
obtained from the UAVs. Specifically, UAVs capture a vast
amount of data, such as high-resolution images, videos, and

sensor readings, that can be used to train and test ML mod-
els [71], [72]. ML algorithms can efficiently process this UAV
data for various applications, including object detection and
classification from UAV imagery, tracking and classification
to categorize objects based on their characteristics [73]; and
prediction for applications like forecasting weather condi-
tions [65], crop yields [74], or traffic congestion [75] based
on the UAV data collected over time. Several works have
been in the literature where ML models have aided UAV
application domains despite having minimal a-priori data to
train on [76].

Ensuring data representativeness is critical in UAV data
collection for developing ML models. Factors, such as the
use of appropriate sensors and cameras for the mission,
determining the optimal flight path, and selecting the ap-
propriate sampling frequency, affect heavily the representa-
tiveness of data [77], [78]. Several DRL-based ML models
aid in the data collection process [79], [80], addressing the
potential biases among different subsets of training data to
ensure data representativeness.

The freshness of data is another crucial factor in the
application domains that include taking real-time deci-
sions like UAV navigation and control [81]. Real-time
data processing enables faster and more accurate decision-
making and is particularly useful when dealing with time-
critical applications, such as UAV-enabled disaster manage-
ment [82]. With the refreshed data, ML models can remain
up-to-date. This can be achieved by continuously training
the model whenever new data is available to capture the
change to the environment. Continuous learning methods
can be used to update the model without the need to retain
the entire model [83].

Reliable ML models produce consistent results across
multiple datasets even under different conditions. It is
mandatory to ensure that the model is not overfitting to
its training data and can generalize well to new data [84].
Novel ML techniques, like SNN, help to accurately analyze
the datasets and ensure the reproducibility and generaliza-
tion of the results [85]. Reliability as an objective includes
ensuring the safety of the UAV and its surroundings and
also considers the ethical and legal implications of the
predictions made by ML models.
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TABLE 1: Performance metrics and ML solutions

Performance Indicators ML solutions

Age of Information
Trajectory planning,
node selection

Communication reliability
Backhaul, fronthaul
caching

Energy efficiency QoS-based cruise control
Resource utilization Computational offloading
Image resolution Feature extraction
Accuracy Prediction and classification
Packet loss QoS-based data collection
Security Adversarial learning

In Table 1, we present prominent performance indicators
of UAV-aided applications and their potential ML solutions.
In what follows, we provide a brief discussion on the ML
solutions to meet these performance requirements. To this
end, it is of prominent importance and urgency to develop
a taxonomic analysis of ML applications to enhance UAV
operations and communications.

1.3 Key Components of UAV Operations and Commu-

nications

To achieve the objectives of UAV operations and communi-
cations, it is imperative to holistically design and optimize
UAVs’ trajectories and data collection schedules. This would
require the UAVs to understand the operating environment
and data demand, comply with the aerodynamics and en-
ergy availability of the UAVs, and allow the UAVs to adjust
their speed, heading, elevation dynamically, and accelera-
tion, adapting to the changing environment and demand.
It is also vital to model the environment to ensure a stable
cruise. Consequently, UAV operations and communications
involve the following four major components:

• Joint trajectory and mission planning, including
multi-UAV cooperation;

• Aerodynamic control and operation, i.e., refine the
online operations of individual UAVs;

• Perception and feature extraction, i.e., understand
the environment;

• Feature interpretation and regeneration, i.e., digitize,
interpret and model the environment.

This procedure is shown in Fig. 2.

1.4 Contributions of This Paper

This paper presents a comprehensive overview of ML tech-
niques specially designed for UAV applications, as well
as their advantages and drawbacks under different UAV-
aided operations and communications. Specifically, the sur-
vey paper categorizes the UAV-compatible ML techniques
holistically based on the performance metrics that they are
designed against, and the applications that they embrace in
support of feature extraction, environment modeling, UAV
control, and data collection of UAV operations, as depicted
in Fig. 2. The gaps and opportunities of existing studies are
identified.

The key contributions of the survey are as follows.

• We provide an in-depth review of all existing surveys
and technical research related to ML-assisted UAV
applications and operations;

• We provide a comprehensive application analysis of
critical ML techniques and discuss their advantages
and drawbacks in regard to their applications to fea-
ture extraction, environment modeling, UAV control,
and data collection of UAV operations;

• We provide a detailed outlook of significant chal-
lenges and open issues in applications of ML to UAV-
assisted communications and operations.

Important findings include, but are not limited to, the fol-
lowing:

• Novel ML techniques with augmented functionali-
ties and a combination of different ML techniques
have been introduced over the last decade to meet
the performance demands of UAV-aided applica-
tions.

• While convolutional neural network (CNN) is pre-
dominately applied to UAV image processing, low-
power ML techniques, such as spiking neural net-
work (SNN), have started to demonstrate their ap-
plicability, especially in online operations.

• Deep reinforcement learning (DRL) techniques with
continuous action spaces, such as policy-based deep
deterministic policy gradient (DDPG), are increas-
ingly demonstrating their potential for online UAV
flight control and communication scheduling. They
can concatenate with other DL modules, such as
recursive neural network (RNN), to enhance feature
extraction and accelerate exploration and exploita-
tion.

• While there is a significant effort in creating ML
modules to support feature extraction, environment
modeling, planning and scheduling, and control and
operation, little to no effort has been devoted to
creating an ML-based end-to-end control solution
from feature extraction to planning, control, and
operation.

• Little consideration has been given to quantifying
the reliability and trustworthiness of ML modules in
UAV operations and applications.

Every ML technique is unique and supports one or more
performance metrics demanded by different UAV-aided ap-
plications. Generally, supporting one specific performance
or function can result in undesired trade-offs on other
aspects. Layers of AI on these ML-enabled applications can
help alleviate the trade-offs. It is important to provide a bal-
anced view of two major features, namely, the state-of-the-
art ML algorithms, and the application domains supported
by the ML algorithms, as is done in this survey. This is the
key differentiator of this survey from the existing reviews typically
featured with particular UAV applications of ML techniques, as
discussed in Section 3.

It is worth mentioning that this survey reviews over 300
recent research papers on the latest specially designed, UAV-
compatible, ML techniques in support of UAV operations
and communications, including but not limited to, SNN, R-
CNN, double-looped RNN, multi-agent DRL, and double
DQN.
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Fig. 3: The organization of this paper.

This survey provides a combined overview of the su-
pervised, unsupervised, and reinforcement learning archi-
tectures. We endeavor to encapsulate a broader umbrella of
applications pertaining specifically to UAV-aided operations
in terms of trajectory, mission planning, aerodynamic con-
trol (mobility control), feature extraction, and perception.
We also provide a detailed discussion on some prominent
challenges and open issues in this field.

1.5 Organization of This Survey

The rest of this paper is organized as follows. In Section 4,
we discuss the ML tools for UAV operations and commu-
nications. From Section 7 till Section 6, we segregate the
ML techniques into their respective application domains.
Specifically, we cover trajectory and mission planning in
Section 5, aerodynamic control and operation in Section 6,
UAV perception and feature extraction in Section 7, and
feature interpretation and regeneration in Section 8. Section
9 outlines the open scopes and remaining challenges of ML’s
applications to UAV operations and applications, followed
by concluding remarks in Section 10. In Fig. 3, we provide a
detailed organization of this survey.

2 BACKGROUND TO UAV SYSTEMS

2.1 UAV Taxonomy

UAV systems can be categorized into two types, the single
UAV systems, and the multi UAV systems [86], [87]. In
a single-UAV system, the entire mission will rely on a

single UAV. In a multi-UAV scenario, UAVs in a swarm
can facilitate the mission. More UAVs can cover a larger
geographical area within a shorter time than their single
UAV counterparts. Multi-UAV systems also have the capa-
bility to process tasks in parallel, speeding up the mission
completion time. Single-UAV systems must maintain con-
stant communication with the ground infrastructures or the
operator. In a multi-UAV system, one specific coordinating
UAV can communicate with the ground and forward the
messages to other UAVs [88].

2.2 Communication Capabilities of UAV

In accordance with the guidelines from the International
Telecommunication Union (ITU) [89], [90], a UAV must
be able to communicate in three different ways. Firstly,
communication for UAV command and control must be
possible. This includes the telemetry report (e.g., the flight
status from the UAV to the ground pilot), signaling from the
ground to UAVs (e.g., attitude control data), and updates
from the ground for autonomous UAVs. Attitude control
is the process of controlling the orientation of the UAV
in accordance with an inertial frame of reference or other
entities along the UAV trajectory. Secondly, communication
for air traffic control (ATC) relay ensures the safety of
traditional manned aircraft from any UAVs in the same
fly zone. This communication is critical in the presence
of higher densities of air traffic. Finally, communication
aiding collision avoidance supports sensing and avoiding
any obstacle with a sufficient safety distance in the cruise
line [91].
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2.3 Types of UAVs and Mobility

UAVs can be classified by the flight system adhered to or by
the rotors in the flight system. Some of the common types of
UAVs include Vertical TakeOff and Landing (VTOL) UAVs,
fixed-wing UAVs, and hybrid VTOL UAVs.

VTOL UAVs can be further classified based on the
number of rotors: single-rotor UAVs [92] and multi-rotor
UAVs [93]. Single-rotor UAVs have a similar structure to
helicopters in design. This type of UAV comprises one single
rotor that acts as the wing helping in elevation, and a tail
rotor for controlling the direction and stability. It can be very
energy-efficient as it has to support only one rotor, and this
can improve the cruise time of the UAV. However, they are
less stable than their multi-rotor counterparts. Multirotor
UAVs have more than one motor. They can be tricopters
(three rotors), quadcopters (four rotors), hexacopters (six
rotors), and octocopters (eight rotors), among others. They
provide great control over the position and framing on air,
thus making them suitable for many applications such as
photography. These UAVs support multiple degrees of axes
and rotate on their own axis. One disadvantage of this type
of UAV is the limitation in flight time [94].

Fixed-wing UAVs [95] have rigid wings extending to-
ward two sides of the body of the UAVs and resemble an
aeroplane. Unlike rotor-based UAVs, they utilize energy to
move forward. They are utilized for cruising over long dis-
tances covering a larger geographic area for hours. Landing
is tougher for these UAVs than it is for their rotor-based
counterparts.

Hybrid VTOL UAVs [96] combine the characteristics
of fixed-wing and rotor-based designs. These VTOL UAVs
have rotors attached to the fixed wings. The rotor blades of
the UAVs create a vertical thrust like a large propeller. This
thrust enables the UAV to take off, land vertically, and hover.
The wings allow the UAV to glide and enable pitch (i.e.,
rotation around the front-to-back axis), roll (i.e., rotation
around the side-to-side axis ), and yaw (rotation around the
vertical axis) motions. These UAVs are more manoeuvrable
than fixed-wing UAVs and can fly longer than typical multi-
rotor UAVs.

2.4 Performance Metrics for UAV Communications

The following performance metrics are commonly used in
UAV-assisted communications systems. These performance
metrics play a major role in defining the actions taken by
ML strategies.

Spectral and Energy Efficiency: Effective throughput
or spectral efficiency is one of the most commonly desired
features in UAV-assisted communications, alongside energy
efficiency [97]. However, the spectral and energy efficiencies
are direct trade-offs of each other. Throughput ensures reli-
able communication and energy consumption in UAVs can
be considered as one of the key factors for the execution of
missions as it can have a direct impact on other QoS, such
as latency and the safety of the UAV itself. The depletion
of the UAV battery can be due to several factors, such as
weather, the speed of the UAV, the power consumption for
trajectory alignment, and manoeuvring. There is a demand
for models that optimize the energy consumption of UAVs

while transmitting or receiving information and maintain an
efficient throughput [98].

Age of Information (AoI): AoI quantifies how fresh
or new the data is at the UAV. AoI measures the time
lapse since the latest reception of the packet update at an
information recipient [70]. The freshness of data can help
in providing optimized control and better reliability. The
trajectory of the flight plays a key role in determining the
freshness of the information collected. However, the UAV
and the ground network have to compromise regarding
power efficiency and data transmission latency to obtain
fresh data. This can be alleviated by careful trajectory plan-
ning and sensor selection during data collection.

Reliability: Communication reliability is typically mea-
sured by the signal-to-noise ratio (SNR) [99], signal-to-noise-
plus-interference ratio (SINR) [100], or outage probabil-
ity [101]. Different from other radio systems where reliabil-
ity is primarily subject to the fading conditions of wireless
channels and the mobility of the transmitter or receiver,
the reliability of UAV-assisted communication systems can
deteriorate because of jitters due to the inherent random
wind gusts. This can result in an angle ambiguity, where the
information beams between the UAV-mounted base station
and the user equipment can be misaligned. This gives rise
to a need for techniques to predict the angles between
the UAV and the user equipment so that the UAV and
the user equipment can prepare the transmit and receive
beams in advance. However, there can be some trade-offs
in terms of delay and energy efficiency to establish reliable
transmission.

Resource Utilization: Due to the limited resources (i.e.,
limited bandwidth, limited energy of each node) in the
system, there is a demand to efficiently allocate the limited
resources to improve the total data transmitting rate. This
raises a need for learning techniques that can understand
the environment and allocate resources accordingly. To effi-
ciently utilize the bandwidth, resource allocation techniques
are needed to dynamically select caching contents and allo-
cate transmission channels through learning [102].

3 SURVEY OF SURVEYS

Some earlier studies review more general applications of
UAVs to communications, networking, and data collection,
where the UAVs are controlled in more traditional ways,
such as control theory or conventional optimization. The
challenges in UAV communication have been discussed in
several works such as [103], [104], [105], [106] and [107].
Some of the heavily featured challenges include cyber-
security threats, demand for energy efficiency, stable com-
munication, and monitoring. The survey in [108] provides
a tutorial overview on UAV communications, emphasizing
integrating UAVs into fifth-generation (5G) communications
and future cellular networks. A few general surveys [109]
and [110] discuss experimental results from UAV-aided
applications, multi-UAV projects, testbeds, and simulation
environments. There have been some surveys pertaining to
the area of UAV channel modeling. For instance, the studies
[111] and [112] focus on air-to-ground channel measurement
campaigns and modeling practices, and provide a survey of
channel measurement methodologies and characterization
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efforts. The survey in [113] presents a comprehensive view
of UAV communications pertaining to aeronautical channel
modeling in line with the specific aeronautical character-
istics and scenarios. The authors in this work provide a
design guideline for managing the link budget of UAV
communications with respect to the link losses and channel
fading effects. The authors of [114] emphasize software-
defined networking (SDN)-enabled UAV-assisted systems
in UAV-assisted cellular communications, monitoring, and
routing; and reveal that the usage of ML approaches helps
alleviate many challenges in these networks.

The surveys in [115], [116], and [117] showcase how ML
aims to have the ability to build models that can process
and relate information. Novel ML techniques, such as rep-
resentation learning, deep learning, distributed and paral-
lel learning, transfer learning, active learning, and kernel-
based learning, have enabled big data processing [118].
UAVs present us with a wide variety of applications that
can benefit from the capabilities of ML. Several surveys,
e.g., [119], [120], [121], showcase the prowess of ML in
several application domains such as speech recognition,
IoT, computer vision, bio-surveillance [122], [123], robotic
control, and empirical experiments [124], [125]. A brief
summary of notable ML surveys is provided in Table 2.

TABLE 2: General surveys on ML-aided applications

Paper
and year

Applications
covered

ML techniques
covered

[115]
2018

Multimodal ML
RNN
CNN

[116]
2018

Predictive modeling
perception

SVM

[117]
2018

IoT,
Data analysis

K means
Distributed ML

[118]
2016

Big data
Processing

Transfer learning
Meta learning
DNN

[119]
2017

Speech recognition
computer vision,
perception

SVM
ANN
CNN

[120]
2018

Traffic prediction
QoS management

ANN
CNN
DNN

[121]
2021

Robotics
Supervised learning
Unsupervised learning

[124]
2018

Feature extraction DNN

[125]
2018

Feature extraction ANN

3.1 ML-Aided UAV Communications

Several papers have been devoted to reviewing the status
quo of ML’s applications to UAV communications and con-
trol, particularly emphasizing channel modeling, security,
resource management, path planning, control, and naviga-
tion. Existing surveys, such as [126], [127] and [128], provide
a detailed survey of several ML frameworks that have been
deployed for UAV-assisted communications. They target at
functional aspects, including channel modeling, positioning,
and security. The surveys presented in [129] and [130] ex-
pose some security challenges in interference suppression,

hand-off assistance, cyber-physical risks, and identity and
information authentication.

Technologies that are used to realize UAV-aided commu-
nications, such as AI, ML, DRL, MEC, and software-defined
networks (SDN), have been surveyed in [131], where joint
optimization problems for enhancing UAV system efficiency
have been reviewed. The survey in [132] focuses on UAV-
centric ML solutions to UAV-aided communication, which
elaborates on the various roles that UAVs can play in the
context of collaboration, cooperation, and changing network
dynamics. The domain of UAV-enabled MEC and the need
for UAVs’ cooperation in 5G/6G networks are also covered
in [132].

3.2 ML-Aided UAV Control

Recent ML-aided UAV communication papers predomi-
nantly focus on DRL due to its prowess in supporting
online path planning and navigation. The surveys presented
in [133] and [134] aggregate RL techniques under three
application domains, namely, path planning, navigation,
and control, and provide interesting simulation results on
the average reward of several DRL techniques for hover-
ing, landing random way-point, and target-following tasks.
Another survey [135] overviews the applications of DRL
techniques from a network perspective, such as network
access control, smart caching, MEC, cyber security, physical
connectivity, resource management, and information collec-
tion. There are also survey works, such as [136] and [137],
that pinpoint fundamental design challenges of multi-UAV
systems and UAV-aided cyber-physical systems (CPS). They
explore interesting aspects of UAV applications, such as tar-
get monitoring and tracking, auto-piloting and navigation,
and image processing by employing ML techniques.

3.3 ML-Aided UAV Feature Extraction and Perception

The survey in [138] showcases techniques for mapping
island vegetation from UAV images. In particular, they
evaluate the ML approach using CNN to leverage spatial
information from the UAV images within the architecture of
the learning framework. Thanks to the aerial monitoring ca-
pabilities of UAVs, they are extensively used in surveillance
applications. In line with traffic management, parking lot
management, and facilitating rescue operations in disaster
zones and rugged terrains, the detection of on-ground vehi-
cles is becoming a vital spot for UAV applications. The sur-
vey in [139] presents a survey of deep learning techniques
for performing on-ground vehicle detection from aerial im-
agery captured using UAVs, where the approaches taken
for improving the accuracy and alleviating the computation
overhead and their optimization objective are summarized
and discussed.

Table 3 lists and categorizes the existing surveys on
UAVs based on their applications and performance indi-
cators covered. Table 4 covers the existing surveys of ML
applications to UAV-aided communications and operations,
but does not focus on how ML could aid the applications
covered. The surveys in Table 5 predominantly cover a
specific usage of certain ML techniques for specific UAV ap-
plications. In this survey, we aim to provide a broader view
of the applications of ML in the context of UAV operations
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by offering reasoning, advantages and drawbacks towards
the usage of specific ML techniques for an application.

4 BACKGROUND OF ML FOR UAV APPLICATIONS

ML algorithms can be classified based on using datasets to
extract data and how the models are trained. It is necessary
and efficient to organize the ML algorithms with respect
to learning methods when one needs to consider the sig-
nificance of the training data and choose the classification
rule that provides a greater level of accuracy. Some of the
common ML techniques which have been used for UAV
operations and communications are described below.

4.1 Supervised Learning

Convolutional Neural Network (CNN): CNN is a com-
monly used ML technique for feature extraction that allows
for generating high-dimensional feature images from the
raw sensor data acquired for the IoT system. Due to its sup-
port for feature extraction functionalities, CNN is commonly
used for classifying images, image, and video recognition,
analyzing medical images, computer vision, and language
processing. In a CNN, images are represented in the form of
matrices. Then, they are multiplied by each other to obtain
an output from which the image features are extracted.

The CNN architecture comprises three layers: a
convolution layer, a pooling layer, and a connection
layer [73]. The convolution layer detects various features
from input images. A primary convolution is carried
out between the input image and a filter. The output
of this convolution is the feature map that provides us
with information about the image, such as the edges and
corners [140]. As convolution can incur high computational
costs, pooling is done to decrease the size of the convoluted
feature map. In order to achieve this, the connections
between the layers and independently operating on each
feature map are reduced. The input images from the
convolution and pooling layers are flattened and fed to the
connected layer. This flattened vector then goes through
one or more connected layers to have a classification in the
images.

Recurrent Neural Network (RNN): The main advantage
of RNN is that it can model a data sequence, generally in
time series, by assuming that one sample is dependent on
the previous one. The recurrent structure of these networks
results in a long time for training. In general, the training
time for RNNs is much longer than those of feed-forward
networks. Also, implementing RNNs can be challenging
since they require calibrating the previous outputs and the
current inputs into a state change function per node.

Multilayer Perceptron (MLP): A perceptron is an
algorithm under supervised learning. It is very useful for
classifying linearly separable datasets. It is usually used in
binary classifiers in which it is decided whether an input
belongs to a specific class. A perceptron can be considered
a single-layer neural network with input values, weights
and biases, net sum, and an activation function. An MLP
can classify datasets that are not linearly separable. As

shown in Fig. 4, a traditional MLP comprises an input
layer, an output layer, and multiple hidden layers between
them. The inputs move forward through the MLP by taking
the multiplication of the input with the weights existing
between the hidden and the input layers. An MLP uses an
activation function at every layer. The output defined at
every step is pushed forward using the activation function.
The MLP uses backpropagation for training along with its
multiple layers.

Input

Layer

UAV

extracted 

data

Hidden 

layer

Uses an activation function

Example: sigmoid, gamma

Output 

layer

Predictive 

trajectory 

planning

Raw image 

input from 

UAV

Fig. 4: An illustration of the layers of an MLP with an
activation function in the hidden layers that can vary based
on the user’s inputs.

Linear regression: The idea of linear regression
revolves around finding the linear relationship between the
dependent and independent variables. The key objective
of linear regression models is to find the best fit linear
line and the optimal values of intercept and coefficients,
such that the error is minimized [141]. The regression
error can be defined as the difference between the actual
and predicted values, and the goal is to reduce this
difference. The training is accomplished to obtain the best
fit, where the error between predicted and actual values is
minimized [142].

Meta-learning: Meta-learning learns from the outcomes
of other learning techniques, also known as metadata.
This metadata includes the characteristics of the learning
problem, characteristics of the underlying algorithm
properties, and even the patterns derived from the learning
experiments. This method is model-agnostic and applies to
learning problems related to classification and regression.
The goal of the trained model under meta-learning is to
learn a new task fast, even if the new data available for
training is minimal [143]. Meta-learning has been used for
trajectory planning by learning the dynamic networking
environments [143], [144].

4.2 Unsupervised Learning

Generative Adversarial Network (GAN): In a GAN, two
neural networks compete with each other in the form of a
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TABLE 3: Existing surveys on the application of UAVs

Paper Short description Performance metrics Application covered
[103]
2015

Survey on the issues
that hinder the stability of UAV network

Reliability, mobility,
energy consumption

Communication

[109]
2016

Survey on applications
of UAVs for civil applications

Connectivity, adaptability,
safety, security, scalability

Communication,
aerial imaging

[104]
2017

A review on cybersecurity vulnerabilities
for unmanned aerial vehicles

Security
Control-based
applications

[112]
2018

A survey of channel modeling for
UAV communications

Packet loss, reliability
Communication
Data collection

[105]
2018

A survey of wireless charging
techniques for UAVs

Energy efficiency
Imaging
Communication

[111]
2019

A survey of air-to-ground propagation
channel modeling for unmanned aerial vehicles

Packet loss, throughput
Communication,
data collection

[107]
2019

Comparison of multiple theoretical
and applied contributions in UAV-WSN

Reliability, energy efficiency
Imaging,
communication

[106]
2019

Survey on UAV cellular communications,
regulations and security challenges

Security Communications

[110]
2020

Survey of UAVs communication networks Security, mobility, reliability
Data collection,
monitoring, tracking

[35]
2020

Survey on SDN oriented
UAV-assisted systems.

throughput, computational delay
communications
monitoring

zero-sum game, where the gain of an agent is the loss of
the other [145]. As shown in Figure 15, the basic structure
of a GAN comprises a real dataset, and random fake data
is provided to the discriminator to be analyzed and to
meet the condition [146]. GAN is typically used to discover
and learn regularities or patterns in input data, where
a generative network and a discriminative network are
trained simultaneously in an adversarial manner [67].

Spiking Neural Network (SNN): Unlike the MLP
models that periodically propagate information, spiking
neural networks (SNNs) use the concept of spikes, which
are discrete events along a timeline (Fig. 5). The spikes
can be determined by differential equations that represent
various biological processes, the most critical part of which
is the membrane potential of a neuron [147]. A spike occurs
when the neuron reaches its potential. The SNNs have the
capability of processing spatio-temporal data. The neurons
are locally connected and process a large quantity of input
data. Spikes allow temporal data to be processed without
the extra complexity, as opposed to RNNs [148].

Autoencoder: Autoencoders are composed of an encoder
network and a decoder network that aims to minimize the
training error between input data and the reconstruction of
the input data. To achieve the equality of target values and
the input data, the encoder network aims to transform the
input signal into a low-dimensional code, while the decoder
network is used to reconstruct the data from the code.

4.3 Semi-Supervised Learning

Semi-supervised learning combines small quantities of
labeled data and large quantities of unlabeled data during
training. When unlabelled data are utilized with a small
amount of labeled data, the overall learning accuracy can be
significantly improved. Semi-supervised learning combines
the features of clustering and classification algorithms.
Clustering is an unsupervised ML technique that groups
data based on their similarities. This clustered data is
labeled and used to train a supervised ML model for

Input

Layer

Hidden 

layer
Output 

layer

UAV data as 

input spikes

Output data 

as spikes

Fig. 5: An illustration of SNN providing the UAV output in
the form of data spikes which are discrete events along the
timeline.

classification.

K-means clustering: K-means clustering takes a number
K as the input, groups samples one after another into the
nearest cluster, and repeatedly determines the centroids
of the clusters. Originally designed to be unsupervised
learning, K-means clustering has been increasingly used
as a semi-supervised learning technique to improve its
clustering accuracy with the assistance of some training
data. In the event of convergence, the input data is grouped
towards a centroid and does not change position with
further training. K-means has been used to process images.
For example, it labels pixels based on color information for
rice yield estimation in [149]. The area of the rice grains
is then calculated from the clustered images. K-means
clustering is easy to implement because it classifies a given
dataset according to the distance information. However,
since only the distance information is used for clustering,
it has a high probability of producing unbalanced clusters.
Specifically, the number of elements in a cluster depends
on the distribution of the elements. Some clusters could
be large while others are small when the elements are
non-uniformly distributed.
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TABLE 4: Existing surveys on the applications of ML to UAV-assisted communications

Paper
and year

Short Description Performance metrics Application covered ML Techniques

[136]
2017

Review of UAV networks
from the CPS perspective

Resource allocation, packet loss
reliability, energy efficiency

Communication, control,
computation

Reinforcement learning

[134]
2018

Survey of computational
intelligence algorithms in
UAV path planning

Trajectory planning
and optimizing trajectory

UAV control
Supervised learning,
unsupervised learning

[135]
2019

Overview of DRL
from a network and
communication aspect

Resource allocation, packet loss
reliability, energy efficiency

Path planning, control,
feature extraction

Deep reinforcement
learning

[129]
2019

A survey on the security
challenges in
UAV-assisted WSN

Interference management
security

Communication
CNN, RNN
DRL

[130]
2019

Outline on the usage of
ML in UAV -assisted
robotic applications

Connectivity, delay
security

Control applications Deep learning techniques

[137]
2019

Survey on the design
challenges of multi-UAV
for IoT applications

Resource allocation, packet loss
reliability, energy efficiency

Path planning, control,
feature extraction

Unsupervised learning,
reinforcement learning

[127]
2019

Applications of AI
deep reinforcement in
UAV-based networks

Resource allocation, packet loss
reliability, energy efficiency

Path planning, control
feature extraction

unsupervised learning,
reinforcement learning

[133]
2021

Survey on drone
DRL techniques

Resource allocation, packet loss,
reliability, energy efficiency

Communication, control,
caching

Deep reinforcement
learning techniques

[128]
2021

Usage of DRL
in UAV assisted networks

Resource allocation, packet loss,
reliability, energy efficiency

Communication, control,
imaging

reinforcement,
federated learning

Gaussian mixture modeling: Gaussian mixture model-
ing (GMM) is also a widely used method for clustering [150].
GMM is a probabilistic method, which distinguishes it from
the deterministic counterpart K-means. As opposed to the
rigid association policy in K-means, GMM computes clus-
ters using Gaussian distributions. In this sense, each sample
point is associated to a cluster with a probability. Just like
K-means clustering, GMM was originally designed to be
unsupervised learning but has been increasingly used as
semi-supervised learning in the presence of small amounts
of training data.

4.4 Reinforcement Learning (RL)

Under this learning setting, an intelligent entity, referred to
as an “agent,” learns an optimal or near-optimal policy that
maximizes the ”reward function”. The reinforcement signal
provided by the other users in the systems also accumulates
from the immediate rewards. Over the timeline, the
agent receives the current state and reward. Based on the
respective reward and state, immediate action is chosen
from the set of actions. Following this, the environment
changes to a new state, and the reward associated with the
transition is obtained. In different system states, actions are
taken to maximize the cumulative reward.

Single-agent and Multi-agent Deep Reinforcement
learning (DRL): DRL incorporates deep learning into RL,
where the agent implements a deep neural network (DNN)

to approximate the Q-value for evaluating its action-value
function, instead of looking up a Q-table (as done in RL).
Employing a single agent, DRL is also known as single-
agent DRL. It has the potential to assist the agent in mak-
ing sequential decisions or actions based on unstructured
input data sampled from a much larger state space, as
compared to RL. Single-agent DRL includes a Deep Q Net-
work (DQN) that can solve learning problems containing a
large discrete state or action space [151]. It also includes
a Deep Deterministic Policy Gradient (DDPG) algorithm
that enables DRL to operate under continuous state and
action spaces by taking an actor-critic architecture [152].
Other single-agent DRL algorithms include Proximal Pol-
icy Optimization (PPO) [153], [154], and variants of DQN
and DDPG, such as double DQN [155] and Twin Delayed
DDPG [156]. Recent advancements in cooperative multi-
agent reinforcement learning have demonstrated promising
results in terms of final returns and sample efficiency. No-
tably, a recent study [157] showcases the effectiveness of
PPO-based multi-agent algorithms on diverse multi-agent
testbeds. These findings position PPO-based methods as one
of the fundamental benchmarks in the field of cooperative
multi-agent reinforcement learning.

Multi-agent DRL is an extension of single-agent DRL
in support of multiple agents, where multiple agents train
a DRL model collaboratively for fast action exploration.
MADRL may face challenges in convergence due to the
increasing number of agents and their mutual interac-
tions. Some examples of multi-agent DRL are multi-agent
DQN [158] and multi-agent DDPG [159].
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4.5 Other ML Techniques

Apart from the conventional categorization of ML
techniques, there are other ML algorithms and techniques
such as spatially decentralized learning structure (e.g.,
federated learning [160], distributed learning [161]),
temporally transferable learning mode (e.g., transfer
learning [162], and meta learning [143]).

Distributed learning: In general, in a distributed ML
technique, centralized data can be distributed among
the worker devices (or nodes) for learning [161]. With
distributed ML, a data-parallel approach can be used where
different nodes use different sets of data. In contrast, in a
model-parallel approach, the same set of data is used by
different nodes to learn a global model. Distributed ML
techniques aid in making informed decisions and analysis
from large amounts of data [163].

Federated learning: Federated learning [160] is a
decentralized dimension of ML where the algorithm
is trained across servers holding local data samples or
multiple decentralized edge devices. The training can
eventually benefit from the dataset across multiple servers
rather than a centralized local server. Federated learning
models follow a three-step process; initially, a subset of
the learned updates are aggregated, then this updated
data is used to form a consensus change, and finally, it is
updated into the shared model. This process is done in a
loop to improve the learning for every processing time.
Meta-learning can be devised by personalizing federated
learning methods to edge users. Federated learning has
been enabling IoT applications such as autonomous vehicles
[164], [165], Industry 4.0 [166], and digital health [167].

Transfer learning: Transfer learning is a novel ML
technique that uses the results obtained from one model
and re-utilizes the solution for a different but related
problem. Transfer learning can utilize both labeled and
unlabeled data to train a model. Transfer learning can
choose the developing model approach when a large
amount of data is available to train the model for the initial
result grab. On the other hand, it can also use the pre-
trained model, where already trained datasets can be reused
to reach a solution for the problem. This method has been
predominantly utilized for classification approaches due
to its capability of utilizing already classified information,
thus reducing the strain on processing, which is common in
classic methods like CNN. In the context of ML-aided UAV
applications, transfer learning methods have been used
to learn the perception-action policies from a simulated
environment and then use that knowledge to control an
autonomous drone [162].

Transformer models: In recent years, there have
been significant advancements in Generative Pre-trained
Transformer (GPT) models [168], which excel at capturing
contextual relationships in input data and generating text
outputs. Models like ChatGPT [169] have gained popularity
due to their ability to analyze inputs and generate text,
enabling tasks such as translation, answering questions,

and even creating debrief reports or summarizing data
for after-action purposes. These models can also generate
realistic training data, enhancing their practicality [170].

Explainable AI (XAI): As the demands of applications
grow, ML models are becoming increasingly complex.
Consequently, there is a growing need for the explainability
and interoperability of these AI models. XAI methods
[171] offer insights into the decision-making and
correlation processes of ML models, making them more
transparent. Some well-known techniques for achieving
interpretability of complex ML algorithms include attention
mechanisms [172], saliency maps [173], and rule extraction
algorithms [174]. These techniques contribute to enhancing
the interpretability of complex ML algorithms.

Fewshot learning: In supervised learning, training with
limited data poses a significant challenge. This scenario is
frequently encountered in real-world applications where
environmental states constantly change. Learning models,
such as prototypical networks [175] and matching networks
[176], generate embeddings to quantify the similarity be-
tween classes, facilitating the classification of new instances.
These models exhibit the capability to adapt to new classes
without extensive retraining on large datasets.

4.6 Applications of ML to UAV Systems

ML methods also have some advantages over the conven-
tional optimization methods used in the trajectory planning
and control of the UAV. Specifically, ML algorithms can han-
dle complex and nonlinear relationships between input and
output variables, which is difficult to handle with conven-
tional optimization methods, e.g., linear programming and
convex optimization. This ability allows ML algorithms to
adapt the UAV trajectories based on the respective environ-
mental conditions. ML-aided UAV systems can be trained
on large datasets of real-world UAV flight data, enabling
them to learn from experience and improve their accuracy
over time. Moreover, using ML allows for online execu-
tion in highly dynamic environments and applications. By
contrast, conventional optimization methods rely on math-
ematical models that may not capture the full complexity of
the system. Conventional optimization methods may also
be computationally intractable for large-scale problems and
extremely sensitive to small changes in input parameters.

Traditionally, ML has been used in several application
domains, such as speech recognition, autonomous vehicles,
image classification, and wireless communications. ML
enables IoT communications, where many devices
can autonomously decide to activate and transmit
simultaneously by learning the activities on the air
interface. Over the past decade, several ML algorithms
have been widely used to meet the challenges and demands
that an IoT system can impose. Data-driven ML algorithms
can make appropriate sequential decisions, adapting to
changing environments. In a UAV-aided communications
scenario, ML can easily monitor and learn the changes in
radio fading channels, traffic patterns, user context, and
device positions and take appropriate decisions to provide
QoS for communications.
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Fig. 6: Different ML techniques surveyed in this paper and their suitable application domains.

Trajectory Planning and Mission Scheduling: This is a
common practice in UAV-assisted applications to decrease
communication latency by following the data buffer occu-
pancy at the UAV to pre-select way-points and alleviate data
traffic congestion [75]. Trajectory planning becomes vital for
extending the cruise time by deploying strategic charging
points to satisfy the UAV’s energy supply needs. It is found
that trajectories and the communication schedules of the
UAV have a direct impact on the network throughput of
the users on the ground. There are algorithms [143] to relax
the restriction of the UAV’s trajectory in regards to energy
efficiency, including the starting point, destination, maxi-
mum and minimum speeds, and the maximum acceleration
and deceleration of a UAV. The broadly adopted goal of
trajectory planning is to allow UAVs to dynamically change
their heading and speed and adjust their displacement or
distance to deliver data traffic to devices on the ground
effectively.

Taking the above-mentioned UAV trajectory planning as
an example, conventional optimization methods, such as
waypoint optimization in [75], can indeed be used in a static
scenario where the destination, waypoints, and obstacles
are known a-priori. However, the conventional optimization
methods are, in general, unsuitable for online implementa-
tion. For example, in [177], the authors formulate the UAV
trajectory planning problem following an optimal control
framework, to minimize the flight time subject to waypoint
constraints, the UAV dynamics and the physical limitations
of the motors. Considering that the UAV dynamics model
is highly nonlinear with state variables tightly coupled,
and the waypoint passing time is unknown, the formulated
problem is non-convex and difficult to solve in real-time.
For this reason, the authors solve the problem offline. In

contrast, ML methods can train a trajectory planner or
controller with a large number of samples offline. Once a
satisfactory model is obtained, it can be used online. ML
methods can also learn and continuously improve online
based on their experience, e.g., using DRL. This is one of the
main motivations for using ML in UAV-aided scenarios.

Backhaul refers to the communication links between the
base stations and the core network. Fronthaul, on the other
hand, connects the base stations to the remote radio units.
Caching is used in radio access networks to reduce com-
munication latency. As aerial base stations, UAVs enhance
the performance of cache-enabled networks by exploiting
the backhaul and fronthaul links efficiently using ML-based
prediction techniques. For instance, the work in [58] uses
user-centric information, such as the statistical distribution
of requests for contents and the historical patterns of users’
mobility, for UAV deployment and smart caching. Individ-
ual user behaviors are classified into distinctive patterns
by developing a conceptor-based echo-state network (ESN)
method, a class of RNN, on a cloud platform. Effective smart
caching policies are created for the UAVs by improving the
overall prediction accuracy through ML-based techniques.

The availability of computational resources is always a
hindrance to UAV communication as it lacks adequate pro-
cessing power. Researchers have used point cloud process-
ing and trajectory planning to navigate through unknown
environments. Due to the nature of the unfamiliar environ-
ment, computations can be expensive and will deplete UAV
batteries. The authors of [178] propose an autonomous navi-
gation system that uses the cloud. In their proposed system,
the UAV transmits the point cloud using a cellular network
to a cloud that plans the trajectories. The UAV velocity and
trajectory are optimized online through learning techniques
to handle communication more precisely.

Aerodynamic Control and Operation of UAV: With
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the lack of a consistent energy supply, UAVs have a time
constraint for their operation. ML frameworks [60], [61]
have been used in optimizing the UAV’s flight path, as
well as the schedule of signaling to update the UAV with
the states of the ground nodes. Using efficient control, the
weighted sum AoI can be effectively minimized. Methods
like these enable a decent trade-off between QoS metrics
such as energy efficiency and reliability in UAV-assisted
caching and edge computing domains. When several UAVs
with different trajectories fly over the geographical area and
have a stable connection with the sensors on the ground,
there is a need for the fairness of the computing load at the
UAVs and to reduce the overall energy consumption. ML
techniques [179], [180] that model the UAVs’ trajectories
help optimize the offloading decisions and, therefore, meet
the QoS requirements such as energy efficiency.

UAV Perception and Feature Extraction: Feature
extraction is one of the fundamental topics of computer
vision. With the advent of UAV-based IoT applications,
imagery feature extraction has become one of its core
concepts. UAVs can be equipped with many visual sensors,
such as cameras, hyperspectral cameras, Lidar, and radar to
measure the environment [181]. The captured data provides
machine perception and environmental information, which
can help the UAVs to model the environment for their
design and optimization of the mission execution, routing,
and collision avoidance [45].

UAV Feature Interpretation and Regeneration: Inter-
pretation is the action of understanding the extracted fea-
tures and predicting possible outcomes. Feature interpre-
tation has been widely used for processing sensory data
and taking specific actions such as adjustment of a flight
route. Interpretation of features can help in environmental
modeling and even optimizing trajectory planning. One of
the examples that a UAV interprets and regenerates its sur-
rounding environment is the recent simultaneous localiza-
tion and mapping (SLAM) techniques, where discrete cloud
points indicating reflections of obstacles and objects can be
regenerated to be continuous and differentiable surfaces,
e.g., by using Gaussian mixture model (GMM), to facilitate
trajectory planning.

In Table 5, we provide a brief summary of popular ML
tools and their applications to the four important mod-
ules of UAV operations and communications, i.e., trajectory
and mission planning (see Section 5), aerodynamic control
and operation (see Section 6), UAV perception and feature
extraction (see Section 7), and feature interpretation and
regeneration (see Section 8). More details are provided in
the following sections.

5 ML FOR UAV TRAJECTORY PLANNING AND

MISSION SCHEDULING

In recent years, ML techniques have been used to perfect the
control of flight patterns to improve service quality. Trajec-
tories are planned so that data is collected from the nodes
maintaining the freshness of data. Supervised learning is
utilized to minimize training errors for efficient trajectory
planning. The prediction and classification capabilities of

RL strategies, such as Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG), can be exploited
in different environments (e.g., environments with discrete
and continuous action spaces). RL has been widely applied
for trajectory planning and task scheduling of UAVs.

5.1 Supervised Learning-Based UAV Communications

The prediction of a UAV’s trajectory is studied when UAVs
are used to provide communication services in a smart
city, e.g., in [200]. The accurate position information of the
UAV is crucial in this application because it has a strong
impact on the beamforming performed by the associated
base station. The authors of [200] present an RNN-based
arrival angle predictor for position prediction with a series
of data processing procedures. Simulation results justify that
the developed approach is able to learn and train the angle
data and apply it to high-speed moving UAVs. .

In [206], a UAV serves as a mobile aerial anchor node,
which measures the received signal strengths from the
ground sensors and locates the ground sensors. Compared
to deploying terrestrial anchors, better localization accuracy
is expected since LOS prevails between the ground sensors
and UAVs. As shown in Fig. 7, an MLP model is created
to estimate the locations of the sensors, which takes the
RSSs as the input. The training of the MLP model is done
by using backpropagation. The training data includes the
positions of nodes randomly deployed in the given sensor
field. By effectively capturing the non-linearity of the log-
normal shadow fading, the nonlinear activation functions
of the MLP model can improve the localization accuracy by
up to 35% over non-learning techniques. This technique is
later extended by using radial basis functions in [228].

5.2 Unsupervised Learning for Trajectory Planning or

Communications

Unsupervised learning techniques, such as autoencoder,
GAN, and GMM, have been applied to assist UAVs with
trajectory planning or communication deployment. When
analyzing a series of aerial images at various time points,
there can be several issues, such as variations in camera
pose, shadow, and illumination. Most of these issues are
attributed to either noise or inadequate acquisition proce-
dures. The authors of [182] use an autoencoder to cluster
the features of the UAV images in accordance with the
reciprocal similarity. The features with more changes can be
distinctively classified through the training of the network
encoder. The authors also confirm that an autoencoder can
reduce the required training images.

Autoencoders can also be used in trajectory planning
by generating the waypoints and suppressing such un-
intended flight records [183]. To do so, a three-step pro-
cess is developed. First, the historical UAV’s trajectories
are utilized to generate a number of potential waypoints.
Second, the images are generated based on the historical
UAV’s trajectories. Finally, those generated waypoints are
determined as positions according to the repeating pixels
of the images. By training the historical UAV’s trajectories,
the autoencoder accumulates and reconstructs the images.
Moreover, the generated waypoints with the autoencoder
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TABLE 5: ML-assisted UAV operations and applications, where every “✓” represents five research publications in a domain
to show the popularity of different ML tools in specific applications. Featuring research works are provided in the table.

ML Techniques & Remarks
Trajectory &
Mission Planning

Aerodynamic Control
& Operation

Perception &
Feature Extraction

Feature Interpretation
& Regeneration

Autoencoders
Autoencoders can reconstruct
images and videos by training
making them apt for
prediction and control applications

✓✓

e.g., [182], [183], [184]
[185]

Deep Q-Network (DQN)
The action space of DQN
has to be discrete
hence it is primarily used in
offline control applications

✓✓✓

e.g., [186], [187],
[188], [189], [190]

Deep Deterministic Policy Gradient (DDPG)
The action space of DDPG is continuous
hence it is majorly used in
online control applications

✓✓✓

e.g., [83], [191],
[152], [192], [193],
[194]

Convolution Neural Network (CNN)
With its strong support of
feature extraction functionalities
CNN is extensively used in
image classification based applications

✓

e.g., [68], [195]

✓✓✓

e.g., [196], [197]
[196], [198], [199]

Recurrent Neural Network (RNN)
The sequential problem
solving structure of RNN makes it
more suitable for
control-oriented applications

✓

e.g., [200], [201]

✓✓

e.g., [129], [202],
[203]

✓

e.g., [204]

Multi-Layer Perceptron (MLP)
The adaptability of MLP networks
to be trained online and
offline makes them suitable for
control-oriented applications

✓

e.g., [205], [206]

✓

e.g., [207], [208]
[209], [210]

Spiking Neural Network (SNN)
The SNN can process
spatio-temporal data
making them apt for control
and classification applications

✓✓

e.g., [211], [212]
[213], [214]

Generative Adversarial Network (GAN)
GAN discovers and learns regularities
or patterns in input data making
them apt for image and communication
-based applications

✓✓

e.g., [215], [216]
[217]

K-means
K-means clustering can cluster data
efficiently making them apt
for classification and
decision based applications

✓✓

e.g., [218], [219]
[220]

Linear Regression (LR)
LR models obtains optimal values
of intercept and coefficients
making them suitable for
classification applications

✓✓

e.g., [221], [222]
[223]

Gaussian Mixture Model (GMM)
GMM models 2D complex, static obstacles,
making them apt trajectory planning
and control applications

✓

e.g., [224], [76]

✓✓✓

e.g., [224], [225]
[226], [227]
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Fig. 7: The MLP for UAV-based localization of a WSN node using the Gaussian activation function [206] and the RBF model
using the Sigmoid activation function [228].
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Fig. 8: Autoencoder used in trajectory planning by recon-
structing the recorded images from flight control [183].

are reduced by 84.21% compared to those with the K-means,
thereby improving the energy efficiency of the UAVs.

Autoencoders have also been used in movement pre-
diction in dynamic environments [185]. The autoencoder
network is composed of a state and action-oriented decoder
network, which is used to reconstruct the conditioned video
according to the agent’s actions. These predicted future
frames could be used in trajectory planning in unknown
terrain. The attitude of the flying UAV is commonly calcu-
lated by a data fusion algorithm combined with the data
readings from the gyroscope, accelerometer and magne-
tometer, and adaptive Kalman filter. Attitude control is a
control-based problem that ensures the smooth flight of a
UAV. The authors of [184] use deep autoencoders to fuse
the features from the aforementioned sensors and define
an optimal attitude estimation. In contrast to the classic

autoencoders with a single hidden layer, deep autoencoders
will have multiple hidden layers depending on the neural
network configuration. A deep autoencoder comprises of
two symmetrical deep-belief networks that initially have
four to five layers representing the encoding half of the
net, and immediate hidden layers having the decoding half.
These layers are based on restricted Boltzmann machines.
Every hidden layer represents some form of fundamental
features that are used in constructing the next layer of
features.

5.3 Semi-Supervised Learning for UAV Trajectory Opti-

mization

A generative adversarial LSTM (GA-LSTM) network is de-
veloped to optimize the resource allocation in UAV-assisted
machine-to-machine wireless communications in [229]. The
network joins the complementary strengths of GAN and
LSTM for distributed optimization of the transmit power
and mode, frequency channel, and the selection and tra-
jectory of UAVs in a multi-agent environment with partial
observability. LSTM is particularly selected to track and
forecast the movement of the UAVs and facilitate reward
evaluation under a partially observable situation. It is nu-
merically demonstrated that GA-LSTM outperforms a direct
use of LSTM or DQN in the sum rate.

The authors of [85] consider a cellular network, where
there are multiple UAV-based aerial BSs, ground BSs, and
many ground terminals served by the UAVs and BSs. Using
a weighted expectation-maximization algorithm, a GMM
models the spatial distribution of radio traffic to assist with
the deployment of BSs, including UAV-BSs. Traffic conges-
tion is predicted accordingly, and the optimal placement of
the UAVs is derived to minimize the energy consumption
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of the UAVs on communication and relocation in case of
traffic distribution changes. Simulations show that the use
of GMM helps save the energy of the UAVs by 20% and 80%
on communication and relocation, respectively, compared to
a few heuristic-based alternatives.
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Fig. 9: K-means clustering-enabled multi-UAV surveillance
systems, where the UAVs are driven towards the updated
centroids [230].

K-means clustering has been used in planning paths
for multi-UAV systems. It helps in identifying which fea-
tures were most important in determining the clustering.
By identifying the most important features, we can gain
insights into which aspects of the data are most important
for distinguishing between different groups or categories,
which can then be used in defining the trajectory of a UAV.

A well-studied problem is using a fleet of UAVs to
conduct multiple tasks in a particular area [219], [231].
With the given locations of the tasks, K-means is used
to cluster the tasks into several subsets first. Within each
subset, existing optimization methods, including but not
limited to the simulated annealing (SA) algorithm [231]
and the genetic algorithm (GA) [219], can then be applied
to plan each UAV’s flight route. K-means clustering has
also been used to navigate UAVs’ movement for coverage
control. The authors of [232] consider using a multi-UAV
system to provide cellular services to users in an area of
interest. To achieve a good enough quality of service, the
problem of optimally deploying UAVs is investigated. The
developed method interactively groups the users given their
locations and UAVs and then drives the UAVs towards the
corresponding centroids. The algorithm is proved to achieve
local optimum. A similar idea has also been used for aerial
surveillance by multi-UAV systems [220], [230].

5.4 Reinforcement Learning for Joint Trajectory Plan-

ning and Mission Scheduling

DRL provides a novel solution for UAV trajectory planning
in a dynamic environment. Given partially observable net-
work states in UAV-assisted communications and network-

ing, reinforcement learning, e.g., Q-learning, can optimize
UAVs’ actions.

5.4.1 Deep Q-Network With Trajectory Discretization

Due to curse-of-dimensionality, Q-learning is unable to be
applied in learning problems that contain a large state or
action space [151]. To circumvent the dimensionality issue
of the learning problems, DQN is investigated to leverage
neural networks to train the actions with an extended state
and action spaces.

Fig. 10: Schematic illustration of the DQN model for trajec-
tory and mission planning. The DQN model is designed to
be trained onboard at the UAV to deliver the optimal policy
of trajectory planning and radio resource allocation.

Age of Information: DQN can be used to improve the
energy efficiency of the trajectory planning while ensuring
the data freshness, i.e., age-of-information (AoI), of ground
nodes [186]. In [233], a neural combinatorial-based DRL
algorithm using DQN is studied to obtain the optimal policy
of trajectory planning and transmission scheduling to mini-
mize AoI at the UAV. Since a large-scale network can result
in an extremely high state space dimension, DQN requires
a large replay memory. The authors of [233] developed
autoencoders with LSTM to capture spatio-temporal inter-
dependencies between updated locations of the UAV and
time instants. To enable efficient training in the large-scale
network, the LSTM-based autoencoders extract features of
the state space, which converts the states to a fixed-size
vector.

DQN [186], [187], [188] can also be used to optimize
the trajectory of the UAV and the bandwidth allocation
of ground nodes, to maximize network throughput or
minimize energy consumption. Wang et al. [187] studied
latency-prioritized trajectory planning in a time-sensitive
UAV-enabled IoT network. DQN was adopted to optimize
the cruise control of the UAV to improve the QoS. In [234],
DQN-based trajectory planning considers the location of
the UAV, the activation-sleep state of ground nodes, and
the amount of transmitted data as network states. The
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DQN determines the heading direction of the UAV and the
bandwidth allocation to maximize the data collection rate.

Packet loss: Li et al. [235] investigated onboard DQNs
at the UAV to minimize buffer overflow and transmission
failure of ground nodes. The DQN optimally controls the
velocity of the UAV and communication schedule while
learning the battery energy level, queue backlogs, and chan-
nel conditions of the ground nodes. In [189] and [188], the
trajectory planning and communication schedule are jointly
optimized to reduce data loss. The DQN is extended to
optimize the discrete waypoints along the trajectory and
select nodes for transmission.

Coverage: In [236], the DQN is applied to control the
UAVs’ flight to ensure wireless connectivity and adequate
coverage of a ground network. The DQN learns the network
topology changes, and the UAV’s trajectory is determined to
guarantee the network throughput and link condition. DQN
can also be trained at the UAVs to design their trajectories
to cover the ground nodes fully [237]. The DQN learns
the UAVs’ coverage fairness and locations to minimize
the UAVs’ energy consumption while maintaining network
connectivity.

Energy efficiency: Since the ground nodes have limited
battery energy, the flight trajectory is planned to maximize
the uplink throughput during the flying time [190]. A DQN
is studied with safe cruising policies to collect ground data
while avoiding obstacles. A duelling DQN model is adopted
to optimize the flight trajectory [238], where the data packet
is prioritized based on transmission latency constraints. The
DQN is studied to learn the channel state and the priority of
the data packet for minimizing the energy consumption of
the ground nodes. UAVs can also be used for secure video
streaming of ground nodes. A DQN [239] is developed with
safety policies to maximize the UAVs’ energy utilization
while ensuring video quality.

UAV-assisted MEC: Energy efficiency and security
in UAV-enabled MEC networks have attracted attention.
Ground nodes can offload their computational tasks to
edge devices to reduce the computation burden. The task
offloading optimization is studied in [240] under attacks
from the UAV eavesdropper. The network cost is formulated
as a combined function of latency, energy, and price. A
DQN-based resource allocation algorithm is studied to learn
task offloading decisions to reduce costs while ensuring
communication security.

Double DQN is a variant of DQN, which can suppress
the approximation errors in Q-learning and avoid over-
estimated rewards and the biased estimation of network
state dynamics. As a result, double DQN can stabilize the
learning process with fast convergence. In [241], cache-
enabled UAVs are employed with MEC to assist in content
placement of the ground nodes. Given the limited battery
power of the UAV, a double DQN model is developed
for the UAV to maximize the network throughput. Since
DQN may overestimate the action-value function, double
DQN is utilized in [242] to maximize the long-term network
throughput of MEC considering the energy consumption
of the UAV. UAVs can also be used to provide vehicular
content caching in MEC-enabled autonomous driving [243].
In this model, the UAV learns various vehicular content
and available caching space to enhance the content response

performance.
Others: In [244], UAV-assisted wireless power trans-

fer (WPT) is studied with the DQN to design the flight
trajectories and improve the energy harvesting efficiency.
The WPT in [244] can estimate the UAV’s location, where
Naive Bayes algorithms are used to train the flight data.
The WPT efficiency can be enhanced by predicting the
movement of the UAV. Li et al. [79], [80] develop a DQN and
a double DQN to optimally choose the ground node for data
collection and WPT, as well as the optimal modulation of the
selected ground nodes. In [245], the DQN-based trajectory
planning is further studied for UAVs, where the DQN deter-
mines the optimal position of the UAV to minimize buffer
overflow of the ground nodes with sufficient harvested
energy. In [246], a UAV-based network is developed based
on Long-Term Evolution (LTE) sidelink physical channels.
Q-learning is applied to schedule the UAV’s transmissions
and modulation allocation of the UAV.

Despite the fact that DQN can address many high-
dimensional learning problems in UAV-assisted communications
and networking, the action space of a DQN has to be discrete. In
contrast, the action space is continuous for some online control
problems of interest, especially the cruise control of the UAV.

5.4.2 Online Trajectory Planning With Deep Deterministic

Policy Gradient

DDPG integrates the value iteration and the policy itera-
tion, which enables DRL with continuous state and action
spaces [191]. The primary difference between DDPG and
DQN is that the DQN predicts the Q values for each state-
action pair. DDPG utilizes a critic network to determine the
Q value, and at the same time, it utilizes an actor-network
to obtain the action [247].

Cruise control: DDPG can be investigated to learn cruise
control, e.g., headings and velocities of the UAV, to minimize
network cost in continuous state and action spaces [83],
[152]. DDPG can conduct experience replay at the UAV
to save the learning experience, stabilizing its training.
In [248], DDPG addresses the UAV autonomous landing
on a moving platform, where the UAV learns the relative
position to the ground platform and velocity difference.
Moreover, a DDPG model is presented in [249] to control
the heading and velocity of the UAV under air combat
situations. DDPG can continuously learn the air combat
cruising policy by considering attacking zones and com-
bat assessments while improving the manoeuvre decision.
The authors of [77] present a DDPG model, which trains
the navigation of the UAV to bypass obstacles in urban
areas. Their DDPG-based trajectory planning maximizes the
navigation reward to balance obstacle avoidance, the flight
time to the destination, and the battery level of the UAV.
DDPG can also be used to design the UAV’s 3D movement
to reduce energy consumption and enhance the throughput
fairness of the ground nodes since a battery-powered UAV
has limited flight time [250]. Additionally, DDPG has been
used to plan fixed-wing UAVs’ trajectories in the presence of
jamming attacks [251] or provide radio surveillance capabil-
ities with the assistance of reconfigurable intelligent surfaces
(RIS) [252], [253].

Age of Information: In [192], the trajectories of UAVs
are designed to collect vehicular data while ensuring a min-
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imized AoI to keep the information fresh. DDPG is used to
learn time-varying traffic and road conditions, e.g., the num-
ber of ground vehicles, the instantaneous position of ground
vehicles, and the AoI of ground vehicles. Based on the learn-
ing outcome of the DDPG, the AoI can be minimized by
conducting the designed trajectories and scheduling policy.
Sun et al. [254] studied a twin delayed DDPG (TD3) model
to minimize the AoI and energy consumption of the UAV-
assisted IoT network. Their TD3 model learns the AoI of all
the ground IoT nodes and locations of neighbouring UAVs
while controlling the speed and trajectory of the UAV, as
well as the bandwidth allocation.

A multi-agent DRL based on DDPG is studied to min-
imize AoI by learning flight trajectories [61], [255], where
each UAV decides in real-time to transmit data packets to
a base station via cellular links or to neighbouring ground
nodes. To minimize the AoI, the authors ofof [256] present a
policy-based DRL algorithm to determine the flight altitude
and the data transmission schedule of the ground nodes.

UAV-assisted MEC: UAVs can be employed to cache
popular contents to release the pressure on wireless back-
haul links while reducing content delivery delay [193].
Since trajectory planning and resource allocation result in
a large action space, the authors develop DDPG to optimize
UAV’s caching placement, schedule content delivery and
specify the transmit power of the ground nodes. Given the
predetermined flight trajectories, DDPG is used to optimize
spectrum and computing resources in UAV-assisted MEC
vehicular networks [194]. The DDPG-based resource man-
agement is studied to enhance the number of offloaded tasks
at the UAV while satisfying the required delay and QoS.

Others: A DRL-based trajectory control framework is
studied to improve UAVs’ coverage and resource allocation
fairness while reducing energy consumption [257]. The critic
neural network of the UAV is trained by environment state
information, while the actor neural network applies obser-
vations at the UAV to determine its actions.

In [258], the allocation of UAVs to ground nodes is
modelled as a potential game, where DDPG is used to
optimize the trajectory of the UAVs for energy efficiency
and obstacle avoidance. In [259], DRL and long short-
term memory (LSTM) are integrated to derive the optimal
strategy for individual UAVs in a formation flight to access
the shared communication spectrum and achieve dynamic
time slot allocation. The performance of the approach is
gauged in terms of convergence speed and throughput.
In [260], DRL, or more specifically, a duelling double DQN,
is applied to optimize the trajectory of a UAV subject to
the initial energy, flight duration, initial and final positions
of the UAV, so that the UAV experiences the least outage
(i.e., being disconnected from the cellular networks) during
the flight. The duelling double DQN is also applied to the
simultaneous navigation and radio mapping of a UAV [261].

5.4.3 Multi-agent DRL for Multi-UAV Cooperation

Multi-agent DQN is developed with multiple UAVs in [151],
where the network state contains battery and data queue
statuses of the ground nodes, as well as the waypoints of
all the UAVs. The multi-agent DQN schedules the ground
nodes’ transmission while learning the data and energy
arrivals. The authors of [78] extend their multi-agent DQN
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Fig. 11: An illustration of the DDPG architecture, where
the actor and critic networks with an experience replay are
designed to obtain the actions of the UAV.

in [151] to adjust the velocities of the UAV at waypoints
while selecting the ground nodes for data transmissions.
The authors of [262] investigate the trajectory optimization
of UAVs with the communication scheduling of cellular
networks. Due to the high complexity of the optimization,
a multi-agent DQN is developed to optimize the UAVs’
trajectories. The UAVs schedule the data transmission of the
ground nodes of cellular towers according to the locations
of the UAVs and the ground nodes. The authors of [263]
focus on a non-cooperative game with periodic beaconing at
the UAV to reduce network energy consumption. A multi-
agent DRL algorithm is studied to determine the beaconing
equilibrium durations without observing the other UAVs’
transmission schedules. In [264] and [265], UAV jammers
are deployed to improve channel secure capacity between
ground nodes and legitimate UAVs. A multi-agent DDPG
model is exploited to train the trajectory and jamming
power of the UAV jammers and transmit power of the
legitimate UAV.

Wang et al. [179] present a multi-agent DDPG model to
optimize the fairness of resource allocation in multi-UAV-
enabled MEC, where the UAVs’ trajectories and offloading
decisions are trained to improve the energy efficiency of the
MEC devices. The authors of [266] present a multi-agent
DDPG-based resource allocation framework for MEC-based
vehicular networks with UAVs. The MEC server is regarded
as an agent, which trains the scheduling of the UAVs and
the ground vehicles and performs resource allocation for
vehicular computation. Using a federated learning frame-
work [44], the multi-agent DDPG-based resource manage-
ment aims to enhance the number of offloaded tasks from
the ground vehicles to the UAVs.

5.5 Lessons Learned

Both DQN and DDPG have been utilized to support multi-
agent DRL for online learning with experience replay in
multi-UAV networks or UAV swarms. Using a DQN allows
a UAV to learn to navigate by estimating the expected future
reward for each action in a given state, using experience
replay and target networks to stabilize the learning process
[267]. DDPG can learn to optimize the UAV’s policy to
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achieve its task goal by mapping the current state to a
continuous action like trajectory planning, using an actor-
critic architecture, target networks, and experience replay to
stabilize the learning process. DQN is suitable for discrete
action spaces with sparse or delayed rewards (e.g., cluster-
ing of UAVs) [268]. At the same time, DDPG is suitable
for continuous action spaces with smooth and continuous
rewards (e.g., UAV trajectory planning) [269].

Methods, such as autoencoding, have also been used
for feature extraction. The compressed representation of the
input data extracted by the encoder can be used as a feature
vector for downstream tasks, such as object detection or
recognition, and terrain mapping, that eventually helps in
trajectory planning [270], [271]. These supervised learning
methods can be efficient, particularly for tasks such as
obstacle avoidance, target tracking, or search and rescue
operations. On the other hand, unsupervised learning tech-
niques, such as GAN, can be used in trajectory planning
for tasks such as clustering and anomaly detection [272].
In particular, clustering can be used to identify patterns or
clusters in the data, such as areas with similar wind patterns
or terrain features. Anomaly detection includes the ability to
identify unexpected obstacles or hazards in the environment
that can be catastrophic to a UAV cruise. In general, unsu-
pervised learning can adapt to changing environments or
situations by identifying new patterns or anomalies in the
data, making it suitable for on-the-go trajectory planning.

6 ML FOR AERODYNAMIC CONTROL AND OPERA-

TION OF UAV

ML has played a pivotal role in predicting the outcomes and
making appropriate decisions for UAVs based on different
system parameters. Supervised learning techniques, such as
CNN, RNN and MLP, have been utilized to facilitate path-
finding and control of motion based on image and video
input feeds. Novel learning techniques, such as spiking
neural networks (SNN), have the capability to make control
decisions based on event-based input feeds.

6.1 Supervised Learning-Based UAV Operations

Supervised learning strategies, such as CNN and MLP, are
predominantly used for image feature extraction and have

the capability to train a machine based on video feeds. Re-
current neural networks (RNN) possess a sequential solving
structure, making them highly suitable for control decisions
of the UAV.

6.1.1 Convolution Neural Network for Navigation

CNN can be used to develop autonomous navigation on the
UAV. In [68], the UAV is equipped with a front-facing cam-
era, where a CNN is trained using input images to control
the steering or heading angles of the flight. To control the
motion of the UAV, CNN has also been used for pathfinding,
control, and manoeuvring in an adaptive manner [195]. The
CNN in the aforementioned work uses the video feed from
the front camera of the UAV and processes it through a deep
neural network model to choose the next waypoints.

A CNN model is studied in [69], where the situation
data, manoeuvring decision variables, and evaluation in-
dices are used to learn intelligent manoeuvring decisions.

With optimal UAV caching, a CNN-based deep super-
vised learning architecture is studied to make fast online
flight control decisions. In [273], system parameters, such
as network density and content request distribution with
spatio-temporal dimensions, are labeled as images and used
to train a CNN. A clustering-based two-layered algorithm
is developed to provide online decisions based on the CNN
model.

6.1.2 Dynamics Tracking Recurrent Neural Network

In general, it is challenging to precisely control UAVs on
the fly. The underlying reason is that getting an accurate
mathematical model of UAVs is non-trivial since the fidelity
is highly affected by various factors, including but not lim-
ited to unmodeled dynamics, parametric uncertainties, and
disturbances [274]. RNN, a powerful data-driven method,
has been used to model and control UAVs. An RNN is
an ML technique that uses sequential data feeding [129].
An RNN addresses a time-driven problem of sequential
input data [202]. The sequential problem-solving structure
of RNN makes it more suitable for classification prediction
problems. The input of an RNN consists of the current
input (fresh data) and the previous data. A directed graph
is formed based on node connections along a temporal
sequence. The RNN has an internal memory that stores
the computation information from the previous samples to
make future decisions. Long short-term memory (LSTM) is
an important member of RNNs with feedback connections
designed to eradicate RNNs’ vanishing gradient problem. It
can process both single data points and sequences of data.
As they can process several data sequences, LSTM can make
predictions based on time series data despite any dire time
lags [203].

Modeling the motion and dynamics of UAVs is critical in
the control of UAVs. Emerging publications have reported RNN-
based modelling methods.The paper [275] proposes a hybrid
framework consisting of non-recurrent networks and re-
current networks to model the dynamics of a helicopter
UAV; see Fig. 13. Two sub-systems, each of which consists
of a non-recurrent network (block A in Fig. 13) and a
recurrent network (block B in Fig. 13), are connected in
cascade to model the attitude (including roll, pitch and yaw
angles) and the position of the UAV, respectively. The Elman
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contextual neurons are used in the recurrent network, and
the MLP or the radial basis network is used in the non-
recurrent network. In the figure, the external inputs are rep-
resented by the vector [X1, · · · , Xn]. These inputs generate
contextual neurons. The outputs are represented by vector
[Y1, · · · , Ym], which also generates contextual neurons. The
contextual neurons define previous states to be memorized.
These states will be constantly fed onto the recurrent neural
networks. The knowledge from the memorized states aids in
the decisions regarding the modelling of the UAV dynamics.

Results show that MLP performs well in level flights,
while the radial basis network performs well in take-off
and landing. This leads to the method’s main disadvantage,
i.e., the need to have separate neural networks for differ-
ent flight stages. The authors of [276] propose a modular
deep RNN framework to model the altitude dynamics of a
quadrotor UAV. It shows that the capability of learning and
modeling the high-order dynamics and non-linearity can be
significantly improved by introducing feed-forward inter-
layer connections in a multi-layer RNN, as these connections
alleviate the vanishing/exploding gradient problem [277].
Then, standard gradient descent-based training methods,
such as the Levenberg-Marquardt (LM) algorithm, can be
used for training the model.

BLOCK A
Block B

External Inputs

X1

Xn

Y1

Ym

Outputs

Back propagation

Non-Recurrent

network

Recurrent

network

Fig. 13: A hybrid framework consisting of non-recurrent
networks (Block A) from which the output is fed through
backpropagation to the recurrent networks (Block B) to
model the dynamics of a UAV-like pitch, yaw, and roll [275].

RNN has also attracted increasing attention for the control of
UAVs. The authors of [278] propose a recurrent wavelet neu-
ral network (RWNN), comprising an input layer, a wavelet
layer, a product layer, and an output layer, to mimic an
ideal controller for trajectory tracking of a fixed-wing UAV.
For online parameter training, a gradient descent method
minimizing the sliding condition is chosen. Computer sim-
ulations were presented to demonstrate that favourable
tracking performance can be achieved even with control
effort deterioration and crosswind disturbance. The main

limitation is that this study only tested the method on a
linear motion model. The authors of [279] propose a double
loop RNN structure for adaptive sliding mode control. Since
this structure has two feedback loops, both the output signal
and the interior information can be stored, making it capable
of estimating unknown dynamics better.

The authors of [280] discuss the application of an echo
state network (ESN), a class of RNN, to control a fixed-wing
UAV. The ESN has been utilized in offline and online train-
ing. While offline training achieves the inversion needed
for feedback linearization, online training reduces the in-
version error due to modelling deficiencies. With the data
collected from the FlightGear model, the authors show that
the trained networks can significantly improve the open-
loop and closed-loop responses in terms of roll rate and
bank angle. As an extension, the controller’s performance
was evaluated in terms of pitch and yaw angles.

Similar work was presented in [201], where the authors
use the stochastic gradient descent (SGD) method for online
learning. The authors of [281] study the control of a rotary-
wing UAV with a forward-looking camera for safe flight in
a cluttered indoor environment. The RNN is used to train
an LSTM network for controlling the UAV. A window-wise
truncated backpropagation through time (WW-TBPTT) sam-
pling method is developed to address the highly correlated
visual data. It shows that only retraining the fully connected
layers achieves competitive performance with end-to-end
training. The main benefit is the reduction of the amount of
training data and training time. Since the study is done in
a simulator, real-world experiments can be considered for
further validation.

The authors of [81] study the usage of RNN for verti-
cal take-off and landing (VTOL) of a UAV. The designed
controller comprises an outer-loop position controller and
an inner-loop attitude controller. An RNN is used in the
outer loop to approximate a nonlinear solver since the latter
suffers from high computational complexity. It is reported
that the approximation errors of the proposed RNN are
negligible. The RNN generates much smoother outputs than
the nonlinear solver, and it is computationally efficient and
can run in real-time (e.g., 50 Hz). The system robustness
and trajectory tracking accuracy are verified in the presence
of wind disturbance.

The authors of [282] apply an RNN to control a follower
UAV in a tight formation flight. Regarding the pitch angle
induced by the leader UAV as a seeking object, an annealing
RNN is developed for extremum seeking to compute the
minimum power demand of the wingman follower UAV.
Computer-based simulations show that the developed ap-
proach solves the chatter problem observed in general algo-
rithms for extremum seeking. The authors of [283] use RNN
to process UAV images for collision avoidance. The images
are firstly fused based on a deep CNN. Then, an RNN
extracts image features for object tracking. These works
are tested on experimentally collected datasets. Integrating
the algorithms into hardware platforms to evaluate their
effectiveness in practice is underway. In Table 6, we tabulate
some of the variants of RNN and the applications they
support.
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TABLE 6: The enhancements of RNN and the applications
that they support

Paper Technique Application

[275] Hybrid RNN
Dynamics of a
helicopter UAV

[276] Deep RNN
Altitude dynamics of a
quadrotor UAV

[277] Multi-layer RNN
Alleviate the vanishing/
exploding gradient problem

[278] RWNN
Mimicking an ideal controller
for trajectory tracking

[279] Double loop RNN Adaptive sliding mode control

[280] ESN Control a fixed-wing UAV

[281] RNN - LSTM
Control of a rotary-wing UAV
with a forward-looking camera

[81] Outer loop - RNN
Vertical take-off and landing
(VTOL) UAV

[282] Annealing RNN
Control of a follower UAV
in the tight formation

6.1.3 Multilayer Perceptron for Aerodynamic Control

Multilayer Perceptron (MLP) can be applied to the onboard
flight control and management of UAVs, e.g., [207], [208],
[209], [284], and [285]. In [207], MLP is used to predict
the remaining battery life of the UAV, where the lifetime
prediction is formulated as a standard remaining useful life
prognostic. The MLP is tested with a UAV prototype which
is powered by four sets of 4.2 Volt lithium polymer batteries.
The results show that the MLP-based flight control outper-
forms the linear models in terms of battery life prediction.
MLP can also be used to implement adaptive proportional-
integrative-derivative (PID) controllers of the UAV, which
provide continuously modulated control of the motions.
The MLP configures the adaptive PID controllers, where
one MLP per degree of freedom of the nonlinear dynamic
control (e.g., motion and rotation). According to [208] and
[284], training the MLP with PID controllers can be modeled
as an estimation of a nonlinear PID controlling, and can
be solved by the Kalman filter. Specifically, the weights of
the MLP are the states that the Kalman filter estimates.
The output is the measurement used by the Kalman filter.
The weights of the MLP are optimized to minimize the
prediction error of the Kalman filter.

Training the MLP with an extended Kalman filter [209] is
studied to track the UAV’s trajectories. An MLP-based PID
controller adjusts its gain adaptively, thereby suppressing
the steady-state error and oscillations pertaining to the
integration operation of the PID controller. Experiments are
carried out using a KUKA Youbot mobile manipulator [286]
to show that the neural networks with the extended Kalman
filters lead to faster learning and convergence than the
training based on backpropagation.

The MLP is also used to implement a nonlinear adaptive
controller for fixed-wing UAVs [285], where the networks
can be trained online or offline. Synthetic data can be
produced with an experimentally validated nonlinear flight
dynamics model, e.g., FlightGear Flight Simulator [287], to

train the MLP for reducing modelling errors, noise and
disturbance.

6.2 Unsupervised Learning-Based Approaches

Novel unsupervised learning techniques, such as spiking
neural network (SNN), have energy-savvy and high pro-
cessing capabilities, making them suitable for making faster
and more energy-efficient on-the-air control decisions and
the dominating approaches to unsupervised learning-based
UAV control and operations.

Neuromorphic SNNs utilize temporal difference learn-
ing for predicting both the rewards and the temporal se-
quence prediction in a physical time domain. Typically,
temporal difference learning can be achieved by analyzing
the temporal distance between neighbouring events that can
vary in a decay time constant. Neuromorphic SNNs repli-
cate the functionalities of a central nervous system. The neu-
romorphic SNNs usually operate on orders of magnitude
less power than traditional computing systems. This low-
power capability is due to its event-driven and massively
parallel nature of operation, where typically, only a small
portion of the entire system is active at any given time while
the other part is idle. This can aid in applications, such as
edge computing, where there are strict energy constraints.

To leverage the ultra-low-power of neuromorphic pro-
cessors (in the order of several milliWatts), a neuromor-
phic SNN model is studied for onboard deployment at
the UAV to control the UAV’s movements for obstacle
avoidance [211], [212]. Differential evolution and Bayesian
optimization are used to obtain the optimal SNN configura-
tion. In [213], an SNN-based proportional integral derivative
(PID) controller is integrated with motor control of the
UAV for ultra-low power consumption and high process-
ing rate. An SNN-based control architecture is developed,
where each spiking neuron carries sensor measurements
and control information and fires a spike when they reach
thresholds or biases.

SNN is studied in [214] to control a hexacopter UAV in
six degrees of freedom, i.e., yaw, roll, pitch, height, position,
and angular velocity. The researchers in this work propose
a recurrent spiking controller that solves nonlinear control
problems in continuous domains using a topology evolution
algorithm as the learning mechanism. Their results suggest
that the SNNs have the ability to solve ongoing control prob-
lems by maintaining sufficient spike activities and decoding
from weighted spike frequencies.

In [288], an unsupervised spike time-dependent plastic-
ity approach is developed, where SNNs are asynchronously
trained to detect UAVs on the images. A new system is
designed, which uses the features of an event-based camera
to identify UAVs. An SNN is trained by using an unsuper-
vised method of Spike Time Dependent Plasticity (STDP).
The system is shown to be asynchronous and low in both
power and computational overhead.

Zhao et al. [289] study a decision-making model for
UAV’s flight control, where an SNN is used to simulate the
function of brain zones. The SNN at the UAV determines the
control actions to fly through a window or avoid obstacles
according to their relative positions. The authors of [290]
present lobula giant movement detectors to control the UAV
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indoor navigation for obstacle avoidance. By partitioning
the image of the onboard camera, the spiking neurons are
added to detect and locate obstacles in a reconstructed map,
which is fed to the navigation model of the UAV. As one
of the SNN models, a liquid state machine can track the
network states over time while analyzing the behavioural
information of the data to predict the data feature distribu-
tion.

In [291] and [292], liquid state machines are developed
for the resource allocation of cache-enabled UAVs. The
liquid state machines can learn the data request distribution
of the ground nodes and determine the data caching policies
for the UAV.

6.3 Lessons Learned

Due to the capability to recurrently process data and con-
stantly learn from the environment to make decisions, meth-
ods, such as RNN, rightly fit into the domain of controlling
UAVs [293]. A supervised learning model, such as a CNN,
can be trained on a labeled dataset with aerodynamic per-
formance metrics, e.g., lift, drag, or energy consumption, to
learn the mapping between the inputs and outputs [294].
Driven by data, the learning of the model can be done
directly from the UAV’s actual aerodynamic performance,
as opposed to relying on theoretical models.

Novel techniques, such as SNN, bring the advantages
of being energy efficient into UAV control. The usage of
ML has extended into setting the waypoints of the UAV
online and smart trajectory planning for applications like
data collection and sensing [295], [296]. SNNs can be trained
on the input data encoded as spikes, e.g., from spike-based
cameras or sensors. This can reduce the data processing
requirements and enable real-time control. SNNs can be
implemented on energy-efficient neuromorphic hardware,
thereby reducing the power consumption of the control
system. SNNs can be used for real-time control, enabling
faster and more responsive control of the UAV.

7 ML FOR UAV PERCEPTION AND FEATURE EX-

TRACTION

Feature extraction is a form of dimensionality reduction.
Feature extraction, pattern recognition, and image process-
ing usually start from an actual set of measured data (e.g.,
taken through the camera, radar, or lidar of the UAV). It
builds informative derived values (i.e., features, such as
edges, shapes, and object recognition). This derived learn-
ing is non-redundant and facilitates subsequent learning to
obtain better feature extraction [297]. UAVs can provide an
eagle-eyed view of the region of interest compared to their
counterparts, i.e., non-UAV imaging platforms. The mobility
of UAVs can also provide the capability to cover a larger
geographical area than their stationary counterparts [298].
On the other hand, the fast mobility of the UAVs requires
feature extraction to respond fast and synthesize features
three-dimensionally. This is important for follow-on UAV
control and navigation that rely on the feature extracted. In
what follows, we discuss important ML techniques used in
UAV-assisted imaging.

7.1 Supervised Learning-Based UAV Perception and

Feature Extraction

Supervised ML strategies, such as MLP, can process infor-
mation through multiple layers and help perceive images
captured by the UAV. Methods, such as CNN, can segment
and connect the image layers and aid in feature extraction.

7.1.1 Multilayer Perceptron for Image Processing

UAVs have been increasingly utilized for precision agricul-
ture, where MLP models demonstrate their applicability to
the analysis of aerially captured images for crop disease and
vegetation management [71], [72]. In [71], a UAV equipped
with hyperspectral cameras takes hyperspectral images of
a tomato field to diagnose spots resulting from fungus and
bacteria. An MLP neural network is used as a classifier to
analyze the hyperspectral images and detect and identify
tomato diseases with an impressive accuracy of 99%. In [72],
a quadcopter UAV equipped with a Raspberry Pi single-
board computer with an onboard camera module is used
for vegetation mapping of tomato crops. An MLP is used to
segment the tomato crop images and has been demonstrated
to provide better precision and recall performances than its
alternative based on a support vector machine (SVM).

The capability of MLP on aerial image analysis has been
applied to environmental management, e.g., weed eradi-
cation [74] and flood management [210]. In [74], a multi-
spectral camera (green-red-near infrared) is installed on an
eBee fixed-wing UAV to acquire high-resolution images.
The UAV is remotely controlled and lifted to the altitude
to acquire complete imaging coverage of the interesting
field. An MLP with automatic relevance detection (MLP-
ARD) is applied to detect a particular weed type, Silybum
marianum, among other vegetation. A feed-forward MLP
neural network with one hidden layer and one output
unit is regulated by Bayesian regularization to avoid over-
fitting, trained based on spectral and textural input data,
and classifies the weed. In [210], a densely connected CNN
and an RNN are used to perform semantic analysis of
the aerial images of flooded areas collected by UAVs in
Houston, Texas. An MLP is used for each class at the output
of the RNN. The CNN and the RNN are separately trained
using Adam and Adagrad with learning rates of 0.00001
and 0.01 and batch sizes of 12 and 8, respectively. An
accuracy of 96% is achieved in terms of detecting flooded
areas. The technique is recently applied to post-flood scene
understanding.

MLP models have assisted UAVs with route plan-
ning [205], [206]. A UAV is utilized to assist route planning
and harvest volume measurement for unmanned agricul-
tural harvesting equipment in [205]. This is motivated by
the fact that some branches of US agriculture lose 30%
of their harvest due to the inability to harvest on time.
The UAV carries multi-spectral cameras. Different neural
networks are tested to analyze the multi-spectral images,
estimate harvest volume, and identify various obstacles in
the field. Considering a linear network with three neurons
in the input layer, the authors of [205] test the MLP with
three neurons in the hidden layer, generalized regression
network with thousands of neurons in the hidden layer,
or radial-basic function with hundreds of neurons in the
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hidden layers. The results indicate the radial-basic function
with 154 neurons provides the best accuracy in testing data.

7.1.2 Convolution Neural Network for Image Processing
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Fig. 14: Layout of CNN performing feature extraction and
classification of drought areas and vegetation using UAV-
captured forest imagery.

CNN is commonly used to classify, and segment re-
motely sensed imagery due to its prowess in in-depth
extraction features. In Figure 14, we present an example
of UAV forest imagery where CNN is employed to extract
various features of the forest, such as vegetation and dry
areas. CNN has been used in several multi-object tracking
methods [299] for online and real-time applications to ef-
fectively associate objects. Ill-conditioned radio connections
between the UAV and the base can degrade the resolution
and precision of videos or images sent to the base, giving
rise to difficulties in image analysis. These adverse environ-
ments can result in packet loss and wastage of bandwidth.
The authors of [300] propose an Optimal Strategy Library
(OSL) for video encoding, which can adapt to the packet loss
rate and bandwidth of the radio connections between the
UAV and the base. This method facilitates encoding video
sequences and recovering partially corrupted videos.

The authors of [196] use CNN-based approaches for
slope failure detection from UAV remote sensing imagery.
The precision and accuracy assessment of the CNN ap-
proach in their experiment levelled to almost 90% in the
imagery of a moving terrain. Similar precision and accuracy
assessments of over 90% are achieved using CNN in several
image classification-oriented applications [197]. UAV-based
high-throughput phenotyping using high-resolution multi-
spectral imaging is enabled using CNN-based techniques.
CNN with sufficient training is used in this application
for classification and segmentation. Alongside a steady
throughput, CNN is able to provide almost an accuracy of
99%. The authors of [301] apply UAVs with video cameras
installed to carry out search and rescue avalanche survivors.
The pictures presenting avalanche debris captured by the
UAV are analyzed using a trained CNN to detect useful
features and signs of survivors. A linear Support Vector
Machine (SVM) is trained and concatenated to the CNN
to help the object detection. CNN extracts the data from

TABLE 7: Applications realized though CNN-aided UAVs

Paper Technique used Application
[299] Faster-region CNN Multi-object tracking

[196] Unlabeled CNN Slope failure detection

[197] Multi spectral CNN Multi-spectral imaging

[301] SVM-CNN
Avalanche search and
rescue applications

[302] SVM-CNN Image feature extraction

[303] OverFeat Image localization

[304] Nazr-CNN Image segmentation

[196] R-CNN
Image detection and
localization

[199] R-CNN
Image detection and
localization

[198] Lightweight CNN Autonomous tracking

the image for prediction. Due to its efficiency in terms
of accuracy and precision, CNN is used in extracting the
features of the image regardless of spatial resolution, and
spectral bands [302].

CNN is predominantly used in imaging and related
applications, due to its prowess in computer vision-based
tasks, such as localization [303], object detection [196], [199],
and image segmentation [304]. Some application domains
[301] use CNN to classify the UAV images to assist rescue
operations. One of the significant drawbacks of CNN is
that the process of segmentation is very detailed, and it is
time-, energy- and resource-consuming. Several techniques,
such as recurrent CNN (R-CNN) [305], were developed to
overcome the process of exhaustive processing. In [302],
UAV imagery applications using R-CNN are able to obtain
better accuracy in detection with more acceptable image
resolutions.

The authors of [198] propose a lightweight CNN ar-
chitecture that runs efficiently on embedded processors.
The aforementioned lightweight network accelerates the
execution of the model without any dire trade-off on the
overall accuracy. An energy-aware design for Vision-Based
Autonomous Tracking and Landing of a UAV was proposed
by [306]. They use a marker detection algorithm that runs
with marginal energy overhead, simultaneously adapting
the QoS level of CNN results for a considerable power
saving. In Table 7, we tabulate some of the variants of CNN
and the applications they support.

CNN does not encode the position and orientation of an object.
CNN can sometimes be time-consuming as the classification and
segmentation are performed in detail. The layers that are closer
to the CNN input help in classifying simple features, such as
edges, corners, endpoints, etc. When CNN has more layers, the
training process takes longer. This drawback can be alleviated by
the usage of several lightweight CNN models that do not demand
more potent GPUs for computing.

Recurrent Neural Networks (RNN) have been considered to
enhance the CNN in the processing of images taken by UAVs. In
[204], an integration of densely connected CNN and RNN
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networks is proposed. The dense connection helps improve
the information flow and gradients across the network,
which further helps in the training process of deeper net-
works while still reducing over-fitting issues. An accuracy
of 96% is reported on a real-world dataset.

7.2 Unsupervised Learning for UAV Feature Extraction

Similar to image feature extraction, unsupervised ML strate-
gies can also enable radio feature extraction and can be
used to extract features, such as received signal strength
and channel strength. GAN, which can discriminate local
datasets, has been heavily featured for radio feature extrac-
tion.

7.2.1 Generative Adversarial Network for Image Extraction
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Fig. 15: Generative adversarial network framework shown
in [146], where each UAV has a condition sampler, a gener-
ator, a discriminator and a local dataset

The authors of [217] study a GAN-based pixel-wise
image classification in UAV-assisted crop monitoring, where
a generator is formulated to create real images, making
a discriminator extract features and improve its learning
accuracy on the pixel classification. In [307], GAN is stud-
ied with a dual-stream representation learning model to
identify small objects from low-resolution UAV images. In
coupling with an autoencoder, a GAN can decompose a low-
resolution image into low-frequency and high-frequency
components. The missing information in the decomposed
components can be recovered by training the GAN. More-
over, GAN-based remote sensing and image processing
have also been studied extensively; see [215], [216], [308],
[309], [310], [311], [312].

7.2.2 Generative Adversarial Network for Radio Feature

Extraction

Other than imagery features, radio propagation, e.g., re-
ceived signal strength (RSS) [313], is another important
feature, which can be used to design the flight trajectory
of UAVs, maintain their connectivity, and schedule radio
communication resources.

In [146] and [314], the UAV trains a local GAN for
mmWave channel distribution estimation according to the

captured air-to-ground and air-to-air channel information.
A distributed cooperative learning framework based on
the GAN allows the UAV to learn the channel distribu-
tion from other agents while avoiding revealing the real
measured data or the trained channel model to the other
agents. Moreover, GAN is integrated with a long short-term
memory (LSTM) to maximize the sum rate of UAV-assisted
wireless communications [229]. LSTM is an artificial RNN
architecture used in deep learning. LSTM utilizes feedback
connections for learning. The GAN-LSTM framework is
trained at the UAVs to learn the optimal resource allocation,
e.g., transmission power, spectrum allocation, communica-
tion schedule, and trajectories.

7.3 Lessons Learned

A UAV system can be trained through inputs that include
images captured by the UAV to create corresponding output
labels, such as objects or feature classes. The processing of
data includes tasks, such as resizing the images, normalizing
the pixel values, and augmenting the data with techniques
(e.g., rotation, flipping, and cropping). With their capability
of processing data and efficiently extracting features, CNN
and MLP have been at the forefront of enabling UAV-
aided imagery applications [315]. These techniques have the
capability to perform semantic segmentation, where each
pixel in an image can be classified into different categories,
such as ground, vegetation, and water.

Adversarial networks can also aid in imagery and radio
feature extraction, and meet the demands of accuracy and
image precision. Data augmentation, using GANs, can gen-
erate synthetic images of objects, terrain, and other features.
More data can be generated for training deep learning
models without the need for additional data collection [316].
GANs can also be used for image enhancement, noise reduc-
tion, and super-resolution, improving the quality of UAV
images [317] and making them more suitable for percep-
tion and feature extraction tasks. However, some methods
require larger computational resources. The layer of AI
added to these applications can also be used to interpret
the aforementioned features and model the features.

8 ML FOR FEATURE INTERPRETATION AND RE-

GENERATION

ML has great potential to improve processes and aid
decision-making in various application domains. The con-
cepts of interpretability and regeneration in ML are possi-
ble through decision trees, data clustering, and regression
models. Supervised learning strategies, such as LR, use
regressive stochastic configurations to efficiently interpret
the features captured by UAVs in the context of three-
dimensional spaces [318]. Feature interpretation has also
been used to assist navigation through semi-supervised
clustering models. The regenerative capabilities of the ML
algorithm help fast model the environment and, in turn,
assist the safe cruise of the UAVs based on the probabilistic
knowledge of the environment. GMM has been extensively
used to model the environments and assist in flight path
decisions.
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8.1 Supervised Learning-Based Feature Interpretation

8.1.1 Feature interpretation by Linear Regression

Increasing the usage of UAVs has been witnessed in en-
vironmental monitoring and crop surveillance. The main
application of UAVs is to collect sensing information via
onboard sensors such as cameras, infrared sensors, etc. The
commonly used tool for processing sensory data is LR and
some variants. Regression analysis is a domain under super-
vised ML. This strategy aims at modelling the relationship
between a certain number of features and a continuous
target variable. This results in a quantitative result to define
and interpret the underlying features. The authors of [221]
develop and validate a UAV-based air pollution measure-
ment system. An LR model is adopted to estimate how
the sensor position influences the measurement of pollutant
concentration. Guidelines are provided on the development
of a UAV system to detect point source emissions. The
authors of [222] aim to develop the relationship between
the crop coefficient and the normalized difference vegeta-
tion index for evapotranspiration estimation. Besides the
LR model, the authors of [222] also use a deep stochastic
configuration networks model to build the relationship.

The authors of [319] use a UAV with a camera to
calculate visible band vegetation indices and plant height
to estimate biomass. The multiple LR model is used to
combine the plant height information and the vegetation
indices. In [320], to evaluate the health condition of wetland
ecosystems, the structure from motion (SfM) approach was
adopted to map a field with overlapping photos captured
by a UAV. The vegetation indices and SfM cloud points can
potentially describe the aquatic plants’ growth conditions,
which can be utilized for designing an LR model.

Some other regression models have been utilized to
extract models from the sensory data. The study conducted
in [223] focuses on the monitoring of water quality condi-
tions and analyzes the near-infrared (NIR) data captured
by a UAV using a fuzzy regression model. The authors
of [321] consider the issue of bathymetric mapping. With
the collected RGB images, the authors use a geographically
weighted regression (GWR) model and show that the de-
veloped GWR model successfully alleviates the biases of
the multiple LR model. The authors of [322] investigate the
quantitative estimation of soil salinity. A piece of electro-
magnetic induction equipment and a hyperspectral camera
is used to collect data, and a random forest regression model
is developed.

LR is a supervised MP method that is easy to implement.
However, its major shortcoming lies in the assumption of
the linearity between dependent and independent variables.
Assuming the existence of a straight-line relationship often
leads to incorrect models. In addition, this method is prone
to noise and over-fitting. In particular, it cannot be used in
cases where the number of features is larger than that of the
observations as a result of which an over-fitting model is
built.

8.2 Semi-supervised Learning for UAV-Based Feature

Regeneration

Semi-supervised learning has been extensively used in
UAV-based feature extraction and prediction. These strate-

gies have been able to provide forecasts to enable IoT appli-
cations with non-trivial QoS requirements. Feature interpre-
tation is vital to avoid embedded biases in a learning model.
Interpretations help to determine how an ML algorithm
arrives at its predictions. The usage of interpretation can
be extrapolated to measure the effects and trade-offs in an
ML model.

8.2.1 Gaussian Mixture Model for Environment Modelling

(a) (b)

(c)

Fig. 16: Environment modeling and regeneration for trajec-
tory planning using GMM: (a) the modeling of the locations
of buildings across axes; (b) GMM with the approximate
spatial distribution; and (c) the routes of the deployed UAVs
through the considered area to maximize the detection
probability based on the GMM.

GMM is used to model two-dimensional complex-
shaped, static obstacles and help prevent UAVs from col-
lisions. In [226], given the prior probabilistic knowledge of
the obstacles, a GMM is generated to construct the potential
field of the area of interest. By following the standard
GMM approximation steps, the EM method is used to
iteratively estimate the parameters of GMM and allow the
GMM to approach the known distribution of the obstacles.
The potential field can be generated by taking derivatives
over the GMM. The flight paths of UAVs can be obtained
by following the field arrows. Qiao et al. [227] propose a
trajectory prediction model, named GMTP, which models
the complex motion patterns based on GMMs and clusters
the trajectory data into distinct components. As a result,
the possible trajectories can be inferred by carrying out
Gaussian process regression in TensorFlow probability.

GMM is also applied to model the heatmap of the
probabilities of finding an object in an area. A UAV is
employed to execute a search mission in [225], where the
probability of finding an anticipated object is maximized
by producing an efficient flight path. Different probabilities
are modelled to detect objects in different parts of the
considered area, depending on the environmental param-
eters, e.g., foliage coverage, shadowing, and illumination
conditions. GMM is employed to approximate the spatial
distribution of the probabilities over the considered area
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using the “Accord.Machine Learning” library in the “Ac-
cord.NET” framework [323] to estimate model parameters.
The GMM model provides a probabilistic mission difficulty
map for the search mission and allows the different parts
of the area to be prioritized hierarchically for the search.
A few heuristics, namely, Top2 and TopN, are designed to
hierarchically route the UAV through the considered area to
maximize the detection probability.

GMM is further integrated with the celebrated horizon
control to plan the trajectories of multiple UAVs dispatched
to search a complex environment [224]. As done in [76],
GMM is employed to approximate the a priori known prob-
ability of finding the object. The search area is accordingly
divided and prioritized. The receding horizon control, also
known as the model predictive control (MPC), is deployed
at each of the UAVs to plan their flight paths on the fly for
target search, collision avoidance, and simultaneous arrival
at a destination. Cooperation among the UAVs is needed
to maximize the predicted mission payoff, where the UAVs
notify each other of their flight paths by regular broadcast.

Additionally, GMM can model the spatial distribution of
radio traffic to assist with the deployment of BSs, including
UAV-BSs. In [85], a cellular network is considered, which
consists of multiple UAV-based aerial BSs, ground BSs, and
a set of user terminals on the ground served by the UAVs
and BSs. It is crucial to predict traffic congestion for optimal
placement of the UAVs, e.g., to minimize UAVs’ energy
consumption on communication as well as relocation. By
using a weighted expectation-maximization algorithm, a
GMM is generated to model the traffic distribution. Sim-
ulations show that this method can reduce UAVs’ energy
consumption on communication by 20% and on mobility by
80%, as compared to heuristic-based alternatives.

8.3 Lessons Learned

A trained model based on feature extraction that includes
techniques, such as edge detection and segmentation, can
be used to accurately regenerate the features in new UAV
imagery [324]. This can be done by feeding the imagery into
the model and having it predict the features based on the
extracted features. Discovering patterns and relationships
in data without prior knowledge or labeling is also feasible
through unsupervised learning techniques [325]. Probabilis-
tic models, such as GMM, also have been used in modeling
spatial distribution and classifying the features and predict-
ing them [326]. These methods are very accurate when there
is enough prior data in the environment to process. With
feature extraction and interpretation, the advancement of
ML techniques opens the doors to complex applications,
such as UAV control and navigation.

9 CHALLENGES, OPEN ISSUES, AND DISCUSSION

As revealed in this survey, considerable effort has been
devoted to ML-based designs of the four key elements of
UAV operations and communications, i.e., joint trajectory
and mission planning, aerodynamic control and operation,
perception and feature extraction, and feature interpreta-
tion and regeneration. However, little progress has been
witnessed to jointly and holistically design an ML-based,

end-to-end solution to closely integrate the four elements of
efficiency, reliability, and quality assurance [327].

Such a holistic, end-to-end ML design of the four el-
ements is important, due to the fact that UAVs are in-
creasingly equipped with intelligence and autonomy and
deployed in teams for sophisticated operations, such as
safety and security surveillance [9], [328], environmental
survey, and objective detection [329], disaster rescue [82],
and animal herding [330]. Moreover, there is a growing de-
mand for having UAVs work collaboratively with humans
to form human-UAV teams [331].

When designing holistically the end-to-end ML solution
for sophisticated operations and collaborations, the follow-
ing challenges arise.

9.1 Support for IoT with Minimal Prior Data

With the growth of the UAV market speculated within the
next decade and the increasing number of IoT applications
supported by UAVs, air traffic will exponentially increase.
UAVs, with the aid of ML algorithms, must identify the
authorized airspace restrictions, synchronize with other
nearby aircraft paths, and plan their trajectory to ensure the
safety of the UAV, other flying objects in the environment,
ground pedestrians and properties [332]. It must also aim at
task completion while providing an equal priority to meet
the aforementioned demands [333]. Since data are essential
for data-driven ML algorithms, a typical issue is the lack
of prior data about the environment changes, or the unex-
pected events around the operation (e.g., other UAVs’ cruise
paths) [334]. There is a need for some offline training data
that can be used for the operations and communications of
UAVs.

9.2 Increasing Energy Requirement vs. Finite Battery

ML operations can be computationally expensive and
energy-hungry. Lower levels of feature extraction and the
online training of DRL modules demand significant compu-
tational resources [335].

Limited battery and onboard processing capabilities of
the UAVs restrict the applications of ML-based techniques to
onboard object detection, depth prediction, target tracking,
and localization [336]. Practical constraints in accordance
with the computational power and real-time parallel data
processing heavily impact the design and implementation
of ML solutions for UAV-aided applications.

There is a need for investigation and verification of
energy-efficient AI/ML-aided aerial systems, especially in
line with the computation efficiency and hardware design.
Some recent advancements propose a combination of a va-
riety of ML techniques to predict the outputs cooperatively
and thus improve computational efficiency. There is also a
need for lightweight ML techniques, e.g., R-CNN and SNN,
that do not heavily impose demands on the underlying
system. This gives rise to a challenge for developing suitable
embedded hardware and software, and the need for more
efficient ML architectures.

Most commercially available UAVs are powered by
onboard batteries or fuel. Due to the payload limitation,
many UAVs can fly for a short time. To enable a long-
distance flight, a novel idea of UAV collaborating with
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public transport systems is proposed [6], [337]. The UAVs
can rest on the roof of public transport vehicles, and turn
off their motors for energy saving. If charging facilities are
installed, the UAVs’ batteries can also be recharged. This
would be a solution to the long-time operation of UAVs in a
smart city. The UAVs need to be embedded with advanced
decision-making, planning, navigation, and control systems
to conduct various actions, such as deciding which vehicle
to travel with, predicting the vehicle’s arrival time, etc.

Additionally, there are inherent trade-offs between the
computing demand and energy budget in UAV plat-
forms [338]. For instance, when using feature extraction
methods to achieve higher accuracy in a model, a UAV
may suffer from a higher requirement of computational
resources, more significant latency to reach the convergence
of its ML model, faster depletion of energy, and hence
a much shorter UAV mission time. A quick depletion of
energy reserve could limit the manoeuvrability of the UAVs
at a later stage, compromising mission quality and comple-
tion [103].

Additionally, there are also complex UAV applications
with multiple conflicting objectives. ML algorithms, such
as reinforcement learning, can suffer from difficulties to
converge, because of many different objectives and penal-
ties [339].

9.3 UAV Cooperation Without Persistent Connectivity

By employing UAV teams or swarms, the actions of the
UAVs are individually trained at each UAV with indepen-
dent state observations, e.g., to achieve fast object detection
or environment mapping [340]. The action of a UAV at
the current network state not only determines the next
network state but also influences the actions of all other
UAVs in the future [341]. As a result, the network state
observed by a UAV can be quickly outdated, since the
network state has been transferred due to an action of
another UAV [342]. In this sense, multi-agent DRL would
undergo a substantially long convergence time in multi-
UAV networks, or even divergence. A potential solution can
be sharing online the action and state observations among
the UAVs so that joint action can be trained for all the
agents. However, this requires all the UAVs to maintain
consistent and reliable wireless connections, which could be
challenging in practice [343].

9.4 Privacy and Security of UAV Communications

To coordinate the training of multiple collaborative UAVs’
actions, some private information, such as the network
states and rewards, needs to be shared among the UAVs.
Concerns arise from privacy and data security. Due to the
broadcast nature of wireless channels, the UAVs’ transmis-
sions for updating the training environment of the agents
are vulnerable to eavesdropping and message modification
attacks [344], [345]. An adversary can potentially mali-
ciously manipulate the action training of the UAVs, which
destroys the applicability of multi-agent ML to real-world
UAV networks. Although distributed training can address
the private information leakage issue, each UAV has to
conduct supervised learning to pre-process the prior knowl-
edge of network states in the environment [346]. It is noted

that this environmentally sensitive information requires a
considerable effort to obtain, e.g., recording the network
state values of every movement of the UAVs along the
trajectories in advance.

9.5 Support for Heterogeneous UAV Swarms

Cooperative UAVs are playing increasingly important
roles in precision agriculture [347] and disaster manage-
ment [348]. A UAV swarm can be heterogeneous and con-
sists of UAVs of different types, sizes, features, and func-
tionalities with a diverse variety of processing capabilities
and GPUs. These differences will have a dire impact on
their manoeuvrability, computing capability, communica-
tion range, and response delays. When we take an ML
algorithm, e.g., DRL, to learn and predict the environment,
the actions and the environment are expected to be updated
synchronously (e.g., per episode). The delays pertaining
to the heterogeneous nature of the UAVs may consider-
ably slow down the convergence [42]. Efficient offloading
techniques and methods must be developed to improve
real-time synchronization despite the diverse features of
heterogeneous UAVs.

9.6 Responsible ML for UAVs Interacting With Reactive

Objects

There is growing acknowledgement that the best results
occur when humans work collaboratively with machines
(e.g., BMW reports human/robot teams were about 85%
more productive than the old assembly lines [349]). Humans
and UAVs can team up and cooperate in rescue, firefighting,
and public safety and security. A human-UAV team must
have a shared understanding of the physical world and
ensure its members’ safety and security. The team also
requires its members to understand each other’s capabilities
and roles and identify intent (which is consistent with the
idea of human-machine shared control [350]). These require-
ments pose significant scientific challenges (e.g., how to
develop situational awareness in UAVs and enable them to
act cooperatively, recognize humans’ intent, and distribute
decision-making processes). The science of harnessing com-
plementary human and machine intelligence represents a
significant knowledge and capability gap.

Higher-level abstractions, such as UAV supervision and
planning systems, have garnered little attention from the
research community. Most ML methods designed for UAVs
are for sensing tasks, such as traffic detection [351] and clas-
sification of data. Little investigation has been conducted
on the interaction between UAVs and reactive objects, such
as humans and animals. Complex behaviours feature the
systems involving such interactions. One example is the
interaction of UAVs and animals, such as sheep, for herding
purposes. To achieve the goal, it is important to understand
how the sheep would react to the presence of UAVs. An-
other example is human-UAV teams, where human partic-
ipants could react differently to the same action of UAVs
under different contexts. The use of supervised learning in
these systems could be inappropriate, as most datasets are
collected without UAVs.
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9.7 Experimental Prototyping and Validation

The ML tools, such as CNN, RNN, K-means, and GMM,
are often implemented and tested on PyTorch or Google
TensorFlow (i.e., the two most widely used ML platforms)
for feature extraction and analysis of UAV control and
communications. A real-world testbed with multiple UAVs
needs to be built to train the ML models to collect large
amounts of data. Such a system requires the UAVs to be
highly cooperative for autonomous flight and minimize
human intervention. A non-trivial effort would be required
to deliver a prototype of the system. The DRL tools, e.g.,
single/multi-agent DQN [78] or DDPG [83], are often de-
signed for trajectory planning, flight control, and mission
schedule of UAV-assisted systems. Unfortunately, using
real-world datasets and testbeds to validate DRL techniques
is challenging. The reason is that DRL interacts with the
environment and makes decisions that can lead to further
changes in the environment. Particularly, the decision of a
UAV on its flight control and communication schedule can
affect the statuses of not only the scheduled ground nodes
in the training environment but also all the unscheduled
nodes as well [352]. To this end, a static real-world dataset,
which does not interact with the UAVs and respond to the
UAV’s decisions, would be inadequate to evaluate the DRL
techniques.

9.8 Theory and Implementation of RL/DRL for UAV At-

titude Control

Existing autopilot systems of UAVs are based primarily
on the PID control systems. This type of control system
has demonstrated excellent performance in stable envi-
ronments [353]. In unpredictable and harsh environments,
however, more sophisticated control is needed. Intelligent
flight control systems are a new option to address the
shortcomings of the PID control systems by incorporat-
ing RL/DRL techniques. Recent publications have demon-
strated the effectiveness of RL/DRL on auto-piloting and
navigation [354], [355]. An emerging direction is to use
RL/DRL for attitude control [356]. However, the theoret-
ical aspects of how accurate RL/DRL approaches can be
achieved and how well they can tolerate uncertainties are
unclear. Moreover, since a reward is required in RL, some
general guidelines on the design of the reward need to
be holistically investigated to achieve satisfactory attitude
control.

9.9 Meta-learning and Transfer Learning for UAV Oper-

ations

Over recent years, new RL techniques, such as meta-
learning and transfer learning, have been used to enable
UAV-aided applications. Meta-learning uses meta-data that
includes the properties of the algorithm used and even the
learning tasks to define the output [143]. As most of the
classic ML techniques require higher operational costs and
strain heavily on larger data sets, methods such as meta-
learning can fill in to meet the rising demands of ML-aided
UAV applications [357].

On the other hand, transfer learning aims at eliminating
the need to process a large chunk of data to reach a decisive

output [358]. It shortens the training time by encompass-
ing a pre-trained learning model with much less training
data [359]. Transfer learning uses the stored knowledge
obtained from solving a problem and then reuses the knowl-
edge for a similar problem to obtain an optimal solution.
This can be useful to meet the challenges, where less prior
data is available in a UAV control and communication
system.

10 CONCLUSION

The amalgamation of UAV and ML techniques adds a
new layer of AI to the existing UAV-aided applications, by
improving communications, feature extraction, prediction,
planning, control, and operations. This survey presented
an extensive overview of critical ML techniques used in
UAV operations and UAV-aided communications and IoT
applications. We first provided an in-depth review of the ex-
isting surveys and tutorials on UAV communications. Then,
we discussed the key performance indicators and ML tools
used in UAV operations and communications. Specifically,
we classified different ML techniques based on their ap-
plications to feature extraction, environment interpretation,
planning and scheduling, and control and operation in UAV
operations and communications.

The survey revealed that different ML techniques domi-
nate the applications of ML to the four key modules of UAV
operations and communications, namely feature extraction,
environment modelling, planning and scheduling, and con-
trol and operations. For instance, CNN has been predom-
inately applied to UAV image processing. DRL is increas-
ingly demonstrating its potential for online UAV control
and communication scheduling. The survey also showed
that there is an increasing trend to integrate different ML
modules closely to couple some of the UAV control modules
tightly. For example, RNN has been utilized to enhance
feature extraction and provide enhanced inputs to DRL for
fast exploration and exploitation of UAV actions. However,
little to no effort has been devoted to an ML-based end-
to-end solution to UAV operations and communications,
from feature extraction to control and operation. Last but
not least, the security, reliability, and trustworthiness of ML
in UAV operations and applications is a white space and
deserves significant attention before the full automation of
UAVs comes to fruition.
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