

Improving QoS for Large Scale WSNs

PhD Thesis

CISTER-TR-160203

Ricardo Severino

PhD Thesis CISTER-TR-160203 Improving QoS for Large Scale WSNs

© CISTER Research Center
www.cister.isep.ipp.pt

1

Improving QoS for Large Scale WSNs

Ricardo Severino

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

The advancements in information and communication technologies have been triggering an increase
inminiaturization and ubiquity, paving the way towards new paradigms in embedded computing systems.Modern
embedded systems are enabling a number of smaller, smarter and ubiquitous devices, creatingan eagerness for
monitoring and controlling everything, everywhere.These facts are pushing forward the design of new Wireless
Sensor Network (WSN) infrastructures that will tightly interact with the physical environment, in a ubiquitous and
pervasive fashion.However, such cyber-physical systems require a rethinking of the usual computing and
networkingconcepts, and given that these computing entities closely interact with their environment, timelinessis
of increasing importance. Nevertheless, many other QoS properties such as scalability, energy efficiency and
robustness must also be addressed if these infrastructures are to become a reality.This Thesis addresses the use
of standard protocols, particularly IEEE 802.15.4 and ZigBee, combined with commercial technologies as a
baseline to enable WSN infrastructures capable of supporting the QoS requirements that future large-scale
networked embedded systems will impose. Hence,several architectural solutions (mechanisms, algorithms,
protocol add-ons) are hereby proposed toaddress some of the most prominent QoS challenges, such as
timeliness, scalability, robustness andenergy-efficiency.Importantly, in order to clearly identify the most prominent
QoS challenges and to provide effective QoS solutions with close contact with reality, a hands-on approach is
followed throughout thisThesis. Hence, we rely upon two real-world application scenarios (i.e. a Datacentre
Monitoring (DM)scenario and a Structural Health Monitoring (SHM) scenario), which were engineered,
implementedand deployed in the course of this work, to validate and demonstrate this Thesis’ QoS proposals.
Thisstrategy enables a deeper understanding of these infrastructures at a more practical level, and providesthe
proposals with a real-world application context, showing that these network infrastructures havethe potential to be
used in real-world cyber-physical applications in the near future, if provided withthe necessary QoS management
mechanisms.Among the proposals, concerning timeliness, for instance, ZigBee cluster-tree topologies areknown
for a lack of flexibility in adapting to changes in the traffic or bandwidth requirements at runtime, making these
infrastructures not capable of allocating more bandwidth to a set of nodes sensing aparticular phenomena, or
reducing the latency of a data stream. This Thesis proposes a way of dynamically addressing this problem via a
mechanism to re-schedule the clusters’ active periods. Concerningthe MAC sub-layer of the IEEE 802.15.4
protocol, in this Thesis we carry out an experimental evaluation of a traffic differentiation mechanism, providing
the support of different traffic classes to thelegacy protocol. This mechanism is also extended to support intra-
cluster communications. In addition to timeliness, this mechanism provides and improvement in terms of energy-
efficiency. TheIEEE 802.15.4 Guaranteed Time Slot mechanism, missing from most stack implementations, is
alsoimplemented over the TinyOS operating system, providing real-time traffic support to TinyOS-
basedapplications.Scalability is also addressed in this Thesis with the proposal of a mechanism to support
intercluster synchronization, enabling nodes within multiple clusters in a ZigBee cluster-tree topology
tosynchronize to one specific point in time. This mechanism is mandatory, for instance, to scale a SHMsystem to
multiple clusters.In scenarios where the network is quite dynamic, robustness is usually a challenge, particularlyin
making a network adapt to different traffic flows or timeliness requirements without human interference. In this
line, to address robustness in these network infrastructures, this Thesis proposes anon-line and cross-layer Traffic
Efficiency Control Module (TECM) to carry out a periodic monitoringof a set of performance indicators, and to act
upon the necessary QoS mechanisms. This mechanismis able to improve the probability of successful
transmissions and minimize memory requirements andqueuing delays, through a careful tuning of the IEEE
802.15.4 Slotted CSMA-CA parameters and bycarrying out an efficient bandwidth allocation at the network
clusters.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Improving QoS for Large Scale WSNs

Ricardo Augusto Rodrigues da Silva Severino

Doctoral Programme in Electrical and Computer Engineering

Supervisor: Prof. Eduardo Manuel Medicis Tovar

Second Supervisor: Prof. Nuno Alexandre Magalhães Pereira

December 16, 2015

c© Ricardo Augusto Rodrigues da Silva Severino, 2015

Improving QoS for Large Scale WSNs

Ricardo Augusto Rodrigues da Silva Severino

Doctoral Programme in Electrical and Computer Engineering

Approved by:

President: Dr. José Alfredo Ribeiro da Silva Matos

External Referee: Dr. Vlado Handzinski

External Referee: Dr. Leandro Buss Becker

Internal Referee: Dr. Paulo José Lopes Machado Portugal

Internal Referee: Dr. Manuel Alberto Pereira Ricardo

Supervisor: Dr. Eduardo Manuel Medicis Tovar

December 16, 2015

Resumo

Os avanços nas tecnologias da informação e das comunicações têm possibilitado um aumento ex-

ponencial na sua miniaturização e ubiquidade, abrindo caminho a novos paradigmas nos sistemas

computacionais embebidos. Estes avanços, viabilizaram um conjunto de dispositivos mais pequenos,

mais inteligentes e ubíquos, alimentando uma vontade de monitorizar e controlar tudo, em qualquer

lugar.

Este facto tem vindo a impulsionar o desenvolvimento de novas infra-estruturas de redes sensoriais

sem fios (WSN) que irão interagir de uma forma muito próxima com o meio envolvente, de uma forma

ubíqua e pervasiva. Contudo, estes sistemas ciber-físicos requerem uma reavaliação dos conceitos

tradicionais da computação e das comunicações, com especial preponderância no que diz respeito às

suas características temporais. Contudo, para além dessa, existem outras vertentes de Qualidade de

Serviço (QoS), como escalabilidade, eficiência energética, e robustez, que têm de ser consideradas

para que estas infra-estruturas se tornem uma realidade.

Esta dissertação, tem por objectivo desenvolver infra-estruturas de WSNs, capazes de responder

aos requisitos de QoS que os futuros sistemas embebidos de grande escala deverão exigir. Isto, através

da utilização de protocolos normalizados, em particular do IEEE 802.15.4 e ZigBee, em conjunto com

tecnologias comerciais. Com este propósito, nesta tese são propostas diversas soluções (mecanismos,

algoritmos, protocolos) para resolver alguns dos maiores desafios em termos de QoS nestas infra-

estruturas, nomeadamente: comportamento temporal, escalabilidade, robustez e eficiência energética.

De forma a identificar claramente estes desafios de QoS, e a desenvolver soluções em proximi-

dade com a realidade, apostou-se numa orientação com uma forte componente prática. Assim, esta

tese debruça-se sobre dois cenários reais (i.e. monitorização de um datacenter e monitorização de es-

truturas), que foram desenvolvidos e implementados de forma a demonstrar as propostas apresentadas

nesta dissertação. Esta estratégia, permite uma avaliação destas propostas num contexto aplicacional,

demonstrando o potencial destas infra-estruturas para suportar as aplicações ciber-físicas do futuro,

quando complementadas com os necessários mecanismos de gestão de QoS.

Relativamente ao comportamento temporal, por exemplo, são conhecidas as vantagens das redes

ZigBee baseadas em topologias cluster-tree. Contudo, estas apresentam limitações em termos de

flexibilidade. O seu funcionamento, normalmente estático, impede a redistribuição da largura de

banda atribuída a um conjunto de nós ou, o reajuste da ordem do seu escalonamento de modo a

reduzir a latência nas comunicações. Assim, nesta tese é proposto um mecanismo para reordenar

os períodos activos dos diversos clusters de uma forma dinâmica, durante o funcionamento da rede.

Na sub-camada MAC do IEEE 802.15.4, o comportamento temporal também é considerado. Neste

sentido, nesta tese é feita uma avaliação experimental de um mecanismo de diferenciação de tráfego.

Este mecanismo é também estendido para suportar comunicações intra-cluster. Também se apontam

vantagens na sua utilização de um ponto de vista da eficiência energética.

i

ii

Ainda no contexto do comportamento temporal, implementou-se o mecanismo de Guaranteed

Time Slots (GTS) do protocolo IEEE 802.15.4 em TinyOS, de modo a garantir comunicações em

tempo-real para as aplicações.

A escalabilidade destas infra-estruturas é endereçada nesta tese, através da proposta de um mecan-

ismo que permite uma sincronização inter-cluster numa rede ZigBee para um determinado instante

temporal. Este mecanismo permite, nomeadamente, que uma aplicação de monitorização estrutural

possa ser estendida a vários clusters.

Em cenários cuja infra-estrutura de rede é bastante dinâmica, a robustez é normalmente um de-

safio, particularmente quando se pretende que uma rede se adapte a diferentes fluxos de tráfego sem

intervenção humana. Neste sentido, nesta dissertação, propõe-se um mecanismo automático, de múlti-

plas camadas, que efectua uma monitorização periódica de um conjunto de indicadores de perfor-

mance, e actua em seguida nos mecanismos de QoS respectivos. Este mecanismo, o Traffic Efficiency

Control Module (TECM), permite melhorar a probabilidade sucesso nas transmissões bem como min-

imizar os requisitos de memória e latências na rede, através de uma escolha cuidadosa dos parâmetros

do algoritmo de CSMA-CA do IEEE 802.15.4 e de uma alocação eficiente de largura de banda para

cada cluster.

Abstract

The advancements in information and communication technologies have been triggering an increase in

miniaturization and ubiquity, paving the way towards new paradigms in embedded computing systems.

Modern embedded systems are enabling a number of smaller, smarter and ubiquitous devices, creating

an eagerness for monitoring and controlling everything, everywhere.

These facts are pushing forward the design of new Wireless Sensor Network (WSN) infrastruc-

tures that will tightly interact with the physical environment, in a ubiquitous and pervasive fashion.

However, such cyber-physical systems require a rethinking of the usual computing and networking

concepts, and given that these computing entities closely interact with their environment, timeliness

is of increasing importance. Nevertheless, many other QoS properties such as scalability, energy-

efficiency and robustness must also be addressed if these infrastructures are to become a reality.

This Thesis addresses the use of standard protocols, particularly IEEE 802.15.4 and ZigBee, com-

bined with commercial technologies as a baseline to enable WSN infrastructures capable of support-

ing the QoS requirements that future large-scale networked embedded systems will impose. Hence,

several architectural solutions (mechanisms, algorithms, protocol add-ons) are hereby proposed to

address some of the most prominent QoS challenges, such as timeliness, scalability, robustness and

energy-efficiency.

Importantly, in order to clearly identify the most prominent QoS challenges and to provide effec-

tive QoS solutions with close contact with reality, a hands-on approach is followed throughout this

Thesis. Hence, we rely upon two real-world application scenarios (i.e. a Datacentre Monitoring (DM)

scenario and a Structural Health Monitoring (SHM) scenario), which were engineered, implemented

and deployed in the course of this work, to validate and demonstrate this Thesis’ QoS proposals. This

strategy enables a deeper understanding of these infrastructures at a more practical level, and provides

the proposals with a real-world application context, showing that these network infrastructures have

the potential to be used in real-world cyber-physical applications in the near future, if provided with

the necessary QoS management mechanisms.

Among the proposals, concerning timeliness, for instance, ZigBee cluster-tree topologies are

known for a lack of flexibility in adapting to changes in the traffic or bandwidth requirements at run-

time, making these infrastructures not capable of allocating more bandwidth to a set of nodes sensing a

particular phenomena, or reducing the latency of a data stream. This Thesis proposes a way of dynam-

ically addressing this problem via a mechanism to re-schedule the clusters’ active periods. Concerning

the MAC sub-layer of the IEEE 802.15.4 protocol, in this Thesis we carry out an experimental eval-

uation of a traffic differentiation mechanism, providing the support of different traffic classes to the

legacy protocol. This mechanism is also extended to support intra-cluster communications. In ad-

dition to timeliness, this mechanism provides and improvement in terms of energy-efficiency. The

IEEE 802.15.4 Guaranteed Time Slot mechanism, missing from most stack implementations, is also

iii

iv

implemented over the TinyOS operating system, providing real-time traffic support to TinyOS-based

applications.

Scalability is also addressed in this Thesis with the proposal of a mechanism to support inter-

cluster synchronization, enabling nodes within multiple clusters in a ZigBee cluster-tree topology to

synchronize to one specific point in time. This mechanism is mandatory, for instance, to scale a SHM

system to multiple clusters.

In scenarios where the network is quite dynamic, robustness is usually a challenge, particularly

in making a network adapt to different traffic flows or timeliness requirements without human inter-

ference. In this line, to address robustness in these network infrastructures, this Thesis proposes an

on-line and cross-layer Traffic Efficiency Control Module (TECM) to carry out a periodic monitoring

of a set of performance indicators, and to act upon the necessary QoS mechanisms. This mechanism

is able to improve the probability of successful transmissions and minimize memory requirements and

queuing delays, through a careful tuning of the IEEE 802.15.4 Slotted CSMA-CA parameters and by

carrying out an efficient bandwidth allocation at the network clusters.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Eduardo Tovar, for his inspiration

and advice. The freedom he granted me in my research work together with his guidance helped me to

grow and mature in my work. I would also like to thank my co-supervisor in this Thesis, Dr. Nuno

Pereira, for his insights within the SENODs project and in the Dynamic Cluster Scheduling proposal.

I could not forget to thank Dr. Mário Alves. It was by his hand I gave my first steps into research

work. Thank you for always being there, for your contagious motivation and for your patience.

Research is naturally incremental and much of the work carried out builds over important contri-

butions from great researchers I had the pleasure to work with in the past such as Dr. Anis Koubaa

and Dr. Petr Jurcik. Both hard working researchers to which I owe much of what I learned on Wire-

less Sensor Networks. A special thanks to another great researcher, Dr. Stefano Tennina, for having

always been ready to give a hand on the Open-ZB implementation and simulation code, and for his

always helpful insights.

Team work was a key point in this Thesis. It is amazing what so few people can achieve in so

little time when they join efforts into a project. Therefore, within the SENOD’s project team, a special

mention to Bruno Saraiva, for all the effort and long hours we spent together into making everything

work on time, to fulfil those always tight deadlines. Within the structural health monitoring project

team, a big thanks to Ricardo Gomes for his astonishing hardware work and his patience throughout

all of the many system debugging hours. Also to Rafael Aguilar at the ISISE at the University of

Minho, for the technical insights and the time he invested into the system’s evaluation.

A big thanks to Dr. Raghuraman Rangarajan, for his reviewing work and patience, in going

through all of this Thesis.

I would also like to thank all the people in the CISTER Research Center at ISEP/IPP, for their

support and enthusiasm. Those moments we shared during lunch time, were priceless and important

for my sanity. Also a big thanks to the administrative staff at CISTER for all their support throughout

the many bureaucratic details, and to CISTER’s helpdesk team.

To my friends, a big hug and thanks for their encouragement and support. Even though a few

might be quite far away, they never leave my heart.

I would like to thank my parents for the love, encouragement and support they always provided

me through my entire life. I owe more to them than I could ever repay.

Finally, I cannot thank enough my wife Rute for her deep affection, true love, and encouragement

throughout all of this time, and for inspiring me when I needed the most.

Ricardo Severino

v

vi

This work was supported by FCT (Fundação para a Ciência e Tecnologia) under the PhD grant

SFRH / BD / 71573 / 2010

“Start by doing what’s necessary;

then do what’s possible;

suddenly you are doing the impossible.”

Francis of Assisi

vii

viii

Contents

I Introduction 1

1 Context and Motivation 3

1.1 Research Context . 3

1.2 Challenges . 5

1.3 Approach . 7

1.4 Thesis Statement . 8

1.5 Contributions . 8

1.6 Outline . 11

2 Overview of the IEEE 802.15.4 and ZigBee Protocols 13

2.1 The ZigBee Protocol . 14

2.1.1 General Aspects . 14

2.1.2 The case for the Cluster-tree Topology . 17

2.1.3 The ZigBee Network Layer . 18

2.2 Overview of the IEEE 802.15.4 Protocol . 27

2.2.1 Physical Layer . 28

2.2.2 Medium Access Control (MAC) Sub-layer 29

2.3 A Review of Other Standard Protocols for WSNs 39

3 Technological Platforms and Tools 45

3.1 WSN Platforms and Development Tools . 45

3.1.1 Mote Platforms . 46

3.1.2 IEEE 802.15.4/ZigBee Protocol Analysers 47

3.2 WSN Operating Systems . 49

3.2.1 TinyOS . 50

3.2.2 ERIKA Real-time Operating System . 52

3.3 IEEE 802.15.4/ZigBee Protocol Stacks . 52

3.3.1 Open-ZB Protocol Stack for TinyOS . 53

3.3.2 Open-ZB Protocol Stack for ERIKA . 57

3.3.3 The Official TinyOS v2.x IEEE 802.15.4/ZigBee Protocol Stack 59

3.4 The Open-ZB IEEE 802.15.4 Simulation Model . 62

ix

x CONTENTS

II On the Engineering of WSN enabled Cyber-physical Applications 65

4 IEEE 802.15.4 GTS Implementation in TinyOS 67

4.1 Introduction . 67

4.2 Overview of the IEEE 802.15.4 GTS Mechanism 68

4.3 Implementation Details . 68

4.3.1 Overview . 68

4.3.2 GTS Allocation . 71

4.3.3 GTS Buffer Management . 72

4.3.4 GTS Deallocation . 74

4.4 Test and validation . 74

4.5 Final Remarks . 76

5 Structural Health Monitoring Application Scenario 77

5.1 Context and Motivation . 77

5.2 Related Work . 78

5.3 System Overview . 80

5.3.1 System Requirements . 80

5.3.2 Snapshot of the System Architecture . 81

5.4 Hardware Platform and Signal Acquisition Sub-system 82

5.5 WSN Architecture . 83

5.5.1 Guaranteeing Synchronization . 84

5.5.2 Communication Architecture . 84

5.5.3 Coordinator node . 86

5.5.4 Sensing Nodes . 87

5.6 Test and Validation . 88

5.6.1 Command and Configuration Application 88

5.6.2 SHM System Validation . 89

5.7 Final Remarks . 92

6 Datacenter Monitoring Application Scenario 95

6.1 Context and Motivation . 95

6.2 Related Work . 97

6.3 Architecture Overview . 99

6.3.1 Environment and Power Data Collection . 99

6.3.2 Data Distribution . 108

6.4 Mapping The World . 108

6.5 The Data Center Radio Environment . 110

6.6 Final Remarks . 114

III QoS Improvement Mechanisms 117

7 Peformance Evaluation of a Traffic Differentiation Mechanism 119

7.1 Introduction . 119

7.2 Related Work . 121

CONTENTS xi

7.3 Traffic Differentiation Strategy . 123

7.4 Implementation Approach . 124

7.5 Performance Evaluation . 126

7.5.1 Testbed Setup . 126

7.5.2 Experimental Evaluation . 127

7.6 Final Remarks . 131

8 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees 133

8.1 Introduction . 133

8.2 Network Model . 134

8.3 Communication Protocol . 136

8.4 Synchronization Mechanism . 136

8.5 Theoretical Analysis of the Scalability Limits . 137

8.6 Experimental Analysis of the Scalability . 139

8.7 Final Remarks . 141

9 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks143

9.1 Introduction . 143

9.2 Related work . 144

9.3 System model . 146

9.4 Dynamic Cluster Scheduling . 147

9.4.1 Dynamic Cluster Re-ordering . 148

9.4.2 Dynamic Bandwidth Re-allocation . 151

9.4.3 The DCS communication protocol . 152

9.5 Instantiating DCS in IEEE 802.15.4/ZigBee . 157

9.6 Performance evaluation . 159

9.6.1 Application scenario . 159

9.6.2 Experimental setup . 161

9.6.3 Performance results . 162

9.7 Final Remarks . 167

10 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks 169

10.1 Introduction . 169

10.2 Related Work . 171

10.2.1 QoS improvements to the IEEE 802.15.4/ZigBee standard 171

10.2.2 Online and cross-layer QoS proposals . 172

10.3 On the Supported QoS Mechanisms . 173

10.3.1 TRADIF . 173

10.3.2 Dynamic Cluster Scheduling . 175

10.4 Traffic Efficiency Control Mechanism . 176

10.4.1 TECM Architecture . 176

10.4.2 Beacon Payload Management Module . 178

10.4.3 Performance Indicators . 179

10.4.4 The TECM Online Algorithms . 180

10.5 Validation in a Real-World Scenario . 182

xii CONTENTS

10.5.1 Application description . 182

10.5.2 Performance Results . 185

10.6 Conclusions and Future Work . 192

IV Conclusions and Future Work 195

11 General Conclusions and Future Work 197

11.1 Summary of the Results . 197

11.2 Validation of thesis Statement . 199

11.3 Future Directions . 200

11.3.1 Towards a QoS Balancing Framework . 200

11.3.2 On the Engineered Application Scenarios 201

11.3.3 Towards a Smarter World . 201

A Papers and Materials 203

A.1 List of papers by the author . 203

A.2 Materials . 204

References 205

List of Figures

2.1 Wireless standards and their relationship concerning coverage and bitrate. 13

2.2 ZigBee Architecture . 15

2.3 ZigBee Network Topologies . 16

2.4 ZigBee Network Layer Reference Model . 19

2.5 ZigBee cluster-tree address assignment scheme example 20

2.6 ZigBee Coordinator addressing scheme example . 21

2.7 Time division approach to the beacon scheduling problem 25

2.8 TDBS implementation in the IEEE 802.15.4 stack 27

2.9 Operating frequencies and bands . 28

2.10 IEEE 802.15.4 operational modes . 29

2.11 IEEE 802.15.4 superframe structure . 30

2.12 Association mechanism example . 32

2.13 Disassociation mechanism example . 33

2.14 GTS allocation message diagram . 33

2.15 CFP defragmentation upon GTS deallocation . 34

2.16 The slotted CSMA/CA mechanism . 36

2.17 The unslotted CSMA/CA mechanism . 36

2.18 Indirect transmission example . 37

2.19 Inter-frame spacing . 39

3.1 Telosb mote and block diagram [MEM] . 46

3.2 The FLEX board [Evi12] . 47

3.3 The Chipcon IEEE802.15.4/ZigBee Packet Sniffer [Tex15a] 48

3.4 Overview of Daintree Network Analyser [Dai15b] 49

3.5 Arrangement of the components and their wiring [GLVB+03] 51

3.6 Arrangement of the components and their wiring [CKSA07] 56

3.7 TinyOS implementation diagram [CKSA07] . 56

3.8 ERIKA’s Open-ZB layered architecture [PCR+09] 57

3.9 The MAC architecture: Components are represented by rounded boxes, interfaces by

connection lines. The radio driver and symbol clock components are external to this

architecture [Hau09]. 60

3.10 The structure of the IEEE 802.15.4/ZigBee Opnet simulation model 62

xiii

xiv LIST OF FIGURES

4.1 Transferring the radio token between the components responsible for an incoming

superframe. The commands request(), transferTo() and the granted() event are part of

the TransferableResource interface [Hau09]. 69

4.2 Sniffer snapshot showing the allocation of a GTS slot. 72

4.3 GTS management relationships. 73

4.4 GTS buffer management. 74

4.5 Sniffer snapshot showing the deallocation of a GTS slot. 75

5.1 Snapshot of the System Architecture . 81

5.2 Sensor Acquisition Board (SAB) architecture . 83

5.3 Message sequence chart . 85

5.4 Sensor Acquisition Board (SAB) architecture . 87

5.5 Architecture of a Sensing Node . 88

5.6 Command & Configuration Application . 88

5.7 Laboratory system idealization/experimental setups 89

5.8 Time domain series recorded using COTS WSN platforms: (a) low amplitude excita-

tion recordings; and (b) higher amplitude excitation recordings 90

5.9 Time domain series recorded using the developed prototype of WSN platform: (a)

High amplitude excitation recordings; and (b) lower amplitude excitation recordings . 91

5.10 Frequency domain results – Tests new WSN Platform 92

6.1 Architecture Overview. Several types of devices depicted: Sensor Nodes (SN) with

sensors directly attached; Wireless Base Stations (WBSs) that collect data from several

Sensor Nodes and Gateways (GWs) that collect data from WBSs. 100

6.2 Cluster-based Architecture . 102

6.3 Picture of the network deployment at the datacenter. 103

6.4 Screen capture from the Daintree Sniffer depicting network formation 104

6.6 Hardware Platform Architecture . 105

6.7 Task Scheduling at the Sensor Node . 106

6.8 XMPP Event Nodes Hierarchy and Data Aggregation 107

6.9 GUI Views . 109

6.10 Background noise: experimental measurements with a spectrum analyzer [WiS]. Fig-

ure reports average, min and max noise levels on the 2.4 GHz ISM band in a real data

center environment. 111

6.11 Data Center Room Radio Measurements - Overall 112

6.12 Data Center Room Radio Measurements - Details 113

7.1 Differentiated serice strategies. 124

7.2 System architecture. 125

7.3 Testbed Setup. 127

7.4 Testbed Setup. 128

7.5 Probability of Success for FIFO and PQ mode. 129

7.6 Comparing queuing success in Priority Queuing. 130

7.7 Probability of success for HP and LP frames. 131

8.1 Network tree topology showing 15 clusters and respective TDBS cluster scheduling. 135

LIST OF FIGURES xv

8.2 Maximum clock drift results in milliseconds for different network settings (SO and

number of clusters), assuming no beacon processing delays. 140

8.3 Network tree topology showing 15 clusters and respective TDBS cluster scheduling. 140

9.1 System model. 147

9.2 Cluster Schedule. 149

9.3 Reordered DCR Schedule. 150

9.4 DBR Schedule. 152

9.5 DCS Request Message Format. 152

9.6 DCS Communication Diagram. 153

9.7 Resulting schedule. 154

9.8 DCS Reply Message Format. 155

9.9 Example of the DCS. 156

9.10 DCS ZigBee Implementation. 158

9.11 SHM System Architecture. 160

9.12 Experimental DCS Schedules. 161

9.13 Stream end-to-end delays - simulation. 163

9.14 Stream End-to-end Delays - Experimental and Simulation. 164

9.15 Output from the packet analyzer showing the DCR technique. 165

9.16 Stream transmit duration. 166

9.17 Output from the packet analyzer showing the DBR technique. 168

10.1 TECM timing diagram . 174

10.2 TECM system architecture . 177

10.3 BPM module description . 179

10.4 Application Scenario . 183

10.5 OPNET Simulation Scenario . 185

10.6 Simulation average and maximum end-to-end delays for 2 Scenarios (AM1 and AM4)

when compared with an increase in the Coordinator SO. 186

10.7 Simulation results at node 7 and router 2 for the previous scenarios. 187

10.8 Resulting schedule after TECM triggers de DCS/DBR mechanism. 187

10.9 Variation of ti, Di and queue size in AM5 when using TECM with DCS. 188

10.10Average probability of successful transmissions and average Ti for different contention

windows at two routers. 189

10.11Variation of the Ti and Di indicators as TECM is applied to the network setup. 190

10.12Variation of Di in R2 and N7 (sensing node belonging to C2) for AM2, as the rate is

increased using TECM Auto-Rate mode. 192

10.13Resulting network schedules as TECM carries out network changes. 193

xvi LIST OF FIGURES

List of Tables

2.1 Comparison of network topologies . 17

2.2 Cskip example values . 23

3.1 Operating Systems for resource constrained devices 50

3.2 Functionalities of the implemented protocol stack components [CKSA07] 55

5.1 ASC 5631-002 characteristics . 82

5.2 Modal identification results . 91

7.1 Test scenarios . 128

8.1 Maximum drift for different network scenarios, assuming no beacon processing delay. 139

9.1 Computation of µcycle length for each schedule . 154

xvii

Part I

Introduction

1

Chapter 1

Context and Motivation

1.1 Research Context

Undoubtedly, one of the most important revolutions in technology in human history was triggered by

micro-electronics. Its impact is comparable to the one of steam and combustion engines which pow-

ered the first machines, completely redesigning agriculture, manufacturing, mining, and transporta-

tion. Today, microelectronics are equally reshaping of the social, political, economic, and cultural

aspects of the human species.

This new industrial revolution has been fuelling the increasing miniaturization and ubiquity of

modern embedded systems, enabling a number of devices such as cell phones, GPS receivers, tablets,

RFIDs, etc. As it unfolds, computing devices have become cheaper, more mobile, more distributed,

and more pervasive in everyday life, creating an eagerness for monitoring and controlling everything,

everywhere [SLMR05]. This fact can be easily noticed by the increasing number of smart objects pop-

ping up everywhere around us, which besides the expected computing abilities are also being fitted

with extended sensing and communication capabilities. Hence, the cell-phone is increasingly becom-

ing the smart-phone, the digital watch, a smart-watch, and even the old pair of glasses, smart-glasses.

Interestingly, this proliferation of smart objects is rapidly leading towards a new communications

paradigm, the Internet of Things, where every object talk to each other, enabling smarter spaces,

such as smart-homes, smart-buildings and eventually smart-cities, improving on energy efficiency and

quality of life.

However, for many of these to become a reality, besides the advancements in information and com-

munication technology (namely on memories, batteries, energy scavenging techniques and hardware

design), there is also a need for new large-scale communication infrastructures. This fact triggered the

birth of the Wireless Sensor Network (WSN) paradigm.

Wireless Sensor Networks are enabling a wide range of new applications and usages such as build-

ing automation (e.g. security, HVAC, lighting control, access control), industrial automation (e.g. asset

3

4 Context and Motivation

management, process control, environmental control, energy management, preventive maintenance)

and personal health care (e.g. body sensor networks). This computing ubiquity is and will increasingly

help to improve the quality of life and change the way individuals perceive the world.

However, all of these systems must be conceived in a way that the quality of the service (QoS)

recognized by their users (e.g. directly humans or other information systems) is above an acceptable

threshold. QoS is thus usually associated with bit rate, network throughput, message end-to-end delay

and bit error rate. Nevertheless, these properties alone do not reflect the overall quality of the service

provided to the user/application. In effect, according to each application/task requirement, which can

be rather diverse [The07], computations and communications must be correct, secure, produced before

a given deadline and with the smallest energy consumption.

This set of requirements is heavily embodied in the emerging cyber-physical systems (CPS) con-

cept. More focused in the interconnection between computational and physical elements, than the

previous generation of embedded systems, these systems will heavily rely on the timing behaviour

of the overall system (applications, operating system and networks). Hence, such systems require a

rethinking of the usual computing and networking concepts to enable a tighter interaction between

embedded computing devices and the physical environment, via sensing and actuating actions.

Moreover, to attain the desired pervasiveness, these systems are expected to be highly heteroge-

neous and cost-effective, maintainable and scalable. The key is to be as much "invisible" to their

users as possible, to be really employed in the real world [Wei99]. In this line, WSN technology

naturally emerged as a potential candidate to enable these systems. However, the current state-of-

the-art and state-of-technology reveals a strong immatureness and a clear lack of solutions (protocols,

software/hardware architectures, technology) in respect to these QoS properties.

Research on improving security and reliability/robustness is still at a very early stage, particularly

for the latter [ZG03], [WTC03]. Scalability is being considered by researchers [GY03], [HCB00]

(e.g. algorithms, methodologies, protocols), but results are still either incomplete, immature and/or

yet to be validated in real-world applications and almost no work exists on supporting mobility (single

nodes, clusters of nodes or gateways) especially in Wireless Sensor Networks (WSNs).

This fact is vindicated by the lack of real-world applications, which when deployed, usually come

short in fulfilling QoS properties such as reliability and maintainability, among others. In general,

although market studies (e.g. [IDC13]) forecast mass deployments of these systems (sensor/actuator

networks, pervasive Internet, smart environments) at a global scale, this is yet to see the light. Con-

cerning research-oriented test-beds, they exist in a relatively small number and feature just up to some

hundreds of sensor/actuator nodes [HKL+06], [NA10], which limits the validation of the research in

the area to mostly simulation work. Importantly, this fact has tremendous implications in the quality

of the research in the area as there clearly exists a non negligible gap between simulation and real

WSN deployments. Hence, this gap must be reduced through the adoption of validation techniques

relying upon simulation and real WSN testbeds. This will help to push forward research, trigger new

1.2 Challenges 5

applications, and to address other practical issues including deployment logistics and strategies, as

well as to develop better WSN software development tools. These issues cannot be overlooked if

these infrastructures are to become a reality.

As the technology matures, its democratization is expected to follow, enabling the users to setup

and deploy these networks with minimum effort and without a deep technical knowledge. Hence, it

is of the utmost importance to devise new mechanisms and algorithms that can enable such network

infrastructures, by supporting the different QoS requirements that these applications may impose.

Importantly, these proposals should be as much as possible, tested, validated and demonstrated using

real WSN hardware, while enabling in parallel, real-world application cases. This will help fostering

the technology and pave the way towards its widespread and faster adoption.

1.2 Challenges

There is a wide range of wireless communication protocol standards for a wide range of applications

(e.g. voice, video and general data communications), each of them setting a compromise between bit

rate and radio coverage, according to their target application scenarios (personal, local, metropolitan

and wide). However, there is a need for communication protocols that meet the requirements of WSN

applications, such as low power and low data rate communications.

Nowadays, the de facto standard for engineering these WSN systems is the IEEE 802.15.4 [IT06].

However, it only defines the two lowest layers of the protocol stack (i.e. Physical and Data Link

layers), thus restricting it to single hop communications. Hence, this standard leaves several degrees

of freedom for the higher layers of the WSN protocol stack. ZigBee, WirelessHART, ISA100 and

IETF/6LoWPAN are only a few examples of how to enable 802.15.4-based applications.

However, none of these solutions addresses all the previously defined QoS properties out-of-the-

box for LS-WSNs (Large Scale Wireless Sensor Networks). In fact, often network resources must be

careful managed in order to meet the desired Quality-of-Service levels. To achieve this, it is manda-

tory to rely on structured logical topologies such as cluster-trees (e.g. [APK04],[GXX07], [PA07]),

which provide deterministic behaviour, instead of flat mesh-like topologies, where QoS guarantees

are difficult to provide, if not impossible. In this line, the ZigBee 2005 standard [ZA05] proposed the

Cluster-tree network topology to enable this kind of applications, supporting synchronization and pre-

dictability through an hierarchical network structure. Nevertheless, although these network topologies

looked promising, there were several open issues on how to implement them, which probably led to

its omission in the ZigBee Pro standard later on.

Among other challenges, one must find not only ways to easily allocate the necessary resources,

but also mechanisms to support a higher degree of flexibility in these networks. Recent research on

network planning and resource allocation usually points out to solutions that rely on simulation to be

carried out before network deployment such as described in [JKS+10]. However, traffic conditions

6 Context and Motivation

may change during the network lifetime and this cannot be always predicted, leading to a non negli-

gible decrease in the network performance. Hence, the provision for dynamic QoS mechanisms is of

increasing importance if these network infrastructures are to see the light of day.

In addition, although the Cluster-tree topology is probably the most promising in terms of scala-

bility, there are still mechanism that must be implemented in order to enable it. For instance, there is

no solution to synchronize all the clusters in a network-wide fashion, which can impair the scalability

for several applications that require a notion of global time. Therefore, it is important to devise a set

of tools, mechanisms and add-ons to fully avail the merits of this network topology, thus supporting

the QoS requirements these applications may present.

Although proposals in this line may partially solve the issues at the network layer, one cannot

disregard lower communication layers, as QoS provisioning is not a single layer specific issue. In

fact it spans all communication layers. If one wishes to tune the network layer performance for

instance, then the particular importance of the Medium Access Control sub-layer (MAC) should not

be overlooked, considering it rules the sharing of the communication medium and all upper layers are

bound to that. Thus, it is questionable if it is possible at all to provide QoS services at the network and

upper layers without solving the QoS problems at the MAC layer which concern medium sharing and

reliable communications.

Similarly, the supporting IEEE 802.15.4 MAC layer could also benefit from several improve-

ments, for instance on how to support different traffic priority classes, using best-effort transactions.

Logically, these facts increase the complexity of such QoS management mechanisms. In fact, QoS

management can become quite a daunting task as the number of layers in the communication stack in-

creases. While a minimum level of maturity in each QoS property must be reached, a bigger challenge

is to devise network methodologies and tools that are able to support system designers on balancing

these properties in a way that all application requirements are simultaneously met. This is particu-

larly difficult since some of them are contradictory (i.e., improving one of them may harm the others)

[HBT+09].

Last but not least, considering most QoS approaches highly depend on the expertise of the user

to control complex mechanisms, for instance, setting MAC Slotted CSMA parameters, this clearly

results in a big impediment for a democratization of these network infrastructures, as most users do

not hold the knowledge to fine tune these parameters. Hence, it is important to devise these or other

mechanisms in a way that the set of skills necessary to interact with such applications is minimized,

allowing the user to setup the network infrastructure in a simple but effective way. This obviously

leaves the responsibility up to the system developers to build reliable mechanisms capable of shifting

QoS intelligence from the user towards the network infrastructure, adopting the "deploy and forget"

concept that is naturally envisaged for WSNs. Hopefully, this will trigger the deployment of these

networks at a faster pace, enabling a number of new real-world applications and with it, pave the way

towards a smarter, interconnected and sustainable world.

1.3 Approach 7

1.3 Approach

This thesis addresses the use of standard protocols combined with Commercial-off-the-shelf (COTS)

technologies as a baseline to enable WSN infrastructures capable of supporting the Quality of Service

(QoS) requirements that future large-scale embedded computing systems will impose.

In general, WSNs do not impose stringent requirements in terms of bandwidth, but they require

that the available amount is efficiently distributed and used. Low energy consumption is also important

so that network/nodes lifetime is prolonged as much as possible. In fact, meeting energy requirements

is most often the main goal of WSNs protocols and technologies. In addition, timeliness, scalability

and predictability must be supported by the underlying communication layers to enable CPS applica-

tions. Therefore, we rely on the IEEE 802.15.4 and ZigBee protocols as a baseline, and in particular

at the network layer, on the Cluster-tree network topology. Nevertheless, proposals are not limited to

these protocols, and a few, such as the proposals reported in chapter 8 and 9, can be instantiated over

general cluster-based hierarchical topologies.

Throughout this thesis we try to rely on COTS technologies, like the TinyOS [Tin15] and ERIKA

[Evi15] operating systems, the MICAz and TelosB motes [MEM15], and the FLEX [Evi12] hardware

platforms as much as possible. The reason behind this interest, is that traditionally, the use of COTS

technologies leads to easier, faster and widespread development, deployment and adoption. That

should also be applicable to the WSN area.

By relying on the above mentioned set of communications protocols and COTS technologies,

new QoS mechanisms and algorithms are proposed in this thesis. These proposals target some of

the most crucial QoS issues that currently impair these network infrastructures and hinder their adop-

tion namely, timeliness, scalability, robustness and energy-efficiency, which constitute many times

conflicting requirements.

Concerning timeliness, at the network layer, for instance, there is a clear lack of flexibility in

adapting to changes in the traffic or bandwidth requirements at run-time, making these infrastructures

not capable of allocating more bandwidth to a set of nodes sensing a particular phenomena, or reducing

the latency of a data stream.

At the MAC sub-layer, there is clear interest in supporting different traffic classes using the un-

derlying slotted CSMA-CA mechanism. Such a mechanism would also improve on energy-efficiency.

Also at the MAC level, the Guaranteed Time Slot (GTS) mechanism of the IEEE 802.15.4 is manda-

tory to enable real-time traffic support, however, it is usually absent from most stack implementations.

Scalability must also be addressed, since although the ZigBee cluster-tree topology already pro-

vides an interesting solution in merging scalability with time determinism, this QoS property should

be further investigated regarding inter-cluster synchronization.

Last but not least, robustness is increasingly important if these infrastructures are to become a

reality, as it is expected that nodes can be deployed and forgotten. Among other challenges, these

8 Context and Motivation

networks must be able dynamically accommodate and adapt to changing traffic flows without requiring

a re-engineering of the infrastructure.

All these issues are addressed in this thesis, where a set of mechanisms is proposed specifically tar-

geting the above concerns. Backward compatibility with the standard (for guaranteeing interoperabil-

ity among nodes) and modularity (to be able to easily reconfigure the software) were also permanent

concerns throughout the design of the proposals.

Importantly, in order to clearly identify the most prominent QoS challenges and to provide effec-

tive QoS solutions for real-world application scenarios, a hands-on approach is followed throughout

this research work. Hence, we rely upon two real-world application scenarios (i.e. a datacentre mon-

itoring scenario and a structural health monitoring scenario), which were engineered, implemented

and deployed in the course of this work, to validate and demonstrate this thesis’ QoS proposals. This

strategy supports the proposals with a real-world application context, proving the potential of these

network infrastructures to be employed in real-world cyber-physical applications in the near future, if

provided with the necessary QoS mechanisms.

1.4 Thesis Statement

The objective of this thesis is to devise architectural solutions (mechanisms, algorithms, protocol

add-ons) for supporting some of the QoS requirements (i.e. timeliness, scalability, robustness and

energy-efficiency) large-scale WSN-based infrastructures may present to enable the future cyber-

physical systems. It is envisaged to rely on standard protocols, namely the IEEE 802.15.4/ZigBee

protocols, combined with Commercial-off-the-shelf (COTS) technologies as a baseline to achieve this

goal. Thus, this thesis preposition can be stated as follows:

The IEEE 802.15.4/ZigBee set of protocols, complemented with a set of QoS mechanisms can

effectively support the requirements future cyber-physical systems may impose.

1.5 Contributions

The contributions of this thesis are as follows:

C1: Design, implementation and validation of a state-of-the-art Structural Health Monitoring

(SHM) system.

C2: Design, implementation and validation of a state-of-the-art Datacenter Monitoring (DM) sys-

tem.

C3: Implementation of the IEEE 802.15.4 GTS mechanism over TinyOS and its integration over

the TinyOS 15.4WG communications stack.

1.5 Contributions 9

C4: Design, validation and integration of a set of mechanisms to increase the flexibility of cluster-

based hierarchical topologies by adapting the cluster scheduling to latency and bandwidth require-

ments.

C5: Experimental validation and extension of a MAC sub-layer QoS management mechanism for

the IEEE 802.15.4 protocol.

C6: Design, implementation and validation of a scalable, inter-cluster time synchronization mech-

anism.

C7: Design and validation of an online, cross-layer QoS management mechanism for ZigBee

cluster-tree networks.

As previously stated, this thesis tries to follow a hands-on approach to the QoS provisioning prob-

lem as much as possible. The reason is that this strategy, besides enabling a deeper understanding of

these infrastructures at a more practical level, also provides the proposals with a real-world application

context, to enable the experimental validation and demonstration of the proposed QoS management

mechanisms. This close contact with reality is becoming increasingly important to foster these tech-

nologies, in order to push forward its widespread deployment.

In this line, in C1 and C2, two state-of-the-art application scenarios were engineered and are

described in this thesis in chapter 5 and 6. The first scenario, first presented in [SGA+10a] and

[ARL+11], and reported in chapter 5, consists of a Structural Health Monitoring (SHM) application,

capable of carrying out highly sensitive vibration monitoring with tight synchronization of all sensors.

The proposed system merges the benefits of standard and COTS technologies with a minimum set of

custom-designed signal acquisition hardware that is mandatory to fulfil all application requirements.

This system, designed and validated in collaboration with the ISISE Research Unit of the Civil En-

gineering Department of University of Minho, Portugal, proved to be accurate and effective when

compared to a state-of-the-art wired system.

In C2, a datacentre monitoring system was engineered to enable the gathering of several phys-

ical parameters of a large data center at a very high temporal and spatial resolution [PTL+15] and

[TKD+13]. There is a high motivation for this kind of application as nowadays, data centers are large

energy consumers. The trend for next years is to increase further, considering the growth in the offer of

cloud services. A large portion of this power consumption is due to the control of physical parameters

of the data center (such as temperature and humidity), which are tightly coupled with computations.

Therefore, managing the physical and computing infrastructure of a large data center is an embod-

iment of a Cyber-Physical System (CPS) and one of the application scenarios to demonstrate some

of the proposals addressed in this thesis. This project, reported in chapter 6 of this thesis, is being

carried out in cooperation with Portugal Telecom, which is currently building a completely ground-up

state-of-the-art datacentre in Covilhã, Portugal, where the described systems are being implemented.

To enable these application scenarios, the Guaranteed Time Slot (GTS) mechanism of the IEEE

802.15.4 had to be implemented for the TinyOS operating system (C3), to support real-time traffic.

10 Context and Motivation

This functionality was made available to the TinyOS community through its 15.4 Working Group

[Tina] from which the author of this thesis is a founding member and contributor. Through this con-

tribution, a fully compliant open-source IEEE 802.15.4 stack [HDS+11] in TinyOS was finalized,

enabling through its GTS mechanism a series of applications with strict timeliness requirements. Im-

portantly, the implementation’s design pays special attention to its reliability and timeliness, while

always trying to improve on the efficiency of the code, minimizing processing delays and memory

usage.

The engineering of the above mentioned application scenarios enabled the identification of several

QoS challenges that impair these network infrastructures and hinder their adoption, namely concerning

properties such as timeliness, scalability, robustness and energy-efficiency.

Concerning timeliness, this thesis addresses this QoS property both at the network (NWK) and

MAC layer of the proposed tree-based infrastructure. At the NWK layer, although the ZigBee cluster-

tree network topologies look promising, there is a lack of flexibility in adapting to changes in the

bandwidth or delay requirements at run-time. In fact, although there is already some literature on how

to compute these network resources, it fails in providing mechanisms that could support a re-allocation

of resources without greatly interfering with the network functionality, and specially without imposing

high inaccessibility times. This issue is particularly visible in the SHM application scenario, where

there is a clear requirement to change the cluster scheduling and the bandwidth allocated to each

cluster on-demand, to decrease end-to-end delays and transmission time of the data from the sensing

nodes to the sink.

Regarding contribution C4, published in [SPT13a], [SPT14], and presented in chapter 9, we

present a solution to this problem with the Dynamic Cluster Scheduling (DCS) mechanism. This

enables networks to change during run-time a given initial cluster schedule, based on a time-division

strategy, to provide increased service to multiple traffic flows. We also analyse and demonstrate the

validity of DCS through a comprehensive simulation study and experimental validation using WSN

platforms in the SHM scenario previously engineered. Importantly, DCS can reduce the end-to-end

latency by 93% and the overall data stream transmit duration by 49%, although higher values can be

achieved under different network settings.

To address some of the timeliness and energy-efficiency issues at the MAC layer, this thesis

presents two contributions. In C5, as reported in chapter 7, we carry out the experimental valida-

tion of a traffic differentiation mechanism over a real-time operating system. This mechanism was

previously proposed in [KANS06] and validated only in simulation. In this performance evaluation

we assess its capabilities with real WSN platforms as described in [SBAK10] and show that it consti-

tutes a suitable choice to support differentiated services in the IEEE 802.15.4 protocol, contributing to

the QoS, both in timeliness and in energy-efficiency.

Following this experimental evaluation, a further improvement to this mechanism is proposed in

this thesis, by extending the mechanism to support intra-cluster communications, enabling the control

1.6 Outline 11

of the MAC sub-layer’s CSMA-CA mechanism parameters of an entire cluster of nodes. The mecha-

nism is also implemented in the Datacenter Monitoring system, where it plays a fundamental role in

supporting the QoS differentiation of higher priority traffic from selected racks in the datacentre.

Concerning scalability, this thesis addresses this QoS property in C6, by proposing a global inter-

cluster synchronization scheme (SSYNC). This mechanism enables nodes in different clusters to syn-

chronize to one specific moment, by taking advantage of the IEEE 802.15.4 beacons. This is specially

important in applications where nodes in different clusters must carry out some sort of signal acquisi-

tion in a synchronized fashion. This mechanism was used to scale the SHM system of C1 into multiple

clusters, as described in [TKD+13], extending the system to target larger structures such as tunnels or

bridges.

All of the QoS proposals presented so far rely on the user to effectively tune their parameters

and to enable the mechanisms when needed, or at the very least, to specify a threshold to trigger

the mechanism to become enabled. There are however some scenarios where the network should

be left operating by several days, months or even years without human interaction, such as in many

WSN or even Datacenter Monitoring scenarios, for instance. In such scenarios, where the network is

quite dynamic, finding the best network setup (e.g. scheduling, bandwidth allocation), can become a

daunting task if not even an impossible one. This off course presents itself as a robustness problem,

related to how well a network setup can adapt to different circumstances, namely different traffic flows

or timeliness requirements on its own.

To address robustness in these network infrastructures, in this thesis we propose in contribution

C7, an online and cross-layer Traffic Efficiency Control Module (TECM). The proposed TECM, pre-

sented in chapter 10, works by improving the probability of successful transmissions and by min-

imizing memory requirements and queuing delays, through a careful tuning of the IEEE 802.15.4

Slotted CSMA-CA parameters (using C5) and an efficient bandwidth allocation at the network clus-

ters through C4. Importantly, we show that we can achieve better results with TECM than by using

each mechanism separately. Relying on a set of indicators which are periodically evaluated, TECM

can enable the DCS or TRADIF modules when and as needed, while also providing support for the

SSYNC mechanism by carefully managing the IEEE 802.15.4 beacon’s payload among all the QoS

mechanisms. This mechanism is instantiated in the Datacenter Monitoring application scenario to

enable more dynamic application modes.

1.6 Outline

The remaining of this dissertation is organized as follows:

The first Part introduces this thesis, by providing a research context and an overview of the most

prominent protocols and WSN technologies used in this research work. In this line, in chapter 2 the

most important features of the IEEE 802.15.4 and ZigBee protocols are described in some detail along

12 Context and Motivation

with a birds eye view of other concurrent protocols. Chapter 3 closes the first part with an overview

of the WSN technologies used throughout this thesis.

Part II addresses mostly implementation work from an application engineering perspective. It

begins with chapter 4 describing the implementation of the IEEE 802.15.4 GTS mechanism, providing

real-time traffic support to the applications described in the subsequent chapters. These consist of

two cyber-physical application scenarios which are used to instantiate, validate and demonstrate the

QoS mechanisms described in this research work. Thus, a Structural Health Monitoring application

scenario is presented in chapter 5, and chapter 6 concludes Part II of the thesis with a Datacentre

Monitoring system.

The QoS improvement mechanisms are presented in Part III of this thesis. Chapter 7 opens with

the experimental validation of the TRADIF traffic differentiation mechanism. In chapter 8 we move

up to the network layer and present a scalable synchronization mechanism for ZigBee cluster-tree

networks (SSYNC). In chapter 9 the Dynamic Cluster Scheduling (DCS) mechanism is described

and finally with chapter 10 we conclude the third part of the thesis by presenting TECM, an online

cross-layer QoS management mechanism for ZigBee cluster-tree networks.

In the fourth and final Part of this dissertation we conclude with some closing remarks and by

outlining potential future research directions.

Chapter 2

Overview of the IEEE 802.15.4 and

ZigBee Protocols

There is a wide range of wireless communication protocol standards for a wide range of applications

(e.g. voice, video and general data communications), each of them setting a compromise between bit

rate and radio coverage (Figure 2.1), according to their target application scenarios (personal, local,

metropolitan and wide).

Figure 2.1: Wireless standards and their relationship concerning coverage and bitrate.

Concerning the particular case of WSNs, these usually do not impose stringent requirements in

terms of bandwidth, but they require low energy consumption so that network/nodes lifetime is pro-

longed as much as possible. In fact, meeting energy requirements is most often the main goal of WSNs

protocols and technologies.

13

14 Overview of the IEEE 802.15.4 and ZigBee Protocols

Over the last decade a few standards aiming at low-power wireless communications have been

developed to cope with these requirements. A paradigmatic example is the IEEE 802.15.4 [IT06],

first published in 2003 for WPAN (Wireless Personal Area Networks). The protocol defines only the

physical and data-link layers, thus a few proposals such as the ZigBee [ZA05] or the RPL [WTB+12]

protocols followed to complement the stack.

However, to enable Cyber-Physical Systems (CPS) applications, besides the traditional WSNs re-

quirements, timeliness and predictability, among other aspects, must be also supported by the under-

lying communication layers. Nevertheless, there are a few limitations to the IEEE 802.15.4 standard,

some of those already identified in chapter 1 of this thesis, hence there is a need to consider new

mechanisms and add-ons. Devising these mechanisms is among the objectives of this thesis.

This chapter presents the most important features of the IEEE 802.15.4-2006 and ZigBee-2007

protocols. It particularly focuses on the IEEE 802.15.4 Data Link and ZigBee Network Layers, which

are the most relevant in the context of this thesis. The chapter ends with a birds eye view of other

competing protocols for WSNs.

2.1 The ZigBee Protocol

2.1.1 General Aspects

ZigBee defines two layers of the OSI (Open Systems Interconnection) model: the Application Layer

(APL) and the Network Layer (NWL), as depicted in Figure 2.2. Each layer provides a specific set of

services for the layer above. The different layers communicate through Service Access Points (SAP’s).

These SAPs enclose two types of entities: (1) a data entity (NLDE-SAP) to provide data transmission

service and (2) a management entity (NLME-SAP) providing all the management services between

layers.

The ZigBee Device Object (ZDO), located in EndPoint 0, is responsible for communicating in-

formation about its status and its provided services. The Application Objects consist of the set of

manufacturer’s applications running on top of the ZigBee protocol stack. These objects, located be-

tween Endpoints 1 to 240, adhere to a given profile approved by the ZigBee Alliance. The address

of the device and the EndPoints available provide a uniform way of addressing individual application

objects in the ZigBee network. The set of ZDOs, their configuration and functionalities form a ZigBee

profile. These ZigBee profiles intent to be a uniform representation of common application scenarios.

Currently, among the several ZigBee available profiles we can find the ZigBee Home Automation,

Smart Energy, Health Care, and Building Automation profiles.

The ZigBee Network Layer (NWK) is responsible for network management procedures (e.g.

nodes joining and leaving the network), security and routing. It also encloses the neighbour tables

and the storage of related information. It provides only one set of interfaces, the Network Layer

2.1 The ZigBee Protocol 15

Figure 2.2: ZigBee Architecture

Data Entity Service Access Point (NLDE-SAP) used to exchange data with the Application Sublayer

(APS).

IEEE 802.15.4/ZigBee devices can be classified according to their functionalities into two cate-

gories: Full Function Devices (FFD) implement the full IEEE 802.15.4/ZigBee protocol stack; Re-

duced Function Devices (RFD) implement a subset of the protocol stack. Regarding the devices role

in the network, ZigBee defines 3 types of devices:

– ZigBee Coordinator (ZC): One for each ZigBee Network; Initiates and configures Network for-

mation; Acts as an IEEE 802.15.4 Personal Area Network (PAN) Coordinator; Acts as a ZigBee

Router (ZR) once the network is formed; Is a Full Functional Device (FFD) – implements the

full protocol stack; If the network is operating in beacon-enabled mode, the ZC will send pe-

riodic beacon frames that will serve to synchronize the rest of the nodes. In a Cluster-Tree

network all ZR will receive beacon from their parents and send their own beacons to synchro-

nize nodes belonging to their clusters.

– ZigBee Router (ZR): Participates in multi-hop routing of messages in mesh and Cluster Tree

16 Overview of the IEEE 802.15.4 and ZigBee Protocols

networks; Associates with ZC or with previously associated ZR in Cluster-Tree topologies;

Acts as an IEEE 802.15.4 PAN Coordinator; It is a Full Functional Device (FFD) – implements

the full protocol stack.

– ZigBee End Device (ZED): Does not allow other devices to associate with it; Does not partici-

pate in routing; It is mostly a sensor/actuator node; Can be a Reduced Function Device (RFD)

– implementing a reduced subset of the protocol stack.

Throughout this thesis, the names of the devices and their acronyms are used interchangeably.

The ZigBee/IEEE 802.15.4 protocol enables three network topologies – star, mesh and cluster-tree

(Figure 2.3).

Figure 2.3: ZigBee Network Topologies

In the star topology (Figure 2.3 a), a unique node operates as a ZigBee Coordinator. The Zig-

Bee Coordinator chooses a PAN identifier, which must not be used by any other ZigBee network

in the vicinity. The communication paradigm of the star topology is centralized, i.e. each device

(FFD or RFD) joining the network and willing to communicate with other devices must send its data

to the ZigBee Coordinator, which dispatches it to the adequate destination. The star topology may

not be adequate for traditional Wireless Sensor Networks for two reasons. First, the sensor node se-

lected as a Coordinator will get its battery resources rapidly ruined. Second, the coverage of an IEEE

802.15.4/ZigBee cluster is very limited while addressing a large-scale WSN, leading to a scalability

problem.

The mesh topology (Figure 2.3 b) also includes a ZigBee Coordinator that identifies the entire

network. However, the communication paradigm in this topology is decentralized, i.e. each node can

directly communicate with any other node within its radio range. The mesh topology enables enhanced

2.1 The ZigBee Protocol 17

networking flexibility, but it induces additional complexity for providing end-to-end connectivity be-

tween all nodes in the network. Basically, the mesh topology operates in an ad-hoc fashion and allows

multiple hops to route data from any node to any other node. In contrast with the star topology, the

mesh topology may be more power-efficient and the battery resource usage is fairer, since the com-

munication process does not rely on one particular node.

The cluster-tree network topology (Figure 2.3 c) is a special case of a mesh network where there is

a single routing path between any pair of nodes and there is a distributed synchronization mechanism

supported by the IEEE 802.15.4 beacon-enabled mode. There is only one ZigBee Coordinator which

identifies the entire network and one ZigBee Router per cluster. Any of the FFD can act as a Router

providing synchronization services to other devices and ZigBee Routers.

2.1.2 The case for the Cluster-tree Topology

Table 2.1 summarizes some of the differences between ZigBee mesh and cluster-tree topologies.

Table 2.1: Comparison of network topologies

Star Mesh Cluster-Tree

Scalability No Yes Yes

Synchronization Yes No Yes

Inactive Periods All nodes ZEDs All nodes

Guaranteed bandwidth Yes (GTS) No Yes (GTS)

Redundant Paths N/A Yes No

Routing Protocol Overhead N/A Yes No

Commercially Available Yes Yes No

The synchronization (beacon-enabled mode) feature of the cluster-tree model may be seen both

as an advantage and as a disadvantage, as reasoned next. On the one hand, synchronization enables

dynamic duty-cycle management in a per cluster basis, allowing nodes (ZEDs and ZRs) to save their

energy by entering the sleep mode. In contrast, in the mesh topology as defined in the IEEE 802.15.4

standard specification, only the ZEDs can have inactive periods. These energy saving periods enable

the extension of the network lifetime, which is one of the most important requirements of WSNs.

In addition, synchronization allows the dynamic reservation of guaranteed bandwidth in a per-cluster

basis, through the allocation of Guaranteed Time Slots in the Superframe Contention Free Period

(CFP). This enables the worst-case dimensioning of cluster-tree ZigBee networks, namely it is possible

to compute worst-case message end-to-end delays and ZigBee Router buffer requirements.

On the other hand, managing the synchronization mechanism throughout the cluster-tree networks

is a very challenging task. Even if we can cope with minor synchronization drifts between ZRs, this

18 Overview of the IEEE 802.15.4 and ZigBee Protocols

problem can grow for larger cluster-tree networks (higher depths). As previously mentioned, the de-

synchronization of a cluster-tree network leads to collision problems due to overlapping Beacons and

Superframes. For instance, the CAP of one cluster can overlap the CFP of another cluster, which is

not admissible.

Regarding the routing protocols, the tree routing protocol in the cluster-tree is lighter that the mesh

routing protocol (AODV) in terms of memory and processing requirements. The routing overhead, as

compared with the AODV [IET03] in the mesh topology, is reduced. Note that the tree routing protocol

considers just one path from any source to any destination, thus it does not consider redundant paths, in

contrast to AODV. Therefore, the tree routing protocol is prone to the single point of failure problem,

while that can be avoided in mesh networks if alternative routing paths are available (more than one

ZigBee Router within radio coverage).

Note that if there is a fault in a ZigBee Router, network inaccessibility times may be inadmissible

for applications with critical timing and reliability requirements. Therefore, designing and engineering

energy and time-efficient fault-tolerance mechanisms to avoid or at least minimize the single point of

failure problem in ZigBee cluster-tree networks is of crucial importance.

Besides the Beacon/Superframe scheduling and the single-point-of-failure problems, there are

other implementation-related obstacles that makes the use of the cluster-tree topology a challenging

task, such as: (1) the dynamic network resynchronization, for instance in case of a new cluster joining

or leaving the network; (2) the dynamic rearrangement of the all the duty cycles in the case of a router

failure; (3) a new router association or even rearranging the superframe duration of some routers to

adapt the bandwidth allocated to that branch of the tree; (4) the rearrangement of the addressing space

allocated to each router; and (5) supporting mobility of nodes, routers or even hole clusters.

From our perspective, all these impairments have lead to the lack of commercial or academic

solutions based on the ZigBee cluster-tree model. Nevertheless, we consider this model as a promis-

ing and adequate solution for WSN applications with timeliness and energy-efficiency requirements,

which triggered us design new mechanisms to support this topology and to further explore its potential.

2.1.3 The ZigBee Network Layer

The ZigBee Network Layer is responsible for network management (e.g. association/disassociation,

starting the network, addressing, device configuration and the maintenance of the NIB - NWK Infor-

mation Base) and formation, message routing and security-related services. It provides two service

entities. The Network Layer Data Entity (NLDE) provides a data service, allowing the transmission

of data frames and topology specific routing. Figure 2.4 depicts the Network Layer reference model.

Joining and leaving a network must be supported by all ZigBee Devices. ZigBee Coordinators

and Routers must support additional functionalities such as permit devices to join the network using

Association indications from the MAC sub-layer or explicit join requests from the application; permit

2.1 The ZigBee Protocol 19

devices to leave the network using Network Leave command frames or via explicit leave requests

from the application. They must also participate in the assignment of logical network addresses and

maintain a list of neighbouring devices.

Figure 2.4: ZigBee Network Layer Reference Model

The ZigBee Coordinator also defines some important additional network parameters. It determines

the maximum number of children (Cm) any device is allowed to have. From this set of children, a

maximum number (Rm) of devices can be router-capable devices. The remaining are ZEDs. Every

device has an associated depth, representing the number of hops a transmitted frame must travel, using

only a parent-child links, to reach the ZigBee Coordinator. The ZigBee Coordinator has a depth of 0,

while its children have a depth of 1. It also determines the maximum depth (Lm) of the network. The

maximum number of children, routers and network depth are used for calculating the addresses of the

devices in the network, in a distributed address scheme.

2.1.3.1 Short Address Assignment

A parent device uses the Cm, Rm, and Lm values to compute a Cskip function defining the size of the

address sub-block that is distributed by each parent depending on its depth (d) in the network. For a

given network depth d, Cskip(d) is calculated as follows:

Cskip(d) =

1+Cm · (Lm−d−1) if Rm = 1,

1+Cm−Rm−Cm·RmLm−d−1

1−Rm , otherwise
(2.1)

A parent device that has a Cskip(d) value of zero is not capable of accepting children and must

be treated as an end device. A parent device that has a Cskip(d) value greater that zero must accept

devices and assigns addresses if possible. A parent device assigns an address that is greater than its

own to the first router that associated. The next associated router receives an address that is separated

20 Overview of the IEEE 802.15.4 and ZigBee Protocols

according to the return value of the Cskip(parentdepth) function. The maximum number of asso-

ciated routers is defined in the network parameter nwkMaxRouters(Rm). Considering a parent node

with a depth d and an address of Aparent , the number of child devices n is between 1 and Cm−Rm.

1≤ n≤ (Cm−Rm) (2.2)

The Achild address of the nth child router is calculated according to Eq. 2.3 (n is the number of

child routers):

Achild =

Aparent +(n−1) ·Cskip(d)+1, if n = 1

Aparent +(n−1) ·Cskip(d), n > 1
(2.3)

The Achild address of the nth child end device is calculated according to Eq. 2.4 (n is the number

of child end devices):

Achild = Aparent +Rm ·Cskip(d)+n (2.4)

Figure 2.5 depicts an example of an address assignment scheme. The parameters used in the

address assignment are the following: maximum depth (Lm) = 3, maximum children (Cm) = 6 and

maximum routers (Rm) = 4.

Figure 2.5: ZigBee cluster-tree address assignment scheme example

Figure 2.6 shows the ZigBee Coordinator (0x0000) available addressing scheme. Considering the

above network parameters, the ZigBee Coordinator is allowed to associate up to 4 routers and 2 end

devices in its available address pool. On the other hand, the ZR (0x0020) is allowed to associate up to

4 ZRs and 6 ZEDs.

2.1 The ZigBee Protocol 21

Figure 2.6: ZigBee Coordinator addressing scheme example

2.1.3.2 ZigBee Routing

ZigBee Coordinators and Routers must provide a set of functionalities such as relaying data frames

on behalf of higher layers or other ZR; participate in route discovery in order to establish routes for

subsequent data frames or on behalf of end devices; and participate on route repairs.

Additionally, ZigBee Coordinators and Routers may provide functionalities such as maintaining

routing tables in order to remember best available routes; initiate route discovery on behalf of higher

layers or other ZR; carry out route repairs.

ZigBee Coordinators and Routers support three types of routing:

– Neighbour Routing – based on a neighbour tables that contains the information of all the devices

within radio coverage. If the target device is physically in range the message can be sent directly.

Note that ZEDs cannot do this.

– Table Routing - Ad-hoc On Demand Distance Vector (AODV) [IET03], based on routing and

route discovery tables with the path-cost metrics;

– Tree-Routing - based on the address assignment schemes; messages are hierarchically routed

upstream/downstream the tree.

Neighbour Routing

This type of routing uses the neighbour tables. If the target device is physically in range it is possible

to send messages directly to the destination. Physically in range means that the source ZC or ZR has a

neighbour table entry for the destination. This routing mechanism is mostly used as addition to other

routing mechanisms and for the ZigBee Routers to route messages to its children devices, when they

are the destination.

Table Routing - Ad-hoc On-Demand Distance Vector (AODV)

ZigBee Table Routing is based on the AODV routing algorithms. Each ZigBee Coordinator and

Router that supports this Table Routing must maintain two tables: (1) the routing table, a long-lived

22 Overview of the IEEE 802.15.4 and ZigBee Protocols

and persistent table with the information of routes, and (2) a route discovery table with the information

of the route discovery procedures where each entry only lasts the duration of the discovery.

The Ad-hoc On Demand Distance Vector routing protocol [IET03] was designed for ad hoc mo-

bile networks. AODV is capable of both unicast and multicast routing. AODV allows mobile nodes to

obtain routes quickly for new destinations, and does not require nodes to maintain routes to destina-

tions that are not in active communication, what allows mobile nodes to respond to link failures and

changes in network topology in a timely manner.

When the link breaks, AODV causes the affected set of nodes to be notified so that they are able

to invalidate the routes using the lost link. It is an on demand algorithm, meaning that it builds routes

between nodes only if requested by source nodes. It maintains these routes as long as they are needed

by the sources.

Routing management is done by the means of NWK command frames. To carry out this task,

ZigBee supports the following commands:

– Route request – Command send to search for a route to a specified device, can also be used to

repair a route;

– Route reply – Command send in response of a route request, also used to request state informa-

tion;

– Route Error – notification of a source device of the data frame about the failure in forwarding

the frame;

– Leave – notification of a device leaving the network;

– Route Record – notification of a list of nodes used in relaying a data frame;

– Rejoin request – notification of a device rejoining the network;

– Rejoin response – rejoin response of a rejoin request;

The route choice for a communication flow is based on the total link cost represented by C, mean-

ing that the path with the lowest cost is chosen. The total link cost is the sum of individual point-to-

point link cost. The calculation of C is as follows: for a defined path P where L defines the number of

a set of devices [D1,D2, . . .DL] and a link [Di,Di+1] the path cost C is defined as:

C{P}=
L−1

∑
i=1

C{[D1,Di+1]} (2.5)

Each C[D1,Di+1] is the individual point-to-point link cost, calculated by the following formula-

tion:

C{l}=

7,

min
(

7, round
(

1
p4

l

)) (2.6)

where pl is defined as the probability of packet delivery through link l.

2.1 The ZigBee Protocol 23

The link probability estimation factors are implementation specific, but generally it they are based

on the counting of the received beacons and data frames in order to detect packet loss and in the

estimation of the Link Quality Indicator (LQI).

Tree-Routing

This routing mechanism is based on the short addressing scheme and was initially proposed by MO-

TOROLA. Each device, upon the reception of a data frame, reads the routing information fields and

checks the destination address. If the destination is a child of the device (neighbour table check),

the device relays the packet to the appropriate address. If the destination address is not a child, the

device must check if the address is a descendent using the condition in 2.7, where A is device network

address, D the destination address and d the device depth in the network.

A < D < A+Cskip(d−1) (2.7)

The next hop (N) address when routing down is given by:

N = A+1+

⌊

D− (A+1)

Cskip(d)

⌋

Cskip(d) (2.8)

If the destination address is not a descendant, the device relays the packet to its parent.

Consider the network scenario illustrated in Figure 2.5 and the following network parameters:

Lm = 3; Cm = 6; Rm = 4. The Cskip values are presented in Table 2.2.

Table 2.2: Cskip example values

depth Cskip(depth)

0 31

1 7

2 1

If ZR 0x0002 transmits a message to ZR 0x0028, the tree-routing protocol behaves as follows:

1. ZR 0x0002 builds the data frame and sends it to its parent (0x0001). The most relevant fields of

this data frame are outlined next:

– MAC destination address – 0x0001;

– MAC source address – 0x0002;

– Network Layer Routing Destination Address – 0x0028;

– Network Layer Routing Source Address – 0x0002;

24 Overview of the IEEE 802.15.4 and ZigBee Protocols

2. ZR 0x0001 receives the data frame, realizes that the message in not for him and has to be re-

layed. The device checks its neighbour table for the routing destination address, trying to find if the

destination is one of its child devices. Then, the device checks if the routing destination address is a

descendant by verifying condition in Eq. 2.7 that results in:

0x0001 < 0x0028 < 0x0001+7 (2.9)

Note that ZR 0x0001 is a depth 1 device in the network. After verifying that the destination is not

a descendant, ZR 0x0001 routes the data frame to its parent, ZC 0x0000. The most relevant fields of

this data frame are outlined next:

– MAC destination address – 0x0000;

– MAC source address – 0x0001;

– Network Layer Routing Destination Address – 0x0028;

– Network Layer Routing Source Address – 0x0002;

3. ZC 0x0000 receives the data frame and verifies if the routing destination address exists in its

neighbour table. After realizing that the destination device is not its neighbour, since the ZC is the

root of the tree and cannot route up, the next hop address is calculated as follows:

N = 0x0000+1+

⌊

0x0028− (0x0000+1)

31

⌋

×31 (2.10)

The next hop address results in N = 32 (decimal) = 0x0020. The most relevant fields of this data

frame are outlined next:

– MAC destination address – 0x0020;

– MAC source address – 0x0000;

– Network Layer Routing Destination Address – 0x0028;

– Network Layer Routing Source Address – 0x0002;

4. ZR 0x0020 receives the data frame and checks its neighbour table for the routing destination

address. After verifying that the address is its neighbour, the message is routed to it. The next hop

is assigned with the short address present in the respective neighbour table entry. The most relevant

fields of this data frame are outlined next:

– MAC destination address – 0x0028;

– MAC source address – 0x0020;

– Network Layer Routing Destination Address – 0x0028;

– Network Layer Routing Source Address – 0x0002;

2.1 The ZigBee Protocol 25

Figure 2.7: Time division approach to the beacon scheduling problem

2.1.3.3 Beacon Scheduling

Although the cluster-tree network concept is outlined in the ZigBee specification, there is not a clear

description on how this model can be implemented. The available information regarding this topology

consists in a broad overview on how the cluster-tree network should operate and some details on the

tree-routing algorithm.

However, there are a few issues which must be addressed to engineer these networks. In particular,

the cluster-tree model includes more than one ZigBee Router that periodically generates beacons to

synchronize nodes (or clusters of nodes) in their neighbourhood. If these periodic beacon frames

are sent in an unplanned fashion, without any particular schedule, they will collide with each other

or with other frames. These collisions will result in the loss of synchronization between a parent

ZigBee Router and their child devices, which prevents them to communicate. Therefore, beacon

frame scheduling mechanisms must be defined to avoid beacon frame collisions in ZigBee cluster-tree

networks.

To address this, the Task Group 15.4b working in an improved version of the IEEE 802.15.4

standard, proposed a couple of approaches to avoid beacon frame collisions. A first approach, called

the beacon-only period approach, consisted in a time window at the beginning of each superframe

reserved for beacon frame transmissions only. The second approach, based on time division, proposed

that beacon frames of a given cluster were sent during the inactivity periods of the other clusters.

However, these proposals did not define how to schedule beacon frame transmissions, specially how

to choose the time offsets of the different beacons. Surprisingly, these approaches, discussed within

the Task Group 15.4b, were not fully included in the subsequent versions of the standards.

The beacon only period proposed by Task Group 15.4b imposes major changes in the protocol,

does not allow GTS allocations and it needs a complex scheduling mechanism. Another problem of

the beacon only period is how to define the beacon transmission window size that can lead to scale

limitations of this approach. In this line, the time-division approach appears as a more appealing

solution.

In this approach, time is divided such that beacon frames and the superframe duration of a given

Coordinator are scheduled in the inactive period of its neighbour Coordinators, as shown in Figure 2.7.

26 Overview of the IEEE 802.15.4 and ZigBee Protocols

Each Coordinator uses a starting time relative to the Coordinator beacon (Beacon_Tx_Offset) to trans-

mit its beacon frames. The beacon offsets must be different for each router so that each active period

uses a different time window. This approach requires that a Coordinator wakes up both in its active

period and in its parent’s active period to track its beacon. Communication between different clusters

must be accomplished by the means of indirect transmissions. Observe that Beacon_Tx_Offset must

be chosen adequately, not only to avoid beacon frame collisions, but also to enable efficient utilization

of inactive periods, thus maximizing the number of clusters in the same network.

To engineer these networks and effectively schedule the active portions of the different clusters,

[KCAT08] proposed the Time Division Beacon Scheduling (TDBS) mechanism, which was also im-

plemented in TinyOS and made available via the Open-ZB website ([OZ15]). It is also available within

the TinyOS repositories, as part of the ZigBee WG ([Tind]) contributions.

The implementation of this mechanism assumes the following:

1. The ZigBee Network Layer supports the tree-routing mechanism, thus the network addresses of

the devices are assigned accordingly;

2. The ZigBee Coordinator is the first node broadcasting beacons in the network;

3. The ZigBee Routers start to send beacons only after a successful negotiation.

4. The same Beacon Interval (BI) is used by every ZigBee Router. Note that this just a simple

choice to simply the implementation, without loss of generality. This would also be feasible for

the case of different BIs, but with a slightly higher implementation complexity;

The TDBS approach relies on a negotiation prior to beacon transmission. Upon success of the

association to the network, a ZR (initially behaving as a ZED) sends a negotiation message to the ZC

(routed along the tree) embedding the envisaged (BO, SO) pair, requesting a beacon broadcast permit.

Then, in the case of a successfully negotiation, the ZC replies with a negotiation response message

containing a beacon transmission offset (the instant when the ZR must start transmitting the beacon).

In case of rejection, the ZR must disassociate from the network.

Figure 2.8 depicts the architecture of the TDBS implementation in the IEEE 802.15.4/ZigBee

protocol stack. The Admission Control and Scheduling algorithm fits as a service module of the

Application Support Layer. The TDBS requires minor changes to the Network Layer. It is necessary to

add a StartTime argument to the MLME-START.request primitive, as already proposed in the ZigBee

Specification, and to the NLME-START-ROUTER.request primitive. The StartTime parameter will be

used as a transmission offset referring to the parent ZigBee Router (ZR). In the ZC, the value of this

parameter is 0.

After a successful negotiation of the beacon transmission, the ZR will have two active periods: its

own (the superframe duration) and its parent’s superframe duration. In its own active period, the ZR

is allowed to transmit frames to its child nodes or relay frames to the descendant devices in the tree.

The frames destined upstream are sent during its parent’s active period.

2.2 Overview of the IEEE 802.15.4 Protocol 27

Figure 2.8: TDBS implementation in the IEEE 802.15.4 stack

2.2 Overview of the IEEE 802.15.4 Protocol

In the IEEE 802.15.4-2006 version of the standard, the Full Function Devices (FFD) have three dif-

ferent operation modes:

– The Personal Area Network (PAN) Coordinator: the principal controller of the PAN. This de-

vice identifies its own network as well as its configurations, to which other devices may be

associated. In ZigBee, this device is referred to as the ZigBee Coordinator (ZC).

– The Coordinator: provides synchronization services through the transmission of beacons. This

device should be associated to a PAN Coordinator and does not create its own network. In

ZigBee, this device is referred to as the ZigBee Router (ZR).

– The End Device: a device which does not implement the previous functionalities and should

associate with a ZC or ZR before interacting with the network. In ZigBee, this device is referred

to as the ZigBee End Device (ZED).

The Reduced Function Device (RFD) is an end device operating with the minimal implementation

of the IEEE 802.15.4. An RFD is intended for applications that are extremely simple, such as a light

switch or a passive infrared sensor; they do not have the need to send large amounts of data and may

28 Overview of the IEEE 802.15.4 and ZigBee Protocols

Figure 2.9: Operating frequencies and bands

only associate with a single FFD at a time. Throughout this thesis the IEEE 802.14.5 operational

modes and the ZigBee device names are used interchangeably (e.g. PAN Coordinator = ZigBee Co-

ordinator, Coordinator = ZigBee Router and End Device = ZigBee End Device). The designation of

Coordinator represents both ZC and ZRs.

2.2.1 Physical Layer

The IEEE 802.15.4 physical layer is responsible for data transmission and reception using a certain

radio channel and according to a specific modulation and spreading technique. The IEEE 802.15.4

offers three operational frequency bands: 2.4 GHz, 915 MHz and 868 MHz (Figure 2.9). There is a

single channel between 868 and 868.6 MHz (20 kbit/s), 10 channels between 902 and 928 MHz (40

kbit/s), and 16 channels between 2.4 and 2.4835 GHz (250 kbit/s). The protocol also allows dynamic

channel selection, a channel scan function in search of a beacon, receiver energy detection, link quality

indication and channel switching.

All of these frequency bands are based on the Direct Sequence Spread Spectrum (DSSS) spreading

technique. The physical layer of IEEE 802.15.4 is in charge of the following tasks:

– Activation and deactivation of the radio transceiver: The radio transceiver may operate in one

of three states: transmitting, receiving or sleeping. Upon request of the MAC sub-layer, the

radio is turned ON or OFF. The turnaround time from transmitting to receiving and vice versa

should be no more than 12 symbol periods, according to the standard (each symbol corresponds

to 4 bits).

2.2 Overview of the IEEE 802.15.4 Protocol 29

– Energy Detection (ED): Estimation of the received signal power within the bandwidth of an

IEEE 802.15.4 channel. This task does not make any signal identification or decoding on the

channel. The energy detection time should be equal to 8 symbol periods. This measurement is

typically used by the Network Layer as a part of channel selection algorithm or for the purpose

of Clear Channel Assessment (CCA), to determine if the channel is busy or idle.

– Link Quality Indication (LQI): Measurement of the Strength/Quality of a received packet. It

measures the quality of a received signal. This measurement may be implemented using receiver

ED, a signal to noise estimation or a combination of both techniques.

– Clear Channel Assessment (CCA): Evaluation of the medium activity state: busy or idle. The

CCA is performed in three operational modes: (1) Energy Detection mode: the CCA reports

a busy medium if the detected energy is above the ED threshold. (2) Carrier Sense mode: the

CCA reports a busy medium only is it detects a signal with the modulation and the spreading

characteristics of IEEE 802.15.4 and which may be higher or lower than the ED threshold. (3)

Carrier Sense with Energy Detection mode: this is a combination of the aforementioned tech-

niques. The CCA reports that the medium is busy only if it detects a signal with the modulation

and the spreading characteristics of IEEE 802.15.4 and with energy above the ED threshold.

– Channel Frequency Selection: The IEEE 802.15.4 defines 27 different wireless channels. Each

network can support only part of the channel set. Hence, the physical layer should be able to

tune its transceiver into a specific channel when requested by a higher layer.

2.2.2 Medium Access Control (MAC) Sub-layer

The IEEE 802.15.4-2006 protocol supports two operational modes (Figure 2.10):

Figure 2.10: IEEE 802.15.4 operational modes

30 Overview of the IEEE 802.15.4 and ZigBee Protocols

Figure 2.11: IEEE 802.15.4 superframe structure

– The non beacon-enabled mode: When the ZC selects the non-beacon enabled mode, there are

neither beacons nor superframes. Medium access is ruled by an unslotted CSMA/CA mecha-

nism (refer to Section 2.2.6).

– The beacon-enabled mode: In this mode, beacons are periodically sent by the ZC or ZR to

synchronize nodes that are associated with it, and to identify the PAN. A beacon frame delim-

its the beginning of a superframe defining a time interval during which frames are exchanged

between different nodes in the PAN. Medium access is basically ruled by Slotted CSMA/CA.

However, the beacon-enabled mode also enables the allocation of contention free time slots,

called Guaranteed Time Slots (GTSs) for nodes requiring guaranteed bandwidth.

Superframe Structure

The superframe is defined between two beacon frames and has an active period and an inactive period.

Figure 2.11 depicts the IEEE 802.15.4 superframe structure.

The active portion of the superframe structure is composed of three parts, the Beacon, the Con-

tention Access Period (CAP) and the Contention Free Period (CFP):

– Beacon: the beacon frame is transmitted at the start of slot 0. It contains the information on the

addressing fields, the superframe specification, the GTS fields, the pending address fields and

other PAN related information.

– Contention Access Period (CAP): the CAP starts immediately after the beacon frame and ends

before the beginning of the CFP, if it exists. Otherwise, the CAP ends at the end of the active

part of the superframe. The minimum length of the CAP is fixed at aMinCAPLength = 440

symbols. This minimum length ensures that MAC commands can still be transmitted when

GTSs are being used. A temporary violation of this minimum may be allowed if additional

space is needed to temporarily accommodate an increase in the beacon frame length, needed

2.2 Overview of the IEEE 802.15.4 Protocol 31

to perform GTS management. All transmissions during the CAP are made using the Slotted

CSMA/CA mechanism. However, the acknowledgement frames and any data that immediately

follows the acknowledgement of a data request command are transmitted without contention. If

a transmission cannot be completed before the end of the CAP, it must be deferred until the next

superframe.

– Contention Free Period (CFP): The CFP starts immediately after the end of the CAP and must

complete before the start of the next beacon frame (if BO equals SO) or the end of the super-

frame. Transmissions are contention-free since they use reserved time slots (GTS) that must be

previously allocated by the ZC or ZR of each cluster. All the GTSs that may be allocated by the

Coordinator are located in the CFP and must occupy contiguous slots. The CFP may therefore

grow or shrink depending on the total length of all GTSs.

In beacon-enabled mode, each Coordinator defines a superframe structure Figure 8 which is con-

structed based on the Beacon Interval (BI), which defines the time between two consecutive beacon

frames and the Superframe Duration (SD), which defines the active portion in the BI, and is divided

into 16 equally-sized time slots, during which frame transmissions are allowed.

Optionally, an inactive period is defined if BI > SD. During the inactive period (if it exists), all

nodes may enter in a sleep mode (to save energy). BI and SD are determined by two parameters, the

Beacon Order (BO) and the Superframe Order (SO), respectively, as follows:

BI = aBaseSuper f rameDuration×2BO

SD = aBaseSuper f rameDuration×2SO

}

for 0≤ SO≤ BO≤ 14 (2.11)

aBaseSuper f rameDuration = 15.36 ms (assuming 250 kbps in the 2.4 GHz frequency band) de-

notes the minimum duration of the superframe, corresponding to SO=0. As depicted in Figure 8,

low duty cycles can be configured by setting small values of the SO as compared to BO, resulting

in greater sleep (inactive) periods. In ZigBee Cluster-Tree networks, each cluster can have different

and dynamically adaptable duty-cycles. This feature is particularly interesting for WSN applications,

where energy consumption and network lifetime are main concerns. Additionally, the Guaranteed

Time Slot (GTS) mechanism is quite attractive for time-sensitive WSNs, since it is possible to guar-

antee end-to-end message delay bounds both in Star and Cluster-Tree topologies.

Association and Channel Scan Mechanisms

The association procedure takes place when a device wants to associate with a Coordinator. This

mechanism can be divided into three separate phases: (1) channel scan procedure; (2) selection of a

possible parent; (3) association with the parent.

IEEE 802.15.4 enables four types of channel scan procedures: (1) the energy detection scan,

where the device obtains a measure of the peak energy in each channel; (2) the active scan, where the

32 Overview of the IEEE 802.15.4 and ZigBee Protocols

device locates all Coordinators transmitting beacon frames; this scan is performed on each channel

by first transmitting a beacon request command; (3) the passive scan, where similarly to the active

scan, the device locates all Coordinator transmitting beacon frames with the difference that the scan

is performed only in a receive mode, without transmitting beacon requests; and (4) the orphan scan,

used to locate the Coordinator with which the scanning device had previously associated.

After the channel scan procedure is completed, the NWK layer receives a list of all detected PAN

descriptors (containing information about the potential parents). Based on the information collected

during the scan, the device can choose the most suitable parent (that permits associations).

For a device to associate to a Coordinator, it must send an association command frame. Then, if

the Coordinator accepts the device, it adds it to its neighbour table as its child. An association re-

sponse command frame is, in the case of a successful association, sent to the device (via an indirect

transmission), embedding its short address. Otherwise, in the case of an unsuccessful association,

the association response embeds the problem status information. The Coordinator replies to the as-

sociation command frame with an acknowledgement embedding the pending data control flag active,

meaning that it has data ready to be transmitted to the device. The association procedure is completed

when the device sends a data request command frame to the Coordinator requesting the pending data

(the association response command). After a successful association, the device stores all the infor-

mation about the new PAN by updating its MAC PAN Information Base (MAC PIB) and can start

transmissions. Figure 2.12 exemplifies the sequence of messages for a successful association request,

followed by a data transmission.

Figure 2.12: Association mechanism example

2.2 Overview of the IEEE 802.15.4 Protocol 33

Figure 2.13: Disassociation mechanism example

The disassociation from a Coordinator is done via a disassociation request command. The disasso-

ciation can be initiated either by the device or by the Coordinator. After the disassociation procedure,

the device loses its short address and is not able to communicate.

The Coordinator updates the list of associated devices, but it can still keep the device information

for a future re-association. Figure 2.13 shows a transmission sequence of a disassociation request

initiated by a device.

Figure 2.14: GTS allocation message diagram

Guaranteed Time Slot (GTS) mechanism

The GTS mechanism allows devices to access the medium without contention, in the CFP. GTSs are

allocated by the Coordinator and are used only for communications between the Coordinator and a

device. Each GTS may contain one or more time slots. The Coordinator may allocate up to seven

GTSs in the same superframe, provided that there is sufficient capacity in the superframe. Each GTS

has only one direction: from the device to the Coordinator (transmit) or from the Coordinator to the

device (receive). Figure 2.14 illustrates message sequence diagram for a GTS allocation.

34 Overview of the IEEE 802.15.4 and ZigBee Protocols

The GTS can be deallocated at any time at the discretion of the Coordinator or the device that

originally requested the GTS allocation. A device to which a GTS has been allocated can also transmit

during the CAP. The Coordinator is responsible for performing the GTS management; for each GTS,

it stores the starting slot, length, direction, and associated device address. All these parameters are

embedded in the GTS request command. Only one transmit and/or one receive GTS are allowed

for each device. Upon the reception of the deallocation request the Coordinator updates the GTS

descriptor list by removing the previous allocated slot and rearranging the remaining allocation starting

slots. The arrangement of the CFP consists in shifting right the allocated GTS descriptors with starting

slot before the recent deallocated GTS descriptor and consequently the final CAP slot variable is

updated. Figure 2.15 illustrates an example of this procedure.

Figure 2.15: CFP defragmentation upon GTS deallocation

In Figure 2.15, the 1st timeline represents the three allocated GTS. The 2nd timeline shows the

deallocation of GTS 2 that starts on the 10th time slot and has duration of 4 time slots. The final

timeline show GTS 3 shifted right by 4 time slots. The first CTF time slot shifted right from slot 8 (in

timeline 1) to slot 12 (in timeline 3).

The Coordinators monitors GTS activity and if there are no transmissions during a defined number

of time slots the GTS allocation expires. The expiration occurs if no data or no acknowledgement

2.2 Overview of the IEEE 802.15.4 Protocol 35

frames are received by the device or by the Coordinator, on every 2∗n superframes, where n is defined

as:

{

n = 28−macBeaconOrder, if 0≤ macBeaconOrder ≤ 14

n = 1, if 9≤ macBeaconOrder ≤ 14
(2.12)

CSMA/CA Mechanism

In IEEE 802.15.4, contention-based MAC (Medium Access Control) can be either slotted or unslotted

CSMA/CA, depending on the network operation behaviour: beacon-enabled or non beacon-enabled

modes, respectively.

The CSMA/CA mechanism is based on backoff periods (with the duration of 20 symbols). Three

variables are used to schedule medium access:

– Number of Backoffs (NB), representing the number of failed attempts to access the medium;

– Contention Window (CW), representing the number of backoff periods that must be clear before

starting transmission;

– Backoff Exponent (BE), enabling the computation of the number of wait backoffs before at-

tempting to access the medium again.

Figure 2.16 depicts a flowchart describing the slotted version of the CSMA/CA mechanism. It can

be summarized in five steps:

1. Initialization of the algorithm variables: NB equal to 0; CW equals to 2 and BE is set to the

minimum value between 2 and a MAC sub-layer constant (macMinBE = 3);

2. After locating a backoff boundary, the algorithm waits for a random defined number of backoff

periods before attempting to access the medium;

3. Clear Channel Assessment (CCA) to verify if the medium is idle or not.

4. The CCA returned a busy channel, thus NB is incremented by 1 and the algorithm must start

again in Step 2;

5. The CCA returned an idle channel, CW is decremented by 1 and when it reaches 0 the message

is transmitted, otherwise the algorithm jumps to Step 3.

In the slotted CSMA/CA, when the battery life extension is set to 0, the CSMA/CA must ensure

that, after the random backoff (step 2), the remaining operations can be undertaken and the frame

can be transmitted before the end of the CAP. If the number of backoff periods is greater than the

remaining in the CAP, the MAC sub-layer pause the backoff countdown at the end of the CAP and

defers it to the start of the next superframe. If the number of backoff periods is less or equal than the

remaining number of backoff periods in the CAP, the MAC sub-layer applies the backoff delay and

36 Overview of the IEEE 802.15.4 and ZigBee Protocols

Figure 2.16: The slotted CSMA/CA mechanism

re-evaluate whether it can proceed with the frame transmission. If the MAC sub-layer do not have

enough time, it defers until the start of the next superframe, continuing with the two CCA evaluations

(step 3). If the battery life extension set to 1, the backoff countdown must only occur during the first

six full backoff periods, after the reception of the beacon, as the frame transmission must start in one

of these backoff periods.

Figure 2.17: The unslotted CSMA/CA mechanism

The non slotted mode of the CSMA/CA (Figure 2.17) is very similar to the slotted version except

the algorithm does not need to rerun (CW number of times) when the channel is idle.

2.2 Overview of the IEEE 802.15.4 Protocol 37

Transmission scenarios and reception conditions

The IEEE 802.15.4 protocol standard enables three different types of transmissions:

1. Direct transmissions – the frames are transmitted to the medium without any channel assessment

i.e. the beacon frames, the acknowledgment frames and the frames in the GTS time slots;

2. Indirect transmissions – the frames are stored in the Coordinator to which the destination device

is associated. Then, the information about the stored frames (or pending transmissions) is in-

cluded in the pending addresses descriptors fields of the beacon frame. If a device has pending

data in the Coordinator it can request it by sending a data request command frame. An exam-

ple of this mechanism is depicted in Figure 2.18 where the Coordinator beacon contains the

short address 0x0004 in the pending address list. In the Coordinator neighbour table, the short

address 0x0004 is associated to the extended address 0x0000000400000004. Then, the device

0x0004 requests the data with a data request message embedding its extended address. The

Coordinator searches in its neighbour tables for the short address corresponding to the extended

address received in the command frame and transmit the corresponding pending data. In the

next Coordinator beacon the pending address list is updated.

3. Normal transmissions – the frames are transmitted to the medium with contention, by applying

the CSMA/CA algorithm i.e. data frames and command frames transmitted during the CAP.

Depending of the operation mode (beacon-enabled or non beacon-enabled) the CSMA/CA al-

gorithm has two versions, the slotted or the unslotted respectively.

Figure 2.18: Indirect transmission example

Three different transmissions scenarios are possible during the CAP:

– Successful data transmission – the sender successfully transmits the frame to the intended recip-

ient. The recipient receives the frame and sends an acknowledgment if required. If it is an ac-

knowledged request, the sender starts a timer that expires after macAckWaitDuration symbols.

38 Overview of the IEEE 802.15.4 and ZigBee Protocols

Upon the reception of the acknowledge frame (before the timer expires), the sender disables and

reset the timer. The data transfer is completed successfully.

– Loss of frame – the sender successfully transmits the frame to the medium but it never reaches

the destination, so that an acknowledgement frame is not transmitted. The sender timer expires

(after macAckWaitDuration) and the sender retransmits the frame again. This procedure is

repeated up to a maximum of aMaxFrameRetries times after which the transmission aborts.

– Loss of acknowledgement - the sender successfully transmits the frame to the intended recipient

that upon reception replies with an acknowledgement frame. The sender never receives the

acknowledgement and retries the transmission.

Concerning reception conditions, the MAC sub-layer will only accepts frames from the Phy layer

if they satisfy the following requirements:

– The frame type subfield of the frame control field does not contain an illegal frame type;

– If the frame type indicates that the frame is a beacon frame, the source PAN identifier must

match macPANId, unless macPANId is equal to 0xffff, in which case the beacon frame must be

accepted regardless of the source PAN identifier;

– If a destination PAN identifier is included in the frame, it must match macPANId or the broad-

cast PAN identifier (0xffff);

– If a short destination address is included in the frame, it must match either macShortAddress or

the broadcast address (0xffff). Otherwise, if an extended destination address is included in the

frame, it must match aExtendedAddress;

– If only source addressing fields are included in a data or MAC command frame, the frame is

accepted only if the device is a Coordinator and the source PAN identifier matches macPANId.

Inter-Frame Spacing (IFS)

The inter-frame spacing (IFS) is an idle communication period that is needed for supporting the

MAC sub-layer needs to process data received by the physical layer. To allow this, all transmitted

frames are followed by an IFS period. If the transmission requires an acknowledgment, the IFS will

follow the acknowledgement frame. The length of the IFS period depends on the size of the transmitted

frame: a long inter-frame spacing (LIFS) or short inter-frame spacing (SIFS). The selection of the IFS

is based on the IEEE 802.15.4 aMaxSIFSFrameSize parameter, defining the maximum allowed frame

size to use the SIFS. The CSMA/CA algorithm takes the IFS value into account for transmissions in

the CAP. These concepts are illustrated in Figure 2.19.

2.3 A Review of Other Standard Protocols for WSNs 39

Figure 2.19: Inter-frame spacing

2.3 A Review of Other Standard Protocols for WSNs

To complement the IEEE 802.15.4 standard and achieve a higher integration with the Internet, var-

ious IETF working groups have made several proposals such as the IPv6 over Low power WPAN

(6LoWPAN), Routing Over Low power and Lossy networks (ROLL) and IETF Constrained RESTful

Environments (CORE). At the network layer, the IETF 6LoWPAN working group has started in 2007

to specify a protocol, 6LoWPAN [6Lo15], for transmitting IPv6 over IEEE 802.15.4 networks by

introducing 6LoWPAN adaptation layer. On top of that, the IETF ROLL working group has standard-

ized a Routing Protocol for Low Power and Lossy Networks (RPL) [WTB+12]. At the application

layer, a Constrained Application Protocol (CoAP) has been defined by the IETF CORE working group

with the purpose of running RESTful architectures such as the client/server model defined by Hyper-

Text Transfer Protocol (HTTP) over low-power and constrained wireless networks, meeting very low

overhead and simplicity for constrained environments.

However, although these proposals may be suitable for applications in the Internet domain, other

applications in areas such as the process industry, present different requirements, some of those shared

with Cyber Physical Systems (CPS). The IEEE 802.15.4 protocol presents several issues such as reli-

ability due to radio interferences and the high energy consumption under higher traffic loads, mostly

caused by channel access inefficiency. To tackle this, other proposals have been put forward, such

as the IEEE 802.15.4e [IEE15a] standard, WirelessHART [Wi10], ISA 100.11a [ISA09], WIA-PA

[WIA11] or DASH7 [DAS13], specially targeting the process industry.

WirelessHART (IEC 62591)

Officially presented by the HART Communication Foundation in September, 2007, WirelessHART

was the first open standard specifically designed for wireless communication in process measurement

40 Overview of the IEEE 802.15.4 and ZigBee Protocols

and control applications. Its aim was to be compatible with existing HART devices by adding wireless

communication capability to the HART protocol. At the very bottom of its stack, it adopts IEEE

802.15.4-2006 as the physical layer. On top of that, WirelessHART defines its own time-synchronized

MAC layer featuring a TDMA access mechanism combined with channel hopping. The regular IEEE

802.15.4 superframe is not supported by WirelessHART. Its superframe consists of multiple time-slots,

in which a packet transaction can take place.

WirelessHART network layer supports self-organizing and self-healing mesh networking tech-

niques. In this way, messages can be routed around interferences and obstacles. It adopts a centralized

routing scheme, in which the network manager is responsible for maintaining up-to-date routes and

communication schedules for devices in the network. A channel blacklisting feature is also provided

to restrict the number of hopping sequences. Each link containing a transmitter and a receiver is as-

signed to the channel hopping sequence and switch the channel after a transaction. WirelessHART

specification was approved by IEC as a full international standard (IEC 62591) in March 2010.

ISA-100.11a (IEC 62734)

ISA-100.11a describes a mesh network designed to provide secure wireless communication to process

control. It’s MAC employs the same superframe structure as WirelessHART. In addition, it supports

three channel hopping operating modes: slotted channel hopping, slow channel hopping and hybrid

combinations of slotted and slow hopping. Just like WirelessHART, a centralized network manager is

responsible to generate a hopping pattern. In slotted channel hopping mode, a time slot in a superframe

is assigned a dedicated channel and the next time slot shall use the next successive channel in the

hopping pattern. The hopping pattern is repeatable as time progresses. For a given hopping pattern, the

standard provides a mapping between channel number in hopping pattern and MAC channel numbers.

In slow hopping mode, multiple consecutive time slots are assigned a common channel. This

method supports devices with imprecise timing settings. The slow hopping also serves as a way to

improve support for event-based traffic. Usually a group of devices share a slow hopping period in a

contention-based way, that is, transmissions in a slow hopping period is CSMA/CA based. When an

event triggers the need for a device to immediately transmit a data packet or an alarm, the device does

not need to wait for the next time slot that is assigned to it, thereby reducing the latency. However,

slow hopping increasing devices’ energy consumption as they have to listen to the channel for possible

incoming packets.

In general, ISA-100.11a is more flexible by providing more configurable parameters than Wire-

lessHART. For example, the time slot size is fixed at 10ms in WirelessHART while in ISA100.11a it is

configurable on a per-superframe base. Both standards use Time Division Multiple Access (TDMA)

with frequency hopping for channel access in the 2.4 GHz band. The combination of direct sequence

spread spectrum (DSSS) and frequency-hopping spread spectrum (FHSS) makes WirelessHART and

ISA-100.11a more robust to interference in harsh industrial environments.

2.3 A Review of Other Standard Protocols for WSNs 41

WIA-PA (IEC 62601)

The Chinese Industrial Wireless Alliance was established in 2007 aiming to develop standards for

industrial wireless network [LLYL13]. Wireless network for Industrial Automation - Process Au-

tomation (WIA-PA) is the first standard developed by the alliance for process industries, and defines

the system architecture and communication specifications. It was approved by IEC as international

standard (IEC 62601) in 2011.

The WIA-PA MAC has a compatible IEEE 802.15.4 superframe structure with redefined functions

for CAP, CFP and inactive period. The CAP is used for packet transmission of device joining, intra-

cluster management and retransmissions. The access method in the CAP is CSMA/CA mechanism

defined in IEEE 802.15.4, which is different from WirelessHART and ISA-100.11a. Each WIA-PA

time slot duration in CFP is configurable and compatible with IEEE 802.15.4 GTS. Except the sleep

mode, intra- and inter-cluster communication is allowed during the inactive period. WIA-PA supports

three channel hopping mechanisms: adaptive frequency switch (AFS), adaptive frequency hopping

(AFH), time slot hopping (TH) in which the channel is changed per time slot. The channel hopping

sequence is determined by the network manager.

At the network layer, all of the standards overview so far support a mesh network architecture with

different routing protocols to overcome obstacles, reach longer distances, and create resilient paths for

increasing reliability. However, WirelessHART and WIA-PA do not support the IPv6 packet format,

while ISA-100.11a does, by employing the IETF 6LoWPAN protocol as an adaptation sublayer.

Concerning the transport layer, WIA-PA does not specify any protocols, while ISA-100.11a uses

User Datagram Protocol (UDP) and WirelessHART utilizes its own proprietary protocol. At the ap-

plication layer, a HART-compliant protocol is used in WirelessHART to be compliant with existing

HART devices. WIA-PA uses a proprietary protocol while ISA-100.11a does not specify any protocols

in this layer.

IEEE 802.15.4e

The IEEE802.15.4e standard released in 2012 defines a MAC amendment to the existing standard

IEEE 802.15.4-2006 to better support industrial markets. It aims to achieve better reliability and

lower power consumption through time-synchronized channel hopping (TSCH). Like WirelessHART,

ISA-100.11a and WIA-PA, the IEEE 802.15.4e standard is also build on top of IEEE 802.15.4 PHY

with a modified MAC and this shares the same features at the physical layer.

According to the standard, the MAC supports four behaviour modes: (1) Deterministic and Syn-

chronous Multi-channel Extension (DSME); (2) Time-Slotted Channel Hopping (TSCH); (3) Low

Latency Deterministic Networks (LLDN); and (4) Radio Frequency Identification blink (RFID): for

application domains such as item and people identification, location, and tracking.

From these modes, DSME and TSCH seem the most interesting for CPS applications. In the

TSCH mode, the superframe is replaced with a slotframe. A slotframe is a group of timeslots re-

42 Overview of the IEEE 802.15.4 and ZigBee Protocols

peating in time. The number of timeslots determines how often each timeslot repeats, thus setting a

communication schedule for nodes that use the timeslots. A pair of devices can exchange a frame and,

optionally, an acknowledgement in each timeslot. It is also possible the use of multiple slotframes to

define a different communication schedule for various nodes. In this case, a device may participate in

one or more slotframes simultaneously, and not all devices need to participate in all slotframes.

The IEEE 802.15.4e focuses on the MAC layer only. However, the IETF 6TiSCH working group

is currently defining the latest components for an open standard-based protocol stack to put together

IPv6 technologies with the operational technologies of the TSCH mode. Implementations of this

protocol are becoming increasingly available, although they are mostly focusing only the TSCH mode.

The OpenWSN protocol stack [WVK+12], developed at the University of California Berkeley, was

probably the first implementation of this protocol. In the meanwhile, within the RICH project [Eurb],

an initiative from the European Institute of Innovation and Technology, two implementations of TSCH

were carried out, both for the Contiki [Eura] and the TinyOS [Eurc] operating systems. The objective

of RICH is defining and achieving reliable wireless solutions for the ‘Internet of Things’ based on the

IP protocol.

DASH7 Alliance Mode

Contrary to other existing low-power wireless technologies, D7AM defines all the layers of the OSI

(Open Source Interconnect) model, from the physical layer up to the application layer. The goal of

D7AM is to handle bursty, light data and asynchronous and transient usage models. This approach

is referred to as BLAST (bursty, light, asynchronous, stealth and transitive), and this means that it is

tuned for dealing with inherently mobile devices that need to upload small bits of information reliably

thanks to its range, low-power and robustness features.

Regarding the data-link layer, D7AM supports both synchronous and asynchronous communica-

tion models. To support both communication models, the data-link layer is based on two well-known

techniques: preamble sampling (PS) and carrier sense multiple access (CSMA). In addition, all motes

in the network share a common knowledge of time, the tick, which is the smallest amount of time at

which events at the MAC layer can be resolved. However, there is no global network synchronization,

as each clock may tick at a different rate, e.g., due to temperature drift for instance. Nevertheless, it is

important to take into account that D7AM operation does not have the same stringent requirements as

TSCH because time synchronization is ad hoc. That is, synchronization happens every time a network

event is triggered and only needs to be maintained for the duration of such an event, which typically

represents a smaller interval than clock drifts relative to each other.

Using PS, a node can trigger communications with another node or a group of nodes asyn-

chronously. Nodes execute the channel scan series, which is an ordered list of time events at which

nodes wake up and turn on the radio to receive a background frame. In order to trigger communica-

tions, the standard defines a beacon transmit series, which consists of an ordered list of time events at

2.3 A Review of Other Standard Protocols for WSNs 43

which the node is expected to wake up and turn on the radio to transmit a background frame. These

include information regarding the time that the node is expected to wake up and the channel that it has

to listen to. Both the channel scan series and the background scan series can be configured depending

on the application requirements, e.g., to minimize latency or maximize battery duration.

The main difference between D7AM and other existing technologies is the query system imple-

mented at the upper layers of the stack, which is highly integrated with the lowest layers [VTPVG+14].

The query system enables to restrain the response of nodes to a query based on a set of upper layer

parameters. For example, during synchronization, the initiating node may indicate that the query is

only for nodes that have a temperature sensor. Therefore, all the nodes that do not have a temperature

sensor will not synchronize and attempt to reply to the subsequent queries.

IEEE 802.15.5

The IEEE 802.15.5 Task Group [IEE15b] aims at enabling mesh capability for high-rate and low-rate

Wireless Personal Area Networks. The IEEE 802.15.4 does not specify how to support multi-hop

routing abilities, delegating the design and development of them to the upper layers. The objective of

IEEE 802.15.5 is therefore to solve the limitations of IEEE 802.15.4, developing basic mesh network-

ing functions and primitives. With this aim, IEEE 802.15.5 provides features such as node discovery,

multicast, reliable broadcast, synchronized and unsynchronized operations, power saving (ON/OFF

scheduling strategy), and route tracing, thus taking into account the strict constraints of the WSN

devices. The result is a recommendation, known as the LR-WPAN mesh standard, which enables a

migration from IEEE 802.15.4 to mesh networks.

In order to address energy efficiency, the standard proposes two strategies. In Asynchronous

Energy Saving (AES) it carries out communications in a mesh topology by using a contention-based

algorithm, where each station transmits data only when the physical medium is idle. As a result, the

information may reach its destination suffering high delay variability and achieving low transmission

rates.

For supporting stricter timing and lower power requirements than those provided by the AES

solution, an alternative method is proposed. The synchronous communication mechanism called Syn-

chronous Energy Saving (SES) uses a strict schedule of tasks for all network devices which are syn-

chronized to a unique node, the mesh coordinator, mainly on static networks. The mesh coordinator

is the head device of the tree topology and it is in charge of starting the synchronization process by

sending a message with its clock time information twice. Each node of the network, child of the

mesh coordinator, stores the clock time of the first message sent by the coordinator and a timestamp

(temporal label included in the message header) with its own clock time. When the second message

arrives at the children nodes, they calculate the difference between both coordinator clock times and

the difference between their own current clock and the timestamp previously stored. The difference

between both resulting values is the drift between each one of the children and the coordinator. If all

44 Overview of the IEEE 802.15.4 and ZigBee Protocols

nodes on the network are not reached by the message of the coordinator in one-hop, these children

retransmit the coordinator’s clock times in multiple hops to the rest of network nodes, spreading the

synchronization along the logical tree.

At the same time as the first synchronization action is spreading, the SES mechanism divides the

entire mesh network into multiple fixed regions, so that some nodes become parents of each one of

these regions. Placed between two regions, the parent nodes are border devices in charge of guaran-

teeing the global synchronization of the entire mesh network. To achieve this purpose, parent nodes

are able to perform a twofold task simultaneously: (i) to be synchronized with the up-region and (ii)

to be responsible for synchronizing all the children nodes of its own region in one or multiple-hops.

This is the reason why these special nodes (parents) are denoted as Region Synchronizers. The goal is

to share the network-wide synchronization responsibility between the mesh coordinator and the syn-

chronizers of each region for future synchronization actions. In this context, each one of these actions

is triggered by the mesh coordinator, which synchronizes all the nodes of the first region by means

of a synchronization request message, ending its operation when the synchronization reply message

arrives from the most remote node of the first region. Once the time assigned by the mesh coordinator

for the synchronization of the first region expires, synchronizers belonging to the second region start

the same procedure again and so on with the rest of regions.

This standard appears interesting, however, there is still a lack of a thorough performance eval-

uation work with SES. Importantly, according to [GSGSRHGH12], this synchronization mechanism

may introduce delays upon data transmissions which take place at different network regions, greatly

affecting delay sensitive applications. This fact vindicates the need for further study to evaluate the

predictability of the standard.

Chapter 3

Technological Platforms and Tools

As mentioned in chapter 1 of this thesis, we aim at identifying a set of prominent Quality of Ser-

vice (QoS) problems and to provide an effective set of solutions with close contact with reality. To

accomplish this, we are relying as much as possible upon real-world application scenarios, (i.e. a

datacentre monitoring scenario and a structural health monitoring scenario), which were engineered,

implemented and deployed in the course of this work.

The reason for this hands-on strategy is that besides enabling a deeper understanding of these

network infrastructures at a more practical level, it also provides the QoS proposals with a real-world

application context, to enable the experimental validation and demonstration of the proposed QoS

management mechanisms. This is becoming increasingly important to foster these technologies and

to push forward its widespread deployment.

To carry out this strategy, a set of Wireless Sensor Network (WSN) technologies and tools was

used throughout this thesis. In this chapter we overview these WSN technologies, which span from

WSN platforms to Operating Systems and communication stack implementations.

3.1 WSN Platforms and Development Tools

Typically, a mote, or sensor node consists of a combination of a low-powered micro-controller, a low

powered radio-transceiver, and one or several different sensors for monitoring physical parameters

such as temperature, pressure, humidity, lighting, etc. These sensors can be available directly on

board or via an expansion port.

Many WSN platforms have already been designed in the past and are commercially available.

From these, perhaps the most well known are the MicaZ and TelosB [MEM15] platforms. Each

platform, presents its own characteristics in terms of processing power and energy requirements, which

are usually conflicting, memory availability and sensors.

45

46 Technological Platforms and Tools

In addition to the WSN platforms, there are tools that are indispensable for carrying out work

in WSNs. At the top, the wireless packet analyzers constitute a must have equipment to effectively

deploy and debug a WSN. In what follows we describe some of these tools employed in the work

carried out throughout this thesis.

3.1.1 Mote Platforms

Throughout this thesis two WSN platforms were used to support the experimental evaluations: the

TelosB [MEM] mote and the FLEX board [Evi12]. Although the TelosB mote is clearly a WSN

development platform, the FLEX is more of a general purpose prototyping board. However, it can

be easily configured as a WSN platform and it is supported by the ERIKA [Evi15] OS, a real-time

operating system to which the IEEE 802.15.4/ZigBee communication stack was ported to carry out

experimental evaluations with stricter timing constraints. The TelosB, on the other hand, is supported

by TinyOS [Tin15], one of the most well known and used OS in the WSN domain.

The TelosB mote (Figure 3.1 left) consists of a TI MSP430 16-bit microcontroller [Tex15b] and a

typical CC2420 RF transceiver [Tex14]. Its 48 KB of Program memory (in-system reprogrammable

flash) give just enough room to place the ZigBee communication stack and a few extra applications.

It also provides extra 10 KB of EEPROM which is quite useful for storing a few data tables, con-

version values, etc. It includes a temperature, humidity and light sensor on-board. Another useful

characteristic of this platform is the UART communication port (USB converter) which can be used

for programming the device and for communication.

Figure 3.1: Telosb mote and block diagram [MEM]

Another relevant platform in this thesis, although not strictly WSN oriented is the FLEX [Evi12]

prototyping board. This platform enabled some of the most time-sensitive experimental evaluations

in this thesis in chapter 7, due to its support of the ERIKA [Evi15] real-time operating system.

3.1 WSN Platforms and Development Tools 47

Figure 3.2: The FLEX board [Evi12]

The FLEX (Figure 3.2) was built as an embedded board to support the dsPIC family of Microchip

micro-controllers, aiming at the development and test of real-time applications. It is composed of a

DsPIC33FJ256MC710 Microcontroller at 40 MHz [Mic14] and provides 256 KB of Program memory

(in-system reprogrammable flash), much more than the TelosB. It relies on a modular architecture to

attach new hardware, by using daughter boards piggybacking.

The basic configuration of a FLEX device is made by the Base Board. The FLEX Base Board

mounts the Microchip dsPIC micro-controller, and exports almost all the pins of the micro-controller.

The user can connect the desired components to the dsPIC ports in order to build the specific appli-

cation. As depicted in Figure 3.2, several daughter boards can be connected in piggyback to the Flex

Base Board. For instance, to carry out the experimental evaluation described in chapter 7 the FLEX

was fitted with the and a Flexipanel EASYBEE IEEE 802.15.4 Transceiver module [Fle15], attached

via a daughter board.

3.1.2 IEEE 802.15.4/ZigBee Protocol Analysers

The implementation work carried out over the IEEE 802.15.4/ZigBee has been supported by two

network protocol analysers (packet sniffers): the TI CC2420 Packet Sniffer for IEEE 802.15.4 v1.0

(previously Chipcon) [Tex15a] and the Daintree IEEE 802.15.4/ZigBee Network Analyser [Dai15b].

These analysers interpret the IEEE 802.15.4 and ZigBee frames, allowing to debug and to validate the

work over the IEEE 802.15.4/ZigBee protocols.

3.1.2.1 TI CC2420 Packet Analyzer

The packet sniffer provided by TI (previously by Chipcon), the CC2420 Packet Sniffer v1.0 for IEEE

802.15.4, provides a raw list of the packets transmitted in the wireless medium. This application works

in conjunction with a CC2400EB board (Figure 3.3 b) and a CC2420EM module (equipped with a

CC2420 radio transceiver). Figure 3.3 a), depicts a snapshot of the sniffer application. This software

48 Technological Platforms and Tools

Figure 3.3: The Chipcon IEEE802.15.4/ZigBee Packet Sniffer [Tex15a]

can provide among other things, a raw list of the received packets with timestamp information and

show an interpretation of the packets information, highlighting the different packet fields. It supports

filters by packet fields and device IDs, and can automatically create a device list based on the packets

received.

A tool used to test the transceivers is also provided. The SmartRF Studio [Tex15c] application

interacts with the CC2420EB/CC2420EM evaluation board and allows viewing and interacting with

the CC2420 transceiver memory registers. With this tool is possible to test different configurations

on the transceiver and test its behaviour with simple send/receive functions. This tool was very use-

ful during the protocol stack implementation enabling a better understanding of the physical layer

implementation and the functionalities of the transceiver.

The software allows to Read/Write from/to the CC2420 transceiver memory registers (Figure 3.3.a),

execute functions of the transceiver (e.g. TR ON, TX OFF, etc.). It also supports test transmissions,

using IEEE 802.15.4 compatible packets or an unmodulated carrier, and provides a memory view

(Figure 3.3.b) of the buffers (receive and transmit).

3.1.2.2 Daintree Network Analyzer

The Daintree Network Analyser [Dai15b] provides more functionalities than the Chipcon sniffer. Be-

sides the received packets list and their field highlighting, it also constructs a graphic view of the

network topology, including the visualization of routing paths, message flows, device states and link

quality of the messages, as depicted in Figure 3.4.

3.2 WSN Operating Systems 49

Figure 3.4: Overview of Daintree Network Analyser [Dai15b]

Another interesting feature, is the network status of the devices by analysing the messages trans-

mitted, messages received, loss message ration, bandwidth usage, average link quality indicator among

others. This application also distinguishes the analysis parameters depending on the selected proto-

col layers. The Daintree Analyser enables the import of a plant layout (office floor, factory floor)

and overlay the network topological view over it. This feature allows dragging and dropping nodes,

assigning labels to each node and it can be very useful for monitoring the network.

The hardware used in conjunction with this network analyser software is the 2400E Sensor Net-

work Adapter [Dai15a]. This adapter includes an Ethernet interface and can be used for a multiple and

synchronized node sniffing, meaning that several 2400E can be scattered (connected to an Ethernet

network) in a certain geographical area in a way that IEEE 802.15.4/ZigBee traffic can be collected at

different locations of a large-scale network into a single application.

3.2 WSN Operating Systems

The Operating System provides an abstraction of the machine hardware and is in charge of reacting

to events and handling access to memory, CPU, and hardware peripherals. Especially in constrained

hardware devices like those of typical sensor network platforms, the effectiveness in the OS paradigms

50 Technological Platforms and Tools

largely affects the response in the target application. The execution model is the key factor differenti-

ating the many solutions in existing OSs for WSNs.

TinyOS [Tin15] uses a stack shared among the processes and no heap. Each instance of the task

runs until the end of the code unless it is pre-empted by an ISR (Event Handler) activated by an event

occurrence; ISRs can in turn spawn a new task or call a function (command). The task scheduler im-

plements a First Come First Served (FCFS) strategy by default. Lacking priorities and pre-emption, it

is impossible to give precedence to more important activities. Other Operating Systems (e.g. ERIKA

[Evi15], nanoRK [Nan15]) allow task pre-emption and real-time priority-driven scheduling. In such

OSs tasks can block on certain events, can be woken up (activated) upon the occurrence of internal

or external events (the reception of a network message or other hardware interrupts, or explicit acti-

vation by other tasks), or upon expiration of software timers. To permit pre-emption, some machine-

dependent mechanisms must be implemented to save the "context" of the task (registers and stack

pointer) at suspension occurrence. Such mechanism permits to resume the suspended computation

when the task is rescheduled.

An intermediate software solution is given by Contiki [Con15]. This OS uses a mono-stack mem-

ory model for an event-driven kernel. The application programs are dynamically loaded at run-time.

It supports a thread-like coding style (proto-threads) but enforcing a sequential flow of control; op-

tionally multi-threading can be adopted, linking to a specific library. Table 8.1 presents some of the

well-known operating systems for resourced constrained devices.

Table 3.1: Operating Systems for resource constrained devices

OS Origin Open source RT support Link

TinyOS UCB, Intel (USA) Yes No http://www.tinyos.net

Contiki SICS (Sweden) Yes No http://www.contiki-os.org/

Nano-RK CMU (USA) Yes Yes http://www.nanork.org

ERIKA SSSUP (Italy) Yes Yes http://erika.sssup.it

MANTIS UC Boulder (USA) Yes No http://mantisos.org

SOS UCLA (USA) Yes No http://nesl.ee.ucla.edu/projects/sos-beta/

In this thesis, we relied upon two operating systems for our experimental work, TinyOS and

ERIKA, the latter, mostly to carry out more time-sensitive experimental work. We introduce these

OS in the next sections.

3.2.1 TinyOS

TinyOS [Tin15] is an operating system for embedded systems with an event-driven execution model.

TinyOS is developed in nesC [GLVB+03], a language for programming structured component-based

applications. nesC has a C-like syntax and is designed to express the structuring concepts of TinyOS.

3.2 WSN Operating Systems 51

Figure 3.5: Arrangement of the components and their wiring [GLVB+03]

This includes the concurrency model, mechanisms for structuring, naming and linking together soft-

ware components into embedded system applications. The component-based application structure

provides flexibility to the application design and development. nesC applications are built out of

components and interfaces. The components define two target areas:

1. the specification, a code block that declares the functions it provides (implements) and the

functions that it uses (calls);

2. the implementation of the functions provided.

The interfaces are bidirectional collections of functions provided or used by a component. The

interfaces commands are implemented by the providing component and the interface events are im-

plemented by the component using it. The components are "wired" together by means of interfaces,

forming an application. TinyOS defines a concurrency model based on tasks and hardware events han-

dlers/interrupts. TinyOS tasks are synchronous functions that run without preemption until completion

and their execution is postponed until they can execute. Hardware events are asynchronous events that

are executed in response to a hardware interrupt. Figure 3.5 depicts the possible interactions between

the components and interfaces.

The graphical arrangements have the following meaning:

- A requires interface I, B provides I, and A and B are wired together.

- C and D both require or both provide J. The direction of the arrow indicates that the original

wiring is "C = D".

- E requires function f, and F provides function f.

TinyOS also provides a program called nesdoc that provides a graphical arrangement of all the

components used by an application. This tool is very useful to understand how TinyOS binds all the

components.

The second generation of this OS (TinyOS 2) still keeps many of the basic ideas of its previous

version while pushing the design in several key areas. System reliability and robustness is enhanced

by redefining some of the basic TinyOS 1.x abstractions and policies such as initialization, the task

queue, resource arbitration and power management. For example, in TinyOS 2, every task has its

52 Technological Platforms and Tools

own reserved slot in the task queue and can be posted only once. These semantics lead to greatly

simplified code (no need for task reposting on error) and more robust components. The same principle

of compile-time allocation and binding is applied to many other aspects of the system: components

allocate all of the state they might possibly need; and the invariants are explicitly reflected by the

components and their interfaces, rather then being checked at runtime. This design principle limits the

flexibility, but makes many OS behaviors deterministic.

3.2.2 ERIKA Real-time Operating System

Erika Enterprise RTOS is a multi-processor real-time operating system kernel, implementing a collec-

tion of Application Programming Interfaces (APIs) similar to those of OSEK/VDX [OSE04b] standard

for automotive embedded controllers. Available for several hardware platforms, it aims at supporting

micro-controllers and multi-core systems-on-a-chip with a real-time scheduler and resource manage-

ment procedures.

Tasks in ERIKA are scheduled according to fixed and dynamic priorities, and share resources

using the Immediate Priority Ceiling protocol. Interrupts always pre-empt the running task to execute

urgent operations required by peripherals. The OS is supported by an Eclipse-based development

environment, RT-Druid that allows writing, compiling, and analysing an application through a set

of plug-ins for the Eclipse Framework [Ecl15]. The RT-Druid Core plug-in contains all the internal

meta-model representation, providing a common infrastructure for the other plug-ins, together with

ANT scripting support. The RT-Druid Code Generator plug-in implements the OIL file editor and

configurator (for a review on OSEK/VDX standard and OIL language see [OSE04a]), together with

target independent code generation routines for ERIKA. The RT-Druid Schedulability Analysis plug-

in provides a Schedulability Analysis framework, implementing algorithms like scheduling acceptance

tests, sensitivity analysis, task offset calculation, thus including a set of design tools for modelling,

analysing, and simulating the timing behaviour of embedded real-time systems.

To support the IEEE 802.15.4 communication standard in ERIKA, a porting of the Open-ZB IEEE

802.15.4 implementation in nesC was carried out in a collaboration between CISTER and [ReT] in

2008. The resulting implementation used in chapter 7, the Open-ZB implementation over TinyOS used

in chapter 5 and 9 and the official TinyOS v2.x implementation, used in chapter 6, are all described in

the next sections, highlighting their main properties.

3.3 IEEE 802.15.4/ZigBee Protocol Stacks

There are several implementations of the IEEE 802.15.4/ZigBee protocols supported by different hard-

ware platforms. Most of them were developed in C language and programmed directly into the mi-

crocontroller without any supporting operating system (like TinyOS), which represents a clear disad-

3.3 IEEE 802.15.4/ZigBee Protocol Stacks 53

vantage in terms of portability. Also, in some implementations, the source code is not open, enabling

just the implementation of top level applications using a pre-defined interface set. In addition, these

implementations can only be used in the provided hardware platform and only support the non-beacon

enabled mode, therefore allowing the construction of ZigBee standard mesh networks, but not of

beacon-enabled Star and Cluster-Tree networks.

To highlight a few examples, the Ember EmberZNet [Emb15] stack, compliant with the ZigBee

PRO specification, works with the EM359x and EM35x ZigBee chip families. Freescale Semiconduc-

tor [Fre14] also provides a commercial implementation compliant with the ZigBee specification. The

software stack supports several Freescale chip platforms, such as the MC1323x family.

NXP Semiconductors also introduced the JenNet-IP protocol stack [NXP15], combining IEEE802.15.4-

based wireless network technology and the Internet Protocol (IP) using IETF 6LoWPAN, targeting

the ’Internet of Things’. JenNet-IP can be used to implement a standalone WPAN (Wireless Personal

Area Network) or a WPAN with IP connectivity allowing control from a LAN (Local Area Network)

or WAN (Wide Area Network). The JenNet-IP protocol stack is available for the JN5168 and JN5164

microcontrollers. NXP also provides a IEEE 802.15.4 and a ZigBee PRO communications stack sup-

porting ARM Cortex-M0+/M4 cores.

Texas Instruments developed the Z-Stack [Tex15d] that is compliant with the ZigBee 2012 and

PRO specification and supports multiple platforms including the CC2530 and CC2538 System-on-

Chips. The Z-Stack is a free implementation developed in C language. Atmel [Atm15] also offers

a suite of free and certified IEEE 802.15.4-compliant software stacks, like IEEE 802.15.4 MAC,

IPv6/6LoWPAN, ZigBee Radio Frequency for Consumer Electronics (RF4CE), ZigBee PRO, and

ZigBee Smart Energy stacks. These stacks are implemented in C with available source code. Besides

the previously mentioned companies there are several others with ZigBee solutions. Nevertheless,

only the mesh network topologies are supported and the software implementations are limited. Most

of these companies are semiconductor companies dedicated to hardware development.

In what follows we present the communication stacks used throughout the experimental work

carried out in this thesis.

3.3.1 Open-ZB Protocol Stack for TinyOS

The Open-ZB toolset for the IEEE 802.15.4/ZigBee protocols is available at [OZ15]. This expanding

toolset provides an open-source IEEE 802.15.4/ZigBee protocol stack implementation which is sup-

ported by TinyOS in its version 1.x and 2.x and ERIKA operating systems. The first version of the

IEEE 802.15.4 implementation was among the first open source implementations of these protocols

and only supported the MICAz motes and it was conditioned to that hardware platform. The latest

versions also support the TelosB hardware platform.

54 Technological Platforms and Tools

The Open-ZB protocol stack implementation has three main blocks: (1) the hardware abstraction

layer, including the IEEE 802.15.4 physical layer and the timer module supporting both MICAz and

TelosB mote platforms; (2) the IEEE 802.15.4 MAC sub-layer; and (3) the ZigBee Network Layer.

The implemented features of the IEEE 802.15.4 include the slotted version of CSMA/CA algorithm,

allowing the testing and parametrization of its variables, the different types of transmission scenarios

(e.g. direct, indirect and GTS transmissions), association of the devices, channel scans (e.g. energy

detection and passive scan), beacon management and other mechanisms. Other IEEE 802.15.4 features

were left out of this implementation version because they were not needed for the current research

efforts. Features that are not currently supported include the unslotted version of the CSMA/CA, the

active and orphan channel scan, the use of extended addressing fields in normal data transmissions.

In the ZigBee Network Layer, the currently supported features comprise the data transfer between

the Network Layer and the MAC sub-layer, the association mechanisms and the network topology

management (e.g. cluster-tree support by the ZigBee Addressing schemes) and routing (e.g. neighbour

routing and tree-routing). Thus, the Open-ZB stack implements the beacon-enabled mode of the IEEE

802.15.4 MAC sub-layer and the required functionalities in the ZigBee Network Layer to support

cluster-tree topologies.

In 2008, as a result from a collaboration with the TinyOS Network Protocol Working Group [Tinc]

to implement a ZigBee compliant stack for TinyOS 2, the stack was ported to TinyOS v2.0 maintaining

approximately the same architecture.

More recently, in a consolidation effort within the TinyOS working groups (15.4WG [Tina] and

ZigBee WG [Tind]), an official TinyOS implementation of the IEEE 802.15.4 and ZigBee protocols

was completed, featuring a substantial change to the underlying IEEE 802.15.4 architecture. Security

was also added to the IEEE 802.15.4 implementation. The resulting architecture is described in detail

in Section 3.3.3.

The Open-ZB implementation has three main TinyOS components: the Phy, the Mac and the

NWL (Figure 3.6). The Mac and the NWL are shared by the two platforms (MICAz and the TelosB)

and there are two different Phy components, one for each platform. At compilation time, the Phy

component is selected according to the envisaged platform. The need of two different Phy components

is due to the fact that the TinyOS hardware specific modules are different for each platform. Also, the

two platform differ in the hardware timers they provide, leading to two different timer modules (the

TimerAsync) with the purpose of maintaining all asynchronous timer events of the Mac layer (e.g.

beacon interval, superframe duration, time slots and backoff periods). Nevertheless, the software

architecture is the same for both platforms.

Table 3.2 presents the layered view of the different TinyOS components and interfaces of [CKSA07]

the IEEE 802.15.4/ZigBee protocol stack implementation. The organization in modules enables the

easy and fast development of adaptations/extensions to the current implementation. Each of these

modules makes use of auxiliary files to implement some generic functions (e.g. functions for bit ag-

3.3 IEEE 802.15.4/ZigBee Protocol Stacks 55

gregation into variable blocks), constants declaration (e.g. layer constants), enumerations (e.g. data

types, frame types, response status) and data structure definitions (e.g. frame construction data struc-

tures).

Table 3.2: Functionalities of the implemented protocol stack components [CKSA07]

Component Functionalities

PHY

Activation and deactivation of the radio transceiver;

Energy detection within the current channel;

Transceiver data management;

RSSI readings and channel frequency selection;

CCA procedure for the CSMA/CA mechanism;

Data transmission and reception management.

MAC

Beacon generation if the device is a Coordinator;

Synchronization services;

PAN association and disassociation procedures;

CSMA/CA as a contention access mechanism;

GTS management mechanism.

NWK

Definition of the network topology (ZC, ZR or ZED;

Association mechanisms;

ZigBee addressing schemes;

Maintenance of neighbour tables;

Tree-Routing.

The interface files (Figure 3.6 right side) are used to bind the components and represent one

Service Access Point (SAP). Each of these interfaces provide functions that are called from the higher

layer module and are executed/implemented in the lower layer module.The interfaces also provide

functions used by the lower layer modules to signal functions that are executed/implemented in the

higher layer modules.

For example the PD-DATA.nc interface is used by the MacM module to transfer data to the PhyM

module, that is going to be transmitted, and also enables the signalling by the PhyM in the MacM of

received data.

Figure 3.7 depicts the relations between different components of the IEEE 802.15.4/ZigBee pro-

tocol stack implementation. Note that some components used in the IEEE 802.15.4/ZigBee protocol

stack implementation are already part of the TinyOS operating system, namely the hardware compo-

nents (e.g. the HPL<...>.nc and the MSP430<...>.nc modules).

In this implementation, there is no direct interaction with the hardware. In fact, TinyOS already

provides hardware drivers forging a hardware abstraction layer used by the Phy component. In Fig-

ure 3.7, observe that the components filled in white are hardware components already provided by the

TinyOS operating system.

56 Technological Platforms and Tools

Figure 3.6: Arrangement of the components and their wiring [CKSA07]

Figure 3.7: TinyOS implementation diagram [CKSA07]

3.3 IEEE 802.15.4/ZigBee Protocol Stacks 57

Refer to an extended implementation technical report in [CKSA07] for a detailed description of

the implementation functions, variables and protocol mechanisms.

3.3.2 Open-ZB Protocol Stack for ERIKA

TinyOS is one of the most used OSs for embedded resource-constrained wireless sensor platforms,

however, TinyOS does not support crucial mechanisms for multitasking such as tasks pre-emption and

prioritization. Based on previous experience on the implementation and use of the IEEE 802.15.4/Zig-

Bee protocols over TinyOS, several issues related to this were identified that could potentially produce

a loss of synchronization and even network failures. This was reported in [CSP+08]. In fact, it was

observed that at very high traffic rates, TinyOS was not capable of guaranteeing a predictable timing

behaviour of the local computations at node level (and in consequence at network level). Therefore, in

order to overcome this limitation, an alternative implementation of the Open-ZB protocol stack over

the ERIKA real-time OS was carried out.

The implementation of the IEEE 802.15.4 protocols over ERIKA is organized in a layered ar-

chitecture. In this design we build the networking stack by the use of Operating System primitives,

generic libraries and the hardware features provided by the Micro-Controller Unit (MCU). Figure 3.8

illustrates the overall software architecture.

Figure 3.8: ERIKA’s Open-ZB layered architecture [PCR+09]

The HW layer abstracts the current selection of hardware components including the Microchip

dsPic33F MCU, CC2420 Chipcon transceiver, and the FLEX development board (embedding LCD,

LEDS, etc., see Section 3.2).

To ensure a clean design, the hardware-driven facilities are separated from the rest of the imple-

mentation. In the HW interrupts layer the ERIKA Interrupt Service Routines (ISRs) are implemented

58 Technological Platforms and Tools

to handle all hardware interrupts. Moreover, in the ieee802.15.4 layer all the hardware related at-

tributes specific for implementing the IEEE 802.15.4 communication protocol were implemented sep-

arately. This layer contains the code to initialize the hardware timers, to initialize the communication

between CC2420 transceiver and MCU, and to handle timer and transceiver interrupts.

The CC2420 driver is a component for sending commands to and exchanging data I/O with the

transceiver. This driver exports to Transceiver-HAL all the primitives standardized in IEEE 802.15.4

PHY. The Transceiver-HAL is a helper layer aware of the upper IEEE 802.15.4 MAC and CC2420

driver, designed to extend the support to different hardware solutions. The ERIKA layer is responsi-

ble for managing the system hardware resources and is providing the typical OS services such as Task

management, resource access control, interrupt and timer management. Software timer abstractions

are provided by means of software counters and alarms. Alarms are software abstractions for timers.

These alarms are used in this context to activate periodic tasks (see Section 3.3). ERIKA alarms, con-

figured for communication purposes, can be initialized with a desired rate, stopped and reset whenever

required.

The common lib is a generic library providing some software utilities to the upper layers. More

specifically, this layer provides: basic data structures such as queues, circular queues, indexed struc-

tures, etc used in memory buffer management; debugging helper, e.g. utilities for printing data on the

console using the serial communication with the MCU through the UART port.

The ieee802.15.4 Lib is the heart of the network stack. It includes the PHY and MAC layers of

IEEE 802.15.4 standard. This layer is concerned only with the implementation details of the com-

munication, and makes use of the timing services and memory management services provided by

underlying layers.

The IEEE 802.15.4 physical layer (shown in Figure 3.8) is responsible for the implementation

of important functionalities such as activation and deactivation of the radio transceiver, channel fre-

quency selection, energy Detection(ED) within the channel, carrying out the Clear Channel Assess-

ment (CCA) for Carrier Sense and Multiple Access Collision Avoidance (CSMA-CA).

The MAC protocol services have been mapped to tasks having reserved a set of priorities for

network-related use only. Regarding memory usage, buffer queues have been statically allocated in

the global scope to accommodate message payloads (MPDU) used for send and receive.

The communication stack evaluation is reported in [PCR+09], and results are very encouraging.

As reported, the ERIKA implementation showed higher throughput and packet delivery ratio with

respect to existing solutions based on TinyOS, and observed a high timing coherence in the beacon

transmission and high reliability in packet delivery.

3.3 IEEE 802.15.4/ZigBee Protocol Stacks 59

3.3.3 The Official TinyOS v2.x IEEE 802.15.4/ZigBee Protocol Stack

This section presents an overview of the official open source IEEE 802.15.4-2006 MAC and ZigBee-

2005 implementation for the TinyOS 2 operating system.

The MAC implementation is part of the TinyOS 2 operating system core and can be accessed via

the project source code [Tinb] at $TOSROOT/tos/lib/mac. It covers the MAC functions and includes

the interfaces towards the layer above (e.g. network layer) and below (radio driver). The design and

implementation of the radio driver (PHY), however, is platform/chip specific and thus not part of the

implementation. Although the functional decomposition is independent of a specific operating system,

in this section we use nesC syntax and refer to existing TinyOS 2 library components. The following

description is based on a technical report [Hau09], additional information on the implementation can

be found in [HDS+11].

There are two main TinyOS-specific challenges for a platform independent 802.15.4 MAC im-

plementation: first, TinyOS is not a real-time operating system, yet in beacon-enabled mode some

operations need to be accurately timed. The official TinyOS v2.x IEEE 802.15.4 implementation par-

tially solves this problem by pushing most time-critical operations from the MAC to the chip-specific

radio drivers, because the drivers typically operate in a asynchronous (interrupt) context and may

better exploit the particular hardware characteristics, for example hardware-generated acknowledge-

ments. Second, TinyOS 2 MAC protocols are traditionally implemented for a particular radio chip.

TinyOS provides the Active Message layer to multiplex access to the radio above the link layer, but

there exist no hardware abstractions for the lower layers. Since there are no established interfaces or

guidelines in TinyOS 2 on how the radio hardware should be exposed or how MAC protocols are to

be structured. Again, the official TinyOS v2.x implementation proposes a set of platform independent

radio interfaces to be provided by a 802.15.4-compliant radio chip abstraction in TinyOS v2.x.

Figure 3.9 shows an architectural overview of the implementation, its main components and the

interfaces that are used to exchange MAC frames between components. While this figure abstracts

from the majority of interfaces and some configuration components, it illustrates one important aspect,

namely how access to the platform specific radio driver (PHY) is structured. For the purpose of

explanation, the MAC can be subdivided into three sub-layers. On the lowest level (dark gray boxes),

the RadioControlP component manages the access to the radio: with the help of an extended TinyOS

2 arbiter component it controls which of the components on the level above is allowed to access the

radio at what point in time.

The use of a TinyOS resource arbiter avoids inconsistencies in the radio driver state machine and is

in line with the standard TinyOS 2 resource usage model: before a component may access a resource

it must first issue a request; once it is signalled the granted() event by the arbiter the component

can use the resource exclusively; and after usage the resource must be released. The implementation

extends this model by allowing a component that owns the radio resource to dynamically transfer the

60 Technological Platforms and Tools

Figure 3.9: The MAC architecture: Components are represented by rounded boxes, interfaces by

connection lines. The radio driver and symbol clock components are external to this architecture

[Hau09].

ownership to a specific other component.

Most of the components on the second level (medium gray boxes in figure 3.9) represent the

different time intervals in an 802.15.4 superframe: the BeaconTransmitP and BeaconSynchronizeP

components are responsible for transmission/reception of the beacon frame, the DispatchSlottedC-

smaP component manages frame transmission and reception during the CAP and the CoordCfpP and

DeviceCfpP components are responsible for the CFP.

In nonbeacon-enabled mode a superframe structure is not used and these components are replaced

by the DispatchUnslottedCsmaP component, which is then responsible for frame transmission and

reception in non-beacon-enabled mode.

The CSMA-CA algorithm requires one (unslotted) or two (slotted) clear channel assessments

(CCA) to be performed one/two back-off slot boundaries before the actual transmission. Moreover, in

case of a CCA failure the transmission has to be delayed for a random time period of 0–255 back-off

periods (equals 0–5100 µs in the 2.4 GHz band). The transmission of an acknowledgements must

start between 12 symbols (equals 192 µs in the 2.4 GHz band) and 32 symbols (512 µs in the 2.4

GHz band) after the reception of the last symbol of the previous data or MAC command frame. Since

on a typical mote platform, these requirements can practically not be met by a platform independent

MAC protocol [FB06], rather they should be pushed from the MAC to the PHY, ideally to hardware.

For these reasons, the implementation does not include the (un)slotted CSMA-CA algorithm: the Dis-

patchSlottedCsmaP and DispatchUnslottedCsmaP components are responsible for the initialization

3.3 IEEE 802.15.4/ZigBee Protocol Stacks 61

of the CSMA-CA parameters, but the algorithm is implemented and executed in the platform spe-

cific radio driver. In either beacon or non-beacon-enabled mode the ScanP and PromiscuousModeP

components are providing services for channel scanning and enabling/disabling promiscuous mode,

respectively. The radio arbitration mechanism is used to coordinate the activities of the components

on this level so that they do not overlap in time: typically a component is active only while it has

exclusive access to the radio resource. It then performs a certain task (e.g., transmission of a beacon

or performing a channel scan) and afterwards either releases the resource or passes it on to some other

component. This mechanism avoids race conditions when accessing the radio hardware.

The components on the top level (white boxes) implement the remaining MAC data and manage-

ment services, for example, PAN association or requesting (polling) data from a coordinator. These

services typically utilize data and command frame transmission/reception based on the (un)slotted

CSMA-CA algorithm and consequently the components are wired via a send queue, DispatchQueueP,

to either DispatchSlottedCsmaP (in beacon-enabled PANs) or DispatchUnslottedCsmaP (in nonbeacon-

enabled PANs).

A component on this level typically provides a certain MAC MLME/MCPS primitive to the next

higher layer, it is responsible for assembling the particular data or command frame and it accepts

and processes incoming frames of the same type. For example, the DataP component provides the

MCPS-DATA primitive to the next higher layer to send a frame to a peer device.

On receipt of the MCPS-DATA.request primitive DataP will assemble the data frame and enqueue

it in the send queue DispatchQueueP. The Dispatch[Un]SlottedCsmaP component will eventually

dequeue the frame, and manage its transmission, e.g. whenever the CAP has become active. After-

wards, it will signal a completion event to the DataP component, which in turn propagates a MCPS-

DATA.confirm event back to the next higher layer including an appropriate status code that denotes

whether the transmission was successful or not.

The next higher layer accesses all MAC services either via the TKN154BeaconEnabledP compo-

nent (in beacon-enabled PANs) or via the TKN154NonBeaconEnabledP component (in non-beacon-

enabled PANs). These configuration components are nesC facades responsible for wiring the MAC

components together, respectively. They allow to disable/remove certain MAC functionality by spec-

ifying empty placeholder components.

Concerning the implementation of the network layer and its interfaces, the main components are

the NLDE and NLME service access points. The former exposes to the upper layer (in this scenario,

a generic application layer) the NLDE_DATA interface to send and receive packets. The latter is

composed by a list of APIs for network management, including network formation and discovery,

nodes’ join, network synchronization and leave. These interfaces take advantage of the APIs provided

by the underlying MAC layer to achieve their task.

In general, the ZigBee implementation maintains the same architecture as already described in

Section 3.3.1 and presented in [CKSA07].

62 Technological Platforms and Tools

Figure 3.10: The structure of the IEEE 802.15.4/ZigBee Opnet simulation model

3.4 The Open-ZB IEEE 802.15.4 Simulation Model

The Open-ZB toolset for the IEEE 802.15.4/ZigBee protocols [OZ15], besides the already mentioned

communication stacks also provides an IEEE 802.15.4 and ZigBee simulation model for the OPNET

Modeler network simulator. The Opnet Modeler [OPN15] is a commercial discrete-event network

modeling and simulation environment, which provides tools for model design, simulation, data col-

lection and data analysis. Both behavior and performance of the modelled systems can be analyzed

and visualized in an integrated graphical environment. It also features a Model Library which sup-

ports hundreds of generic or vendor-specific protocols and technologies that can be use to build the

networks. The simulator includes an hierarchical development environment which consists of three

hierarchical modeling domains (Figure 3.10).

Network domain describes network topology in terms of nodes and links. Internal architecture

of a node is described in the node domain. Within the process domain, the behavior of a node is

defined using state transition diagrams. Operations performed in each state or transition are described

in embedded C/C++ code blocks. The IEEE 802.15.4/ZigBee simulation model builds on the wire-

less module, an add-on that extends the functionality of the Opnet Modeler with accurate modeling,

simulation and analysis of wireless networks.

The Open-ZB IEEE 802.15.4/ZigBee Opnet simulation model implements physical layer and

medium access control sub-layer defined in IEEE 802.15.4 standard [IT06], and network layer defined

in ZigBee [ZA05] specification. The latest version of simulation model supports beacon-enabled mode

3.4 The Open-ZB IEEE 802.15.4 Simulation Model 63

(beacon frame generation), and the star and cluster-tree topologies. It enables the computation of the

power consumption (MICAz and TelosB motes are supported) and supports the slotted CSMA/CA

MAC protocol and also the Guaranteed Time Slot (GTS) mechanism (GTS allocation, deallocation

and reallocation functions). ZigBee hierarchical tree routing is also supported.

In accordance to the ZigBee specification, three types of nodes in the simulation model are im-

plemented, namely a ZigBee coordinator, a ZigBee router and a ZigBee end device. All types of

nodes have the same internal architecture (node domain), but they differ in the available user-defined

attributes. The structure of the IEEE 802.15.4/ZigBee simulation model is presented in Figure 3.10.

The physical layer consists of a wireless radio transmitter and receiver compliant to the IEEE 802.15.4

standard running at 2.4 GHz frequency band with 250 kbps data rate. Default settings are used for the

physical characteristics of the radio channel such as background noise and interference, propagation

delay, antenna gain, and bit error rate.

The data link layer supports the beacon-enabled mode (non beacon-enabled mode is not supported

yet) and implements two medium access control protocols according to the IEEE 802.15.4 standard,

namely the contention-based slotted CSMA/CA and contention-free GTS. MAC payload (MSDU)

incoming from the network layer is wrapped in MAC header and MAC footer and stored into two

separate FIFO buffers, namely a buffer for best-effort data frames and another buffer for real-time

data frames. The frames are dispatched to the network when the corresponding CAP or CFP is active.

On the other hand, the frame (MPDU) incoming from the physical layer is unwrapped and passed

to the network layer for further processing. The data link layer also generates required commands

(e.g., GTS allocation, deallocation and reallocation commands) and beacon frames when a node acts

as PAN coordinator or router.

The network layer implements address-based tree routing (mesh routing is not supported yet)

according to the ZigBee specification. The frames are routed upward or downward along the cluster-

tree topology according to the destination address by exploiting the hierarchical addressing scheme

provided by ZigBee.

This addressing scheme assigns an unique address to each node using the symmetric hierarchical

addressing tree given by three parameters, namely the maximum number of children (i.e., routers and

end devices) that a router or a coordinator may have (Cm), the maximum depth in the topology (Lm),

and the maximum number of routers that a router or a coordinator may have as children (Rm).

The application layer can generate unacknowledged and/or acknowledged best-effort and/or real-

time data frames transmitted during CAP or CFP, respectively. There is also a battery module that

computes the consumed and remaining energy levels. The energy consumption is estimated as U.I.t

based on the execution time (t), the voltage (U), and current draw (I). The particular current draws

can be set for a node operating in receive mode, transmit mode, idle mode or sleep mode. A node in

sleep mode can neither transmit nor receive data; a node must be woken up to idle mode first. The

default values are set to those of the widely-used MICAz or TelosB motes.

64 Technological Platforms and Tools

Part II

On the Engineering of WSN enabled

Cyber-physical Applications

65

Chapter 4

IEEE 802.15.4 GTS Implementation in

TinyOS

4.1 Introduction

Timeliness is of increasing importance in many of today’s and future cyber-physical application sce-

narios for WSN technology. Computations must go beyond logical correctness and be produced and

communicated in time. This demands a high degree of predictability from the underlying network

infrastructures.

In this line, the standardization efforts of the IEEE Task Group 15.4 have contributed to solve this

problem by the definition of the IEEE 802.15.4 protocol for Low-Rate, Low-Power Wireless Personal

Area Networks (WPANs) [IT06], which is being used as an enabling technology to support other

protocols such as ZigBee [ZA05], 6LoWPAN [6Lo15], or WirelessHART [Wi10]. This is partially

due to the great potential of this protocol for flexibly fitting the different requirements of many WSN

applications, namely by supporting both best-effort and real-time traffic, using CSMA-CA and its

Guaranteed Time Slots (GTS) mechanism respectively, in its beacon enabled mode.

However, if few implementations of the IEEE 802.15.4 protocol actually implement the beacon

enabled mode, even fewer implement the GTS mechanism. This is mostly due to the complexity

involved in its implementation, namely due to its timing requirements. In this line, it is mandatory

that message transactions are correctly scheduled and take place always within the slot boundaries.

This can become increasingly harder to achieve with reduced Superframe Orders due to the much

smaller time slot durations, especially when not relying upon a real-time operating system in which

time constrained tasks can see their execution ordered in terms of priority.

Further more, GTS management can also become complex as there is significant amount of in-

formation that concerns each slot that must be managed throughout the network’s lifetime, thus it is

67

68 IEEE 802.15.4 GTS Implementation in TinyOS

important to achieve a lightweight but reliable implementation. In addition, GTS management should

also be dynamic and responsive enough to support multiple allocation and deallocation requests.

Although the official TinyOS 2.X implementation of the IEEE 802.15.4 protocols by the 15.4

Working Group [Tina] implemented the beacon enabled mode, it did not support the GTS mechanism.

However, this mechanism is mandatory to enable the different cyber-physical applications scenarios,

such as the ones described in the next chapters of Part II in this thesis. Unless such a mechanism

is provided by the underlying communication protocol, there is no way to guarantee a bound in the

communications. In this line, this chapter describes the carried out implementation of the GTS service,

completing the official TinyOS IEEE 802.15.4 network stack implementation. The implementation

was made available to the TinyOS community and is included in the official TinyOS 2.x distribution

in its repository [Tinb] under /tos/lib/mac/. The following sections describe the implementation in

more detail.

4.2 Overview of the IEEE 802.15.4 GTS Mechanism

The IEEE 802.15.4 protocol specifies the implementation of a Contention Free Period in the super-

frame (refer to chapter 2 for detailed information). Aiming at supporting predictability, it relies on the

allocation of dedicated slots (GTS) by the PAN Coordinator to each node, up to a maximum of seven

slots.

There are two types of allocations, for reception or for transmission. The PAN coordinator re-

ceives and processes the GTS allocation and deallocation requests. Each device associated to the PAN

Coordinator can only allocate one receive slot and one transmit slot at the most. In a multiple cluster

network it is the cluster-head that assumes this role, however in this chapter for simplification we

always assume a network with a star topology.

The management of the GTS is carried out in the Coordinator and the GTS information is periodi-

cally transmitted to the devices in the GTS fields of the beacon frame. The deallocation of a GTS slot

can be requested by the device or by the coordinator itself, considering for instance the inactivity of a

slot. Every time a device is deallocated, the coordinator updates the GTS descriptor list in the beacon

frame, setting the deallocated device’s GTS descriptor with the slot length of zero. This informs the

device that the GTS slot has been deallocated, and cannot be used any more.

4.3 Implementation Details

4.3.1 Overview

The implementation consists of two separate TinyOS components: DeviceCfpP and CoordCfpP, im-

plementing the GTS mechanism for the End Devices and the PAN Coordinator respectively. A header

4.3 Implementation Details 69

Figure 4.1: Transferring the radio token between the components responsible for an incoming super-

frame. The commands request(), transferTo() and the granted() event are part of the TransferableRe-

source interface [Hau09].

file <GTS.h> contains a set of enumerations, constant and data structures definitions, shared among

both the components.

Notice that at programming time, only one of the components will be wired by TinyOS, thus reduc-

ing the code size and complexity for the End Device case, since it does not need the GTS management

capabilities that must be supported by the PAN Coordinator only.

The general architecture of the communication stack implementation is described in brief in chap-

ter 3 of this thesis. In the latter, Figure 3.9 presents and overview of the most important components

and interfaces, namely the ones that support the GTS mechanism.

In order to arbitrate the radio usage between the different components, the authors in [Hau09]

included a radio arbitration component (SimpleTransferArbiterP). With the help of this arbiter the

RadioControlP component decides which component may access the radio at what time. This is of the

topmost importance to guarantee correct timing behaviour. Resource arbiters are part of the TinyOS

2 library and presented in TEP 108.2, however the implementation of the interface was extended by a

single command and a single event that enables immediate transfer of the resource from one client to

another. This is described in detail in [Hau09].

In this new approach, the resource transfer does not involve posting a separate task and may

override the default queuing policy. This extended interface is called TransferableResource and is

shown in Figure4.1.

In the following we call the radio resource the radio token, because a token better matches the

notion of transferability. Figure 4.1 shows an example of how the radio token is shared between the

components responsible for an incoming superframe: as long as the next higher layer has requested

synchronization with the coordinator, the BeaconSynchronizeP component will always have a request

pending for the radio token (1). After it has been granted the radio token (2) it will try to track the

70 IEEE 802.15.4 GTS Implementation in TinyOS

beacon from the coordinator. Once the beacon has been received, the radio token will immediately be

transferred to the DispatchSlottedCsmaP component (3), which is then responsible for managing the

CAP. When the CAP has finished the radio token is transferred to the component responsible for the

CFP (4). Again, the CFP component will be selected according to the device behaviour (PAN Coordi-

nator or End Device). Finally, at the end of the CFP, the token is passed back to BeaconSynchronizeP

(5) to be able to receive the next beacon.

Afterward, as long as no other components request the radio token, the steps (3)-(5) repeat indef-

initely. Only the component that owns the radio token may access the radio, otherwise it is typically

inactive: it may accept requests from the next higher layer, but it will typically have to wait until it is

transferred/granted the token before it can serve the requests. A component owning the radio token

must make sure that it gives up the token at latest when the corresponding part of the superframe has

finished. For instance, whenever the DispatchSlottedCsmaP component is given the token from the

BeaconSynchronizeP component, it will first set an Alarm to expire at the end of the CAP (less a plat-

form specific guard time). And when this Alarm expires, it will transfer the token to the component

responsible for the CFP.

The following code implements the reception of the token within the RadioToken.transferedFrom().

Within this primitive several variables related to the GTS timing are computed, and two alarms are

called: CfpSlotAlarm() which will signal the beginning of the next GTS slot boundary, and CfpEn-

dAlarm() which signals the end of the CFP. At this moment, and implemented in CfpEndAlarm.fired(),

the alarms are stopped, and the radio token is transferred to the next component, according to the role

of the device, as soon as the inactive period is over. If it is an End Device, it should wait for a beacon

and synchronize to it, otherwise, if a PAN Coordinator then it will prepare for the beacon transmission.

After the alarms are set in Radio.Token.transferedFrom(), a few GTS management tasks are car-

ried out. First, we set the alarms for signalling the end of the CFP and for the end of the current

slot. Then, we check if there are any GTS deallocation requests by the PAN Coordinator pending, by

posting a task - removeGtsDescTask. Finally, we check if any slots have expired by posting gtsExpi-

rationManagementTask() and removing the descriptors if it is the case.

async event void RadioToken.transferredFrom (uint8_t fromClient)

{

// the CFP has started, this component now owns the token -

atomic{

//INITIALIZATION OF VARIABLES OMITTED

call CfpEndAlarm.startAt(call OutgoingSF.sfStartTime(),

m_capDuration + m_cfpDurationn-guardTime);

call CfpSlotAlarm.startAt(call OutgoingSF.sfStartTime(), m_capDuration);

}

if (m_reqPending == 2) {

m_beaconCounter++;

4.3 Implementation Details 71

if (m_beaconCounter > IEEE154_aGTSDescPersistenceTime-1) {

post removeGtsDescTask();

}

}

post gtsExpirationManagementTask();

}

async event void CfpEndAlarm.fired ()

{

call CfpEndAlarm.stop();

call CfpSlotAlarm.stop();

//Transfer token

#ifndef IEEE154_BEACON_SYNC_DISABLED

call RadioToken.transferTo(RADIO_CLIENT_BEACONSYNCHRONIZE);

#else

call RadioToken.transferTo(RADIO_CLIENT_BEACONTRANSMIT);

#endif

}

The GTS mechanism is usually triggered by a request to allocate a GTS slot by issuing the MLME-

GTS.request to the MAC layer, with a GTS characteristics descriptor, which includes the GTS slot

length (in time slots), the direction of the allocation (transmission or reception) and the type of request

(allocation/deallocation).

To ease the usage and the construction of the GTS decriptors several primitives were implemented.

The primitive GtsSetCharacteristics() is used to construct the 8 bit GTS characteristics field given the

previous information. Three other primitives are implemented to read each of the characteristics from

the GTS descriptor individually: GtsGetReqType(), GtsGetLength() and GtsGetDirection().

Each GTS descriptor is saved in a database (gtsDatabase) which contains, among other informa-

tion, the starting time slot, length and direction for a GTS slot (check Figure 4.3). In order to facilitate

the process of writing the GTS descriptors into the beacon, the GtsInfoWrite.write() primitive is im-

plemented. This primitive will check the gtsDatabase for an enabled descriptor and introduce it into

the beacon. This function is only carried out in the PAN Coordinator.

4.3.2 GTS Allocation

Figure 4.2 shows a snapshot of a GTS allocation as viewed in a network analyser.

72 IEEE 802.15.4 GTS Implementation in TinyOS

Figure 4.2: Sniffer snapshot showing the allocation of a GTS slot.

Device 0x0002 makes a GTS request to its PAN Coordinator (in red in Figure 4.2). After the

request is accepted the correspondent GTS descriptor is included in the beacon, announcing the GTS

slot to the network. In the next superframe, the device begins transmitting in the allocated slot.

4.3.3 GTS Buffer Management

A TinyOS alarm (CfpSlotAlarm) is set to fire every time slot to trigger GTS operations. At each time

slot, the implementation will check with the gtsSchedule[] array what is the gtsDatabase entry which

holds that time slot and trigger the necessary operations. The gtsSchedule[] array maps the content

of each time slot with the correspondent gtsDatabase entry. Figure 4.3 depicts the process that is

triggered for a GTS transmission.

In order to hold the GTS frames waiting for service, a GTS buffer was implemented. According

to the device kind, the implementation of this buffer can be different. This implementation is similar

to the Open-ZB approach presented in [CKSA07]. If the device is not a PAN Coordinator, the buffer

is implemented as a simple FIFO (First In First Out) with two pointers indicating the input and output

space.

4.3 Implementation Details 73

If the device is a PAN Coordinator the buffer is maintained by an auxiliary structure with index

pointers, pointing to the appropriate message in the buffer. This auxiliary structure (m_gtsSlotList) is

indexed with the available timeslots that can be used for GTS transmission. This mechanism is used

to avoid performing sequential and time consuming searches in the buffer to find the desired packet.

The m_gtsSlotList is defined as an array of gtsSlotElementType. The gtsSlotElementType has the

following structure:

typedef struct

{

uint8_t elementCount;

uint8_t elementIn;

uint8_t elementOut;

uint8_t gtsFrameIndex[GTS_SEND_BUFFER_SIZE];

} gtsSlotElementType;

Figure 4.3: GTS management relationships.

Each element in the m_gtsSlotList array represents one GTS slot, up to the maximum of seven,

which is defined in the IEEE 802.15.4 protocol as the maximum number of GTS slots available for

GTS allocation. Each gtsSlotElementType defines a FIFO buffer used to store indexes that reference

positions in the m_gtsSendBuffer pool of GTS messages to transmit. In this way, only one buffer is

used to store all the GTS messages destined to the different devices, saving precious memory space.

The distinction is made with the auxiliary structures used to fetch the respective message.

Along with the m_gtsSendBuffer there is also one auxiliary array declared as availableGtsIndex[]

storing the available indexes in the GTS buffer (Figure 4.4). If the coordinator wants to add more data

to the GTS buffer, it must check if there are available indexes to store the message. When a message is

transmitted, its m_gtsSendBuffer position becomes available and it is listed in the availableGtsIndex[]

74 IEEE 802.15.4 GTS Implementation in TinyOS

Figure 4.4: GTS buffer management.

list. This strategy avoids time consuming searches in the buffer for free space to store a GTS message

for transmission.

4.3.4 GTS Deallocation

Concerning GTS deallocation, the removeGts() primitive, besides removing the GTS slot information

from the database also rearranges it, removing the empty entries. The gtsSchedule[] is also updated to

reflect the changes. Figure 4.5 shows the deallocation of a GTS slot as viewed in a network analyser.

In Figure 4.5, a device successfully requests a GTS deallocation. The next beacon from the PAN

Coordinator does not contain the deallocated GTS descriptor and the device stops its transmissions in

that GTS slot. Note that the GTS descriptors in the beacon were rearranged and the device 0x0002

that was transmitting in the 14th slot now is transmitting in the 15th. This mitigates fragmentation in

the GTS schedule and facilitates GTS management.

4.4 Test and validation

To validate and demonstrate the GTS implementation, a small test application was designed and in-

cluded in the software package with the GTS implementation code. The TestGTS application is avail-

able in the TinyOS tree at /apps/tests/tkn154/beacon-enabled/TestGTS.

In this application one node takes the role of a PAN coordinator in a beacon-enabled 802.15.4

PAN, it transmits periodic beacons and waits for an incoming GTS request. A second node acts as

4.4 Test and validation 75

Figure 4.5: Sniffer snapshot showing the deallocation of a GTS slot.

76 IEEE 802.15.4 GTS Implementation in TinyOS

a device, it first scans the pre-defined channel for beacons from the coordinator and once it finds a

beacon it tries to synchronize to and track all future beacons. It then requests a (transmit) GTS slot

from the coordinator via the MLME-GTS.request() primitive.

As soon as the slot is granted and signalled in the beacon frame, the device starts to send its data

within that slot. A second GTS slot is then requested for reception. If the request is successfull, the

PAN Coordinator will begin to transmit to the device in that slot. In the meanwhile, the first GTS is

deallocated by the device which stops transmitting. This causes a reallocation of the GTS slots. Later,

the PAN Coordinator stops transmitting, but the second GTS remains in beacon, although unused.

When it finally expires, the PAN Coordinator removes it.

The implementation functionality was validated using a packet analyzer to make sure the GTS

boundaries were being respected. However, to trace the application steps by the user, we also set

the motes to toggle their leds, signalling the application events. At the beginning and throughout the

test, the Coordinator and device should both toggle LED2 once per two per second in unison. This

indicates synchronism. After a few seconds the device will turn LED1 for about a second (and then

turn it off), indicating a GTS request and that the request was granted. Afterwards the coordinator will

turn its LED1 on (it will remain on) indicating that data transmission via GTS was successful.

4.5 Final Remarks

The implementation of the Guaranteed Time Slot mechanism represented the definitive step towards

achieving a complete, free and open source implementation of the IEEE 802.15.4 standard. Available

in the official TinyOS 2.x distribution under the TinyOS tree at /tos/lib/mac/tk154, supported and

validated by the TinyOS 15.4 Working Group, the IEEE 802.15.4 implementation now supports real-

time communications, enabling an even larger set of applications.

Importantly, the implementation was designed paying special attention to its reliability and timeli-

ness, while always trying to improve on the efficiency of the code, minimizing processing delays and

memory usage.

In the context of this thesis, the GTS implementation was used to support real-time communica-

tions in two application scenarios which are described in Part II of this thesis, (e.g. a structural health

monitoring and a datacenter monitoring scenario) and naturally present timeliness constrains. The

following chapters describe the design of these scenarios in detail and identify a set of QoS challenges

that are tackled in Part III of the thesis.

Chapter 5

Structural Health Monitoring

Application Scenario

5.1 Context and Motivation

Among the objectives of this thesis is to validate and demonstrate a set of Quality of Service add-ons,

which are introduced in Part III of this document, over real world application scenarios. Interest-

ingly, Structural Health Monitoring (SHM) remains one the most interesting application scenarios for

WSNs given the benefit wireless communications can introduce into the structural engineering area

by extending or replacing traditional wired systems. On the other hand, such an application scenario

presents several Quality of Service challenges that must be resolved to fulfil all the functionalities

one should expect from such systems. This fact creates an increased motivation for relying upon this

scenario in this dissertation.

In general, SHM and damage identification at the earliest possible stage have been receiving in-

creasing attention from the scientific community and public authorities, since service loads, accidental

actions and material deterioration may cause damage to the structural systems, resulting in high ad-

ministrative costs for governments and private owners and, in some situations, loss of lives. As such,

there is a considerable eagerness to add sensing/actuating capabilities to physical infrastructures like

bridges, tunnels and buildings, turning them into "smart structures" able to detect and respond to

abnormal situations.

Structural damage can be identified by using sensors (usually Micro-Electro-Mechanical Systems

– MEMS) for measuring the static and dynamic behavior of the structure (e.g. bridge) at specific

points. The main physical quantities to measure are internal material strains/stress, displacements,

internal/external loads, temperature, accelerations, moisture and leanings. As damage is a local phe-

nomenon and in order to achieve high accuracy, it is important to monitor the structural behavior at

77

78 Structural Health Monitoring Application Scenario

fine-grained level. Thus, a sufficiently large number of measuring points is necessary, which obviously

grows with the size of the structure.

The fact that conventional sensor platforms use wires increases the cost of the monitoring systems

and creates huge difficulties in their installation and maintenance. In some situations, it is actually not

possible or not admissible to deploy wired SHM systems, e.g. due to visual impact. Consequently,

Wireless Sensor Networks (WSNs) have been emerging as a natural alternative for SHM.

However, there is still a lack of ready-to-use and off-the-shelf WSN technologies able to fulfill

the most demanding requirements of SHM applications (Section 5.2). Low-power and low-cost yet

extremely sensitive and accurate accelerometer and signal acquisition hardware, stringent time syn-

chronization of all sensors’ measurements, highly reliable and timely measurements and data commu-

nications are just examples of stringent requirements imposed by SHM applications, particularly for

larger structures.

In this context, we designed a SHM system blending the advantages of using standard and off-

the-shelf (COTS) technologies and a minimum set of custom-designed signal acquisition hardware,

which we present in this chapter (Sections 5.3 to 5.5). Our prototype system proved to be accurate

for measuring both low and high amplitude vibrations (confirmed in the time and frequency domains)

and for operational modal analysis, when compared against a reference wired system (Section 5.6).

Finally, this chapter closes with a few final remarks in Section 5.7 concerning the results achieved

with the current solution and on how to extend the system, scaling it up to monitor larger structures.

Several QoS challenges are identified which must be addressed to enable a system which can replace

the conventional wired counterpart. The most prominent are are addressed in Part III of this thesis and

instantiated in this application scenario.

5.2 Related Work

SHM has been a very active research area among both academics and industrialists, especially in what

concerns recent developments in WSN and Micro Electromechanical Systems (MEMS).

The use of wireless technology for structural health monitoring was first proposed in [SK96]. Their

work was later extended in [LLK+02] by including embedded microcontrollers within the wireless

sensing unit prototype. Since then, several other prototypes have been developed, most of them relying

on custom-made hardware. A thorough review of these prototypes up to 2005 is made in [LL06].

The system proposed by [XRC+04], which was re-evaluated by [Pae05], also deserves attention,

although it presents some limitations. Despite using a reasonable sampling resolution (16 bits), it lacks

an explicit synchronization mechanism between the sensing devices. The implementation provides

a posteriori time correlation of the samples, which is not satisfactory for some operational modal

analysis algorithms that require that samples from all sensors are acquired simultaneously.

5.2 Related Work 79

In [LWS+08], and probably for the first time, actuation is also addressed in a SHM system by

extending a previous proposed system [Lyn05] to achieve a real-time control of a structure by actuating

over a semi-active magnetorheological damper. However, it was observed that the system was too

slow to react, due to the limited bandwidth available for communications. Protocols such as the IEEE

802.15.4 and IEEE 802.11 were highlighted as candidates for future work. Noticing the importance

of tight time synchronization to achieve an accurate modal analysis of structures, [KFS08] designed

a system that presents a maximum synchronization error of 10 us between sensors. However, their

approach relies on the use of wired connections between the different PAN coordinators, both for

synchronization and data transfer, which is an obvious drawback.

One of the largest deployments of nodes (e.g. 64 nodes) to carry out SHM, was presented in

[KPC+07], to monitor the long main span of the Golden Gate Bridge in San Francisco. Their ap-

proach was more accurate than previous ones which did not use any kind of synchronization, such as

in [OGK06]. However, the use of a single microcontroller per node to control the high frequency sam-

pling, together with the use of a non-real time OS such as TinyOS, introduced some jitter problems,

which the authors stated could only be eliminated if a second microcontroller was used. Nevertheless,

the authors state that the modal frequencies of the bridge were identified. Moreover, since the hard-

ware was developed with that specific application in mind, the same data acquisition hardware cannot

be ported to other structures which present more subtle vibrations such as old masonry buildings.

Since it took up to nine hours for this system to send all the data to the central station for analysis,

researchers at WSU-SL [HSC+08] proposed a decentralized system based on iMote2 platforms. The

decentralized approach consisted in running some damage detection algorithms in the motes to reduce

the amount of data to be transferred to the base station. However, as observed by the authors, the use

of the platform’s ADC proved to be a source of jitter, which dramatically impacts the accuracy of the

analysis. Moreover, the system is not scalable since it relies on a star topology and no strict sensor

data synchronization is supported (forcing to correlate data a posteriori). Validation was just based on

external stimulus (not addressing the natural vibration) or on simulation.

[WGJJ09] described an innovative system composed of twenty sensing nodes deployment in a

highway bridge. Nevertheless, the system uses a non-standard communication stack, and the WSN

platform microprocessor does not run a known OS. Additionally, they provide no synchronization

mechanism. In fact, nothing is done to prevent the accumulation of clock drift when sampling, which

limits the duration of the sampling periods.

[CMP+09] presented a very complete implementation of a SHM application that allows moni-

toring several phenomenon of interest when monitoring heritage buildings (accelerations, deforma-

tion and environmental parameters). However, the particularities of the system and its inherent cus-

tomization level limit its application to a narrow type of structures. Moreover, the synchronization

mechanism is based on a custom middleware, and takes few advantages of the native functionali-

ties of the communication protocol, requiring a constant refreshment and storage of temporal infor-

80 Structural Health Monitoring Application Scenario

mation in order to maintain time-consistency, spending a non-negligible amount of memory. More

recently,[RMS+11] carried out the largest WSN deployment for SHM up to this date with 70 nodes in

the Jindo Bridge in South Korea. The system relies on an iMote2 platform and FTSP (The Flooding

Time Synchronization Protocol) is used for time synchronization. It relies on a cluster-tree network

architecture and it is scalable. However, it also presents a few drawbacks. Although it uses time syn-

chronization, this alone does not prevent the clocks from drifting apart from each other, thus requiring

re-synchronization of all the nodes continuously. However, in the proposed system, this cannot be

done while sensing. In addition, once again, the use of the iMote2 ADC inserts jitter into the mea-

surements of the different nodes.

The work that preceded the present proposal focused on a SHM system strictly based on commer-

cial off-the-shelf (COTS) technologies. This enabled a preliminarily demonstration of the applicability

of MEMS+WSN-based systems for operational modal analysis of structures [ARL+10]. However, this

work presented three major limitations: (1) the lack of enough sensitivity of the acceleration sensors,

(2) low resolution of the Analogue-to-Digital Converter (ADC) embedded in the WSN platform, and

importantly (3) the lack of synchronization algorithms. As shown, many of these limitations were also

reported in the literature.

In this chapter, we propose a COTS-based accurate SHM system which tries to overcome most

if not all of these limitations already identified, namely by: a) providing 24 bits sampling resolution

(most systems provide 8-12 bits, which invalidates SHM based on operational modal analysis); b)

using adequate synchronization between all nodes in the network; c) relying on standard communi-

cations protocols (most proposals use IEEE 802.15.4-compliant devices that neither implement the

IEEE 802.15.4 medium access control (MAC) nor ZigBee protocols); d) building upon a de facto

operating system (OS) for WSNs platforms (TinyOS); and e) relying on COTS technologies (more

cost-effective). In addition, it points out directions towards a highly scalable system to monitor large

infrastructures in an effective way i.e. with a consistent time correlation of samples.

5.3 System Overview

5.3.1 System Requirements

The aim of the system is to sample in a synchronized fashion multiple accelerometers placed at dif-

ferent locations in a structure and forward the data to a central station for later processing. The most

relevant application requirements were chosen together with the ISISE Research Unit of the Civil

Engineering Department of University of Minho. They are as follows: (1) Triaxial accelerometer;

(2) Max. Range: +/- 1 g; (3) Minimum sensitivity: 1 V/g; (4) Typical resolution: 1 mg; (5) Max.

resolution: 50 ug; (6) Frequency response, 3 dB: 0 - 100 Hz; (7) Max. sampling rate: 100 Hz; (8)

Max. sampling drift between sensors : 5 ms; (9) ADC resolution: 24 bits. Ensuring the correct

5.3 System Overview 81

synchronization of the sensing operation is of major importance for this kind of monitoring applica-

tions ([XRC+04]; [LL06]; [CCCP06]; [WGJJ09]). This means that samples from all sensors must be

acquired in a synchronized way in order for the data analysis algorithms to provide consistent results.

5.3.2 Snapshot of the System Architecture

The following system architecture was designed in order to satisfy the identified application require-

ments and is illustrated in Figure 5.1. The network is composed of several clusters of Sensing Nodes,

organized in a synchronized tree topology. Each Sensing Node is composed by a TelosB node [MEM]

with a signal acquisition board (SAB) attached to a MEMS acceleration sensor (see Section 5.4).

Figure 5.1: Snapshot of the System Architecture

In this work only four of the Sensing Nodes are equipped with the SAB and MEMS sensor due to

budget restrictions, and this constitutes the small-scale testbed used to validate our proposal. The Sens-

ing Nodes communicate with a Coordinator Node (also a TelosB node) via a standard communication

protocol (IEEE 802.15.4). The Coordinator Node supervises the network and nodes activities (e.g.

node configuration, start/stop sampling) and guarantees a tight synchronization between all nodes; it

also forwards the configuration parameters and dispatches the acquired data to the Command & Con-

figuration Application (C&C App). The WSN architecture is described in Section 5.5. The Command

and Configuration application (C&C App, briefly described in Section 5.6) provides the system user

with a human-machine interface (HMI) to configure the system and also an application programming

interface (API) to integrate the WSN system with the data processing/analysis applications. The latter

enable to infer about the reaction of the monitored structure to natural vibration or impacts.

82 Structural Health Monitoring Application Scenario

5.4 Hardware Platform and Signal Acquisition Sub-system

A custom-designed signal acquisition board (SAB) had to be conceived for supporting: a) a high

resolution 24-bit ADC; b) enough memory for storing data samples.

MEMS sensors are quite appealing for WSN applications, due to their low energy consumption,

low voltage operation, small size and low cost. Although there are several MEMS sensors in the

market capable of satisfying the requirements outlined in this section, complete ready-to-use COTS

devices are still scarce. Some of the most suitable devices for these applications are commercialize by

Advanced Sensors Calibration (ASC, Germany), Crossbow (USA) and Silicon Designs Inc. (USA).

Among the referred manufactures’ portfolios, the triaxial accelerometer model ASC 5631 002 [AS14]

was identified as a suitable solution (characteristics outlined in Table 1):

Table 5.1: ASC 5631-002 characteristics

Range ± 2 g

Sensitivity 1 V/g

Frequency 100 Hz ± 3 dB

Linearity ± 1.0 % FSO

Signal output 500 mV to 4500 mV (DC)

Zero output 2500 mV ± 100 mV

Supply voltage 5 V ± 0.1 V

Current consumption 7 mA (max.)

Cost 250 Eur + VAT

Figure 5.2 depicts the overall architecture of the SAB. A common energy source (e.g. battery)

supplies the COTS WSN platform and the SAB hardware. The system voltages are then derived

from this energy source. Note that both the WSN platform and the SAB’s digital section voltage

regulator are independent of the remaining system voltages. This arrangement allowed switching

on/off all the on-board analogue circuitry, which enables a substantial improvement in the overall

energy consumption.

In this particular case, the outputs of the Triaxial accelerometer are multiplexed by a 3:1 multi-

plexer. The selected analogue signal then crosses the initial buffering and programmable gain stages.

Then, an analogue 8th order Butterworth filter limits the signal’s maximum frequency to 100 Hz to

avoid undesired aliasing effects. Then, the filtered signal goes through a final conditioning stage and

enters into a high-resolution 24 bits ADC. The digital circuitry connections (arrows connected to the

microcontroller - MCU) represent its relation towards the MCU internal architecture, as briefly de-

scribed next.

The MCU is responsible for controlling all the SAB hardware, which includes the procedures

for proper ADC behaviour, handling the samples storage until WSN platform request and additional

samples pre-formatting. Note that the voltage converter/inverter (that supplies the analogue circuitry)

5.5 WSN Architecture 83

Figure 5.2: Sensor Acquisition Board (SAB) architecture

is directly connected to the MCU (enabling on/off control). The input multiplexer, the programmable

gain amplifier (PGA) and the high resolution ADC are connected to the MCU by several GPIO lines.

The data transmission from the MCU to the flash memory is achieved through the serial peripheral

interface (SPI) bus. The MCU connects with the WSN platform by its internal UART hardware and a

couple of two GPIO lines.

5.5 WSN Architecture

As previously stated, the proposed SHM system aims at sampling several accelerometers placed at

different locations in a structure, in a synchronized fashion. Sampled data is to be stored in each

Sensing Node until it is retrieved by a central node for processing. To enable the analysis of the

results, namely the modal shape analysis, it is crucial to guarantee the temporal correctness of the

system.

84 Structural Health Monitoring Application Scenario

5.5.1 Guaranteeing Synchronization

According to [CCCP06], the maximum drift between samples should be computed as presented in (1):

|C(si)−C(s j)| ≤
1

fs
∀i = 1 . . .N 6= j (5.1)

where C(si) is the clock of the i-th sensor, N is the total number of sensors and fs is the sampling

frequency. The existing timers in the TelosB platform depend on a 32.768 Hz Citizen CMR200T

quartz crystal [CCCP06]. This crystal features a drift of +/-20 ppm in relation to its nominal frequency.

This means that (in the worst-case) there is a drift of approximately 20 us at every second. Assuming

a sampling frequency of 100 Hz results in a sampling period of 10 ms. For keeping the drift bellow 5

ms, according to the application requirements, it will be necessary to synchronize every 250 s at most.

This fact imposes the existence of a synchronization mechanism in the WSN, so that all nodes have

the same time reference.

There already exist some mechanisms to achieve synchronization in wireless networks. The sim-

plest approach is to use the Global Positioning System (GPS) as the source for a universal clock. GPS

can provide extremely accurate timing, but requires special (typically power hungry) receivers and a

clear sky view. Many of the proposed protocols solve the synchronization problem by transmitting

in-band synchronization information. Typically, these involve creating some form of hierarchical or-

ganization and use it to distribute timing information. There are several in-band time synchronization

schemes in the literature, where some providing good accuracy are RBS [EGE02], TPSN [GRS03] or

FTSP [MKSL04]. Notably, the work from Werner-Allen et al [WA05], is the only practical synchro-

nization strategy that does not require nodes to construct a hierarchical organization, but it can take

an unbounded number of broadcasts to achieve synchronization. Another approach to this problem

is RT Link [Row06], a TDMA-like protocol that can use an out-of-band synchronization mechanism,

avoiding in-band solutions that reduce network performance.

The IEEE 802.15.4 protocol provides a standard-based solution for synchronization (beacon-

enabled operation mode) that fits the application requirements (Section 3.1). Thus, it has been selected

for the WSN communication infrastructure. A Coordinator node (officially named PAN – Personal

Area Network – Coordinator) schedules channel access and data transmissions in a messaging struc-

ture – the Superframe. This node is also responsible for periodically transmitting a beacon frame

announcing the start of the Superframe [IT06]. Upon beacon reception, each Sensing Node triggers

an external GPIO (General Purpose Input/Output) pin on its SAB in order to synchronize it.

5.5.2 Communication Architecture

The small-scale prototype system consists of five TelosB (5.1) nodes. These hardware platforms fea-

ture a TI MSP430 16-bit microcontroller, a CC2420 RF transceiver (IEEE 802.15.4-compliant), 48 kB

5.5 WSN Architecture 85

of Program memory (in-system reprogrammable flash), 10 kB of EEPROM, two UART communica-

tion ports, and I2C. They also include in-board light, temperature and humidity sensors, which might

be useful for some SHM application scenarios.

Four nodes act as Sensing Nodes and control the corresponding SABs, while one node acts as the

Coordinator Node, assuming network management (including network configuration and synchroniza-

tion), data collection and interfacing with the Command and Configuration application (C&C App).

Implementation of the Sensing and Coordinator Nodes software was done in nesC [GLVB+03] over

the TinyOS operating system [Tin15]. The open-ZB implementation of the IEEE 802.15.4 protocol

has been used ([CKSA07]; [OZ15]). Figure 5.3 presents a message sequence chart of the application:

Figure 5.3: Message sequence chart

The WSN application commutes between 6 states, as follows:

(1) Idle - As soon as the nodes are powered they enter the Idle state. At this stage, the open-ZB

IEEE 802.15.4 stack is initiated and the nodes try to synchronize and associate with a PAN Coor-

dinator. The Channel Scan feature of the protocol stack is disabled, since the network topology is

86 Structural Health Monitoring Application Scenario

fixed.

(2) Ready - As soon as every node is synchronized, the user signals the Coordinator to initiate

the Ready state. This is done by changing the information in the IEEE 802.15.4 beacon payload.

Each Sensing node receives the beacon, parses the payload information and immediately checks the

presence of a SAB. The Coordinator is then signalled by each node concerning its readiness. Upon

the reception of this message, the Coordinator informs the C&C App about the state of each node.

(3) Acquiring - When every node is configured, the user can start the signal acquisition process by

sending a command to the Coordinator that will signal the Sensing Nodes to start sampling, through

a beacon frame. All Sensing Nodes trigger the SABs and re-synchronize them at every beacon via a

GPIO pin (Figure 5.5) which is triggered at each beacon reception .

(4) Stopped - The user sends a command to the Coordinator to stop the data acquisition process.

Again, the Coordinator signals the network using its beacon at the beginning of the next Superframe.

All nodes stop the data acquisition process when the beacon embedding this command is received.

The sampled data is stored in the SABs memory until the respective node is polled by the Coordinator.

(5) Transmitting - After signalling the Stop state for the network, the Coordinator initiates the

Transmitting state by pooling a Sensing Node at a time for data. Every message payload embeds 8

samples which are relayed to the C&C App, upon reception by the Coordinator.

(6) Done - All Sensing Nodes signal the Coordinator upon completion of the Transmit state. When

the last Sensing Node informs the Coordinator that there is no more data to send, the Coordinator

enters the Done state.

5.5.3 Coordinator node

The Coordinator node is responsible for synchronizing the network and managing the application.

It also serves as a sink to the sampled data sent by the Sensing Nodes. Such data is immediately

forwarded to the C&C App without any processing, for later analysis.

The Coordinator supports two types of commands: (1) Board Commands – used to configure the

SABs; these commands are transmitted to the corresponding node, and then directly forwarded to

the SAB, using regular IEEE 802.15.4 data frames; (2) Network Commands – used to manage the

monitoring application.

There are two kinds of commands within the former category: (a) Node Management commands;

(b) Application Management commands. The Node Management commands are sent to the Sensing

Nodes using regular IEEE 802.15.4 data frames during the application Ready state. These include

setting the behaviour of the node (active/passive), remote reset, channel selection, and requesting

onboard sensor reading (temperature and humidity). The Application Management commands are

sent within the payload of the IEEE 802.15.4 beacon frames (Figure 5.3) so that all nodes receive

and process the command at the same time, thus guaranteeing synchronization (there is no contention

5.5 WSN Architecture 87

in beacon transmission). All commands are acknowledged by the Coordinator upon reception at the

UART (sent by the C&C App).

5.5.4 Sensing Nodes

The Sensing Nodes control and synchronize the acquisition of the SABs, and carry out the acquisi-

tion of the embedded sensors measurements (temperature, humidity, voltage, luminosity). Figure 5.4

shows a picture of a Sensing Node with the accelerometer attached.

The architecture of a Sensing Node is illustrated in Figure 5.5. All the application as well as the

open-ZB stack was developed in nesC, over TinyOS. Communications with the SAB are handled using

the UART serial interface of the TelosB. Two additional general purpose input/output (GPIO) pins of

the TelosB are used to enable the synchronization of the SAB and to control the communication flow.

Figure 5.4: Sensor Acquisition Board (SAB) architecture

At the beginning of the application, the Coordinator’s beacon is set to IDLE. Upon application

input, the Coordinator changes payload to READY signalling all boards. When the Sensing Node

is informed of the beginning of the Ready state, it will immediately check for the presence of the

SAB using its UART interface. If the SAB responds, the Sensing Node signals the Coordinator that

everything is ready. Otherwise it will signal the error using an Error Message with the respective error

code. Sensing Nodes are then activated and configured by the Coordinator.

Sampling is started by sending the START command in the beacon payload. When the sampling

time expires, the Coordinator changes its beacon payload to send the STOP command. Upon recep-

tion of the GET command, the Sensing Nodes initiate the transmission of the sampled data stored at

the SAB to the Coordinator Node. Finally, the Sensing Nodes signal the Coordinator that the data

transmission is over.

88 Structural Health Monitoring Application Scenario

Figure 5.5: Architecture of a Sensing Node

5.6 Test and Validation

This section describes how the proposed SHM system (and the underlying architecture) was tested

and validated in a real application scenario.

5.6.1 Command and Configuration Application

In order to provide the necessary HMI and API for the data analysis applications, a Command and

Configuration Application (C&C App) was developed in C# (Figure 5.6).

Figure 5.6: Command & Configuration Application

The available controls of the C&C App enable full control over the acquisition configuration pa-

rameters (i.e. axis selection, sampling rate, sampling period, sampling duty cycle, etc.) and also

provides a quick evaluation of the presence of the system nodes. Several additional features are also

5.6 Test and Validation 89

built-in to assist the user with relevant information on the network and acquisition parameters config-

uration.

One additional goal of the C&C App was to provide a convenient interface between the WSN and

the data processing/analysis application. The implemented mechanism allows a transparent interface

with the system, in a very similar with the previously used, which are typically serial data interfaces.

To complete the data acquisition process, a program was developed in Labview [Nat98] for the

interpretation and conversion into standard units, for receiving the messages from the serial port as

well as their local storage in the central station.

5.6.2 SHM System Validation

A single degree of freedom structure represented by an inverted pendulum is one of the simplest

examples used by the civil engineers to explain the fundamentals of the dynamics of structures. In

this work, this structure was also used as a tool to evaluate and understand the behaviour of the COTS

WSN and the developed prototype for operational modal analysis. This section describes how the

proposed SHM system (and the underlying architecture) was tested and validated in a real application

scenario.s of civil engineering structures.

As it is shown in Figure 5.7, the studied specimen consists in an inverted wooden pendulum with

1.70 m height built specially for testing purposes in the civil engineering laboratory at the University of

Minho. The pendulum was designed in such a way that its dynamic properties replicates the properties

of the Mogadouro’s Clock Tower, an old masonry tower in the northern part of Portugal, which was

previously studied and presented in [Ram07]. For comparison purposes, both WSN platforms were

evaluated considering as references conventional wired based systems which consist in high sensitivity

piezoelectric accelerometers model PCB 393B12 [PCB] as well as the NI-USB9233 (NI, 2009) as data

acquisition board.

Figure 5.7: Laboratory system idealization/experimental setups

The initial tests were meant to observe the performance of the COTS technology on WSN plat-

forms for dynamic monitoring studies. With this purpose, we implemented the system using the

90 Structural Health Monitoring Application Scenario

MICA2 mote platform with a MTS400 board fitted with an accelerometer. The accuracy of the time

series recordings of these platforms was evaluated using only one of the conventional accelerometers

and mote placed at the top of the Pendulum. The results of these tests are presented in Figure 5.8.

The results of the first test indicated the good performance of the commercial WSN platforms for

measuring high amplitude vibrations. As it was expected, for signals with amplitudes below 20 mg,

the WSN platforms recorded only noise (it is even feasible to observe the digitalizing lines) due to

the low resolution of the micro-accelerometers and the ADCs embedded. However, it is important to

state that in SHM studies of civil engineering structures, vibrations with amplitudes below 2 mg are

commonly found. Moderate differences (less than 5%) were found in the frequencies detected with

both systems (wired and COTS WSN) as well as meaningless results for the mode shape detection

task due to the lack of the implementation of synchronization algorithms in the commercial WSN

platforms.

Using the developed prototype of WSN platform, a second round of tests was carried out consid-

ering the same inverted pendulum as case study. The first test was aimed to observe the quality of the

time series recordings of the developed platforms. With this purpose, the effect of an impulse force

was registered using one conventional accelerometer and one new sensing node, both located at the

top of the pendulum. The tests were carried out considering a sampling rate of 100 Hz and sampling

time of 10 s. The results are shown in Figure 5.9.

Figure 5.8: Time domain series recorded using COTS WSN platforms: (a) low amplitude excitation

recordings; and (b) higher amplitude excitation recordings

As it was shown, even for signals with amplitudes below than 0.25 mg, the records from the new

developed WSN platform and the conventional wired based accelerometers presented a remarkable

degree of similarity.

The subsequently stage consisted on the verification of the accuracy of the frequency content of

the acquired signals with the developed WSN platforms. Considering the same pair of sensors located

at the top of the pendulum and 30 s of sampling time, experiments in two excitation scenarios were

carried out: random impacts tests (vibrations with amplitudes below 5 mg) and ambient noise tests

5.6 Test and Validation 91

(vibrations with amplitudes below 1.5 mg). The Welch Spectrum [Wel67] of the time series records

were calculated and are presented in Figure 5.9.

Figure 5.9: Time domain series recorded using the developed prototype of WSN platform: (a) High

amplitude excitation recordings; and (b) lower amplitude excitation recordings

The results evidenced the high accuracy of the resultant frequency domain spectrum calculated

from the records of the new developed system. With this respect, even in the case of ambient noise

tests, outstanding similarities in the content of frequencies were detected.

The last stage of the experimental operational modal analysis process consists on the estimation

of the dynamic properties of the structures by means of their natural frequencies, damping coefficients

and mode shapes. For this purpose, a more refined data processing method was used which consisted

on the evaluation of the time series recordings with 3 conventional and new developed sensors located

at the top of the pendulum using parametric time domain techniques such as the Stochastic Subspace

Identification (SSI) method [VODM91]. Figure 5.10 shows the results of this analysis for the case of

random excited system.

The first two mode shapes of the structure were identified with no uncertainties. However, there

was registered a light difference in the third mode shape which will be further investigated. Table 2

summarizes the results of the experimental modal identification studies performed in the pendulum

using the conventional wired based systems and new WSN platforms.

Table 5.2: Modal identification results

Conv. Systems WSN Prototype Error

Mode f (Hz) ζ (%) f (Hz) ζ (%) ∆ f (%) ∆ζ (%)

1 3.26 2.0 3.34 2.4 2.5 20.0

2 5.00 2.3 4.94 1.9 1.2 17.4

3 16.07 1.2 16.03 2.0 0.3 66.7

92 Structural Health Monitoring Application Scenario

Figure 5.10: Frequency domain results – Tests new WSN Platform

5.7 Final Remarks

Accurate synchronization is of crucial importance for these kinds of SHM applications. Synchro-

nization is tightly coupled with timeliness both at software and hardware level, in such a way that to

guaranty tight synchronization we must also take into consideration several aspects such as the task

management strategies of the Operating System, processing time, interference from external sources

and clock drift.

In effect, precise synchronization with a non-real time operating system such as TinyOS can be

hard to achieve, and additional effort was made to ensure that no other tasks would run while process-

ing a beacon frame. In this line, and due to the limited data processing and storage capabilities of the

host WSN platform, the control of the data acquisition had to be transferred to a secondary processing

unit, integrated in the SAB.

This unit runs a real-time firmware supporting all the hardware of the SAB and managing data

processing, synchronization error detection and data storage (up to 32 MB of samples), thus freeing

the TelosB microcontroller from these tasks, in order to become dedicated to communications and

stack management.

Concerning the custom hardware we designed, the Signal Acquisition Board (SAB) gathered sev-

eral different modules: the front-end input from the acceleration sensor, acquisition channel multiplex-

5.7 Final Remarks 93

ing, analogue signal filtering and conditioning, high resolution analogue to digital conversion (ADC),

energy supply/management, data processing/storage, and communication/integration with WSN host

platform. Combining all these building blocks in a single board is a very demanding task in terms of

system dimensioning and design, as characteristics like low-power consumption and energy efficiency,

analogue signals filtering and conditioning, high resolution ADC, low-noise, digital signals and digital

data processing/communication, are typically opposing each other terms of design requirements.

The small-scale prototype was deployed at Mogadouro’s Clock Tower in Bragança, Portugal. We

observed a few connectivity problems with the sensing nodes, although the distance to each other was

not very significant (less than 15 m). In fact the orientation of the TelosB mote had an important

impact in the communication range, and moreover, the walls greatly attenuated the radio signal, thus

limiting the coverage of the deployment. This experience besides validating the small-scale prototype

with positive results, proved that our research work towards a synchronized and scalable SHM system

with routing support was definitely a safe bet in order to enable larger scale and accurate SHM.

The work hereby presented, describes a wireless sensor network (WSN) system for monitoring

physical infrastructures. Building upon the cons of traditional wired-based solutions, several solutions

based on WSNs have been proposed, but there was a lack of ready-to-use and off-the-shelf WSN

technologies able to fulfil some more demanding requirements of these applications (e.g. monitoring

bridges, historical buildings or vehicles structures).

Here, we describe a solution that is mostly based on standard and off-the-shelf technologies,

namely in what concerns hardware platforms, operating system and communication protocol. Only a

minimum set of custom-designed signal acquisition hardware was conceived, in order to serve as an

interface between the accelerometers and the sensing nodes. Our solution is low-cost and guarantees

accurate and time synchronized measurements.

In the long term we aim at deploying a larger and multiple-cluster network in a real scenario. This

however presents a few challenges concerning the network architecture. First, a mechanism must be

devised to support a tight synchronization of the sensing nodes within the different clusters. However,

this is not supported by the legacy IEEE 802.15.4/ZigBee protocols. In this line, a mechanism to

support this is proposed in chapter 8 of this thesis and validated using this SHM application scenario.

Second, increasing the number of clusters might result in an increased and sometimes unbalanced

amount of traffic from the sensing nodes directed at the sink. Thus, the reception of all the sensing data

might take a much bigger amount of time when compared with the star-based single cluster network

hereby proposed.

If in the one hand, a smaller amount of bandwidth allocated to each cluster results in a shorter

beacon period in the network, facilitating the network setup, control and synchronization, on the other

hand, a larger bandwidth allocated to each cluster would decrease the overall transmission time of the

sensing data. This trade-off is addressed with the DCS mechanism proposed in chapter 9 of this thesis

which is also instantiated in this application scenario.

94 Structural Health Monitoring Application Scenario

The design of (distributed) data processing and classification algorithms (for modal analysis and

damage identification) is also envisaged in the future and will also improve our system by reducing

data transmission time. Moreover, it would also further enable the possibility of adding control to the

network to enable systems such as bridge weight-in-motion.

Chapter 6

Datacenter Monitoring Application

Scenario

6.1 Context and Motivation

This chapter presents another potential application scenario for WSNs which also constitutes an em-

bodiment of the Cyber Physical Systems paradigm. Datacenter Monitoring is increasingly becoming

a hot topic raising energy and security concerns, as the cloud computing phenomena gains momen-

tum. We designed and implemented this application scenario to explore in a hands on perspective, the

most prominent Quality of Service (QoS) challenges such applications could present and to trigger the

design of new mechanisms to solve these. Finally, the objective is to validate and demonstrate in this

scenario the QoS mechanisms proposed in the third part of this dissertation.

Data centers are facilities designed to host large computer systems and have become a crucial

piece in the IT operations of many organizations. A data center can range from a single small room

to several floors or even buildings and consume up to 200 times more electricity than standard office

spaces [WL10]. This large power consumption justifies a special attention to the design of energy

efficient data centers, and there are many approaches to achieve this end. For example, more efficient

server systems, storage devices, network equipment and cooling system can be designed as well as

power or airflow distributions can be improved.

It was commonly understood that electricity consumptions in massive server farms would double

between 2005 and 2010. Instead, most recent reports detail a fully different trend where such number

rose only by 56% worldwide [Koo11] and this slower-than-expected growth stems from a stagnant

economy and the rise of virtualization and cloud-based services. Nevertheless, the average data center

is still largely inefficient. The standard measure of a data center’s efficiency is its Power Usage Effec-

tiveness (PUE), i.e., the ratio between the total energy used to operate a data center and the amount

devoted to actual IT services. The total includes lighting, fans, air conditioners and even electrical

95

96 Datacenter Monitoring Application Scenario

losses in the transfer from the grid to the physical hardware. Ideally, a data center would run at a

PUE of 1.0 and all the electricity would go to computing. However, in the typical data centers this

coefficient is more likely to approach 2.0 [Mon12]. This is because the different elements composing

a datacenter and contributing to the energy efficiency have non-trivial interactions with each other.

Physical parameters, such as power and environmental variables of the data center (e.g., temperature,

humidity, barometric pressure) are often coupled with computations (for example, workload distribu-

tion in the data center). In this sense, we can see the operation of a data center as an instantiation of a

large Cyber-Physical System (CPS).

This chapter reports on the current achievements and ongoing work towards energy-efficient op-

erations and the integrated management of cyber and physical aspects of data centers. The goal is

to develop an integrated system to monitor the power consumption of the servers and their rooms’

environment conditions, with the goal of achieving an overall reduction of the data centers’ energy

consumptions. The proposed architecture is intended to be hierarchical, modular and flexible enough

to achieve a high temporal and spatial resolution of the sensor measurements, with negligible latencies

of sensors’ reports to the data center management control station.

Overall, the advantages of having fine-grained power and environmental measurements in this

application scenario are the following:

(i) Measuring the power consumption at the single server level has enormous benefits for the

business logic of data centers’ owners, since they can offer services and billing to their customers

based on the actual consumption (this project is being carried out in conjunction with a medium/large

service provider in the area (Portugal Telecom), which defined this as an important goal of the system).

(ii) Although there are models in the literature to predict heat-flows used in commercial Computer

Room Air Cooling (CRAC) systems, those models often lack spatial resolution. In this line, the possi-

bility to sense micro-climate conditions, feeding those models with real measurements, will improve

the reliability and accuracy of their forecasts.

Finally, (iii) local actuation, e.g., controlling the power of local in-row CRACs systems or using

directional blades, allows to establish micro-climates and individually act on cooling the most heated

areas, instead of over-cooling the whole datacenter, which leads to energy losses.

Fine-grained measurements also enable to provide different views of the system, each of them

customized to different users. The proposed architecture allows to set the desired resolution of the

readings upon user’s requests, for example to investigate some problems in a specific area (rack, row,

room or floor) of the data center. Every single sensor can be configured by setting user defined alarms

and trigger measurements reports adaptively, by changing or (re-)configuring specific thresholds at

run-time.

Importantly, we propose two approaches for the sensing architecture. The first relies on a cluster-

tree based WSN topology, featuring only wireless sensing devices. The second approach, considers a

mix of wired and wireless devices. Relying solely in wireless devices, although technically possible

6.2 Related Work 97

is still quite costly in large scale deployments, mostly due to the radio transceiver’s cost. Considering

we are aiming at designing a competitive system, also in terms of cost, we had to devise an alternative

architecture to reduce the amount of wireless sensing devices at the expense of reduced flexibility and

ease of installation.

The following sections describe the data collection and distribution system architecture, show-

ing in detail how the environmental and power data will be collected from the data center. Initial

deployment experiments and results are also presented.

Closing this chapter, a set of QoS challenges were identified to further extend the application’s

functionality. These challenges are addressed in Part III of this thesis by proposing a set of QoS mech-

anisms, which are integrated in the design of a crosslayer and online QoS management mechanism,

described in chapter 10 and instantiated in this application scenario.

6.2 Related Work

Thermal management and green data centers have received considerable attention in recent research

literature. Two main approaches can be identified: mechanical design-based and software-based [LKPP10].

The former approaches aim at studying the airflow models, data centers layout and cooling system

design in order to optimize the location of the racks and CRAC units. On the other hand, the latter

approaches focus on minimizing the cooling costs by distributing or migrating jobs among the servers.

The result of this study is the design of thermal-aware scheduling mechanism to distribute the work-

load where the power budget (i.e., the product of power and temperature [HCG+06]) is more favorable.

However, in the current data center thermal management systems, the mechanical and software-based

approaches are usually independent on each other [LKPP10].

Few very recent approaches rely on building software models through a joint coordination of

cooling and load management [PSK08, ZWBM12]. However, the complexity of data center airflow

and heat transfer is compounded by each data center facility having its own unique layout, so achieving

a general model is difficult [RJ07]. In fact, in [PSK08], authors stress that their model has several

parameters that need to be determined for specific applications.

Similar drawbacks affect other models, which formulate an energy minimization problem, subject

to service delay and Quality of Service (QoS) constraints. In this class it is worth to mention dynamic

voltage scaling [BEK+02, HASL07] and on/off power management schemes [XZR+05] – [WCLL10].

Then, acquiring data at a fine enough spatio-temporal resolution to validate models and keep their in-

puts updated at run-time is paramount. Nevertheless, this problem poses new challenges and research

issues concerning the type, number and placement of sensors [RJ07].

Along this line, some recent work [LLL+09, WTS+11] pushed in the direction of deploying wire-

less sensor nodes and monitor the thermal distribution, to figure out how to avoid hot-spots and over-

heating conditions. In [WTS+11], for example, 108 wireless sensor nodes were deployed in a floor

98 Datacenter Monitoring Application Scenario

of the IBM data center in Geneva. We differ from this approach in the sense that we want very fine-

grained (in space and time) gathering of power and environmental parameters and include physical

quantities other than temperature only.

Our approach has similarities to [LKPP10], where authors propose a (proactive) thermal manage-

ment system built upon an air flux mathematical model, which leads to a formulation of a minimization

of cooling energy problem. Moreover, in [VLP11], the same authors developed a joint communication

and coordination scheme that enables self-organization of a network of external heterogeneous sensors

(thermal cameras, scalar temperature and humidity sensors, airflow meters) into a multi-tier sensing

infrastructure capable of real-time data center monitoring. Differently from [LKPP10, VLP11], our

proposed system is based on a hierarchical, modular, flexible and fine-grained sensor network archi-

tecture, where data collected from heterogeneous sensors (including power measurements) and the

analysis of their inter-correlations will enable closer examination and a better understanding of the

flow and temperature dynamics within each data center [SCI05]. To our knowledge, at the time of

this work no previous work enabled correlating power and environment characteristics on a per rack

or per-server granularity.

At the lower tiers, we propose two architectures. One relies on a fully wireless approach, while

the second, similarly to the Microsoft DC Genome project [LA12], uses a network of sensors inter-

connected through a mix of wireless and wired technologies. Contrarily to [LA12], we aim to use

open and Commercial Off The Shelf platforms as much as possible and, to support the wired system

architecture, an industry-based wired bus, such as MODBUS [mod02], instead of USB cables.

Multiple long-wavelength infrared image sensors can be used to capture thermal maps of an en-

vironment [KM05]. While thermal cameras are an interesting approach, we find that they suffer from

several practical issues:

(i) the current cost of thermal cameras is substantial, and, due to field-of-view limitations (data

centers are typically organized in narrow rows), a high number of them should be required to cover a

data center;

(ii) mapping the view of the camera with the infrastructure being monitored is more challenging

than relying on point sensors, and it is especially difficult to manage when changes are made to the

layout of the data center (e.g., addition/removal of servers and racks), and

(iii) by using cameras, the quantitative data analysis would need to be provided by computer

vision, which is feasible, but requires a very specific tuning for each scenario and equipment.

However, as claimed also by authors in [VLP11], our system has provisions to support thermal

image sensors as a smart sensor that can provide temperature field readings with a configurable reso-

lution.

As far as the higher tiers of the system architecture are concerned, the data collection, distribution

and visualization functions need to be carefully addressed. The goal in this case is to provide adminis-

trators and designers with a representation of the actual data center’s conditions in real-time, in order

6.3 Architecture Overview 99

to early identify problems and solutions.

In literature, a number of recent work addresses some of these functionalities. The MQ Teleme-

try Transport (MQTT) [Loc10] is a publish-subscribe messaging protocol, designed for constrained

devices. While it is very lightweight and as been successfully applied in several areas [SCW10] –

[GCNS11], it does not provide any flexible mechanism to define messaging format.

The Global Sensor Networks (GSN) [AHS06] supports the flexible integration and discovery of

sensor networks and sensor data. It is a service-oriented architecture, where sensors can be accessed

using SQL queries and web services. However, GSN is substantially single-application centric and

does not support security features.

The proposed solution builds upon previous work in SensorAndrew [RBR11], which defines an

infrastructure for sensing and actuation, using the XMPP protocol (more details about XMPP will be

given later in Section 6.3.2) at its core. It flexibly provides both point-to-point and publish-subscribe

communication, confidentiality, access control, registration, discovery, event logging and management

of sensor/actuator devices.

6.3 Architecture Overview

The architecture of our system is divided into three main sections: (i) The data-producing entities

such as the sensor networks, which gather environmental data, IT equipment or building equipment,

which gather the data from the environment, and also power consumption data. The data from these

sensor networks is delivered to (ii) a data distribution system that acts as a broker between (iii) the

data consuming entities and the consuming applications (e.g., logger applications, alarm monitor, user

interface applications).

At the core of the architecture depicted in Figure 6.1 there is a data distribution middleware, which

takes care of handling the data coming from different sources such as the environmental and power

sensors and deliver this data to the applications interested in this data. The applications can be a data

logger that gathers historical information, visualization tools, alarms monitors or any other application

that can be developed in the future.

In the following subsections, our proposed system architecture will be described in more detail,

highlighting each component of the data gathering and data distribution system.

6.3.1 Environment and Power Data Collection

The environment and power data collection system aims at supporting a trade-off among (i) fine-

grained sensors’ measurement (spatial) resolution, (ii) system flexibility and modularity, (iii) low-

latency reporting of the measurements, and (iv) low cost. Two different approaches were designed

to support the data collection. The first relies on a cluster-tree based WSN topology, featuring only

100 Datacenter Monitoring Application Scenario

Figure 6.1: Architecture Overview. Several types of devices depicted: Sensor Nodes (SN) with sensors

directly attached; Wireless Base Stations (WBSs) that collect data from several Sensor Nodes and

Gateways (GWs) that collect data from WBSs.

wireless sensing devices. The second approach, consists of a mix of wired and wireless devices.

Importanly, both share the upper system application layers.

The reasoning underlying the second approach mostly concerns cost efficiency. WSN technology,

namely transceivers are still quite expensive, and although it is expected that their cost will be reduced

in the following years, this fact remains an impediment to large scale deployments. Considering the

system was developed with a commercial objective in mind, the system should be competitive in

terms of cost. With this in mind, the number of wireless sensing devices was greatly reduced in the

second approach by using a wired bus to interconnect those nodes, taking advantage of the traditional

organization of a datacenter facility in rows of racks.

Independently of this, both proposals were successfully implemented and deployed in a datacenter

and are presented in detail in this section.

The WSN is a stacked multi-tier architecture, also depicted in Figure 6.1. Each level represents

a network tier with the corresponding devices and communication technology used. The lower level,

level-0 consists of sensor nodes, i.e., small computational units with several physical sensors attached,

which perform sensing tasks and deliver data to the devices at the next level in the hierarchy. At

level-1, Wireless Base Stations (WBSs) are responsible for querying the Sensor Nodes within their

6.3 Architecture Overview 101

respective cluster. A cluster is composed by one WBS and several Sensor Nodes. Then, WBSs are

responsible for data aggregation and sensor fusion. They communicate using IEEE 802.15.4 with

devices at the next level in the hierarchy. At the level-2 of the network hierarchy, (environment)

gateways are present. These devices have the highest computational capabilities among the devices

present in the sensor network field. Gateways provide the data gathered from the sensor network to the

data distribution system in a standard format. Finally, in level-3, the data distribution provides means

to deliver the data gathered from the sensor network to the applications. The data distribution system

supports any number of gateways and applications in a distributed and transparent way.

Sensing Units. They are composed of a platform which carries out the data acquisition of digital

environmental sensors, including humidity, temperature and pressure, as well as power sensors to

monitor the power consumption of each server in the rack. These units are able to interface the sensors

using an I2C bus, enabling to extend their sensing capabilities as needed.

Wireless Base Stations (WBSs). The WBSs receive the input from the Sensing Units and carries

out some data aggregation. A common Gateway is in charge of gathering measurements and sending

them over long-range communication technology (e.g., WiFi, Ethernet). In terms of HW platforms,

the WBS node should consist of the same platform as a generic Sensing Nodes.

Gateways. The system can have one or more Gateways. Gateways maintain representations of

the data flows from the sensor network to the data distribution system. They perform the necessary

adaptation of the data received from the WSN. The gateways can be deployed as one per room serving

all the rows of racks in that room; more gateways can also be deployed to improve radio coverage, for

load balancing or for redundancy.

6.3.1.1 Cluster-based WSN Approach

Figure 6.2 presents the network topology used to support the WSN architecture.

The network is organized in a ZigBee cluster-tree network topology. We assign one cluster of

6 Sensor Nodes (i.e. ZigBee End-Devices) to each datacenter’s rack. Each cluster is controlled by

a Wireless Base Station (i.e. ZigBee Cluster-Head) which forwards data to the Gateway, a role that

can be assigned to any router at the top of the tree. Usually, we do not assign the role of sink to the

ZigBee Coordinator. It is better not to burden this node in terms of processing, considering its vital

importance to the network by maintaining synchronization. Instead, a ZigBee router is usually chosen

as a Sink. Hence, the ZigBee Coordinator’s roles are usually limited to network synchronization and

management.

The WBS, in principle are not used for sensing, although this feature can be easily enabled if

needed. Their only tasks are to manage and synchronize their cluster, to aggregate and to forward data

to the gateway.

Interestingly, the IEEE 802.15.14/ZigBee set of protocols, when configured in this network topol-

ogy, are able to provide the flexibility to support the mixed criticality this application imposes. For

102 Datacenter Monitoring Application Scenario

Figure 6.2: Cluster-based Architecture

instance, a major advantage of this network topology is that we can rely on its natural predictability

to support alarms. In this line, the GTS mechanism of the IEEE 802.15.4 can potentially provide this

feature. This is useful to inform the user of high priority events, that may require immediate attention.

These may consist of severe sensor threshold violations, such as an extreme temperature event, or se-

curity violations, such as a physical unauthorized access to a server, triggered by the opening of a rack

door. To support this feature, the IEEE 802.15.4 GTS mechanism was implemented over TinyOS. The

description of this implementation was presented in this thesis in chapter 4.

On the other hand, less critical data in terms of timeliness can also be supported in parallel by

the network using the CSMA/CA mechanism. Importantly, by using a time-division approach in the

scheduling of the several cluster’s active periods, we are able to mitigate the radio interference this

kind of dense deployments are usually so prone to, improving on the network performance.

Concerning the hardware platforms, all the nodes in this architecture consist of TelosB motes [MEM].

These provide temperature and humidity readings through its embedded sensors, although the sensing

capabilities of the Sensor Nodes can be easily extended, via the I2C bus, by connecting other sensors.

The advantage of relying solely on wireless devices, is that it eases the installation process consider-

ably, as the nodes can be placed anywhere, at any time, in any of the racks. This fact also enables

more possibilities for a reconfiguration of the datacenter’s disposition resulting in an improved power

efficiency.

In addition, this approach can support synchronization of the data acquisition process, which al-

though not an initial requirement of the application, it is expected as a future extension.

Power to the nodes can be provided by either batteries (at each node) or through a USB connection,

which is easily available in each rack, the latter being the preferred method.

6.3 Architecture Overview 103

Figure 6.3: Picture of the network deployment at the datacenter.

Figure 6.3 shows a view of the deployment of the cluster-based approach in a datacenter. The

TelosB nodes in the figure are connected via a USB connection for power. Figure 6.4 shows a snapshot

from the Daintree network sniffer showing the network formation.

Upon connection, the ZigBee Coordinator node starts broadcasting beacons to synchronize the

network. Next, the WBS synchronize and associate to it forming the tree structure. The WBS trigger

the formation of their clusters by sending their own beacons according to a previously setup cluster

schedule. At last, the Sensor Nodes in each cluster synchronize and associate to the corresponding

WBS. The ID of each Sensor Node is hard-coded, although a DIP switch will be used in the future

avoiding re-programming. As soon as all the racks are connected and associated, the gateway is

notified, and the user can trigger the data acquisition process.

Using a cluster scheduling time-division approach [KCAT08] the 8 clusters were scheduled as

depicted in Figure ??. Each cluster’s active portion is composed of a contention access period (CAP),

in which most of the data is transmitted, and a contention-free period (CFP), for real-time traffic

support. The CFP was setup to support one GTS slot per each Sensor Node, with the possibility of

supporting 7 nodes at the most.

We divide the alarms into two groups: (1) Threshold Violation, which are triggered by a hard

variation in the data read by the sensors (e.g. high temperature shifts), and (2) Security Violation,

which groups the alarms concerned with security and physical access to the datacenter (e.g. a rack

door opened). Chapter 10 details the network performance evaluation of this setup and the proposed

104 Datacenter Monitoring Application Scenario

Figure 6.4: Screen capture from the Daintree Sniffer depicting network formation

improvements to its QoS.

6.3.1.2 BUS based approach

Sensor Nodes

A Sensor Node is a communication/computation-enabled device physically linked (over an I2C bus) to

a number of Sensor Units, which can be composed by different sensors (e.g., temperature, barometric

pressure, humidity). The Sensor Nodes gather the data from the sensor units and, in turn, answer to

data requests from the cluster heads at the level-1. The Sensor Node also includes an electrical scheme

for addressing the devices along the sensor bus (I2C).

To keep cost and complexity low, at this tier of the Network Architecture, the Sensor Nodes

communicate with one Wireless Base Station over a bus, e.g., using a RS485/MODBUS technol-

ogy [mod02]. In particular, the (WBS) node acts as a local coordinator and master of the bus. The

sensor nodes are deployed one each rack and their sensors get measurements from all the elements of

the rack.

Sensing Units

They are composed by a set of digital environmental sensors, including humidity, temperature and

pressure, as well as power sensors to monitor the power consumption of each server in the rack. All

sensors are capable of interfacing with an I2C bus, where several other sensing units can be intercon-

nected with the Sensor Node, the only master node on this bus.

Wireless Base Stations (WBSs)

The WBSs act as IEEE 802.15.4 cluster heads and are connected with each other in a mesh topology.

6.3 Architecture Overview 105

RS485

C

C
BUFFER

I2C SWITCH

BUFFER I2C SWITCH
µC

TP

BUFFER BUFFER

µC

Power Meter

Sensor Node

H

 Sensing Unit
(Environment)

Sensing Unit
 (Power)

802.15.4

µC

RS485

WBS

Figure 6.6: Hardware Platform Architecture

A common Gateway is in charge of gathering measurements and sending them over long-range com-

munication technology (e.g., WiFi, Ethernet). In terms of HW platforms, the WBS node will be the

same platform as a generic Sensor Node, with an on-board ZigBee radio. Thus, each Sensor Node can

become a WBS with minimal modifications, i.e., just by plugging the wireless module and uploading

a different firmware.

Gateways

The sensor network can have one or more Gateways. Gateways maintain representations of the data

flows from the sensor network to the data distribution system. They perform the necessary adaptation

of the data received from the WSN. The gateways can be deployed as one per room serving all the

rows of racks in that room; more gateways can also be deployed to improve radio coverage, for load

balancing or for redundancy.

Figure 6.6 puts forward some additional details about the low level sensing devices. The WBS is

directly connected to a power source and supplies power through a twisted pair cable to all the Sensor

Nodes in that bus. In all the nodes on this bus, the voltage is locally converted to lower values by a

step-down switched power supply for higher system efficiency. Wires running in the same cable form

a serial data bus (MODBUS over a RS485 connection) that connects the Sensor Nodes.

The Sensor Node is composed by (i) an RS485 interface for the MODBUS, (ii) 6 on-board current

sensors (denoted as C in Figure 6.6), (iii) one I2C switch, responsible for duplicating the bus capacity

in terms of addressable devices, and (iv) the buffers on its output, which increase the electrical robust-

ness of the I2C bus over longer distances. Power is also present in the cable which carries the I2C

bus, again locally regulated in every Sensing Unit for a higher quality voltage supply for the sensor

devices.

The environmental Sensing Units are composed by digital sensors of humidity, pressure and tem-

perature, with configurable resolution for trading between higher resolutions and lower conversion

times. The Sensing Units may have different sensor arrangements (for example, only a temperature

sensor, or only a pressure sensor), such that they are more customizable to the actual sensing needs.

The Sensor Units form a network over the I2C bus. Each Sensor Node can be connected on the

106 Datacenter Monitoring Application Scenario

I2C bus with up to 52 temperature sensors, 54 power meters, 14 pressure sensors and 14 humidity

sensors. Moreover, Figure 6.6 shows that the Sensor Units also have an I2C switch, needed to address

sensors that have a fixed address, and cannot be in the main bus.

For the design of the I2C network, some basic requirements have been considered:

(i) the sensors should be grouped and sampled according to the physical quantity observed, for a

lower latency between measurements of a given cycle, and a better temporal granularity;

(ii) this Sensor Units network has to be modular, where Sensor Units can be added or removed at

run-time without interrupting the sampling service;

(iii) the maximum cycle time for sampling all the sensors should be the minimum conversion time

required for each sensor, depending on its operating precision. This defines the sampling time required

for reading all the sensors and also the maximum number of Sensor Units allowed on the bus;

(iv) when queried, guarantees must be given for the maximum response time of the Sensor Node,

to the level-1 network. This is important to ensure bounds on communication between the Sensor

Nodes and the WBS.

The I2C bus can also include Power Meter Units, which are buffered and driven by a microcon-

troller, responsible for reading the power consumption information from a dedicated microchip. This

microchip interfaces with the power line and provides detailed information about the power consump-

tion. These power meters can provide true power readings and complement the current sensors on the

Sensor Node board.

Task 1

Task 2

Task 3

Task n

Listening

treqtreqi tidle tread treq

treply

s

Figure 6.7: Task Scheduling at the Sensor Node

To ensure latency bounds on the queries of the Sensor Nodes by the WBS, an appropriate schedul-

ing of all the activities in the Sensor Node, such that a large number of sensors could be acquired

within a short amount of time, is paramount. The task scheduling scheme of a Sensor Node is il-

lustrated in Figure 6.7. Every line represents a task, where the numbered lines represent the tasks

responsible of sampling the sensors individually, up to ns sensors in the bus. The time interval treq

represents the sum of the time needed to request every sensor for a conversion. The time interval tidle

6.3 Architecture Overview 107

DataCentre(

Room(1(Room(2(

Row(1(Row(2(Row(3(Row(…(

Rack(1(Rack(2(Rack(3(Rack(…(

DataCentre(Master(Node(

Room(Master(Nodes(

Row(Master(Nodes(

Aggrega9on(of((

sensor(nodes(

(a) Hierarchy of the XMPP Event Nodes.

XMPP$$

Server$
Virtual$

Physical$

Virtual$

Logical$

Aggregator$

Virtual$

Physical$

Virtual$

Logical$

Desktop$ Laptop$ Mobile$

Real$

Node$

Real$

Node$

Real$

Node$

Real$

Node$

Real$

Node$

(b) XMPP Event Node Data Aggregation

Figure 6.8: XMPP Event Nodes Hierarchy and Data Aggregation

depends on the sensor conversion time and the time required to query all the sensors (treq) in the bus.

During tidle the Sensor Node is idle, but listening to the MODBUS and ready to receive any query

from the WBS.

The time interval tread represents the time required to read the converted values at the sensors. At

the end of tread , the cycle restarts. The worst-case response time of every Sensor Node is given by:

treq + tread + treply, where treply is the time to reply to a query from the WBS (on the RS485/MODBUS

bus). We can see the reasoning for this by observing that, if a query arrives at a point where treply would

overlap tread , the data collection from the sensors will be postponed until the next cycle. There is a

tradeoff between the maximum number of Sensor Units per Sensor Node and the maximum number of

Sensor Nodes per WBS. In our choices, the latter value is defined as 20, as most rows in the datacenter

are generally smaller, and assuming to install a WBS per row.

In the worst case, the WBS node would need nsn× (treq + tread + treply) to query all the Sensor

Nodes on the RS485/MODBUS network, where nsn is the number of Sensor Nodes on the bus.

The design choices for this tier of the network architecture allow for the prediction of the worst

case response time on the first two levels, which enables to better define how real-time requirements

are met. Each sample of data is time stamped at the WBS, then forwarded through the IEEE 802.15.4

interface. The clock synchronization is done periodically, through the broadcast of a special data

packet, coming from the Gateway, responsible to set the clock of every WBS. WBSs are also in charge

of performing local computations on the collected measurements, in order to early estimate a few

metrics about the local-climate, airflows due to pressure gradients, or abnormal power consumption.

This is with respect to the design principle of distributing the intelligence in the system at the lowest

tier as possible: by this, a WBS can raise alerts or detect unwanted conditions, instead of merely

monitoring and reporting data from each individual sensor.

108 Datacenter Monitoring Application Scenario

6.3.2 Data Distribution

The data distribution middleware is a central part of the proposed architecture. This system is in

charge of distributing the data from the source to the interested applications. We leverage on the

previous experience of SensorAndrew [RBR11] and employ the eXtensible Messaging and Presence

Protocol (XMPP) [XMP] as the core protocol for managing sensor data collection and distribution. In

this architecture, sensors (and actuators) are modeled as XMPP event nodes in a push-based publish-

subscribe architecture. The loose coupling between publisher and subscribers allows higher scalability

and more dynamism in the network topology. Moreover, this architecture supports the following

features [RBR11, XMP]: (i) standard messaging protocol; (ii) extensible message types; (iii) point-

to-point and multicast messaging; (iv) data tracking and/or event logging; (v) security, privacy and

access control; (vi) registration and discovery services and (vii) redundancy and Internet-scale.

The XMPP [XMP] is the basis for the messaging of our system. XMPP is an open-standard

communications protocol for message-oriented middleware based on Extensible Markup Language

(XML). Unlike most instant messaging protocols, XMPP uses an open systems approach of develop-

ment and application. That is, anyone may implement an XMPP service and interoperate with other

organizations’ implementations. The architecture of an XMPP network runs in a fully distributed

fashion. XMPP has extensions for several models, including one-to-one communication and publish-

subscribe model, and can be location-aware. It has built-in authentication with support for secure

channels (SSL and TLS) and supports storage of messages for later delivery. XMPP applications in-

clude network management, content syndication, collaboration tools, file sharing, gaming, and remote

systems monitoring. Finally, XMPP is implemented by a large number of clients, servers, and code

libraries, and most of this software is distributed as free and open source.

One of the keys that drove our design choices was to note that this architecture supports several

clients. For example, we can simultaneously have: (i) a logger application that subscribes to all nodes

and simply logs all the data; (ii) an application that subscribes to specific events nodes that deliver

alarm notifications; (iii) an application that is only interested in the data for a particular row of the

data center; (iv) an application that, for management and configuration purposes, only needs to know

when a new device is added to the system; (v) an application that is only interested in power readings.

More details on the organization of the messaging system will be given in the following section.

6.4 Mapping The World

The messaging system was defined to relate to the data center perspective and was structured in a

hierarchical fashion. As we will describe next, this hierarchy reduces the number of data items (event

nodes) that a user application needs to subscribe to and also allows for the user applications to zoom-in

the data center in a flexible manner.

6.4 Mapping The World 109

(a) Datacenter Rack View (b) Rack List View

(c) Historical Data Graph View

Figure 6.9: GUI Views

The hierarchy is defined by an XML schema that includes 3D geographical and logical information

of all elements, including sensors, servers, racks, rooms and even buildings or cities. The model

includes hierarchical links: servers can be placed logically inside a rack, racks can be placed inside a

room, and a room can be connected to a building and so on. The logical organization makes it simpler

to organize the hierarchy without depending on the geographical / 3D information of the model. These

levels in a data center context are shown in Figure 6.8(a). This is a logical hierarchy reflected on the

XMPP event nodes, which lives in the XMPP servers. In this way, this hierarchy can be replicated and

load-balanced by using the common mechanisms implemented by the XMPP server.

Using this structure, if an administrator wants to receive data from a given room, the application

only needs to subscribe to that room and automatically he will be subscribing to all the sensors in the

room. The drawback is that this could result in a single client subscribing to a large number of event

nodes, which can be a problem for clients with limited processing, memory and battery life capacities,

such as, e.g., mobile phones.

To address this issue, we extended the regular XMPP event node concept, which is a direct repre-

sentation of physical nodes (e.g., a real sensor node on a rack) to encompass XMPP event nodes which

110 Datacenter Monitoring Application Scenario

can represent a category or a set of nodes with some common logical characteristics (e.g., belonging

to a given room). In this way, a room might have a representation in the messaging system as a virtual

logical XMPP node, and, for example, the temperature values of a room will be published as a trace

over time of the aggregated (e.g., average, minimum or maximum) values of all the measurements

from the sensor nodes belonging to that room, while all those readings will be published on virtual

physical XMPP nodes to be available later for different views. Figure 6.8(b) represents a possible con-

figuration of this mechanism. An aggregator is a piece of software that resides on the XMPP server

or gateways, which is responsible for gathering data from several real sensor nodes by subscribing to

them and producing a stream of aggregated values according to the hierarchy defined.

For providing the user with an overview of the data center conditions, we also built a web-based

graphical user interface (GUI) application that can run in both desktop and mobile devices. Example

views of the application are shown in Figure 6.9. Figure 6.9(a) shows the view after the user zooms

in into a single rack. Here, a representation of the rack is presented, and the user can interact with it;

Figure 6.9(b) shows that it is also possible to navigate through the datacenter using a text-only interface

(in this case, the list of racks in a particular row is shown) and, finally, Figure 6.9(c) exemplifies how

historical data about physical parameters is shown. In this view (historical data), the user may perform

queries about the different types if sensor data collected, using different

Our web application uses a JavaScript library to bridge this module to the sensor network. The

application takes advantage of the technology employed on the sensor network, XMPP, and makes use

of server push notifications. It is a simple and clean interface that gathers all relevant data, allowing

the user to navigate trough a representation of the data center and observe the data collected.

The different views and components are only created with JavaScript upon user’s request. This

contributes to keep the application lightweight and dynamic. For floor plans, maps and graphics the

same approach is being used. The configuration files are interpreted by the server that creates the

images and then sends the already drawn map to the client (user interface). Using this method, any

environment change can be added to the system without affecting the user’s device.

6.5 The Data Center Radio Environment

It is often assumed that the presence of metallic surfaces (such as racks) and power cables suspended

on the ceiling, makes a data center room a harsh environment in terms of radio signal propagation.

Therefore, we conducted an analysis of the radio conditions of a typical data center, to assess the va-

lidity of that assumption and evaluate its impact. The measurements were performed in a data center

(located in Lisbon, Portugal) owned by the largest Portuguese telecommunications operator, Portugal

Telecom (PT), which also provides hosting and cloud-based services. The objective of such measure-

ment campaign was twofold: (i) evaluate the available IEEE 802.15.4 channels for the monitoring

6.5 The Data Center Radio Environment 111

Figure 6.10: Background noise: experimental measurements with a spectrum analyzer [WiS]. Figure

reports average, min and max noise levels on the 2.4 GHz ISM band in a real data center environment.

network to be deployed in the data center, and (ii) test the connectivity among IEEE 802.15.4 radios

in the field, in order to identify the requirements for the density of WBSs.

Background Noise

We first acquired the background noise level to evaluate the possible interference on the monitor-

ing network due to external IEEE 802.11/WLANs. To do this, we used a frequency spectrum ana-

lyzer [WiS].

As expected, Figure 6.10 confirms that there are only few IEEE 802.15.4 channels in the 2.4 GHz

band available. In particular, it is clear that two commonly used IEEE 802.11/WLAN channels (ch6

and ch11) constituted a background noise for our intended network.

Then, thanks to its reduced level of interference, channel 26 was the preferred channel for our

measurements. In general, these background noise measurements show that the number of available

channels in a typical data center might be low.

WSN Connectivity

For the connectivity measurements, we used 9 TelosB nodes (a GW and 8 routers) running on batteries

and 3 TelosB acting as sniffers and attached to the USB ports of a notebook for power and data logging.

The routers were placed at the top of the center rack of 9 rows on a data center.

First, we checked the connectivity between routers. For this, we placed the GW on a corner of

the data center and the routers (R1-R8) were placed on the center of the rows. This experiment tested

that the chain among the GW and all the routers was working, i.e., the GW started emitting beacons,

R1 gets these beacons, associates to the GW and start emitting its own beacons. Then R2 gets R1’s

beacons, associates with R1 and starts emitting its own beacons, and so on until R8. At run time, all

112 Datacenter Monitoring Application Scenario

(a) Packet loss ratio as a function of the distance.

(b) RSS as a function of the distance.

Figure 6.11: Data Center Room Radio Measurements - Overall

routers were able to emit non-interfering beacons, on a time-division fashion.

Then, we started taking measurements with the 3 sniffer nodes as follows. First, we placed the 3

nodes on one half of the row and then on the other half of the row (the 3 nodes were spaced about

1.5 meters from each other, where the one farthest from the middle was 5 meters from the center),

then we collected packets for 5 minutes in each half section of the row and repeated this procedure

for 9 rows. A counter in the beacon payload was set to be incremented at each transmission and

transmission power was set to the maximum. By extracting the source address and the counter in

the beacons from the sniffers’ logs we measured the packet loss probability on each measurement

point and with respect to each router, as well as information about the Received Signal Strength (RSS)

of each received packet. By combining these data, it was possible to build maps of the coverage

for each beacon emitter. Figure 6.11(a) shows the packet loss ratio as a function of the distance

between any transmitter and receiver pair. Similarly, Figure 6.11(b) represents the behavior of the

RSS measurements. Looking at these results, it is evident how the packet loss grows when the distance

between transmitter and receiver increases, i.e., when the received signal power decreases. However,

6.5 The Data Center Radio Environment 113

the packet loss is better than what one could have expected: in general the majority of the routers

was able to cover half of the room with negligible losses (i.e., the average packet loss ratio is always

below 5%). The worst coverage, i.e., the greater values of packet loss, are well localized and due to

some specific conditions. This is better evidenced in Figure 6.12, where the coverage performance for

two nodes, e.g., the GW and the cluster head R1, is shown. Clearly, only spots of connectivity loss

areas were evidenced in proximity of the pillars in the room: these conditions can be easily solved by

accurately planning the position of the routers (cluster heads).

(a) Coverage of GW (R0). Left: packet loss ratio. Right: RSS.

(b) Coverage of R1. Left: packet loss ratio. Right: RSS.

Figure 6.12: Data Center Room Radio Measurements - Details

114 Datacenter Monitoring Application Scenario

6.6 Final Remarks

Instrumenting data centers with very fine spatial and temporal granularity presents a twofold advan-

tage. First, by improving energy efficiency, by having a better control of the micro-climate conditions

in the rooms. Second, in a business case, for data centers’ owners, by providing the possibility of

billing the consumed energy to their clients.

This chapter presents an efficient, hierarchical and modular system architecture, with two ap-

proaches to carry out the data acquisition. The first relies on a cluster-tree based WSN topology,

featuring only wireless sensing devices. The second approach, consist in a mix between wired and

wireless devices. The latter is mostly motivated by the need to reduce the overall system cost, which is

accomplished by reducing the number of wireless devices, by mixing a wired infrastructure. Still, this

architecture is built as modular as possible and can enable an interesting trade-off between fine-grained

monitoring and low-latency.

Nevertheless, despite the cost of the transceivers, which is expected to decrease in the follow-

ing years, the cluster-tree based architecture offers much more interesting features. Among these, it

can support higher flexibility by instrumenting each rack independently without the need for a wired

infrastructure. This enables more possibilities for a reconfiguration of the datacenter’s disposition

resulting in an improved power efficiency. The wireless approach is also being designed to support

a mixed criticality in terms of communications, consisting in a far more complete but also complex

approach regarding the network architecture.

For instance, there are specific alarms which are expected to be triggered and forwarded to the user

within tight deadlines, to guarantee an immediate response to the detected problem (e.g. detection of

a non-authorized physical access to a rack). In this line the legacy IEEE 802.15.4 protocol can provide

a good amount of predictability to these alarms through its GTS mechanism. However, the GTS

mechanism is usually absent from most implementations of the protocol stack such as in the case of

the official TinyOS IEEE 802.15.4 implementation [Tina]. In order to support this mechanism in this

application, we implemented the GTS mechanism (refer to chapter 4) and it is now available to the

community within the official TinyOS release.

There is also less critical data, which constitutes the largest amount of the sensed data (tempera-

ture, humidity and pressure). Nevertheless, although this data can be delivered within a more relaxed

deadline, there are still constraints.

Although, a priori temperature or humidity data monitoring do not seem too challenging in terms

of timeliness, this scenario does not constitute a typical environmental monitoring case. First, it is

expected that the datacenter’s environment data can be used to accurately model the room’s environ-

ment dynamics so that the users can understand with a good granularity the impact of the cooling

equipment, minimizing energy consumption by cooling only where and when needed. This demands

for a scalable and global synchronization of the samples on demand. However, this is not supported

6.6 Final Remarks 115

by the legacy IEEE 802.15.4/ZigBee protocols. In this line, a mechanism to support this is proposed

in chapter 8 of this thesis.

In addition, it is intended that the user have the possibility to zoom in specific zones of the datacen-

ter by increasing the data sampling rate of specific racks, and without loosing the remaining data. This

raises two kinds of concerns: (1) the network must cope with an unbalanced and increasing amount

of traffic, which demands for an efficient management of the available bandwidth, and if possible, a

dynamic allocation of it; and (2) there must be mechanisms in place to support different traffic classes

within the network, so that particular racks (i.e. nodes or clusters of nodes using a networking spe-

cific terminology) can be differentiated from the remaining data, having an increased probability of

successfully accessing the communication channel, considering CSMA/CA is used. This should be

supported on demand.

The first concern is tackled by the proposal of DCS in chapter 9, in which a way to dynamically

adapt the bandwidth given to each cluster is presented. The second issue is addressed by the TRADIF

mechanism, which has been already proposed in the past and we evaluate experimentally in this thesis

in chapter 7. This mechanism initially proposed for a star-based network, is also extended to a mul-

tiple cluster topology in chapter 9. In the latter, a several mechanisms (SSYNC, DCS and TRADIF)

are joined into a cross-layer and online QoS management proposal which is instantiated into this dat-

acenter monitoring application scenario, supporting the aimed on-demand application mode changes.

We have also made a study on the radio performance in a real data center. This study enabled us

to better understand the radio conditions in these kinds of environments. Our findings confirm reports

by previous work [LLL+09, WTS+11, LA12]: even in a data center room of reasonable dimensions,

each wireless node can interfere with up to 65% of the nodes. Then, having too many nodes interfering

with each other is an obstacle towards gathering sensor readings with high temporal resolution. This

fact constitutes another reason to rely on time division strategies to support the network scalability, by

relying on hierarchical cluster-based approaches instead of the traditional mesh-based approaches.

It is expected that the proposed network architecture, fitted with the mentioned QoS add-ons, will

serve as a model for future deployments in similar application scenarios.

116 Datacenter Monitoring Application Scenario

Part III

QoS Improvement Mechanisms

117

Chapter 7

Peformance Evaluation of a Traffic

Differentiation Mechanism

7.1 Introduction

Although some WSN applications like environmental monitoring or precision agriculture, do not im-

pose stringent timing requirements on data delivery, there are a number of other applications in which

timeliness is of great importance. It is the case of most industrial automation and process control ap-

plications, in which computations and communications must not only be logically correct but also be

produced on time. This is also the case of a typical Datacenter Monitoring application scenario such

as the one described in chapter 6 of this thesis.

In that particular scenario, for instance, we can find a mixed criticality in terms of communica-

tions. On the one hand, there are specific alarms which are expected to be triggered and forwarded

to the user within tight deadlines, to guarantee an immediate response to the detected problem (e.g.

detection of a non-authorized physical access to a rack). On the other hand, there is less critical data,

which constitutes the largest amount of the sensed data (temperature, humidity and atmospheric pres-

sure). Nevertheless, although this data can be delivered within a more relaxed deadline, there are still

constraints.

Although, a priori, temperature or humidity data monitoring do not seem too challenging in terms

of timeliness, this scenario does not constitute a typical environmental monitoring case.

Among the requirements, the user should have the possibility to zoom in specific zones of the

datacenter by increasing the data sampling rate of specific racks, and without loosing the remaining

data. This raises two kinds of concerns: (1) the network must cope with an unbalanced and increas-

ing amount of traffic; and (2) there must be mechanisms in place to support different traffic classes

within the network, so that those particular racks (i.e. nodes or clusters of nodes using a networking

119

120 Peformance Evaluation of a Traffic Differentiation Mechanism

specific terminology) can be differentiated from the remaining data with an increased probability of

successfully accessing the shared communication channel.

To enable such systems, the standardization efforts of the IEEE Task Group 15.4 have contributed

with the definition of the IEEE 802.15.4 protocol for Low-Rate, Low-Power Wireless Personal Area

Networks (WPANs). In beacon-enabled mode, this standard provides two mechanisms (check Sec-

tion 2.2.2 of this thesis): (1) slotted CSMA/CA as a Medium Access Protocol in the Contention

Access Period (CAP) and (2) Guaranteed Time Slots (GTS) in the Contention Free Period. The GTS

mechanism enables a deterministic access to the medium but it has some limitations.

The first limitation concerns the restriction on the distribution and amount of traffic that can avail

this service. In a superframe, a maximum of seven GTS slots can be allocated, implying that in each

cluster (PAN) a maximum of seven nodes can have guaranteed slots in any superframe. The remaining

nodes may only transmit in the CAP, without any QoS support.

Second, GTS can only provide guaranteed services in bursts, limiting any node to the length of

the slot allocated to it. This does not provide an optimum solution if the messages requiring QoS

support are evenly distributed over time. Third, even in applications where the limited number of GTS

slots can be considered sufficient, the allocation must be preceded by an allocation request message

transmitted in the CAP, and since collisions may occur, the request may fail, delaying its service.

The same problem applies to other protocol command units. Therefore, network management (e.g.

GTS allocation requests, alarms, network management commands, association commands), are more

critical than regular data frames. Failing to cope with this may result in unfairness and degradation

of the network performance, particularly for high traffic loads. In this line, these critical messages,

require that QoS support be extended to the CAP.

Moreover, the GTS mechanism may also face coexistence problems since other wireless networks

operating in the same frequency range (Bluetooth or IEEE 802.11) are completely unaware of the time

slot allocations made at the IEEE 802.15.4 superframe. This turns the GTS approach worthless in the

presence of collisions. Therefore, while GTS is considered a good solution for the QoS requirement of

the low-rate WPAN applications (for which IEEE 802.15.4 was originally designed), the requirements

of dense sensor networks (especially at high and distributed loads) demand a more flexible mechanism.

The work described in this chapter builds upon a previously proposed [KANS06] set of mecha-

nisms to provide QoS to the CAP (demonstrated through simulation), and describes its implementa-

tion and experimental validation. We show that these mechanisms can easily provide increased QoS

to higher priority messages, requiring only minor add-ons and ensuring backward compatibility with

the IEEE 802.15.4 standard protocol.

The integration of these mechanisms in IEEE 802.15.4 is relevant for leverage its use in time-

sensitive WSN applications.

7.2 Related Work 121

7.2 Related Work

The improvement of the IEEE 802.15.4 Slotted CSMA/CA MAC mechanisms to achieve reduced

(soft) delay guarantees and better reliability of time-critical events on Wireless Sensor Networks has

drawn a few research works. In [HLhAC05], the authors modified the slotted CSMA/CA algorithm

to enable fast delivery of high priority frames in emergency situations, using a priority toning strat-

egy. Nodes that have high priority frames to be transmitted must send a tone signal just before the

beacon transmission. If the tone signal is detected by the PAN Coordinator, an emergency notifica-

tion is conveyed in the beacon frame, which alerts other nodes with no urgent messages to defer their

transmissions by some amount of time, in order to privilege high priority frame transmissions at the

beginning of the contention access period. In [KC06], the authors extend the previous schemes by

allowing high priority frames to perform only one Clear Channel Assessment (CCA) operation in-

stead of two, using a frame tailoring strategy, which aims to avoid collisions between data frames and

acknowledgment frames when only one CCA is performed. This approach of CCA reduction requires

Frame Tailoring, i.e. adjusting data packet length in such a way that one CCA becomes sufficient to

detect any acknowledgement frame transmission. While this method reduces the CCA overhead by

half, problem of backward incompatibility remains.

PECAP [JLKK07] presented yet another solution based on a toning signal. Here, the main idea

was to use the inactive portion of the superframe to carry out the transmission of high priority packets.

The beginning of this portion is signaled by a jamming signal at the end of the CAP. This approach

does not tolerate the use of the CFP for transmitting guaranteed traffic. Although these solutions seem

to improve the responsiveness of high priority frames in IEEE 802.15.4 slotted CSMA/CA, they re-

quire a non-negligible change to the IEEE 802.15.4 MAC protocol, thus turning them non-compatible

with the standard. The toning mechanism imposes some changes to the hardware (using a tone sig-

nal transmitter) and also to the protocol itself, due to the frame tailoring strategy. This represents a

major drawback for these proposals since they contradict the ongoing 15.4 working groups standard-

izations efforts. Other approaches that do not present such an inconvenient have been proposed in the

meanwhile to support service differentiation. These are usually similar to the strategy implemented in

[IEE05].

The IEEE 802.11e specified a Hybrid Coordination Function (HCF) by defining variable parame-

ters such as Arbitrary Interframe Space (AIFS), CWmin and CWmax. This amendment was approved

and incorporated in IEEE 802.11-2007 [IEE07] specification.

Recent research works in IEEE 802.15.4 have presented priority-based service differentiation

models similar to HCF, by tuning of some of the MAC parameters as the Backoff Exponent (BE)

and Contention Window size. In what follows, we enumerate some of those proposals that are focused

on the slotted CSMA/CA. So far, most of the work concerning traffic differentiation either relies on

Markov Chain models or on simulation work. In fact, to our best knowledge, besides our work, there

122 Peformance Evaluation of a Traffic Differentiation Mechanism

is only one proposal that presents an experimental validation in a real WSN platform [KWHK08].

Concerning analytical and simulation work, [KKY+07] presented a Markov chain model and

analysed the impact of changing the backoff and contention window concerning delay and through-

put. More recently in [NKDM09] the authors modeled a differentiation scheme based in two priority

classes. The differentiation was achieved by changing the CWinit value between one and two. Al-

though results were interesting, changing the contention window to one may cause collisions with

ACK frames.

This strategy of tuning a set of MAC parameters to improve the performance of a traffic category

has been used by other recent works. In [BSR09] the authors introduced a backoff paramenter change

to improve the responsiveness of a network control system. The authors used Matlab/Simulink to

simulate the control system and evaluate its response. In DBP [SMM+09] the authors introduced a

(m,k)-firm deadline task model to assign priorities to messages. The Backoff parameters were changed

according to the proximity to lose m deadlines within a window of k service requests, and implemented

the model in MICAz platforms. However, no thorough evaluation of the effects of the parameter

change was carry out in any of these studies. ANGEL [KWHK08], presents, the only implementation

and performance evaluation in a WSN platform (Tmote Sky) of a traffic differentiation mechanism, so

far. Their approach is based on a multi-queue service implemented in a layer above the IEEE 802.15.4

MAC sub-layer. Traffic differentiation is achieved by tuning some MAC parameters.

However, in their work, the effect of each parameter was not studied separately, and the per-

formance evaluation was only focused on changing the macMinBE and macMaxBE parameters, al-

though it was stated that it was possible to change others. Moreover, the implementation was evaluated

over TinyOS [Tin15] which we find unreliable when facing large amounts of traffic due to its lack of

preemption and its FIFO-based task management aproach, making it difficult to precisely identify

the impact of the parameter variations at heavier traffic loads, as described in [CSP+08]. Also, in

[KWHK08], if a lower priority message is already being transmitted by the slotted CSMA-CA algo-

rithm and a higher priority message arrives at the higher priority queue, the transmission is aborted

so that the higher priority message can be transmitted. This preemptive approach may lead to the

starvation of lower priority traffic under certain conditions.

In the remaining of this chapter, we describe a thorough experimental validation of a set of traffic

differentiation mechanisms, previously presented in [KANS06] which are completely backward com-

patible with the standard protocol. This work proposed two mechanisms to achieve traffic differentia-

tion in IEEE 802.15.4 beacon-enabled networks: (1) a single FIFO queue supporting different traffic

priorities by tuning the macMinBE, aMaxBE and CWinit MAC parameter, and (2) a multi-queue

strategy in which different parameter values were assigned to the different queues. Its improvement

was verified by simulation with the OPNET [OPN15] Open-ZB IEEE 802.15.4/ZigBee simulation

model [JK07]. Now we implemented it over a real-time operating system. Moreover, we would like

to assess if such a simple approach is sufficient to satisfy the requirements of time-critical messages

7.3 Traffic Differentiation Strategy 123

and can provide interesting results with current WSN technology.

7.3 Traffic Differentiation Strategy

As shown in [KANS06], the behavior of slotted CSMA/CA is mostly affected by four initialization

parameters, which are: (1) the minimum backoff exponent (macMinBE), (2) the maximum backoff

exponent (aMaxBE), (3) the initial value of the CW (CWinit) and (4) the maximum number of

backoffs (macMaxCSMABackoffs).

Changing the value of any of these parameters will have an impact on the performance. For

instance, a performance valuation study in [KAT06] has shown that the average delay of broad-

cast frames increases with macMinBE, whereas the probability of success remains independent of

macMinBE in large-scale WSNs. However, the probability of success increases for high macMinBE

values, in small-scale WSNs. Based on those observations, we propose to offer differentiated services

for time-critical messages. In this work, our service differentiation mechanisms are particularly based

on the macMinBE, aMaxBE and CWinit parameters. Note that IEEE 802.15.4 defines two frame

types: (1) data traffic, which typically represents sensory data broadcasted to the network (without

using acknowledgments), (2) and command traffic, which comprises critical messages (such as alarm

reports, PAN management messages and GTS allocation requests) sent by sensor nodes to the PAN

Coordinator. Due to their importance, command frames are sent using acknowledged transmissions

and require a particular QoS support to be delivered to their destination in a bounded time interval. In

this work, we consider command frames as the high priority service class and data frames as the low

priority service class.

The differentiated service strategies are presented in Figure 7.1. The idea is simple. Instead of

having the same CSMA/CA parameters for both traffic types, we assign each class its own attributes.

We denote [macMinBEHP, aMaxBEHP] and CWHP the backoff interval and the contention window

initial values for high priority traffic related to command frames, and [macMinBELP, aMaxBELP] and

CWLP the initial values for low priority traffic related to data frames. While, the slotted CSMA/CA

described in Section 2 remain unchanged, the adequate initial parameters that correspond to each

service class must be applied. In addition to the specification of different CSMA/CA parameters,

Priority Queuing can be applied to reduce queuing delays of high priority traffic (Figure 7.1). In this

case, slotted CSMA/CA uses priority scheduling to select frames from queues, and then applies the

adequate parameters corresponding to each service class. Note that if a low priority frame is selected,

i.e. the high priority queue is empty, then the backoff process corresponding to this frame will not

be preempted by a high priority frame arriving during that service time. It will have to wait until the

low priority frame is sent, or rejected if the maximum number of backoff is reached. The heuristics

for adequately setting the CSMA/CA parameters are the following. Intuitively, a first differentiation

consists in setting CWHP lower than CWLP. It results that low priority traffic has to assess the channel

124 Peformance Evaluation of a Traffic Differentiation Mechanism

Figure 7.1: Differentiated serice strategies.

to be idle for a longer time before transmission. A second differentiation is related to the backoff

interval. Providing lower backoff delay values for high priority traffic by setting macMinBEHP lower

than macMinBELP would improve its responsiveness without degrading its throughput, as it has been

observed in [KAT06] where these intuitive heuristics were previously evaluated.

7.4 Implementation Approach

The mechanism was implemented over the Open-ZB IEEE 802.15.4 stack implementation in ERIKA

[Evi15], avaliable in [OZ15]. ERIKA RTOS is a multi-processor real-time operating system kernel

for embedded devices, which implements a set of Application Programming Interfaces (APIs) similar

to those of OSEK/VDX standard for automotive embedded controllers [OSE04b]. This version of

the open-ZB protocol stack implementation was specially designed to cope with the stringent timing

requirements imposed by the IEEE 802.15.4 operating in beacon-enabled mode.

As shown in [CSP+08], fulfilling these requirements can become quite challenging at high duty-

cycles or if the network traffic increases considerable, when relying on other operating systems like

TinyOS, which do not provide any kind of real-time guarantees.

Because of this fact and since the performance assessment of the proposed mechanism involves a

significant stress on the network, and consequently in the OS and protocol stack, we have chosen this

platform to assess and validate the traffic differentiation strategies.

7.4 Implementation Approach 125

Figure 7.2: System architecture.

The implementation of the IEEE 802.15.4 protocols over ERIKA is organized in a layered archi-

tecture. Figure 7.2 presents an overview of the system architecture which is presented in higher detail

in Section 3.2.2 of this thesis.

Implementing these mechanisms represented a minor modification to a few MAC functions that

were in charge of queuing/dequeuing messages and initializing the slotted CSMA/CA parameters.

Everything else remained unchanged. A thorough description of the implementation is carried out in

[M.B09].

A new mode of operation (TRADIF) was implemented in addition to the standard IEEE 802.15.4

implementation, in such a way that it could be enabled or disabled simply by setting a variable in the

protocol stack configuration file, in the same way it was possible to set other MAC parameters like BO

or SO. In TRADIF mode, support was provided for the two queuing strategies: FIFO and PQ. Since

in the proposed mechanism only two priority levels are assumed, Priority Queuing mode support has

been provided by maintaining two transmission queues: High Priority (HP) queue and Low Priority

(LP) queue.

In the standard mode, when a message is to be sent, it is enqueued in the send buffer and its

transmission is triggered. This is unchanged for the FIFO mode of TRADIF. In Priority Queuing

mode, when a message is to be sent, it is enqueued in the High Priority (HP) or Low Priority (LP)

Queue, depending on the priority of the message. In our implementation, command frames have been

treated as high priority traffic and data frames as low priority, by default. However, this can be easily

modified to support prioritization of traffic generated at application level (which was done for the

performance evaluation, as discussed in the next section).

126 Peformance Evaluation of a Traffic Differentiation Mechanism

7.5 Performance Evaluation

We carried out a thorough experimental analysis of TRADIF to understand the impact of these mech-

anisms on the network performance, namely in terms of network throughput (S) and probability of

successful transmissions (Ps), for different offered loads (G), in one cluster with a star-based topol-

ogy. Both metrics (S, Ps) have been also used to evaluate the performance of the Slotted CSMA/CA

MAC protocol in previous works. The network throughput (S) represents the fraction of traffic cor-

rectly received normalized to the overall capacity of the network (250 kbps). The success probability

(Ps) reflects the degree of reliability achieved by the network for successful transmissions. This met-

ric is computed as the throughput S divided by G, representing the amount of traffic sent from the

application layer to the MAC sub-layer, also normalized to the overall network capacity.

7.5.1 Testbed Setup

The experimental setup consisted of five FLEX boards [Evi12] programmed with the open-ZB IEEE

802.15.4 implementation over the ERIKA operating system with the traffic differentiation add-on.

The FLEX consists of an embedded board for the development of embedded real-time applications. It

features a DsPIC33FJ256MC710 Microcontroller [Mic14] at 40 MHz, 256 Kb of Flash memory and

32 Kb of RAM. It is also equipped with a Flexipanel EASYBEE IEEE 802.15.4 Transceiver module

[Fle15] to enable communications. Figure 7.3 presents a picture of the setup.

One of these devices was programmed as Coordinator and the others as End Devices. The End

Devices were used to generate traffic, both high and low priority, while the Coordinator, apart from

synchronizing the devices through beacon transmission, was also used to manage the experiment by

transmitting control information included in its beacon payload.

The payload included information about the amount and type of traffic to be generated by the

end devices and signals to start and end the experiment (Figure 6). This information was send to the

Coordinator device through a serial port connection. The end devices, upon receiving the beacon,

would set the traffic generator alarms (of both high and low priority), with intervals as specified in the

beacon payload.

Although the traffic differentiation mechanism considers by default command frames as high pri-

ority and data frames as low priority traffic, this was modified to carry out the performance evaluation,

and only data frames were used for both high and low priority traffic, not to interfere with the protocol

stack. The first byte of the application payload of the packet was used to differentiate both traffic

classes.

To measure output parameters such as throughput, delays and queue overflows, the same strategy

was used. Different counters were inserted at various stages of the transmission procedure, starting

from the traffic generation at application layer to transmission from the physical layer. For instance,

7.5 Performance Evaluation 127

Figure 7.3: Testbed Setup.

a high priority packet counter at the application level (hp_app_counter), was used to count the num-

ber of high priority packets generated by an end device from the beginning of the experiment to the

instant of that packet creation. The counter was incremented with every call to generate_hp_traffic()

and inserted into the application payload of the high priority messages. Other counters were used:

lp/hp_queued, counters representing the number of high and low priority packets successfully en-

queued; lp/hp_mac_sent, counters representing the number of packets transmitted after completing

the CSMA/CA procedure; lp/hp_csma_fail, counters representing failed slotted CSMA/CA transmis-

sions; lphp_last_csma_delay_backoff_period, counters about the CSMA delay in the last transmission

of respective priority classes, in terms of the number of backoffs. A Chipcon CC2420 packet sniffer

[Tex15a] was used to capture the traffic for processing and analysis.

The packet analyzer generates a log file containing all the received packets and the corresponding

timestamps (Figure 7.4), enabling to retrieve all the necessary data embedded in the packets payload.

A parser application was developed to carry out that task.

7.5.2 Experimental Evaluation

The set of experiments consisted of varying low priority traffic while keeping high priority traffic

constant, and measuring the throughput of the high priority traffic for the different scenarios. The

values of CSMA parameters used for each of these scenarios are listed in Table 7.1.

128 Peformance Evaluation of a Traffic Differentiation Mechanism

Figure 7.4: Testbed Setup.

Table 7.1: Test scenarios

Scenario [macMinBEHP, aMaxBEHP] [macMinBELP, aMaxBELP] CWHP CWLP

Sc1 [2,5] [2,5] 2 2

Sc2 [2,5] [2,5] 2 3

Sc3 [0,5] [2,5] 2 2

Sc4 [0,5] [2,5] 2 3

Although, the IEEE 802.15.4-2006 standard allows a higher setting of aMaxBE, (up to 8), we used

the same scenarios to enable a fair comparison with the simulation results in [KANS06]. Each case

was examined for FIFO as well as Priority Queuing scheduling policies.

The network was set to work in full duty cycle with BO=SO=6, with no-hidden nodes, and the traf-

fic generation was controlled using timers, generating high priority frames at a rate of 40 frames/sec-

ond and low priority frames ranging from 3 frames/second up to 600 frames/second.

Several runs were carried out for each traffic interval stopping the experiment every time the

number of high priority packets received reached 1000. In the following discussions, Application

layer traffic is denoted by Gapp and the MAC layer traffic by Gmac. Similarly, Gapp_hp and Gapp_lp

are used to denote Application layer high priority and low priority traffics, and Gmac_hp, Gmac_lp

used for MAC layer high and low priority traffic, respectively. Figure 7.5 shows the comparison of

the success rates of the high priority application traffic of the four scenarios of Table 1, for both FIFO

and Priority Queuing mode. These results are analogous to the ones obtained through simulation in

[KANS06], illustrated in that publication in figure 3 in section 4.2.

7.5 Performance Evaluation 129

Figure 7.5: Probability of Success for FIFO and PQ mode.

The contention windows size for high priority frames is kept 2 (standard value) in all cases, while

it is increased to 3 for low priority frames in Sc2 and Sc4. On the other hand, the value of macMinBE

is kept constant (2, standard value) for low priority traffic in all cases, whereas it is set to 0 for high

priority traffic in Sc3 and Sc4.

Concerning the FIFO mechanism, it can be observed that all three scenarios of parameter tuning

(Sc [2-4]) result in higher success rates compared to the standard case (Sc1). Sc1, presents the lowest

success probability. Sc3, in which macMinBEHP is decreased to 0, results in improved success rates,

but it is still very close to the standard case (change of 0-5%). This is so because setting macMinBEHP

lower than macMinBELP means lower backoff delays for high priority traffic (refer to slotted CS-

MA/CA algorithm in section 2.2.2 of this thesis), but the number of backoffs and contention window

size, which are directly related to the contention success probability, are unchanged. On the other

hand, setting CWLP greater than CWHP means that high priority traffic need the channel to remain

idle for shorter time before transmitting, which means higher probability of success in every sensing

attempt. The comparatively higher success rates in Sc2 and Sc4 (improvement of 20-25%) reflect

this, showing greater improvement in performance by setting CWLP greater than CWHP, compared to

changing macMinBEHP.

A similar behavior is observed for PQ mode. For both queuing strategies, results were very alike

concerning scenarios 2 and 4, showing that the correct setting of the CW has the greatest effect in the

throughput of both queuing modes. One of the noticeable changes from the FIFO cases is the fall of

success probability of Sc3. Again, the effect of changing macMinBEHP, which would decrease the

130 Peformance Evaluation of a Traffic Differentiation Mechanism

Figure 7.6: Comparing queuing success in Priority Queuing.

backoff delay of high priority packet, does not make much difference on contention success. There-

fore, Sc1 and Sc3 have approximately the same success rates for Priority Queuing at higher traffic

loads.

Sc2 and Sc4, again have better success rates since setting having CWHP lesser than CWLP means

that high priority traffic need the channel to remain idle for shorter time before transmitting and hence

has more chances of success. In this case again, changing CWLP to 3 improves the success rate of

high probability packets by 20 to 25%.

As shown, the priority queuing mechanism slightly improves the probability of success when

compared to FIFO. However, its main contribution is in reducing the queuing delay as shown in

[KANS06], since the high priority queue will always take precedence over low priority queue, thus

reducing queuing delay for high priority packets. To separately evaluate the effect of the priority

queuing mechanism, a single sender was used to generate equal amount of high and low priority

frames. The queue size for both high and low priority queues was set to hold 15 messages. The

Application layer traffic generation rate was increased at equal rate. The number of packets enqueued

of both types was calculated by parsing the output file of the sniffer used to receive packets.

Figure 7.6 shows the packets enqueued against the packets generated by the application of both

high and low priority. It is visible that beyond 20% of channel capacity, while the low priority frames

are dropped due to queue overflow, the high priority frames are unaffected. Moreover, it indicates that

at high traffic load, priority queuing plays an important role in ensuring the precedence of high priority

frames. This will result in a lower queuing delay for high priority packets.

7.6 Final Remarks 131

Figure 7.7: Probability of success for HP and LP frames.

However, the improvement of this differentiation scheme to the throughput of high priority com-

mand frames is more significant than the degradation of the throughput of low priority data frames

(Figure 7.7), which further demonstrates the efficiency of this differentiation mechanism. As shown,

the Probability of Success of low priority frames for PQ Sc2 and Sc4 is just slightly lower (5%) at

high offered loads than with the default MAC, taking advantage of lower CW at lower loads, thus

increasing throughput.

7.6 Final Remarks

This chapter presented the implementation of a set of traffic differentiation mechanisms for the IEEE

802.15.4 slotted CSMA/CA using the open-ZB IEEE 802.15.4/ZigBee protocol stack over the ERIKA

real-time operating system. We carried out a thorough experimental analysis of the mechanisms,

showing that adequately tuning the parameters of slotted CSMA/CA leads to an improved QoS for

time-critical messages. This fact is especially visible by tuning the CWinit parameter of the IEEE

802.15.4 MAC.

This practical proposal can be easily implemented since it only requires a minor add-on and en-

sures backward compatibility with the existing standard. Thus, it can be integrated in future versions

of the standard. Moreover, several higher layers protocols could potentially benefit from these add-

ons, as the IEEE 802.15.4 serves as a baseline for ZigBee and 6LoWPAN, among others.

132 Peformance Evaluation of a Traffic Differentiation Mechanism

With this in mind, we triggered the implementation of these mechanisms in TinyOS, both for

the IEEE 802.15.4 beacon and non-beacon enabled modes, to provide an even larger WSN commu-

nity with a simple set of mechanisms for supporting traffic differentiation in IEEE 802.15.4-based

networks. The insights and the implementation that resulted from the work hereby described in this

chapter served as a base for the implementation of a cross-layer, online QoS management module,

which is described in chapter 10 of this thesis. Through it, and as described in the latter, it was

possible to bring traffic differentiation to a datacenter monitoring application scenario.

In the next chapter of this thesis we address scalability, which is another important and complimen-

tary QoS property, in the context of IEEE 802.15.4/ZigBee networks. Although the ZigBee cluster-tree

topology already provides an interesting solution in merging scalability with time predictability, in that

chapter we explore scalability in terms of synchronization, by devising a mechanism to achieve global

tight synchronization in these networks.

Chapter 8

Achieving Scalable and Synchronized

Sensing in ZigBee Cluster-trees

8.1 Introduction

Scalability describes the ability of a system, network, or process to handle a growing amount of

work in a capable manner or its ability to be enlarged to accommodate that growth. Concerning

computer networks, this usually involves increasing the node density and/or expanding the network

deployment geographically. In the particular case of IEEE 802.15.4 networks, different solutions have

been proposed to address this, usually by relying on other protocols that provide a network layer. In

this line, ZigBee presents an interesting solution through its mesh and cluster-tree network topologies,

however, timeliness, a QoS property that is central in this thesis can only be adequately addressed by

the latter.

Nevertheless, there are applications in which the scalability requirements go even beyond what is

provided by the ZigBee protocol in its cluster-tree topology proposal. This is for instance the case of

the structural health monitoring application (SHM) designed in chapter 5.

The aim of any SHM system is to sample in a synchronized fashion multiple accelerometers

placed at different locations in a structure and forward the data to a central station for later processing.

Therefore, ensuring the correct synchronization of the sensing operation of the distributed nodes is of

major importance for this kind of monitoring applications. This means that samples from all sensors,

even those in different clusters, must be acquired in a synchronized way in order for the data analysis

algorithms to provide consistent results.

Chapter 5 of this thesis described the engineering of a Structural Health Monitoring (SHM) appli-

cation based on WSN technology. The application overcomes most of today’s limitations in similar

systems, in particular: (i) achieving an adequate synchronization between all nodes in the network;

(ii) relying on standard communications protocols, while most proposals use IEEE 802.15.4-compliant

133

134 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees

devices that neither implement the IEEE 802.15.4 medium access control (MAC) nor ZigBee proto-

cols; (iii) building upon a standard de facto operating system (OS) for WSNs platforms (TinyOS);

and (iv) relying on COTS technologies (more cost-effective). However, providing adequate scalability

to monitor large infrastructures in an effective way, i.e., with a consistent time correlation of sam-

ples, was still a challenge. In many scenarios such as long span bridges or tunnels, hundreds or even

thousands of devices may be used needed to assess the integrity of the structure.

Indeed, the initial prototype consisted of a star-based network topology (as depicted in Figure 5.1

in Section 5), which presented a natural scalability limit, circumscribed to a one hop distance. Al-

though theoretically the IEEE 802.15.4 standard can support up to 256 devices in a star topology, this

is usually not true in practice. Due to the small coverage area of a star topology, the deployment will

be limited to a few Sensing Nodes (SN), since connectivity of all sensors with the Coordinator node

must be guaranteed. Nevertheless, although ZigBee partially solves this problem via the cluster-tree

topology, supporting multiple clusters of nodes, while guaranteeing synchronisation for the clusters’

active periods, there is no way of synchronizing the nodes in different clusters, so that data acquisition

can be done synchronously throughout the network.

In this chapter, we propose a global inter-cluster synchronization scheme (SSYNC). This mech-

anism enables nodes at different clusters to synchronize to one specific moment, taking advantage

of the IEEE 802.15.4 beacons, enabling globally synchronized data acquisition. In what follows, we

describe the mechanism and evaluate its theoretical and experimental limits in a SHM scenario.

8.2 Network Model

We rely on a cluster-tree network model (ZigBee-based) with a distributed synchronization mecha-

nism. This is a special case of a mesh network where there is a single routing path between any pair

of nodes and a distributed synchronization mechanism (IEEE 802.15.4 beacon-enabled mode). There

is only one ZigBee Coordinator (ZC) (i.e., the Coordinator Node plays this role in our application),

which identifies the entire network, and one ZigBee Router (ZR) per cluster, which we denote as

Cluster Head (CH) in our application. Figure 8.1 presents the network topology.

Scaling to multiple-cluster networks involves greater complexity due to inter-cluster interference.

Hence there is the need to schedule the active period of each cluster. The TDBS proposal [KCAT08]

achieves this using a time division approach to schedule the active period of each cluster. This mech-

anisms is described in Section 2.1.3.3.

A possible schedule to the network depicted in Figure 8.1 is illustrated at its bottom. Notice

how each cluster active portion and beacon transmission is scheduled at a different instant from the

neighbour clusters (we assume all clusters can interfere with each other). However, since each cluster

receives a different time offset and are active at different periods, it is not clear how they can trigger a

data acquisition process simultaneously, so that there is a tight synchronization at each sample.

8.2 Network Model 135

Figure 8.1: Network tree topology showing 15 clusters and respective TDBS cluster scheduling.

Another problem that arises as the system scales up is the increased volume of data. As the number

of sensing nodes in our application increases, it is no longer valid the assumption of being able to

configure each node independently through a message from the Coordinator Node, since the volume

of data at network setup time is significantly higher. Instead, it makes sense to setup the Sensing Nodes

in a per-cluster basis and group all information concerning each Sensing Node at the corresponding

Cluster-Head (i.e., ZR), also assuming a management role in the monitoring application.

With all these particularities in mind, a larger cluster tree network architecture is implemented

where synchronization is of the topmost importance. The strategy to cope with the new Cluster-Tree

topology while carrying out the simultaneous data acquisition is described next.

136 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees

8.3 Communication Protocol

A ZigBee cluster-tree network is built according to the standard as follows. Each node scans the

channel for a suitable parent and tries to associate with it. If the device is a ZR, after the device

has joined the network, it runs the TDBS algorithm to negotiate a schedule with the ZC, and starts

transmitting its beacons. Nearby Sensing Nodes will try to associate with it forming a Cluster with

the ZR as Cluster Head (CH). The TDBS schedule should be planned and saved at the Coordinator at

programming time..

At the SHM application Ready state, the beacon frame payload information of the Coordinator is

changed as described in Section 5.5.2 in Chapter 5, however, this time each interaction is destined to

each CH.

As before, each CH will update its beacon information accordingly upon beacon reception from

the parent. This will be performed for every Node Management command, to disseminate the com-

mand throughout the network. Each Sensing Node, upon beacon reception from its CH, checks the

state of the SAB and replies back to the CH. The CH joins all information and sends a status message

to the Coordinator Node.

Upon reception of this information, the Coordinator Node will trigger the Configuration process.

This time, instead of configuring each node at a time, the Coordinator configures each Cluster of

nodes. Each CH will then configure each device according to the received settings. At the end of this

process the CHs updates the Coordinator with a status message which includes the status of its nodes.

The data acquisition process is then initiated.

Here a modification is carried out to the application’s Start command so that the data acquisition

is globally synchronized in the network. This modification consists of the imprinting in the beacon’s

payload, of a relative time offset to a moment in the future at which all nodes must trigger data

acquisition. This mechanism is described in detail in Section 8.4.

The acquisition process is terminated as normal by the transmission of a Stop command. The

Coordinator node will then start polling each CH for the data and each CH will ask each of its nodes

to begin data transmission which will be directed at a sink, usually the root (Coordinator Node).

This is the most time consuming task as it is expected to last tens to hundreds of minutes depending

on the data resolution, number of sampled axes, sampling rate, and obviously the number of nodes in

each cluster.

8.4 Synchronization Mechanism

To cope with the new Cluster-Tree topology, the synchronization strategy to carry out the simultaneous

data acquisition in all the nodes had to be modified.

8.5 Theoretical Analysis of the Scalability Limits 137

An instant in the TDBS schedule is chosen as the synchronization point at which every node

will re-synchronize (tsync). Notice that all nodes must get this information before the data acquisition

begins, i.e. tsync must be larger than the time at which the last cluster is active (Figure 8.1).

The mechanism is described in the following steps:

Step 1: The Coordinator will announce in its beacon payload, the number of symbols from the trans-

mission of its beacon up until this instant at which the sampling will begin (TC0
tsync

) and the SABs will

synchronize to.

Step 2: Each Cluster-Head (CH) computes the relative time offset from its beacon to tsync based on its

parent beacon information (T
Cparent

tsync
) and announces it on its own beacon so that the Sensing Nodes in

the Cluster know when to begin data acquisition.

Here we denote by Cx the devices at cluster x, where x represents the order at which the cluster

is active in the TDBS schedule (Fig 8.1). For instance, C2 represents the second cluster active in the

cycle. The offset from the beacon of Cluster-Head x to tsync is computed as follows:

TCx
tsync

= T
Cparent

tsync −TT DBSo f f set (8.1)

Step 3: The CHs go on computing and propagating their relative offsets to tsync down the tree,

which if properly scheduled, will enable the notion of tsync to reach all the CHs in one TDBS cycle.

Each Sensing Node will read the tsync information from the beacon of its Cluster Head and set a timer

to generate an interrupt at tsync at which time the SAB will be signalled for synchronization.

As all the nodes synchronized to tsync there will be no other re-computation of offsets and each CH

will keep the previously computed offset. This avoids unnecessary processing. Nevertheless, if tsync

must be changed, a flag is used in the payload to signal a change in the tsync value and the CHs will

recompute the corresponding offsets.

8.5 Theoretical Analysis of the Scalability Limits

Using this approach, we can theoretically scale the system up to hundreds or thousands of clusters,

even when assuming a worst-case TDBS scheduling where all clusters cannot overlap. For instance,

assuming a BO = 14 (maximum BO [standard]), we could theoretically schedule 16.384 clusters with

SO = 0, or, 512 clusters with SO = 5.

However, because each cluster will have to wait for a finite amount of time (TCx
tsync

) until tCx
sync, using

a Timer hardware, which relies on clocks of finite precision, each Sensing Node will present a different

clock drift during this period, and by the time tsync is reached, each clock will have a different notion

of when this really happens. This drift is represented by:

δCx
tsync

= TCx
tsync

δclock (8.2)

138 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees

where, TCx
tsync

= nclustersTs f rame + pTs f rame− xTs f rame, being Ts f rame the period of a cluster’s super-

frame, equal to aBaseSuper f rameDuration2SO, δclock the expected clock drift for the quartz clock in

the device, and nclusters the total number of clusters in the network, and p the portion of superframe

after the last cluster until tsync. Notice this expression is only valid for this non-overlaping kind of

cluster scheduling. Here we denote by Cx the devices at cluster x, where x represents the order at

which the cluster is active in the TDBS schedule. For instance, C2 represents the second cluster active

in the cycle. Since, the drift at each superframe is given by δs f rame = δclockTs f rame, we can write:

δCx
T sync = nclustersδs f rame + pδs f rame− xδs f rame (8.3)

For cluster 12 for instance, assuming the example in Fig 8.1, this would results in:

δC12
T sync = 15δs f rame + pδs f rame−12δs f rame = (3+ p)δs f rame (8.4)

Since, as we have stated in the beginning of this chapter, synchronization must be tight in this kind

of applications, we must take this drift into account at network setup time. Moreover, each Router

throughout the Cluster-Tree, will also present a drift while waiting for its time to transmit its own

beacon (after the parent’s beacon), defined by the parent to child drift δCx
PC = xδs f rame, and will also

impact our synchronization strategy.

On top of this, we should not neglect that since the arrival of each beacon, there is a processing

delay, defined by:

δCxDd
BP = dδbeaconproc (8.5)

Here, δbeaconproc is the processing delay upon beacon reception, which we assume as a finite con-

stant value and was found experimentally. This delay is even more significant for these kinds of

devices with low processing power. According to our reasoning, assuming a worst-case where all

drifts will sum, the drift for a device at cluster Cx at Depth d is given by:

δCxDd
sync = δCx

T sync +δCx
PC +δCxDd

BP (8.6)

which results in:

δCxDd
sync = (nclusters + p)δs f rame +dδbeaconproc (8.7)

As observed, for this specific kind of cluster schedule, where every child is scheduled after its

parent, the drift is independent of the position of the cluster in the TDBS schedule, depending instead

of the total number of clusters, and the cluster’s depth in the tree.

The following table shows some results obtained from Equation 8.7, considering different network

scenarios, assuming p = 0.67Ts f rame:

8.6 Experimental Analysis of the Scalability 139

Table 8.1: Maximum drift for different network scenarios, assuming no beacon processing delay.

Number of Clusters SO/BO Max. δ (µs)

5 5/8 111

15 4/8 154

25 4/9 252

50 3/14 249

100 2/14 1230

Figure 8.2 presents the maximum drift results for different network setups, assuming no beacon

processing delays. The Beacon Order is set to the maximum (BO= 14) to accommodate the maximum

number of clusters possible. The smaller the Superframe Order the most clusters can be accommo-

dated in one TDBS cycle, always assuming a non-overlapping schedule. As observed, as the number

of clusters increases so does the clock drift, however, with a good network planning it is possible to

implement tens of clusters in a network with a drift smaller than 1 ms according to the results.

8.6 Experimental Analysis of the Scalability

We have implemented the proposed synchronization mechanism in nesC/TinyOS [Tin15], over the

official TinyOS Working Groups implementation [Tina] of the IEEE 802.15.4 and ZigBee protocols.

A testbed with 15 clusters was setup to test the synchronization mechanism proposed here. The

cluster schedule was chosen so that there would be no overlapping clusters, BO and SO network

parameters were set to 8 and 4 respectively, and network maximum depth was set to 4. The scenario

is identical to the one presented in Figure 8.1. Since temperature is usually an important issue, we left

the network running for 10 minutes before acquiring the clock drift values. The devices were setup to

toggle an external pin upon reaching tsync and a digital oscilloscope was used to measure the maximum

error clock drift between the devices. Figure 8.3 shows the testbed along with a screenshot from the

digital oscilloscope.

140 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees

Figure 8.2: Maximum clock drift results in milliseconds for different network settings (SO and number

of clusters), assuming no beacon processing delays.

Figure 8.3: Network tree topology showing 15 clusters and respective TDBS cluster scheduling.

8.7 Final Remarks 141

From the theoretical calculations, we would expect a maximum worst-case error of 154 µs be-

tween clocks. Experimentally, we verified that the maximum error was of 100 µs with an average of

39 µs, which is acceptable for our application.

8.7 Final Remarks

This chapter presented a simple but effective way of achieving scalable and synchronized data ac-

quisition in a cluster-tree topology. This mechanism served as an extension to the work presented in

chapter 5 to enable scalable and accurate SHM applications based on WSN technology.

To implement it two conditions must be verified:

(1) A time division cluster scheduling mechanism must be in place to accurately schedule the

beacon transmissions from the different clusters. This is mandatory to enable a cluster-tree based

topology anyway. (2) The resulting cluster scheduling should have no overlapping clusters and child

clusters must be scheduled after the parent cluster. These conditions are mandatory to ensure that all

the clusters can be reached in one superframe.

The implementation of SSYNC, hereby reported is fully backward compatible with the IEEE

802.15.4 standard, as it uses its beacon frame payload option to transmit a relative offset to a future

synchronization point and forward it throughout the network. This enables all the nodes in the different

clusters to synchronize to one specific moment, enabling a globally synchronized data acquisition.

The experimental validation of the mechanism with 15 clusters showed that the theoretical analysis

was a bit pessimistic, considering the maximum predicted clock drift value was never reached. Nev-

ertheless, just like in many other engineering applications, we should always consider the worst case

scenario. Notice that in the particular case of SHM applications, a tight synchronization of samples is

mandatory to enable a good analysis of a structure as described in chapter 5.

We believe that part of the measured synchronization error can be related to fluctuations in the

beacon transmission timing, which is stack related. We are currently working together with the 15.4

TinyOS WG [Tina] to solve this issue to further improve the synchronization.

Concerning the SHM application functionality, no accelerometers were used in the experimental

validation nor SAB boards, since the cost would be unmanageable. Instead, dummy data was gener-

ated on the fly and transmitted when polled by the SHM application. We do not believe this fact to be

a handicap of the evaluation considering it still mimics most of the application functionality.

Nevertheless, during the experimental evaluation two issues were identified which deserve further

discussion. One of them concerns the access to the Beacon Payload. Since several applications and

mechanisms might need to access the Beacon Payload it is important to design an additional module

to control it. This has two objectives: manage concurrency and improve efficiency by saving as much

space as possible.

142 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees

A second issue concerns the great amount of data that is generated by the sampling process and

must be transmitted to the sink. This process is bound to take several minutes or hours unless a

better strategy is designed to reconfigure the bandwidth allocated to each cluster. Although during the

sampling procedure a short bandwidth per cluster is preferred to decrease the overall clock drift and to

minimize the control delay of the clusters, the allocated bandwidth should be increased as each cluster

is polled to minimize the overall transmission time.

Both these problems are described in greater depth and are addressed in this thesis in chapter 9

and 10, by proposing a Dynamic Cluster Scheduling and a Beacon Payload Management mechanism

respectively.

The SSYNC mechanism was also used in chapter 10 to support global synchronized sensing of

the Datacenter monitoring application presented in chapter 6 of this thesis. This allows the user to

accurately track small changes in the datacenter’s environment, thus having a clearer understanding of

its micro-climate dynamics and the impact of the cooling equipments.

In the next chapter of this thesis we address another fundamental QoS property which is tightly

related with scalability and timeliness: Scheduling. In that chapter we explore a way of dynami-

cally scheduling the clusters of a ZigBee cluster-tree network, responding to end-to-end delay and

bandwidth requirements.

Chapter 9

Providing Dynamic Cluster Scheduling

Support to Synchronized Cluster-based

Networks

9.1 Introduction

Given the large number of WSN applications, each with an individual set of requirements [RC08],

it is important that some of these WSN resources (e.g. bandwidth and buffer size), are predicted

in advance, in order to support the prospective applications with a pre-defined Quality-of-Service

(QoS). To achieve this, it is mandatory to rely on structured logical topologies such as cluster-trees

(e.g. [APK04], [GXX07], [PA07]), which provide deterministic behaviour instead of flat mesh-like

topologies, where QoS guarantees are difficult to provide.

Nevertheless, although these network topologies look promising for the above mentioned WSN

applications, there is a lack of flexibility in adapting to changes in the traffic or bandwidth require-

ments at run-time, making them not capable of allocating more bandwidth to a set of nodes sensing

a particular phenomena, or reducing the latency of a data stream. In fact, although there is already

some literature on how to compute these network resources [JKS+10], [HJ10], it is not clear how they

could be re-allocated without greatly interfering with the network functionality, and specially without

imposing high inaccessibility times.

The work described in this chapter presents a solution to this problem, enabling networks to change

at run-time a given initial schedule, based on a time-division strategy, to provide increased quality of

service to multiple traffic flows. Computing this would normally result in a complex integer program-

ming problem which would be infeasible to be computed by WSN nodes which typically have scarce

computing power. Our re-scheduling algorithm relies on a heuristic that can be easily computed in

143

144 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

these platforms. We show how to apply our methodology to the particular case of IEEE 802.15.4/Zig-

Bee, good candidates to enable this kind of networks.

Finally, we analyze and demonstrate the validity of our methodology through a comprehensive

simulation study and experimental validation using WSN platforms in a real-world Structural Health

Monitoring scenario. Our proposal can reduce the end-to-end latency by 93% and the overall data

stream transmit period by 49%, although higher values can be achieved under different network set-

tings.

9.2 Related work

In general, synchronized Cluster-Tree topologies tend to suffer from four technical issues that usually

prevent their use: (1) how to schedule the transmissions of different neighbouring clusters avoiding

interference; (2) how to predict the performance limits to correctly allocate resources; (3) how to

change the resource allocation of the Cluster-tree (CT) on-the-fly; and (4) the lack of available and

functional implementations over standard WSN technologies, such as the IEEE 802.15.4/ZigBee set

of protocols.

There is already an interesting body of work concerning the scheduling of general tree-based

WSNs. Most of the work addresses the case of minimizing the length of TDMA-based schedules

for improved convergecast [CWH09], [LKL08]. In [GZH08], a distributed algorithm is proposed in

contrast with previous more centralized solutions. Recently, in [IGKC12] a scheduling strategy is

combined with transmission power control to minimize collision between nodes, and a strategy to

schedule transmissions in different frequencies is also proposed.

Although these strategies might work for a pure TDMA-based tree, cluster-based trees impose a

different approach since each slot of the TDMA cycle is usually not allocated to one single node, but

to a cluster with many nodes. Often, nodes will contend for medium access, thus rendering most delay

bound results not significant. This greatly limits the number of application scenarios.

This is especially true for the particular case of the IEEE 802.15.4/ZigBee set of protocols, in

which although the Cluster-Tree network topology is supported, no clear description on how to im-

plement it is given, namely in what concerns the beacon collision problem. In [IT06], the Task Group

15.4b proposed some basic approaches to solve this: the beacon-only period approach and the time

division approach.

In this line, a few proposals were made targeting the scheduling of ZigBee cluster-tree networks.

The work in [PT08] introduced the Minimum Delay Beacon Scheduling problem, however this pro-

posal only addressed the latency problem and not the bandwidth problem, since it assumed the use

of GTS slots for convergecast. The work in [JKS+10], addresses the problem of predicting resource

needs by modelling the performance limits of a ZigBee CT network using GTS flows. In another

proposal [HJ10], the authors extend the previous work by computing the optimal schedule for several

9.2 Related work 145

GTS data flows. Recently, [DFPD12] followed a similar approach to [PT08], proposing two heuristics

to reduce the complexity of the otherwise NP-complete problem. Although the usage of GTS guaran-

tees real-time performance within the IEEE802.15.4/ZigBee standards, the number of available GTS

slots is quite limited as well as their bandwidth. In this line, in [HPH+12] the authors try to overcome

this by borrowing bandwidth from neighbouring nodes.

All of the above proposals work by computing a static schedule, based on periodic traffic as-

sumptions, which will remain active throughout the network lifetime. Moreover, they follow a purely

theoretical approach, lacking a clear description on how to implement such mechanisms on ZigBee.

In fact, in some cases it is arguable if it is even possible.

For instance, the work in [HPH+12] proposes the concept of adoptive-parents, something which

is clearly not compliant with the ZigBee protocol. Similarly, two other proposals [YPT08] and

[DZXY10], try to improve routing efficiency and decrease latency by proposing important changes

to the basis of these standards. The first by proposing a change to the superframe structure to en-

compass two active periods per Cluster-Head, the second, by proposing a completely new tree-routing

protocol for ZigBee. In [KKP+07] the authors propose yet another non-compliant way of reducing

the schedule latency by passing frames to neighbouring clusters, changing a cluster-tree topology into

a mesh by supporting multiple paths. Moreover, allowing inter-cluster messaging leads to interference

and eventually beacon collision problems, since nodes do not know the neighbouring cluster’s active

periods. In [TLB09] the authors use different radio channels to avoid tackling the problem.

It is clear that standard communication technologies able to support tree-based topologies, could

benefit from full-compliant scheduling mechanisms. To make this a reality, proposals should as much

as possible, present clear implementation details, showing how to enable their usage within current

communication standards. In these authors’ opinion, in addition to simulation, carrying out experi-

mental validations of such mechanisms over real-world platforms is mandatory when addressing these

protocols.

In this line, in [KCA07], the Time Division Cluster Schedule (TDCS) algorithm was proposed

and implemented in the Open-ZB stack [CKSA07] enabling for the first time the use of this topology

over IEEE 802.15.4/ZigBee based networks, guaranteeing no beacon collisions. This technique used

a time-division approach and worked by assigning a different time offset to each cluster. Fully imple-

mented over commercial WSN platforms, available to the TinyOS community [Tin15], and with a set

of network planning tools available to the general WSN community via Open-ZB [OZ15], we believe

this work to be a proven reference concerning beacon scheduling for CT ZigBee networks. Other pro-

posals followed a similar approach such as [BW07] for mesh networks, or [MdPSP]. A description of

the beacon scheduling problem and the TDBS mechanism is available in Section 2.1.3.3 of this thesis.

Although some literature on solving the first two aforementioned problems in this section is al-

ready available, none of the proposals so far, in the general case of synchronized Cluster-Trees, ad-

dresses the third one, at least in a satisfactory way, and guaranteeing standard compliance. This greatly

146 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

limits the flexibility of the network which must keep the same cluster schedule and bandwidth reser-

vation, independently of the flow of data in the network and of its particular requirements, which

depending on the application may certainly change. In this chapter, we propose a set of techniques in

which the base schedule is temporary changed to encompass transient networking necessities such as

end-to-end delay and bandwidth allocation. This work, already presented in [SPT13a], was extended

in [SPT14] with new experimental results obtained over a real-world structural health monitoring ap-

plication and significant more detail is given to the proposal and its implementation over the IEEE

802.15.4/ZigBee standards.

9.3 System model

Consider a synchronized cluster-tree WSNs featuring a tree-based logical topology where nodes are

organized in different groups, called clusters. Each node is connected to a maximum of one node at

the lower depth, called parent node, and can be connected to multiple nodes at the higher depth, called

child nodes (by convention, trees grow down). Each node only interacts with its pre-defined parent

and child nodes.

A cluster-tree topology contains two main types of nodes: routers and end-nodes (refer to Fig. 9.1).

The nodes that can associate to previously associated nodes and can participate in multi-hop routing

are referred to as routers. The leaf nodes that do not allow association of other nodes and do not

participate in routing are referred to as end-nodes. The router that has no parent is called root and it

might hold special functions such as identification, formation and control of the entire network. Note

that the root is at depth zero. Both routers and end-nodes can have sensing capabilities, therefore they

are generally referred to as sensor nodes. Each router forms its cluster and is referred to as cluster-head

of this cluster (e.g. router C11 is the cluster-head of cluster 11). Each cluster-head is also responsible

for synchronization in its cluster and periodically sends synchronization frames. All child nodes (i.e.

end-nodes and routers) of a cluster-head are associated to its cluster, and the cluster-head handles all

their data transmissions. It results that each router (except the root) belongs to two clusters, once as a

child and once as a parent (i.e., a cluster-head). A schedule of the clusters to minimize or eliminate

inter-cluster interference, following a time-division strategy is assumed to be already in place.

In general, the radio channel is a shared communication medium where more than one node can

transmit at the same time. In cluster-tree WSNs, messages are forwarded from cluster to cluster until

reaching the sink. The time window of each cluster is periodically divided into an active portion (AP),

during which the cluster-head enables data transmissions inside its cluster, and a subsequent inactive

portion, during which all cluster nodes may enter low-power mode to save energy resources. Note that

each router must be awake during its active portion and the active portion of its parent router. To avoid

collisions between clusters, it is mandatory to schedule the clusters’ active portions in an ordered

sequence, that we call TDCS so that no inter-cluster collision occurs. In case of single collision

9.4 Dynamic Cluster Scheduling 147

Figure 9.1: System model.

domain, the TDCS must be non-overlapping, i.e. only one cluster can be active at any time. Hence,

the duration of the TDCS’s cycle is given by the number of clusters and the length of their active

portions. On the contrary, in a network with multiple collision domains, the clusters from different

non-overlapping collision domains may be active at the same time. However, finding a TDCS that

avoids clusters’ collisions in a large-scale WSN with multiple collision domains is a quite complex

problem, hence in this thesis, for simplification, we always assume a single collision domain. For more

information concerning TDCS, please refer to [KCA07] or check the overview in Section 2.1.3.3.

Several data transmissions in an upstream direction (e.g. streams S1,S2,S3 in Fig. 9.1) can be

present in the network simultaneously. Each stream is noted as a tuple Sk =< Rk,Pk,Tk,Dk >, where,

Rk represents the ordered set of clusters which the stream k must cross to reach the sink, Pk represents

the priority for that stream (an integer from 0 to 5), Tk represents the number of TDCS cycles for which

stream k will remain active and Dk the depth of the stream’s source. This stream notation will be used

in the next section to support the computation of a better TDCS schedule to apply to the network.

9.4 Dynamic Cluster Scheduling

With TDCS [KCA07], it is possible to find the best schedule for the routers active periods in order

to avoid interference, and to support most of the network bandwidth requirements. However, the

schedule is done at network setup time and assumes a static network that will remain unchanged.

148 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

The choice of the TDCS schedule has a strong impact on the end-to-end delays. In fact, it is easy to

observe that in a single collision domain, where there are no overlapping clusters, a TDCS schedule

optimized for downstream communication will result in the worst-case for upstream communication,

and consequently in higher end-to-end delays. Moreover, routers are assigned with a fixed bandwidth

they might not always need, while other clusters might be lacking. We aim at reacting to different

data flow changes on-the-fly, while simultaneously minimizing the network inaccessibility time. Our

proposal achieves this via two techniques: (1) re-ordering the clusters’ active periods to favour one

set of streams, reducing the end-to-end delays, which we call Dynamic Cluster Re-ordering (DCR);

and (2) tuning the size of the clusters’ duration, increasing the bandwidth of the clusters serving a

specific stream, an eventually decreasing others’ bandwidth, which we named Dynamic Bandwidth

Re-allocation (DBR).

The first technique consists of rescheduling the clusters’ order in the TDCS cycle, aiming at mini-

mizing end-to-end delays, while the second technique consists on rearranging the bandwidth allocation

for the clusters involved in a stream, to increase its bandwidths and decrease the overall time for a data

stream transmission. Both techniques can be used together, or separately. Importantly, these mecha-

nisms present a complexity of O(N), where N represents the number of Cluster-Heads in the network,

making it suitable to be run over WSN platforms with scarce processing power. This low complexity

also avoids a much larger energy depletion of the central node in charge of running DCS.

9.4.1 Dynamic Cluster Re-ordering

Consider the cluster-tree presented in Figure 9.1, with 10 clusters and a TDCS schedule as presented

in Fig. 9.2 Schedule A, where all CHs have the same allocated bandwidth. Notice that this schedule

is set to minimize downstream traffic latency (parents appear earlier in the schedule than the child

nodes), which is common in applications that require tight actuation. In this way, to act on Cluster C21

for instance, one could do it in only one TDCS cycle, since those Cluster’s are active immediately one

after the other. However, to receive data from C21, assuming that all data could be transmitted from

one CH to the next in one TDCS cycle, it would take two cycles, one from C21 to C11, and another from

C11 to C01. This is depicted in Fig. 9.2, where (a) represents the data coming from the sensing node

and being received by C21, (b) represents the transmission from C21 to C11, and finally, (c) from C11 to

C01. This delay will increase as the network size and the clusters’ duration increases and as the depth

of the source increases. In this scenario, the best schedule to minimize upstream latency, considering

a stream from Cluster C21 to the Sink (S1 in Fig. 9.1), should be as depicted in Fig. 9.2 Schedule A’,

where the next cluster to receive the packet appears next, reducing the amount of time a packet needs

to be left in the queue and consequently the application end-to-end delays. Thus, networks should

carry out an on-line re-scheduling of the clusters to favour a known set of upstream data streams,

minimizing the latency.

9.4 Dynamic Cluster Scheduling 149

Figure 9.2: Cluster Schedule.

This kind of rescheduling involves a re-ordering of the Clusters according to the streams the net-

work must serve. This can easily grow into a complex problem if one wishes to achieve an optimum

solution, due to the clusters’ precedence in the tree, usually solved in the literature using integer pro-

gramming as seen in the proposal in Section 10.2. However, in order to react to the network specific

needs in a reasonable amount of time, one needs to guarantee that the algorithm to compute this new

schedule is light and fast enough to be run in WSN platforms with scarce processing power. In this

line, integer programming models might not be the best choice for this case, where we just need a

better and not necessarily the optimum solution. Our approach to the problem is explained next.

As already presented in Section 9.3, each stream is noted as a tuple Sk =< Rk,Pk,Tk,Dk >. Given

the set of streams S, and the set N which contains all the cluster-heads in the tree, we must compute

A which denotes the set of cluster-heads that need rescheduling, where A = N ∩ S. Then, Cr, which

denotes the priority of the rth cluster-head in N, can be computed through the following algorithm:

Algorithm 1 Computing cluster’s priorities

1: for all cluster head r in A do

2: for all stream k in S do

3: if Ar ∈ Rk then

4: Cr←Cr +Pk

5: end if

6: end for

7: Cr←Cr +h(Ar)
8: end for

In other words, being Mr the set of streams from m to Nm which contain Cluster Head r in R, and

Pm the stream’s priority, we can compute Cr as:

Cr =
Nm

∑
m

Pm +h(Ar) (9.1)

150 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Function h(Ar) computes the height of Cluster-Head Ar in the tree, according to the position each

Cluster holds in array Rk being the first CH in the array position 0. Thus,

h(Ar) = pos(Rk) (9.2)

This value will add to the already computed cluster’s priority to enable precedence in the schedule.

The resulting schedule will be achieved by ordering the set of all cluster-heads N according to the

computed Cr for each cluster-head Ar, starting from the lower priorities to the highest. As a result,

the highest priority will always be assigned to the sink, since all the streams are directed to that

cluster-head. Cluster-heads that are not part of the set A keep their schedule not to interfere with the

initial schedule of those, and are placed after the sink. As an example, if we consider the network

presented in Fig. 9.1 and assume the following set of streams: S1 =< {C21,C11,C01},3,3,2 > and

S2 =< {C12,C01},1,4,1 >, A would be A = {C01,C11,C12,C21}.

The first stream, originates at cluster C21 and has priority 3, while the second, originates at cluster

C12 and has priority 1. If no reschedule was done, and assuming ideal communication without errors

and delays imposed by the MAC layers, we would expect that one packet of S1 would take approxi-

mately 18 times the duration of one active portion of a CH to reach the sink (Figure 9.2 Schedule A),

and from S2 three active portions. If we use the presented algorithm it will result in the following:

C01 = P1+P2+h(A01) = 3+1+2 = 6; C11 = P1+h(A11) = 3+1 = 4; C12 = P2+h(A12) = 1+1 = 2;

C21 = P1 +h(A21) = 3+0 = 3; Ordering from the lowest to the highest priority, the CHs in A should

be ordered as C11,C21,C12 and finally C01.

Considering the remaining nodes, which maintain their initial order in the schedule and lowest

priority, the final schedule, would be as follows:

Figure 9.3: Reordered DCR Schedule.

It would now be possible a full data transaction from the origin cluster to the sink in one TDCS

cycle, reducing the delay of each packet, greatly benefiting applications which demand low latencies.

If we wanted to decrease the latency for S2 we could increase the priority of the stream to the same of

S1 or higher. This would result in C12 = P1 + h(A12) = 3+ 1 = 4, and now, C12 would have a higher

priority than C21 thus appearing later in the schedule, decreasing the latency.

Comparing this schedule with the original in Fig. 9.2 Schedule A, we observe that the other CHs

also changed place in the schedule. Changing the position of all nodes must be done because there is

no free room that will let us only change the streaming CHs’ position and accommodate their initial

positions unoccupied. However, this does not mean that all of the CHs changed the offset to their

parents. For instance, in this particular case C41 does not change the offset. This is obvious, since the

9.4 Dynamic Cluster Scheduling 151

distance between C41 and its parent C31 did not change. As a rule of thumb, a new offset will have

to be computed for every children one depth bellow a re-scheduled CH. For their grand-children, this

does not happen since the distance remains the same as in the original schedule. This principle will be

used later in STEP 4 of Section 9.4.3, to compute the network’s inaccessibility time.

Although this approach solves the latency problem, it does not reduce the overall time it will take

for a stream to be transmitted since there is no change to the available bandwidth per cycle. Hence our

second proposal, DBR, which will increase the bandwidth for the clusters involved in the stream.

9.4.2 Dynamic Bandwidth Re-allocation

For this technique, bandwidth must be re-allocated by increasing the bandwidth for the clusters in-

volved in the stream. The first step is to look for free space in the schedule that has not been reserved

by a cluster’s active portion. If there is such free space, we can distribute in an equal fashion the

available space by the Clusters involved in the stream. For the particular case of Fig. 9.2 Schedule A

there is no space available. This means we must try to reduce the amount of bandwidth the clusters not

related to the stream are using. Here, it is important to previously define the minimum bandwidth a

Cluster can support. This is implementation specific in many cases, since it is highly dependent on the

limitations of the hardware platforms. If the Superframe Order is reduced beyond a threshold, there

can be timing issues. This has been reported previously and is discussed in [CSP+08] concerning the

TelosB platforms. The minimum bandwidth that will be available to the other clusters after the use of

this technique is thus set at network setup time.

If we consider stream S3 (Fig. 9.1) originating a C41, in which the routers involved are R41 =

{C41,C31,C21,C11,C01}, the one we wish to increase the bandwidth of every cluster, and a network

which is capable of handling a reduction of the available bandwidth by half, this technique will cut all

the remaining 5 CH’s duration, and redistribute this duration by the other CH’s in R41. This results in

an increased bandwidth for that stream (Fig. 9.4), thus reducing the transmission time. The size of the

TDCS cycle is kept nonetheless, since the bandwidth was simply redistributed.

As depicted in Fig. 9.4, all the relative offsets have changed. Nevertheless, a great plus of this

technique is that the network inaccessibility time is much smaller when compared to the previous

technique, since in only one TDCS cycle, it is possible to reschedule all the network with the new

offsets, if the original schedule was setup to facilitate downstream communications. This technique

is, however, greatly dependent of the protocol in use since, some protocols only allow discrete steps

in the duration of the CH’s active portion, like the IEEE802.15.4/ZigBee set of protocols.

152 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.4: DBR Schedule.

9.4.3 The DCS communication protocol

Our proposed on-line re-scheduling technique comprises six steps, which can easily be adapted to

different network protocols. The protocol is depicted in Fig. 9.6 in a timing diagram and is described

next.

STEP 1 - At network setup time, all Cluster-Heads are assigned with a TDCS time offset in relation

to their parents according to the approach proposed in [KCA07]. Different priorities are also assigned

to different sensing actions by the nodes. Synchronization frames are sent periodically and several

actuation actions on the leaf nodes can be carried out.

STEP 2 - DCS Request; If a leaf node wishes to transmit a stream of data to the Sink, its Cluster-Head

must be informed. The CH will decide, according to the application which originates the request,

if the most adequate strategy is a rescheduling to minimize end-to-end delays, a reorganization of

the bandwidth, or both. The option of which technique to use must be defined at network setup time,

since different applications impose different requirements (reduced latency or transmission time). This

request is then forwarded to the parent until it reaches the Root. On the way, each CH will add its own

address to the message, to inform the Root of the clusters involved in the stream. This way, we avoid

using heavy lookup tables that would have to be loaded into the Root at network setup time describing

all parent child relationships. The DCS Request is shown in Fig. 9.5. The first field transports the

DCS Request message code identifier. Next, the estimated amount of data to be transmitted in the

stream, and the application which is requesting the DCS.

Figure 9.5: DCS Request Message Format.

The next fields identify the stream priority, for computing the new schedule, number of clusters

which belong to the set, and their identification. These two last fields are updated as the DCS Request

9.4 Dynamic Cluster Scheduling 153

is transmitted upstream. Upon reception, the Root will wait for a finite period of time for more

requests. It will then evaluate the Stream Requests and compute a new TDCS schedule.

Figure 9.6: DCS Communication Diagram.

STEP 3 - Evaluation and Rescheduling; The evaluation process consists in checking whether or not it

is worth rescheduling the network, considering the amount of data to be transmitted and the inacces-

sibility time resulting from the reschedule. Although different techniques could be used to compute

this, we are interested in speed and low complexity, due to the scarce processing power of common

WSN platforms. The objective is to roughly compute the benefit from scheduling, and to do it fast

enough not to delay the process too much. To compute this, we start by defining a base unit to simplify

the computation. The base unit represents the duration of the active portion of the CH where a stream

originates. Hence, if we say that a stream has size n = 1, this represents a stream which duration

is equal to the duration of its CH active portion. All the others CH durations can be represented as

multiples of this base unit, because streams move upstream, thus the Bandwidth of the parent CHs,

154 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

must be equal or higher than their child’s. This is imposed by the TDCS algorithm [KCA07]. We

also introduce the concept of µcycle and macrocycle. Here, the µcycle represents the amount of n

units it takes for a stream of size n = 1 to reach its destination and macrocycle, represents the size

of the network TDCS schedule in multiples of n. The amount of time to transmit an amount of data

represented in multiples of n can be computed using the following expression, where Ti represents the

overhead of the rescheduling which we show how to compute in Step 5.

t = µcycle+(n−1)macrocycle+Ti (9.3)

For the particular case of the network depicted in Figure 9.1, with schedule A, and considering a

stream originating at C41 (S3), we can compute it’s µcycle as the number of base units between the

different CHs in the path. The result is shown in Table 9.1.

Table 9.1: Computation of µcycle length for each schedule

Schedule A Schedule B

C41→C31 10 2

C31→C21 9 1

C21→C11 9 1

C11→C01 9 1

µcycle 37 5

Figure 9.7: Resulting schedule.

If we use for instance a re-ordering technique (DCR), this will result in the schedule B depicted

in Fig. 9.7, favorable to stream S3, showing a full transaction from source to destination in one TDCS

cycle.

Its macrocycle is the size of the schedule, which is of 10 base units. Ti is computed according to

the methodology presented in Step 5 and is equal to 3. Hence, for n = 1, considering Schedule A,

tA = 37+ 0+ 0 = 37. For schedule B, with a DCR, tB = 5+ 0+ 3 = 8. The macrocycle is equal to

10 for both cases. With our technique it is possible to compute the delay, assuming a collision free

environment and maximum theoretical bitrate, an obvious simplification which will always output the

shortest time it takes for a flow of data to reach the destination. This method, however, suffices to

compute if a re-scheduling is better or not. The root node will then compute all the offsets that result

9.4 Dynamic Cluster Scheduling 155

from the new cluster schedule that will serve that stream and reply to the request.

STEP 4 - Reschedule Response; After the computation of the new offsets (time offset between the be-

ginning of the active portions of the parent and child CHs), according to the new schedule, a response

is sent in the payload of the periodic synchronization frame. By using the synchronization frame to

deliver this information we make sure that all CHs receive the information in a bounded amount of

time, since they are not susceptible to contention. The first part (Fig. 9.8) specifies the message type

and the response, (request accepted or request denied). The next portion of the frame contains the

expiration for that schedule, which is the amount of TDCS cycles the schedule will remain active be-

fore returning to the original network schedule. The next portion contains a list with the new offsets

expressed in a relative offset concerning the original one and the cluster-head addresses to which these

are to be applied.

Figure 9.8: DCS Reply Message Format.

Only the CHs which received a new offset are part of the content of the response frame. If the

node which requested the rescheduling does not find its address among the ones in the response, or if

no response is received for more than DCS_maxWait cycles, it should hold the data and retry later up

to a maximum of DCS_maxRescheduleRetry times. The size of DCS_CH_Address is implementation

specific as well as the DCS_Offset, since these variables depend of the protocol.

STEP 5 - Propagation; Each cluster-head, upon reception of the Reschedule Response payload, re-

trieves its newly assigned offset to their parent and propagates the remaining offset information along

the network by placing it in their own synchronization frames, thus propagating the information down-

stream. The new offset information is then used by the CHs to compute the time for the next syn-

chronization frame. At the next depth, the child router of that cluster-head must wait for the next

synchronization frame (with the new offset) from the parent, and synchronize to it. This propagation

procedure however can introduce a period over which the network is not fully accessible, with the

exception of the branches that remained independent of the CHs which were rescheduled. This holds

true for the Cluster Re-ordering technique only (DCR). This is because each CH must wait for the

synchronization frame of their parent so that they can align with it and also synchronize their cluster,

propagate information and become active, since the offsets are always relative to the parents. How-

ever, this delay is bounded and can be easily computed as a function of the TDCS schedule cycles as

156 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.9: Example of the DCS.

follows:

T DCR
i = (dAr−1)tT DCScycle (9.4)

The inaccessibility time is equal to the depth of the deepest rescheduled CH (dAr) in the tree

minus one, multiplied by the respective duration of one TDCS cycle. This is the amount of time

the scheduled branches of the network should be inaccessible. If instead of a DCR technique we

use a Bandwidth Redistribution technique, this inaccessibility time is zero. Because the hierarchical

order of the schedule is kept, the routers will always receive the synchronization frame of their parent

immediately before (assuming a schedule favoring downstream transmission), and within the same

TDCS cycle. A failure at the reception of the synchronization frame must place the cluster and its

respective children in an idle state to avoid inter-cluster collision. Upon the correct reception of the

following synchronization frame the cluster shall resume.

STEP 6 - Returning to original schedule; The schedule’s change is not permanent, and the network

must roll back to its initial schedule after a defined period of time which we define as the Schedule’s

Expiration Period. Because of the inaccessibility period in the DCR technique, each depth will be

assigned with a different Expiration so that all depths can change the schedule back to the original

in the same cycle. For this reason, Expiration in Step 5 is computed as Expiration = ED+Ti+ 1,

9.5 Instantiating DCS in IEEE 802.15.4/ZigBee 157

where ED is the schedule’s expiration deadline that is application defined (DCS_Exp_Deadline) and

can be computed from the amount of data to be received, Ti the inaccessibility time. Each CH will

later compute its own Expiration by subtracting their depth in the tree. By following this rule, every

CH can easily compute when the current schedule expires, just by counting the number of TDCS

cycles since their first synchronization frame after the reschedule. For the case of a DBR technique,

expiration will be always equal to the ED, since the inaccessibility time remains equal to zero. The

CHs should activate a counter at the first synchronization frame sent with the new schedule. From this

point on, each CH keeps track of the current number of synchronization frames sent by it. When this

number is equal to the assigned Expiration value the CH automatically sets its offset to the original

and waits for a synchronization frame from its parent to return to the original schedule. Fig. 9.9

describes how this process should work for the example of S3, after a successful reschedule response.

The delay of three cycles due to inaccessibility is depicted as well as the schedule expiration. The

first TDCS cycle transmits the new offsets within the DCS Response. Each router resets their internal

clock references and waits for a synchronization frame from their parent. C12 and C11 are the first to

receive this and they transmit their synchronization frames with the new schedule, followed by their

child, (C22,C23,C24,C21).

Next, the CHs at depth three do the same until the last CH at depth four (C41) is also rescheduled.

The schedule is kept for three more TDCS cycles and it expires. All the offsets return to the original

schedule in only one TDCS cycle. As observed, the network inaccessibility time is bounded and return

to the original schedule is done without much complexity.

Considering energy-efficiency, only the node which makes the DCS Request, and eventually the

CHs routing that message, spend an extra quantity of energy, which is equivalent to the transmission

of one short data frame, eventually retransmitted in the case of a failure. The setup of the network with

the new offsets uses the payload of the synchronization frames that must be transmitted independently

of DCS. Thus, it is clear that communications generated by our mechanism, will never lead to energy

depletion among the nodes.

9.5 Instantiating DCS in IEEE 802.15.4/ZigBee

The PAN-Coordinator is responsible for receiving the new schedule request from the other cluster-

heads and computing the new schedule as described before. A new module was devised to be inte-

grated above the network layer of ZigBee (Figure 9.10), at the Application Support Layer. This new

module, DCS, is responsible for managing the DCS mechanism, in regards to the beacon payload

creation (for propagating offset information), computing and changing the offset information for the

lower layers, and computing the schedules and corresponding expiration.

158 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.10: DCS ZigBee Implementation.

At network setup time, the TDCS algorithm is applied to the the tree, setting up the base schedule.

As the nodes gather data, they can direct streaming requests at the PAN Coordinator. The PAN-

Coordinator will evaluate these requests according to what is described in Step 3 of Section 9.4.3. If

the result is positive, it will compute the new schedule and setup the Rescheduling Response to be

placed in the IEEE 802.15.4 Beacon Payload. The next Beacon frame will carry this information.

As Beacons are transmitted between the several clusters, the new schedule information is propagated

among the tree and all the nodes will know a DCS Rescheduling is occurring just by parsing the re-

ceived Beacon. This is important since in the next BI, many nodes will fail to receive a Beacon from

their parent, due to the inaccessibility time described in Step 4 of the DCS Communication Protocol.

This will be specially visible in the deepest nodes of the rescheduled branch. If no information con-

cerning the status of the process was propagated, the nodes could assume they had lost their parent,

receiving a SYNC-LOSS.indication from the respective MAC layer, and would try an Association

procedure to another potential parent. By knowing this in advance, they can disable this process for

(Depth−1)∗BI amount of time, which is the maximum time the rescheduling should take per Depth,

after which, the Device will re-enable the re-association procedure after the SYNC-LOSS.

Upon reception of their parent’s Beacon, the ZigBee Cluster-Heads, will search for their address

among the Rescheduling information at the Beacon Payload to learn the new offset. Then, they will

trigger the DCS Module generating a DCS-NEW-SCHEDULE.indication, and set their own Beacon

Payload with the remaining information of the Rescheduling Response to propagate the information

to the children down the tree. Having done this, the DCS Module, will issue a SYNC.request to

9.6 Performance evaluation 159

the Network Layer to resynchronize with the corresponding parent, and after a synchronization an

MLME-START.request.

The MLME-START.request primitive, depends of the rescheduling technique to be used. If a Re-

ordering technique is to be used, then the CH will used a DCS-RESTART-ROUTER.request, with the

new offset information. This new interface is similar the standard NLME-RESTART-ROUTER.request,

except no change is done to the other parameters of the stack. The objective is to simply turn the

routing functionality on. If a Bandwidth reallocation is to be done, then the request will also change

the Superframe Order parameter of the stack to reflect the bandwidth change. The system timers at the

MAC layer, upon reception of this request are automatically updated with the new Superframe Order.

Upon the reception of a Beacon from the parent, the ZigBee Router will automatically resynchronize

and resume its work.

When the DCS Module is triggered, the Schedule Expiration is also computed according to what

is described in Step 6 of Section 9.4.3, and a counter (DCS-Expiration-timer) is triggered with that

value. When this counter expires, the DCS Module automatically repeats the DCS-RESTART process

with the old offset values, returning to the initial values. These are stored in a database, DCS-Initdb,

which contains the initial offset and Superframe Order values. As described, the implementation of

the DCS mechanism does not involve major changes to the protocol. In fact, only a couple of new

interfaces are to be added to the ZigBee NWK implementation to enable the DCS functionalities. One

is triggered upon reception of a new schedule (DCS-RESTART-ROUTER.request) after the regular

parsing of a beacon frame, and another (NLME-RESTART-ROUTER.request) which is a replication of

the standard NLME-START-ROUTER.request. All of the DCS mechanism implementation is taken as

an independent module to the Application Support Layer to avoid imposing substantial changes to the

NWK layer.

9.6 Performance evaluation

9.6.1 Application scenario

Structural Health Monitoring (SHM) and damage identification at the earliest possible stage have been

receiving increasing attention from the scientific community and public authorities [Eco10]. Service

loads, accidental actions and material deterioration may cause damage to the structural systems, re-

sulting in high administrative costs for governments and private owners and, in some situations, loss of

human lives. As such, there is an enormous eagerness to add sensing/actuating capabilities to physical

infrastructures like bridges, tunnels and buildings, turning them into “smart structures” able to detect

and respond to abnormal situations. However, there is still a lack of ready-to-use and off-the-shelf

WSN technologies able to fulfil the most demanding requirements of SHM applications, such as strin-

gent time synchronization of all sensors’ measurements, highly reliable timely measurements and data

160 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.11: SHM System Architecture.

communications. In this line, we designed a prototype system for SHM reported in [SGA+10b] and

[ARL+11], capable of coping with these SHM requirements while supporting network scalability.

This application presents interesting dynamics that could be improved by the use of the DCS mech-

anism. Besides its requirement of tight node synchronization and low latency downstream control, the

application generates a large amount of sensing data that must be handled by the network in an up-

stream direction. These two modes of operation can be supported and see their performance improved

by the use of the DCS mechanism by minimizing both end-to-end delays and overall transmission

time.

Its system architecture was designed to sample in a synchronized fashion multiple accelerometers

placed at different locations in a physical structure and forward this data to a central station (PAN-

Coordinator) for later processing using a IEEE 802.15.4/ZigBee Cluster-Tree network topology. Each

Sensing Node is composed by a TelosB node with a signal acquisition board, with a 24 bits DAC,

attached to a MEMS 3-axis acceleration sensor (Fig. 9.11). The application is thoroughly described

in chapter 5.

The network is setup according to Fig. 9.1 network topology and the Sensing Nodes are spread

into different clusters. In Fig. 9.1, the addresses next to the nodes represent the Cluster-Heads’ ZigBee

NWK addresses. The initial schedule favors downstream communications. This is made so that the

PAN-Coordinator, after setting up all the nodes in the network, is able to start and stop the data

acquisition on all the nodes simultaneously, in one TDCS cycle. This is mandatory for the application

9.6 Performance evaluation 161

Figure 9.12: Experimental DCS Schedules.

so that the results are coherent. If the initial schedule was kept to poll the date from the sensors,

the assessment could last minutes up to several hours, depending on the cluster the stream originated

from.

We aim at changing the network’s TDCS schedule to improve on this behaviour, by (1) reducing

end-to-end latency, eventually allowing for simultaneously data analysis, using the DCR technique

and (2) by accelerating the data transfer from the Sensing Nodes to the PAN-Coordinator using DBR

technique.

9.6.2 Experimental setup

The DCS mechanism was evaluated through simulation and experimentally using our SHM system.

For carrying out the simulation analysis, the DCS mechanism was implemented over the Open-ZB

Zigbee Model [ZA05], and simulated with the OPNET Modeler simulation software. A network

topology like the one shown in Fig. 9.1 with nwkMaxChildren (Cm) = 3, nwkMaxDepth (Dm) = 5,

and nwkMaxRouters (Rm) = 2, was setup and the application layer of the node was set to generate

traffic at a rate correspondent to a sampling rate of 100Hz which is recommended for fine-grained

structural health monitoring [SGA+10b]. For maintaining uniformity along this work, in the analysis

162 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

we always consider stream S3, which originates at router C41 in Figure 9.1 and constitutes the worst-

case for the initial TCDS schedule. Several analysis to evaluate the performance of the two techniques

were carried out, with a special attention to two metrics: end-to-end delays and overall stream transmit

duration.

To carry out the experimental validation over the SHM application, the DCS module was imple-

mented in TinyOS over the Open-ZB IEEE 802.15.4/ZigBee stack [CKSA07]. A ZigBee network with

12 TelosB motes was setup in a configuration replicating the one depicted in Fig. 9.1, using BO=8 and

SO=4, with one PAN-Coordinator connected to a PC through a USB connection, and nine Routers

each forming their own cluster. Two Sensing Nodes (End Devices) were associated to the Router at

Depth 4 (address 0x0004) to generate sensing data for later retrieval. To reduce costs, the Sensing

Nodes were used without the accelerometer modules. Instead, timers at the application layer were

used to emulate real SHM traffic at different sampling rates. Both DCS techniques were implemented

and tested to validate our work, although the most important technique for this specific SHM applica-

tion is the DBR, which as shown before can greatly reduce the overall stream transmission time. A

base scenario, without any schedule improvement, was also setup to measure the improvement.

9.6.3 Performance results

9.6.3.1 End-to-end Delay Analysis

To understand the impact of the first technique we did one hundred simulation runs, 10 minutes each,

of the network with different BO settings (from BO = 8 up to BO = 12), simulating a larger network,

with the initial scheduling and using the cluster re-ordering technique. The maximum end-to-end

delays were measured for packets transmitted from a Sensing Node associated to Router 0x0004,

at Depth 4, (S3 in Fig. 9.1), to the PAN-Coordinator, with no other traffic on the network. This

transmission is the worst-case for the initial TDCS schedule. In the simulation platform, frame size

was set to 800 bits, and Packet Inter-arrival Time was set to 0,06 seconds to emulate the arrival of

Sensing Data at the Sensing Node’s serial port (this was verified experimentally).

Fig. 9.13, shows the simulation maximum end-to-end delay results for the different BO using the

DCR technique. Superframe order is fixed to SO = 4 for the case of the results in the left. Notice the

decrease on the delay achieved by simply re-ordering the schedule. We can achieve a reduction in the

end-to-end delays in the order of 13 seconds for BO = 8 and even several minutes as the BO increases

with the size of the network, reaching 4 minutes for the case of BO = 12, to approximately one second.

The end-to-end delays with DCR remain constant despite the different BO settings. This is expected

since although the network increases, the transmission of a packet is completed in only one BO cycle.

Since the Bandwidth of the routers is also the same, the end-to-end delay should remain constant and

thus independent of the network size.

9.6 Performance evaluation 163

Figure 9.13: Stream end-to-end delays - simulation.

To understand the impact of the Bandwidth Reallocation technique (DBR), on the end-to-end

delay, the initial schedule’s ordering was maintained, and BO increased to 10. As the available band-

width of the Superframe increased, it was distributed using DBR among the Routers involved on the

stream, changing from SO=4 up to SO=7. Fig. 9.13 on the right, presents the results for S3 in Fig. 9.1

concerning end-to-end delay.

There is a slight but not significant decrease of the end-to-end delay as the SO is increased. Since

the Routers increase their SO, the unused part of the Superframe was reduced and thus there is a

better use of the Superframe bandwidth. This reduces the time the packet must remain in the queue at

each router, waiting for the next Superframe to be transmitted to the parent, thus slightly reducing the

overall end-to-end delay. This is visible in the figure in the right showing how the average queuing

delay decreases as the SO increases. In comparison, the DCR technique presents a much higher impact

on the end-to-end delay as expected, decreasing for the case of BO/SO = 10/5, the delay from 60.95

to 1.97 seconds, a decrease of 96.7%. In fact, for its worst case of BO/SO = 10/7, it still represents a

decrease of 82.14% concerning the DBR technique.

There is however, a slight increase in the end-to-end delay when using the DBR+DCR techniques

as the SO increases. Although, there is a re-ordering of the schedule according favouring upstream

traffic, and a redistribution of the unused bandwidth, the increase in SO implies a larger time a packet

must wait in queue at each router, waiting to be transmitted to the parent, in comparison to the cases

with lower SO. Using the DBR technique is thus not recommended.

164 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.14: Stream End-to-end Delays - Experimental and Simulation.

Fig. 9.14 shows the comparison between simulation and experimental results. As observed, the

behaviour previously observed in simulation is replicated in the experimental evaluation with minor

differences. However for the base schedule, experimental delay was slightly different. This has to

do with the different duration of the Beacon Order on the experimental platforms, which is of 3.75

seconds instead of the theoretical 3.932 seconds, due to the lower timer granularity.

A Daintree Networks 2400E Sensor Network Analyzer [Dai15b] was used to log all the commu-

nications during the experimental evaluation. Fig. 9.15, shows its log after a successful reschedule

response. Part of the output related to the network setup and DCS communication was omitted to save

space, but can be seen in [SPT13b]. The beacons from the PAN Coordinator are signaled with a red

arrow. When all the Routers receive their new offset information in the DCS Reschedule Response

message, they immediately stop sending beacons and wait for their parent’s beacon to synchronize to

it. The first beacon comes from the PAN Coordinator which maintains its period. Next, Routers at

Depth one are the firsts to synchronize to it using the new offsets. Notice the Packet Analyzer time

stamp, showing the new relative offsets. Now that the Depth one Routers transmitted their beacons,

the next level ones (Depth two) can also synchronize. The process continues until the all the Routers

are synchronized. At this point, the Sensing Nodes (0x0007 in the example) start transmitting data

which will be forwarded until it reaches the sink.

9.6.3.2 Stream Overall Transmission Time

Like previously mentioned, minimizing the overall transmission time is quite important, in this SHM

application, where large amounts of data must be transmitted in the less amount of time possible.

To analyze this metric, in the simulation platform we generated scenarios with different volumes of

sensing data, corresponding to short 10 and 30 seconds runs and runs with 1, 5, 10 and 30 minutes, in

9.6 Performance evaluation 165

Figure 9.15: Output from the packet analyzer showing the DCR technique.

166 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.16: Stream transmit duration.

the SHM system. Those values were also tested in the experimental platform. During this time there

was no other traffic in the network, as to not interfere with the experiment.

Fig. 9.16 shows the simulation and experimental results of the transmission time for sampling

durations of 30 seconds, 60 seconds and 5 minutes using the DCR and DBR techniques for SO=4

and SO=5 in regard to the base schedule. As shown, the DBR technique presents the best result in

decreasing the overall transmission time, representing a decrease close to 50%, as expected when the

available bandwidth is doubled on the Routers, to SO = 5. For the case of 1 minute of sampling time,

using the DBR technique alone reduced the overall transmission time from nine minutes to 4 and a

half minutes, a decrease of 49%.

Interestingly, the DCR technique also decreases the overall transmission time, but not in a signifi-

cant way. It decreases it about 14 seconds for this particular case of BO=8, and it is constant for every

SO setting, independently of the amount of data to be transmitted. However, this small difference

should not be neglected. For larger BO, the impact of this increases as shown in Fig. 9.16 in the right,

reaching 8 minutes for BO=13. This happens because of the impact of the reduced end-to-end delay

at the beginning of the transmission, due to the re-ordering of the clusters’ schedule. Because of this,

the transmission will end sooner. As the BO increases, the impact of this is higher since the duration

of the TDCS cycle also increases.

Experimentally, concerning the DBR technique, results show a reduction on the overall transmis-

sion time in the order of 49%, again quite close to simulation results, while further reductions can be

achieved by increasing the SO per cluster. Concerning the network inaccessibility time, as predicted,

it was bounded to three TDCS cycles, which is the time it takes for the whole network to resynchro-

nize with the new schedule. This can be confirmed in the Packet Analyzer output files available in

[SPT13b].

Starting with the DBR technique, the most important parts of the log are highlighted in Figure 9.17

and commented bellow.

A few packets were omitted for space reasons to simplify the reading. This figure shows the use of

9.7 Final Remarks 167

the DBR technique to reduce the overall stream transmission time. Beacons from the PAN Coordinator

are signaled with a red arrow.

At network setup time, the nodes associate (1) and the TDCS algorithm assigns each cluster an

offset (2), assuming a the initial schedule favoring downstream communication, thus improving the

control over the application during the sampling period. This information is sent in a Data Message

(blue Data Message inside rectangle 2). The application is configured and started (3), and the base

schedule can be seen. Upon completion of the data acquisition task, the application pools the nodes

for data. The first Sensing Node to be pooled, wishes to initiate upstream data communication and

triggers the DCS mechanism (4) with a DCS Request. This request is forward by the routers until

it is delivered to the PAN-Coordinator. Two Data Messages with DCS Request can be seen being

forwarded. The relationship between addresses and the logical topology is shown in Figure 9.1.

Upon arrival, the PAN Coordinator computes the new schedule and sends to the network a DCS

Reschedule Message which is disseminated within the payload of the beacon frame throughout all the

network (5). The new schedule is immediately adopted as shown in (6), and a change on the SO is

noticeable on the Beacon frame description and on the sniffer timestamps.

9.7 Final Remarks

Changing the resource allocation of a Cluster-based WSN on-the-fly, without imposing long inacces-

sibility times, represented a major challenge, hindering the deployment of many WSN applications.

With this work, we propose a solution to this problem, enabling networks to self-adapt to changing

traffic flows, improving the QoS by redistributing the available bandwidth and minimizing latency,

assuming a given schedule based on a time-division strategy.

We presented two techniques achieving a reduction of the end-to-end delay from a leaf node to the

sink of 93%, and a decrease of the overall data transmit period of 50% although a higher impact can

be achieved with other network settings. Importantly, our methodology was applied to a real-world

WSN-based Structural Health Monitoring system, showing that it can be easily implemented under

the IEEE802.15.4/ZigBee set of protocols with minor add-ons and can run in general purpose WSN

platforms such as the TelosB motes.

In the near future, we aim at deploying the SHM system fitted with DCS in the field, supporting

civil engineers that must carry out professional structural health monitoring work. We are also aiming

at providing support for conflicting traffic flows in the network.

In the next chapter, this thesis works towards the design of an online and cross-layer mechanism to

manage the different QoS properties already mentioned so far in the context of IEEE 802.15.4/ZigBee

networks.

168 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks

Figure 9.17: Output from the packet analyzer showing the DBR technique.

Chapter 10

Adding Online Cross-layer QoS Control

to ZigBee Cluster-based Networks

This Chapter presents a cross-layer QoS management framework for ZigBee cluster-tree networks.

The proposed framework carries out an on-line control of a set of parameters ranging from the MAC

sub-layer to the network layer, improving the successful transmission probability and minimizing the

memory requirements and queuing delays through an efficient bandwidth allocation at the network

clusters. Through extensive simulations in a real datacenter monitoring application scenario, we show

that the proposed framework improves the successful transmission probability by 10%, and reduces

the end-to-end delay by 94%.

10.1 Introduction

Wireless Sensor Network (WSN) infrastructures show a great potential to address various challenges

posed by the large-scale energy consumption, cooling, and operational needs of large data centers,

by providing a sensor layer to monitor parameters such as temperature, humidity, airflow and power

consumption per server. Existing data centers consume around 50% of the supplied energy in cooling

related actions [Koo11]. A WSN infrastructure can enable more precise and efficient control of the

datacenter’s equipment and may reduce the cooling cost.

However, WSN applications have different Quality of Service (QoS) requirements [RC08], par-

ticularly in what concerns timeliness. Structured logical topologies such as cluster-trees are generally

used to address these QoS requirements ([APK04], [GXX07], [PA07]). They provide deterministic

behavior instead of flat mesh-like topologies, where timeliness is not always guaranteed. The ZigBee

[ZA05] standard has proposed a cluster tree network topology to address different QoS requirements

of heterogeneous applications and support synchronization and predictability through a hierarchical

169

170 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

network structure. However, this topology is not directly adaptable due to implementation and flex-

ibility problems. Few solutions have already been proposed to address these problems ([KCAT08],

[KANS06], [SPT14]) however, to the best of our best knowledge, no attempt has been made to inte-

grate them in one framework capable of supporting online and dynamic cross-layer QoS management

mechanisms for cluster-tree networks ([SEN14], [PTL+15]). This framework should be able to allo-

cate network resources online and increase the network flexibility in terms of latency and bandwidth

utilization, since these networks usually rely on a static cluster schedule. It should also adapt its MAC

sub-layer to different traffic priority classes using a cross-layer approach. This would result in a frame-

work capable of addressing not only the timeliness, but also other QoS aspects such as robustness, by

providing the network infrastructure with self-adapting capabilities, and energy-efficiency, by provid-

ing traffic differentiation at the MAC sub-layer, improving the successful transmission probability to

selected nodes, for instance, while relying upon the underlying cluster duty-cycling provided by the

IEEE 802.15.4 beacon enabled mode.

This work presents a cross-layer QoS management framework that provides automatic and on-

line control of two QoS mechanisms for ZigBee cluster-tree networks. At the Medium Access Control

(MAC) level, we improve the successful transmission probability of a tagged node, by carefully tuning

the MAC parameters. The successful transmission probability is calculated by the fraction between

the number of successfully acknowledged frames and the traffic generated at the application layer. At

the network level, we reduce the queuing delays and memory requirements per node by carrying out an

on-line efficient allocation of the available bandwidth for each cluster. This results in the elimination

of bottlenecks in the network infrastructure, achieving a clear improvement in the end-to-end latency

of the application. This work relies on two previously proposed and validated mechanisms, the Traffic

Differentiation Mechanism (TRADIF) proposed in [KANS06] and the Dynamic Cluster Scheduling

(DCS) proposed in [SPT14]. We extended the TRADIF mechanism to provide control of multiple

nodes in the same cluster. An online performance evaluation mechanism is managed by a cross-

layer Traffic Efficiency Control Module (TECM), which enables the necessary QoS mechanism where

and when needed. The TECM also supports a mechanism to enable scalable and synchronized data

acquisition in multiple clusters (SSYNC) as proposed in [TKD+13]. However, this mechanism must

be enabled on demand. To regulate access to the beacon payload from different modules, a Beacon

Payload Management module (BPM) is also proposed in this work.

We further validate and demonstrate the proposed mechanisms through simulations in a datacenter

monitoring application scenario, which will be deployed in a new large-scale datacenter infrastructure

in Portugal [SEN14], using WSN as a sensing infrastructure to collect power and environmental data

with high resolution and timing constraints. The simulation results show that the traffic rates are

adjusted automatically by using TECM and by triggering DCS effectively. This results in a significant

decrease of memory requirements, minimizing queuing overflow and end-to-end average latencies by

90%. The results also show the possibility of improving the successful transmission probability of

10.2 Related Work 171

higher priority nodes by 8% due to reduction in retransmissions, thus reducing the average energy

consumption. Moreover, we conclude that the efficient pairing of TECM with DCS achieves a more

efficient distribution of bandwidth than that of DCS only. This makes it possible for the network to

accommodate higher traffic rates that would not be feasible otherwise.

10.2 Related Work

In this section, we provide a brief overview of QoS in IEEE 802.15.4/ZigBee networks. This overview

is classified into the following two groups:

10.2.1 QoS improvements to the IEEE 802.15.4/ZigBee standard

Several research efforts focus on improving the performance of IEEE 802.15.4 slotted CSMA/CA pro-

tocol in terms of delay and reliability of time-critical events. A thorough review of such mechanisms

is available in Section 7.2 of this thesis. Concerning the ZigBee protocol, we further present the most

prominent proposals.

The above work focused on traffic differentiation over the IEEE 802.15.4 networks, however, none

of this work discussed on-the-fly alteration and implementation of different parameters. Considering

that traffic and network performance may change during the network lifetime, it is important that the

parameter tuning may be carried out periodically, adjusting to current network performance. This

may avoid unnecessarily decrease in the performance of lower priority traffic. Concerning the net-

work layer, general synchronized cluster-tree topologies tend to suffer from four technical challenges:

(1) how to schedule the transmissions of different neighboring clusters avoiding interference, (2) how

to predict the performance limits to correctly allocate resources, (3) how to change the resource allo-

cation of the cluster-tree on-the-fly, and (4) the lack of available and functional implementations over

standard WSN technologies, such as the IEEE 802.15.4/ZigBee protocols. This is particularly true for

IEEE 802.15.4/ZigBee protocols, which support the cluster-tree network topology but do not provide

a clear description of implementation problems including beacon collision problems. In [IT06], the

IEEE 802.15.4b proposed some basic approaches to solve the aforementioned problems: the beacon-

only period approach and the time division approach. Few other approaches targeted the scheduling of

ZigBee cluster-tree networks. The work in [PT08] introduced the minimum delay beacon scheduling

problem, however this work only addressed the latency problem by assuming the use of GTS slots for

converge cast, and do not address the bandwidth problem. In [KCAT08], the authors proposed a Time

Division Cluster Schedule (TDCS) algorithm for IEEE 802.15.4/ZigBee networks and implemented

it in the Open-ZB stack [CKSA07]. This algorithm used a time-division approach and worked by

assigning a different time offset to each cluster. The implementation of this work is available to the

TinyOS and WSN communities [Tin15], through the Open-ZB [OZ15] framework. This work is of

172 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

great importance since it solves the beacon scheduling issues for ZigBee cluster-tree networks. Other

approaches, such as [BW07] and [MdPSP] followed a similar approach to [KCAT08] for mesh net-

works. The work in [JKS+10] addressed the problem of predicting resource needs by modeling the

performance limits of ZigBee cluster-tree networks using GTS flows. In another work, the authors

extended the latter by computing the optimal schedule for several GTS data flows [HJ10]. Recently,

[DFPD12] followed a similar approach to [PT08] proposing two heuristics to reduce the complexity

of the otherwise NP-complete problem. Although the usage of GTS guarantees real-time performance

within the IEEE802.15.4/ZigBee standards, the number of available GTS slots and their bandwidth

is limited. The authors of [HPH+12] tried to improve the GTS bandwidth utilization by borrowing it

from the neighboring nodes.

The above research efforts compute a static schedule based on periodic traffic assumptions, which

remain active throughout the network lifetime. They follow a purely theoretical approach, lacking a

clear description on how to implement such mechanisms on ZigBee cluster-tree networks. In [SPT14],

the authors presented a much simpler and low complexity DCS algorithm to satisfy bandwidth and

delay requirements by rescheduling the clusters. It proposes two mechanisms: (1) carries out a

rescheduling of the clusters ordering in the TDCS cycle aiming at minimizing end-to-end delays, and

(2) rearranges the bandwidth allocation for the clusters involved in a stream, increases its bandwidth

and decreases the overall data transmission time, and minimizes the queuing size and delay. Both

techniques can be used together, or separately. The DCS algorithm was validated through simulations

and implemented over TinyOS in real WSN platforms. Although each mechanism can be triggered

on-the-fly, the user must specify a threshold based on a maximum predefined amount of traffic. This

might be hard to correctly select without a simulation or experimental approach. Furthermore, to

avoid increased complexity, the algorithm increases the bandwidth among all the clusters in the traffic

stream which may not always be necessary and may create inefficiency. Nevertheless, we believe this

is the most simple and practical approach and can improve the performance even further.

10.2.2 Online and cross-layer QoS proposals

As discussed above, most of proposed research efforts do not encompass an online mechanism to ap-

ply the necessary changes as the network performance decreases, and exactly where needed. Instead,

they usually rely on the user to enable these services through application mode changes according to a

set of assumptions usually obtained from simulation scenarios, and in most cases without performance

feedback from the network. This suboptimal approach usually leads to an unnecessary decrease in the

performance of low priority traffic at the MAC level, and also, to a waste of precious bandwidth re-

sources at the network level, as traffic varies through time. Moreover, these approaches rely on the

expertise of the user to control complex mechanisms, for instance, setting MAC parameters. Clearly

10.3 On the Supported QoS Mechanisms 173

this is a big impediment for a democratization of these networks, unnecessarily increasing their com-

plexity, as most users do not hold the knowledge to fine tune these parameters. Since the traffic

conditions may change, these settings must be updated throughout the entire network lifetime in many

cases. Furthermore, as the QoS provisioning is not a one layer specific issue, the QoS management

becomes a daunting task as the number of layers at the communication stack increases. The network

layer performance for instance, is tightly coupled with the MAC sub-layer for efficient resource al-

location. This resource allocation requires a cross-layer mechanism that must be able to address the

QoS problems at MAC and network layers.

Cross-layer strategies have already been proposed in the literature ([YIE11], [MJR11]) as an ef-

ficient way of solving many issues in WSNs. Most of these strategies focused on tuning parameters

in different layers of the stack. Unfortunately, existing proposals which target QoS related issues, are

either not compliant with ZigBee [SLA12] or do not address the particular case of ZigBee cluster-

tree networks such as in [NY11]. In our proposal, by joining TRADIF and DCS, coupled with the

proposed TECM online management capabilities, we achieve a cross-layer online QoS management

service for ZigBee cluster-tree networks. We further show how the successful transmission probabil-

ity of a higher priority best-effort traffic class can be dynamically improved through TECM/TRADIF

and how the overall end-to-end delay can be reduced through TECM/DCS, by tuning MAC sub-layer

parameters and the clusters duty-cycle respectively. Furthermore, this work results in a more efficient

usage of energy and memory because of less retransmission attempts and reduced queue size.

10.3 On the Supported QoS Mechanisms

In this Section we present an overview of the QoS mechanisms supported by our proposal. The

TRADIF mechanism aims at achieving traffic differentiation at the MAC sub-layer, while the Dynamic

Cluster Scheduling proposal works at the network layer, by improving the clusters’ scheduling.

10.3.1 TRADIF

TRADIF is a traffic differentiation mechanism, fully backward compatible with the IEEE 802.15.4

standard, which works by tuning a few MAC parameters. This mechanism is implemented in OP-

NET Open-ZB IEEE 802.15.4/ZigBee simulation model [OZ15]. It is also validated over the ERIKA

[Evi15] real-time operating system in [SBAK10], using real WSN platforms and presented in Chap-

ter 7 of this thesis.

TRADIF differentiates traffic classes previously defined at network setup time, by tuning different

MAC parameter values. Originally, these settings remain active regardless of the network perfor-

mance. While simulation could be carried out to assess the correct settings, there are several impli-

cations: (1) it is assumed that the user has enough expertise to carry out this task; (2) because the

174 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Figure 10.1: TECM timing diagram

settings remain active throughout the network lifetime, even if no traffic arrives from a higher priority

class, the lower priority will still experience an unnecessary service downgrade.

We address the above problems by adding intelligence to the triggering of TRADIF. Performance

indicators (successful transmission probability and the ratio of retransmissions) are used to trigger the

proposed mechanism only if a service decrease for a high priority node is noticed. This is independent

from the user, as it no longer chooses the parameter settings. Instead, TRADIF will change the respec-

tive MAC parameters in successive steps, until the performance indicator reaches an acceptable level.

For instance, since the highest impact on the successful transmission probability metric is caused by

changing CW, a decrease of service at a higher priority class will trigger TRADIF which will auto-

matically increase the CW value of the lower priority classes to the next value. This process will be

repeated until there is no noticeable degradation. To extend the capabilities of TRADIF at network

level, a simple communication protocol is used to enable an interface between the TRADIF modules

at different nodes. This enables a high priority node to ask for an increase of the CW of remaining

nodes in the cluster, thus improving its success probability. Figure 10.1 presents a timing diagram of

the communication protocol, when TECM triggers TRADIF to improve the success probability of a

high priority node.

Upon request, the TRADIF module must reduce the successful transmission probability of the

lower priority nodes which compete in the same cluster. It then sends a TRADIF Request to its parent

with three fields. The first field in Figure 3 indicates the kind of nodes it is targeting (high (HP) or

low priority (LP)), the second indicates the metric to be affected (successful transmission probability

10.3 On the Supported QoS Mechanisms 175

or throughput) and the third indicates the direction (increase or decrease). The request is received by

the parent’s TECM module and the contents of the request are forwarded as a TECM message to the

Beacon Payload Manager module (BPM). This TECM message is incorporated in the beacon payload,

which is received by all the cluster’s nodes. Upon reception, the BPM forwards the payload to TECM,

which will trigger TRADIF-SERVICE. TRADIF will then increment CW (of low priority nodes). If

the higher priority node’s performance does not improve, the process will be repeated.

10.3.2 Dynamic Cluster Scheduling

With TDCS [KCAT08] it is possible to find the best schedule for the routers active periods in order

to avoid interference, and to support most of the network bandwidth requirements. However, the

schedule is done at network setup time, which assumes a static network that will remain unchanged.

Thus, the choice of TDCS schedule has a strong impact in the end-to-end delays and on the available

bandwidth for each cluster throughout the network lifetime.

The DCS reacts to different data flow changes on-the-fly, while simultaneously minimizing the net-

work inaccessibility time using two techniques as proposed in [SPT14]: (1) DCS Cluster Re-ordering

(DCR), which re-orders the clusters’ active periods to favor one set of streams and reduces end-to-end

delays, and (2) DCS Bandwidth Re-allocation (DBR), which tunes the size of the clusters’ duration

and increases the bandwidth of the clusters serving a specific stream, while decreasing others band-

width if needed. The DCR consists of a rescheduling of the clusters order in the TDCS cycle, aiming

at minimizing end-to-end delays, while the second technique consists of rearranging the bandwidth

allocation for the clusters involved in a stream, to increase its bandwidth and decrease the overall time

for a data transmission, minimizing the queuing size and delay.

There is however a room for improvement in DCS. For instance, in DCS a node triggers the

mechanism if the size of the stream of data which is to be transmitted is larger than a threshold.

However, specifying this threshold is not easy and usually simulation must be done to choose this

value. In DBR, on the other hand, the mechanism distributes a fixed amount of bandwidth throughout

all the nodes in a stream in an equal fashion, without any added benefit, wasting precious bandwidth

that may be required by other nodes. Often, only the nodes at the lower depths need extra bandwidth

due to the higher concentration of traffic at nodes near the sink (assuming sink is at the root). In fact,

even when the others at higher depths need bandwidth, it is not always in an equal amount.

In this work, by joining DCS with TECM we can carry out a better and fairer redistribution of

the bandwidth in an on-the-fly fashion. TECM relies on a performance indicator at each node which

accounts for the input/output traffic ratio as well as the queue size. If the indicator drops below a

threshold, TECM will trigger the DCS-DBR mechanism to increase the available bandwidth exactly

where needed, improving the efficiency of the mechanism. To do this, only a change to the triggering

mechanism is required. This process is discussed in detail in the next section.

176 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

10.4 Traffic Efficiency Control Mechanism

In this Section we elaborate on the TECM mechanism. We present its system architecture, the perfor-

mance metrics used to support the online netowork performance monitoring, and its algorithms. We

also propose a mechanism to manage the access to the beacon payload, considering many of the QoS

mechanisms use this method to convey their messages in the network.

10.4.1 TECM Architecture

The TECM consists of an online cross-layer module aiming at improving the QoS in ZigBee cluster-

tree networks. It can improve the cluster scheduling, reduce end-to-end delays and queuing sizes

using DCS, and improve the successful transmission probability for a higher priority traffic class using

TRADIF. It relies on an online algorithm that periodically assesses the performance of the network

and triggers the necessary QoS mechanisms. Figure 10.2 shows the proposed system architecture.

The figure shows how the TECM module is wired into the IEEE 802.15.4/ZigBee stack and its most

relevant services and Service Access Points (SAPs). The top three layers of the communication stack

are implemented by the official TinyOS 2.x IEEE 802.15.4/ZigBee stack [Tind].

The Application Layer (APL) is stacked at the top and connects to an example of a Datacenter

Monitoring Application. The Application Support Sublayer (APS) provides the interface between

the APL and the Network Layer (NWK) of the ZigBee communication stack through the NLDE and

NLME ZigBee Service Access Points (SAPs). The DCS-SAP is also shown since it supports the

DCS mechanism as described in [SPT14]. The NWK also supports several network management ser-

vice modules such as DCS, TDCS, BPM and SSYNC. The TDCS module is only implemented at

the routers and the Coordinator. It is responsible for the scheduling negotiation and is triggered at

network setup, upon successful association by the application. The SSYNC module, supports the ap-

plication network wide synchronized data acquisition as described in [TKD+13], enabling all clusters

to synchronize to any moment in time. By doing this, we can ensure that despite the clusters’ different

offsets between them, all can wake up or, for instance, sample a sensor simultaneously. This is of

course supported by the underlying IEEE 802.15.4 beacon-enabled mode.

The DCS module is responsible for the dynamic rescheduling of each cluster. All the three kinds

of nodes (ZC, ZR and End Devices) implement the service. The necessary interfaces to the MAC

sub-layer are done through the regular IEEE 802.15.4 service access points. Within NWK in the fig-

ure, a dotted box shows a set of files of the communication stack implementation which were changed

to support the necessary TECM packet counters for the performance assessment. At the MAC sub-

layer, the TRADIF is implemented according to [SBAK10], however, an extra set of interfaces was

introduced to enable control of the CSMA/CA parameters by TECM. Also a few interfaces were con-

nected to different modules of the communication stack to retrieve information from the implemented

10.4 Traffic Efficiency Control Mechanism 177

Figure 10.2: TECM system architecture

packet counters. Again, these modules are shown in dotted boxes. These interfaces are part of the

MLTEC-SAP.

The cross-layer module, TECM, manages the DCS and the TRADIF modules and uses different

SAPs to interface each layer. In addition, it periodically pools through MLTEC-SAP and NLTEC-SAP

a set of counters at the NWK and MAC layer to carry out the performance analysis. After processing

a set of algorithms, it can trigger changes to the network scheduling and MAC parameters using the

DCS or TRADIF modules respectively. The TECM SAPs implement a set of interfaces: (1) GET,

which is called from TECM to receive the value of an attribute, (2) SET, which is used to set an

attribute, and (3) RESET, which is always called at the beginning or if an issue is detected, similarly

to the way the IEEE 802.15.4 and ZigBee SAPs are implemented.

The communication with the TECM module by the Application Layer is done using the TECM-

SAP set of interfaces. These include: A TECM-control interface to control the starting and stopping

178 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

of the TECM module at any time; the TECM-setmode, to choose the TECM mode of operation (auto

or fixed-rate), and TECM-setup, to program the different TECM parameters as follow:

TECM-setup (sampling window size, enabled modules, thresholds);

where the sampling window size sets the period of the TECM performance analysis, enabled modules

field informs the TECM module of which services are available (DCS and TRADIF by default), and

the threshold field is used to specify the performance thresholds for each module. If none are specified,

TECM will use a default setup.

TECM provides two modes of operation: auto-rate and fixed-rate. In the auto-rate mode, the

TECM module will try to maximize the application traffic rate, by increasing it to a pre-defined steps

established by the TECM-setmode interface, and by changing the network setup as necessary to ac-

commodate the increase. This can be useful when there is no specific constraint concerning the traffic

rate, but the objective is to optimize the use of the network resources, while keeping an acceptable per-

formance. In the fixed-rate mode, the user defines at any point a traffic rate that should be maintained.

The TECM module will trigger the DCS and TRADIF mechanisms as needed to guarantee an accept-

able network performance. If at any point the TECM module is no longer capable of maintaining an

acceptable network performance, due to reaching the maximum available bandwidth for that partic-

ular cluster, it will inform the application layer through the APLTEC-SAP, and the user can chose

its action. This mode is also able to detect a reduction in the traffic rate, and reduce the previously

assigned bandwidth if it is no longer required.

10.4.2 Beacon Payload Management Module

The Beacon Payload Management Module (BPM) module in Figure 10.3 consists of an interface layer

for beacon processing between the NWK, the several APS service modules and the APL. Its objective

is twofold: to manage the received beacon payload and deliver it to the corresponding module (DCS,

SSYNC, or TECM) or the APL, and to manage the concurrency from different modules which try

to access and modify the beacon payload before sending it to NWK layer. To avoid long processing

delays at beacon reception, only one module at a time is allowed to access the beacon payload.

Thus, each module delivers the content to the BPM module which places it within a FIFO queue.

When ready, it builds the new beacon payload structure and signals the NWK layer.

The resulting beacon payload is illustrated in Figure 10.3, where BPM message type field identifies

the payload contents, the Module ID field identifies the information being integrated in the beacon

payload, the Size field identifies the length of the payload, and finally, the Module Payload identifies

the beacon contents.

10.4 Traffic Efficiency Control Mechanism 179

Figure 10.3: BPM module description

10.4.3 Performance Indicators

TECM periodically carries out a performance analysis based on a set of indicators at each node, every

i-th interval. It relies on two performance indicators, which assesses the network QoS concerning

bandwidth requirements and successful transmission probability.

The first performance indicator denoted by di represents the relationship between incoming and

outgoing traffic, which gives a measurement of the bandwidth requirements of a node. This perfor-

mance indicator can be computed as a balance (adjusted by a) of two terms:

di = a
ccsma

cNWK
+(1−a)

ccsma

cqueue
(10.1)

where the first term represents the ratio between the number of packets transmitted by Slotted CSMA-

CA algorithm (ccsma) and the number of packets delivered by the NWK (cNWK) and eventually trans-

mitted during a time window. A decrease in this term indicates that not all packets delivered by the

NWK will be transmitted, resulting in an accumulation of packets in the queue. The second part of

the performance indicator concerns the total size of the queue (cqueue) by considering the amount of

packets that will be transmitted at each period. If this performance indicator decreases, it indicates

that the queue is growing. This will result in a cost to di until the outbound/inbound traffic ratio inverts

become higher than one, which indicates that the node is serving a higher amount of packets than the

ones delivered by the NWK, showing that the queue is being emptied.

If the di indicator reaches its maximum of 1, it means the node’s queue is emptied at each active

period, thus no more bandwidth is needed. To smoothen out the result, avoiding sharp transient oscil-

lations that could trigger the mechanism inadvertently, the last result for Di is always considered in an

exponential moving average, where α is used to balance the average, resulting in:

Di = αdi +(1−α)Di−1, i > 0 (10.2)

180 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

The second performance indicator, ti, concerns behavior of the MAC layer concerning successful

transmissions, and it is represented by a balance of two ratios adjusted by b. The first term calcu-

lates the regular success probability metric as it is usually computed: a ratio between the number of

successfully transmitted packets (csuccess) which received an acknowledge, and the number of packets

which entered the Slotted CSMA-CA algorithm (csuccess + c f ail). This is the most important indicator,

since a decrease on in it immediately shows that the packets are being dropped. However, to know this

is not enough since the IEEE 802.15.4 Slotted CSMA algorithm allows retransmissions. Hence, the

second indicator takes this into consideration and shows a ratio between the number of successfully

transmitted messages and the total of successfully transmitted packets plus retransmissions per packet.

A decrease in this indicator shows that packets are not being successfully transmitted during the first

attempt.

ti = b
csuccess

csuccess + c f ail
+(1−b)

csuccess

csuccess + cret
(10.3)

If there are no retransmissions, that ratio will tend towards one. If one retransmission occurs per

packet it will tend towards 0.5, as the number of tries doubles to transmit one packet. Both ratios are

averaged giving a higher weight to the first one. To smoothen out the result and avoid sharp transient

oscillations that could trigger the mechanism inadvertently, an exponential moving average is again

used, resulting in the indicator Ti:

Ti = β ti +(1−β)Ti−1, i > 0 (10.4)

In order to compute the performance indicators, only four counters must be implemented. Ac-

cess to them by TECM must be granted using the MLTEC-SAP and NLTEC-SAP as described in

Section10.4.1. These will account for the NWK delivered packets (cNWK), successfully transmitted

packets (csuccess), the number of packets which avail the Slotted CSMA-CA service (ccsma) and number

of retransmissions (cret).

10.4.4 The TECM Online Algorithms

The TECM algorithm is presented in what follows. A sampling window is chosen at setup time,

adjusted to at least two times the Beacon Interval. This ensures that each sample will always measure

at least one transition from the ZR to the parent. However, this sampling window can be increased to

save energy.

The algorithm is focused in analyzing bandwidth requirements and packet delivery success prob-

ability. We can partition the algorithm into the following two phases:

(1) The first phase computes if any changes to the scheduling are needed namely if more bandwidth

is needed for each node by looking into the Di indicator. If so, TECM will trigger the DCS mechanism

10.4 Traffic Efficiency Control Mechanism 181

Algorithm 2 TECM Algorithm

Input:ri,di, ti
Output:Ri,Di,Ti,CW,DBRatios

for every i do

compute Ri //traffic rate ri←CNWK

compute Di

if Di < T hresholdDBR then

call DCS-Set(Inc. Bandwidth)

DBRratios[BW]← Ri

BW ← BW +1

if (Auto-Rate Mode) then

call APLTEC-Set (Dec. Data Rate)

end if

else

//we are fine with current available bandwidth

if BW > 0 then //if bandwidth has been increased before we check for possible reduction

due to a lower traffic rate

∆Ri←
Ri

DBRratios[BW]

if ∆Ri < T hreshold∆R then

call DCS-Set(Dec. Bandwidth)

BW ← BW −1

end if

end if

if (Auto-Rate Mode) then

call APLTEC-Set (Inc. Data Rate)

end if

end if

if Node is HP then

compute Ti

if Ti < T hresholdT RADIF then

call TRADIF-set (Inc. PS)

CW ←CW +1

end if

else

if CW > 0 then //node is no longer HP but CW was changed

call TRADIF-Set (RESET)

end if

end if

end for

182 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

to get more bandwidth. A mechanism is also in place to decrease the service when the increased

amount of bandwidth is not needed anymore. However, instead of trying to compute which is the

optimum amount of bandwidth, we choose a simpler approach.

The NWK incoming traffic rate is measured at each sampling window at the beginning of the al-

gorithm. At each DCS-SERVICE increase it will save the incoming traffic rate and will subsequently

compare at each interval the current traffic rate with the saved value. If the current rate decreases be-

yond the saved value, it concludes it can safely reduce the bandwidth to the previous amount. In this

case the DCS-SERVICE interface is used to ask for a decrease in the service. This has substantially

modifies the original DCS mechanism which, after a schedule change, remains with that schedule

for a per-programmed amount of time, and does not check if the bandwidth is still needed or not.

This leads to two issues. First, it may result in unused bandwidth and starvation, second, when the

timer expires, it might result in reducing the bandwidth while it is still needed, leading to unnecessary

re-schedules of the network, and increased inaccessibility time. Thus, there is a great advantage in

providing on-line management of this mechanism, joining DCS with TECM.

(2) The second phase of the algorithm computes if any changes are needed to improve the success

probability. The algorithm starts by checking if the node is selected as high priority (HPN). Only

HPNs can use the TRADIF service and request for improved success probability. They are selected

using the TECM setup interface to the APL layer. If so, the performance metric Ti will be computed.

If the overall weighed result goes beyond the previously set threshold set at setup time, the TRADIF

mechanism is triggered using the TRADIF-SERVICE interface.

10.5 Validation in a Real-World Scenario

To validate TECM, we relied on a real-world application scenario based on a data-center monitoring

application. This application was previously addressed and implemented in [PTL+15]. However, a

few problems were identified in its design. The static network topology had trouble providing low

latencies while still coping with the large amount of data generated at individual racks, and bottle-

necks appeared at certain routers. There was also an impossibility to manage the priority of the data

originating at different racks, for improved success probability. Using TECM we expect to solve

these issues by improving on the flexibility of the network in terms of QoS, while maintaining a tight

synchronization in terms of data acquisition..

10.5.1 Application description

A large portion of the power consumption in data centers is due to the control of physical parameters

of the data center (such as temperature and humidity). This application features a data collection and

10.5 Validation in a Real-World Scenario 183

(a) (b)

Figure 10.4: Application Scenario

distribution architecture that enables gathering physical parameters of a large data center at a very

high temporal and spatial resolution of the sensor measurements. This is an important characteristic

to enable more accurate heat-flow models of the data center and to optimize energy consumptions.

Instrumenting data centers with very fine spatial and temporal granularity presents a twofold advan-

tage. First, by providing the possibility of billing the consumed energy to their clients, and second by

improving energy efficiency and having a better control of the micro-climate conditions in the rooms.

Figure 10.4(a) and 10.4(b) presents a view of the data-center testbed along with the WSN deploy-

ment. All the nodes are TelosB motes powered using USB hubs. For the moment we consider 8 racks

and place a ZigBee router on top of each one, so that we have one cluster per rack. Each cluster

consists of 6 sensing nodes (ZigBee End-Devices), capable of sensing temperature and humidity in

one rack at the front and back. Other sensors will be added later on.

The application supports different modes of operation providing different data acquisition settings.

It supports synchronous and asynchronous sampling using the SSYNC module and enables to zoom

in into specific parts of the datacenter, or receive finer data resolution on demand, focusing on a set

of racks or one particular rack. This is done by choosing the application mode (AM), which can be

changed during run time. The supported operational modes are listed below:

AM1: Normal: asynchronous data acquisition of all racks with a relaxed report every 8 seconds.

AM2: All Sync: synchronized data acquisition of all racks. The acquisition rate should be as

high as the maximum allowed by the network.

AM3: User Select Sync: user selects racks for a synchronized data acquisition every 2 seconds,

while others maintain non-synchronized 8 seconds report.

AM4: All Zoom In: non-synchronized data acquisition of all racks every 2 seconds.

184 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

AM5: Rack Zoom In: user selects one rack for a non synchronized data acquisition with report

every 0.8 seconds while the other racks report every 2 seconds.

Clearly, each application mode imposes different QoS requirements upon the network as data

from specific racks may be of more interest than others in a particular moment, and traffic flows in

the network may become quite demanding and unbalanced. This is especially visible in AM5, where

data from one rack should have priority over the others, in AM4 where a higher report rate imposes

bandwidth constraints to the network, and in AM2 where the objective is clearly to maximize the

report rate. Thus, it is clear that this application presents interesting dynamics that could be improved

by the use of the proposed TECM mechanism.

Concerning the MAC layer demands, the different application modes should provide differenti-

ated traffic service to the application for each case. Namely, the successful transmission probability

from the Zoomed In nodes should be higher. This can be achieved by using the TRADIF with TECM

on-line mechanisms to trigger the TRADIF module when needed. At the NWK layer, the issue is

mostly related to the bandwidth limitation. First, a relatively short delay is expected for the appli-

cation, and second, long Beacon Intervals cannot be tolerated since it would increase the end-to-end

latency. Therefore, a lower BO was chosen in order to minimize the latency (BO = 6). However,

this has implications in the available bandwidth per cluster, since it cannot overlap and thus must be

limited. Second, some application scenarios generate high traffic rates, which lead to a demand for

more bandwidth at certain clusters. Failing to provide an increased bandwidth leads to higher queuing

delays and memory demands and eventually packet drops and unpredictable behavior as the avail-

able memory limit is reached. Thus, a careful bandwidth allocation must be carried out at network

setup, ensuring that the timing constraints of the application are taken into consideration, and then the

bandwidth is increased as necessary at particular clusters with the DCS/DBR mechanism.

However, the DBR mechanism when triggered would increase bandwidth among all the clusters

of a particular data stream by default for a fixed amount of time. Increasing the bandwidth in all

the routers in a stream might not be always necessary, and since no network performance data is

evaluated, this results in bandwidth depletion. Moreover, some applications may need a larger amount

of bandwidth than what was given by the DBR rescheduling, which means that if it was miscalculated,

the result will be suboptimal. This is especially important in AM2, where the objective is to maximize

the data acquisition and report rate.

TECM can avoid these issues by using its on-line mechanisms to manage the DCS and in this

particular the DBR mechanism. On the one hand it ensures the re-scheduling is carried out only for

the nodes which sense a lack of bandwidth, and on the other hand the new schedule remains in place

until the mechanism senses that a reduction of the bandwidth is in order.

10.5 Validation in a Real-World Scenario 185

Figure 10.5: OPNET Simulation Scenario

10.5.2 Performance Results

The TECM mechanism was evaluated through simulation using OPNET Modeler Wireless Suite v15,

and the Open-ZB ZigBee simulation model. The mechanism and respective interfaces were also

implemented over the official TinyOS Zigbee stack in using the TelosB [MEM] WSN platforms, which

will be deployed in a large datacenter infrastructure in Portugal.

Several scenarios were setup to encompass the different application modes previously described.

The network setup for each scenario is composed of 9 clusters. The cluster controlled by the Coor-

dinator Node does not hold any sensing nodes. All the remaining clusters hold 6 end-devices each,

resulting in a total of 48 sensing nodes, 8 Routers and one Coordinator for each simulation scenario.

The network’s BO was set to 6 to minimize latency and each Router’s SO was set to 2. Routers were

scheduled using TDCS in a downstream fashion to reduce downstream communication latency, min-

imizing the synchronization drift at each beacon period. For each scenario, 100 runs with duration of

10 minutes were carried out. Figure 10.5 presents one of the simulation scenarios in OPNET.

The application usually begins in AM1, with a very relaxed report from the sensing nodes every 8

seconds. This is the minimum report rate for the sensors to have an up-to-date bird’s eye view of the

datacenter. However, as the report rate increases for the other modes, it is important to guarantee that

data arrives with minimum delay otherwise, the user will always be looking into past data. This factor

obviously depends on the amount of bandwidth available. If it is not enough, packets will be buffered

waiting for service, increasing the end-to-end delay.

186 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Figure 10.6: Simulation average and maximum end-to-end delays for 2 Scenarios (AM1 and AM4)

when compared with an increase in the Coordinator SO.

Figure 10.6 shows the end-to-end delays for packets generated by the sensing nodes in two differ-

ent application modes: Normal (AM1) and All Zoom In (AM4). The difference between AM1 and

AM4 is quite significant as seen in the above figure, with an average end-to-end delay of 25 seconds

in AM4 while for AM1 it is approximately 1.6 seconds. This results from an increase of the message

rate in AM4 which forces all nodes to report every two seconds. Since the available bandwidth cannot

cope with this increase in traffic, packets wait in the queue for service, thus increasing the delay. The

problem is solved if the bandwidth for the Coordinator node is increased by doubling it, changing its

SO from 2 to 3. As shown in Figure 10.6 the increase reduces the end-to-end delay to 1.4 seconds.

To better understand where the problem is located in the network, we look into the queue sizes

and delay at R02 and Node 7 which belong to the same cluster C2. Figure 10.7 presents the results

for a stream of data originating in a sensing node of cluster 2 with AM4. The other clusters present

similar results. The lighter gray depicts the results for the queue of the sensing node, while the darker

gray represents the results for the router queue. Average queuing delay and size is presented for the

three scenarios shown before. As shown, the largest queuing delay is by far in the Router’s queue.

The queue size also grows considerably, reaching the memory limit.

Thus, we have identified the bottleneck. The available Coordinator bandwidth is not enough to

cope with the increase traffic from C2, leading to an accumulation of packets in the queue of the

respective router R2. Increasing the SO of the Coordinator node to SO=3 reduces both queuing delay

and size, approaching the results for AM1 scenario. The SO increase can be accomplished using the

BDR option of the DCS mechanism. However, this mechanism will redistribute the bandwidth among

all participants of the stream by default.

Indeed, this is the safest way to guarantee there will be no shortage of bandwidth, but it is rarely

10.5 Validation in a Real-World Scenario 187

Figure 10.7: Simulation results at node 7 and router 2 for the previous scenarios.

needed. With TECM it is possible to selectively increase the bandwidth where needed, in this case

at the Coordinator. This can be achieved by carefully triggering the DBR mechanism only where

the TECM algorithm performance indicators are decreasing. This saves bandwidth and makes its use

more efficient. Figure 10.8 shows the resulting schedule, where Cx stands for cluster x active period.

Figure 10.8: Resulting schedule after TECM triggers de DCS/DBR mechanism.

TECM relies on two performance indicators to trigger the most adequate mechanism as presented

in Section 10.4.4. Di is mostly affected by the lack of available bandwidth and Ti by the Probability

of Success. Figure 10.9 presents the variation of Di at Router 2 with a sampling interval of 4 seconds,

approximately 4 times the BI size. The application mode selected for this scenario is AM5 and the high

priority rack selected is Rack 2 (C2). As observed, using mode AM5 rapidly results in a reduction of Di

in Router 2 due to the lack of available bandwidth to accommodate the traffic generated by the sensing

nodes. This is visible by the increasing rate at which the queue goes up to full capacity. Increasing

the bandwidth at the Coordinator solves the above problem. By keeping the indicator above 95% and

the queue size near zero, the Di indicator shows that all packets are successfully transmitted in each

transaction as shown in Figure 10.9. This is visible in the small queue size.

188 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Figure 10.9: Variation of ti, Di and queue size in AM5 when using TECM with DCS.

In another scenario, the contention window of the other lower priority nodes (considering C2 is

high priority) was increased using TRADIF-SERVICE, improving the probability of success for C2.

The objective is to understand the impact caused from an improved probability of success in the Di

indicator. As seen in figure 10.10, this change does not impact the indicator much, confirming that

it is highly independent from the probability of success. On the other hand, changing the contention

window impacts the Ti indicator as it is affected by the probability of success. Figure 10.10 shows

the average probability of success and average Ti as contention window of lower priority nodes is

increased from CW = 2 up to CW = 4.

Note that for the case of CW=3 and CW=4 the probability of success is higher and quite similar

between each other, however Ti shows a higher improvement for CW=4. This is because Ti besides

the probability of success also translates the number of retransmissions, and as expected, increasing

CW on the lower priority nodes results in a reduced number of retransmissions for the high priority

node and the opposite for the remaining (R1 shown as example of a low priority node in Figure 10.10).

In this case the improvement in the success probability reaches 10% for the case of CW=4. R1,

a lower priority node, on the other hand, gets decreased service so that R2 can increase its indicator.

For the case of R1 with CW=4 its successful transmission probability is reduced by 8%.

10.5.2.1 TECM Fixed-Rate Mode

Figure10.11 shows the variation of the Ti and Di indicators as TECM is applied to the network setup,

both for R2 (high priority cluster) and R1 (regular cluster). The application begins in AM5 mode,

which is quite challenging for the network, due to its bandwidth requirements (sampling rate increases

10.5 Validation in a Real-World Scenario 189

Figure 10.10: Average probability of successful transmissions and average Ti for different contention

windows at two routers.

to 0.8 seconds at the high priority cluster while all the others must guarantee 2 seconds sampling rate),

and the high priority cluster demands better service at the MAC layer during contention.

In the beginning we immediately observe a rapid decrease of the Di indicator followed by a de-

crease of Ti. This is related to the lack of available bandwidth in the Coordinator node. Ti also de-

creases because the lack of bandwidth creates more collisions as nodes are competing for the medium,

resulting in a decrease of the probability of success and increased queue size. Several reasons can

justify this scenario. Bad network planning or the need for a reduced beacon interval, to keep a low

latency in the communication, may result in an under dimensioned bandwidth distribution.

As Di decreases beyond the selected threshold of 90%, the TECM triggers the DCS/DBR issuing

a DCS Request. Both R2 and R1 trigger the mechanism as both feel the effects of reduced bandwidth,

although the Di indicator is worse for R2 due to a larger amount of packets accumulating in its queue.

The same applies to the remaining Routers. After the positive DCS Response and the respective

rescheduling occur, the Di indicator immediately climbs.

In this particular application the buffers are emptied after this procedure. This is to remove the

burden of the accumulated packets in memory. If this is not done, the cluster will require much of the

bandwidth to transmit all the delayed packets. Instead, since delayed packets are not important in this

application we give the system a clean start. However, this is optional. As observed in Figure10.11,

the Di indicator increases immediately and stabilizes above the 90% threshold. On the other hand, the

Ti indicator of R2 remains below the threshold. Since C2 is a high priority cluster, TECM triggers

the TRADIF-SERVICE interface to correct this and TRADIF increases the contention window of all

lower priority clusters, improving the probability of success for C2. Immediately we see a rise at Ti,

as the probability of success increases for C2, and simultaneously a slight decrease of Ti at C1. This

190 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Figure 10.11: Variation of the Ti and Di indicators as TECM is applied to the network setup.

happens on all other clusters but is not shown in this figure for readability.

As observed Ti stabilizes around 85% for C1. Similar values were found at the other clusters.

After 130 seconds of simulation, the application mode is changed to AM1. The incoming traffic rate

at C0 decreases and as it drops below the specified threshold, the DCS mechanism will trigger a DCS

Request to decrease the service, as the bandwidth is not needed anymore. The schedule returns to the

previous version. In Figure10.11, this is not noticeable in the Di indicator, as it remains always high.

This is because there is no lack of bandwidth. Concerning Ti at R2, a change is visible as C2 loses its

high priority status. R2 issues a RESET using the TRADIF-SERVICE interface and all the clusters

10.5 Validation in a Real-World Scenario 191

reset the TRADIF mechanism, leading to an immediate decrease of Ti in R2 and stabilization around

90%. A slight increase is observed for C1 and all the remaining clusters as the contention window is

reset to its default value (CW = 2), and now share the same priority in contention.

10.5.2.2 TECM Auto-Rate Mode

TECM can also be used in Auto-Rate mode. This mode aims at maximizing the traffic rate of the

selected nodes, using DCS or TRADIF when necessary. This is usually chosen when one does not

care about enforcing a delivery rate but wishes to maximize the use of the available network resources

within predefined performance limits. TECM will periodically tell the application to increase the

traffic rate (the user must implement that in the APL) through the APLTEC-SAP, as long as the Di

performance indicator does not fall beyond a threshold. In that case, TECM will ask the APL to

decrease the traffic rate and trigger a DCS Request in a similar fashion to the Fixed-Rate mode to

increase available bandwidth. Upon re-scheduling, TECM continues the process until no further in-

crease is possible, usually due to a negative DCS Response, at which point the last traffic rate is kept.

Figure 10.12, shows the variation of Di in R2 and N7 (sensing node belonging to C2) for AM2,

as the rate is increased using TECM Auto-Rate mode from 2 packets/second per sensing node up to

15. As the traffic rate climbs beyond 2.4 packets/second, the Di indicator at R2 starts decreasing as its

queue begins to grow. Note that Di in N7 remains the same. As Di goes beyond the threshold, DCS is

triggered and similarly to the previous mode the indicator is reset and packets are purged. A decrease

in the rate to the previous value is carried out as soon as the issue is detected, and Di goes up while

DCS re-scheduling is being carried out, increasing the coordinator node bandwidth by changing its SO

to 3. Importantly, Di at the sensing node is not affected as no more bandwidth is needed. The traffic

rate resumes its increasing rate after the DCS re-schedule and Di remains stable at the two nodes until

a traffic rate of approximately 7 packets/second is reached. At this point, Di at R2 decreases again

beyond the threshold which triggers DCS. Traffic generation is decreased to the previous rate and DCS

increases the Coordinator SO to 4. When a rate of 15 packets/sec is reached, the process is repeated.

However, this time, the Di of node N7 also indicates that more bandwidth is needed to transmit all

the traffic to R2. DCS computes the new scheduling, increasing the coordinator’s SO to 5 and all the

routers SO to 3 (the next SO). At this point, all the BI space is used. The TECM Auto-Rate process

resumes increasing the traffic rate again but Di at node 7 is showing that the available bandwidth is

still not enough to support the specified traffic rate. DCS is triggered, however, as no more space is

available, a negative DCS response is sent. In response, the nodes at depth 2 must maintain a lower

traffic rate. The TECM Auto-Rate process reaches a steady state and remains with those settings until

the user resets TECM.

An interesting observation results from the fact that without TECM, solely relying on the DCS

algorithm would result in a much lower traffic rate due to a non-optimized bandwidth redistribution.

192 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Figure 10.12: Variation of Di in R2 and N7 (sensing node belonging to C2) for AM2, as the rate is

increased using TECM Auto-Rate mode.

Figure 10.12 depicts the maximum traffic rate that could be achieved if only DCS was used, and

Figure 10.13 shows the resulting schedules.

As presented, solely using the original DCS algorithm would result in the last schedule, as band-

width would be distributed among all the nodes in the streams, increasing each nodes’ SO to 3, quickly

depleting the available space in the BI, even if at that rate, an increase in the coordinator’s bandwidth

would suffice. By using TECM to trigger DCS we added intelligence to the process, only increasing

the bandwidth where needed, allowing for much higher traffic rates as seen in Figure 10.12.

10.6 Conclusions and Future Work

This work presents TECM, a cross-layer QoS management mechanism, providing an automatic and

on-line control of two QoS mechanisms for ZigBee Cluster-tree network based applications. At the

MAC, we improve on the successful transmission probability to achieve traffic differentiation using

TRADIF. At the network level, through DCS we carry out an on-line efficient allocation of the avail-

able bandwidth, reducing the queuing delays and memory requirements per node, which results in the

elimination of bottlenecks in the network infrastructure, and a clear improvement to the end-to-end

10.6 Conclusions and Future Work 193

Figure 10.13: Resulting network schedules as TECM carries out network changes.

latency. Interestingly, we achieve better results than if the mechanism were used separately. This

is a result of the intelligence added by the TECM algorithm, which will increase the bandwidth only

where needed, instead of redistributing it throughout all the clusters. In our evaluation, we were able to

achieve reductions in end-to-end delay in the order of 94% and improvements in the successful trans-

mission probability up to 10% in a real datacenter monitoring application scenario. Latency for any

specific stream can be further reduced if DCS/DCR is used in conjunction with the DBR technique.

We also proposed an extension to the TRADIF mechanism enabling network level communica-

tion, and BPM, a beacon payload management module. We validate and demonstrate our proposal

through simulation in a datacenter monitoring application scenario, which is to be deployed in a new

large-scale datacenter infrastructure, using the WSN as a sensing infrastructure to collect power and

environmental data, with high resolution and timing constraints. The proposal was also implemented

over the TinyOS operating system, and is awaiting deployment at the datacenter facilities, to enable a

fair comparison between simulation and experimental results.

So far only two QoS properties were tackled in our proposal, (the ones that mostly hindered

the prospective application) but we expect to include others in the near future, as the underlying

TECM mechanism design can easily support this. In this line of work, we plan to enable hidden-node

avoidance with this framework in the near future.

194 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks

Part IV

Conclusions and Future Work

195

Chapter 11

General Conclusions and Future Work

11.1 Summary of the Results

Modern embedded systems have been enabling a number of smaller, smarter and ubiquitous devices,

creating an eagerness for monitoring and controlling everything, everywhere. This quest for control,

partially fuelled by an increasing desire for energy efficiency and sustainability, is pushing forward the

design of new Wireless Sensor Network (WSN) infrastructures that will support the next generation

of embedded systems - Cyber Physical Systems, which tightly interact with the physical environment

in a ubiquitous and pervasive fashion.

Such cyber-physical systems require a rethinking of the usual computing and networking concepts,

and given that these computing entities closely interact with their environment, they pose new chal-

lenges to WSNs regarding several Quality of Service (QoS) properties, such as in timeliness, scalabil-

ity, energy-efficiency and robustness, among others. However, the current state-of-the-art and state-of-

technology reveals a strong immatureness and a clear lack of solutions (protocols, software/hardware

architectures, technology) in respect to these QoS properties. Therefore, WSNs must be re-designed

to encompass these, if such systems are to become a reality.

In this dissertation, we opted by a hands-on approach to this problem. We clearly understood

that, in order to push forward the technology, it would be important to rely as much as possible in

real-world application scenarios. First, to clearly identify the most prominent challenges, and second,

to validate and demonstrate the mechanisms, algorithms, and add-ons that were going to be proposed

in a realistic and effective way.

Therefore, this thesis relied on the use of standard protocols, particularly the IEEE 802.15.4 and

ZigBee, combined with commercial-off-the-shelf (COTS) technologies as a baseline to enable the

necessary WSN infrastructures. This COTS-based approach besides reducing costs, eased the devel-

opment and enabled a wider diffusion of the proposed mechanisms and implementations.

197

198 General Conclusions and Future Work

Following this strategy, in the second part of this dissertation, we engineered two real-world in-

novative application scenarios: a structural health monitoring system ([SGA+10a], [ARL+11]) and a

datacenter monitoring system ([PTL+15], [TKD+13]).

These application scenarios embody the paradigm of CPS, and enabled us to identify the most

prominent QoS challenges. We also showed how the state-of-the-art lagged behind in effectively

addressing these issues. These QoS aspects were addressed in the third part of this dissertation by

proposing several mechanisms and add-ons to the above mentioned set of protocols, and importantly,

always maintaining backward compatibility with the standards. Also, the proposals were validated

and demonstrated in the two applications scenarios, showing that these network infrastructures have

the potential to be used in real-world cyber-physical applications in the near future, if provided with

the necessary QoS management mechanisms.

These proposals targeted some of the most crucial QoS issues that currently impair these net-

work infrastructures and hinder their adoption namely, timeliness, scalability, robustness and energy-

efficiency.

Timeliness

This thesis addressed the timeliness aspect in several ways, focusing at two layers of the communica-

tions stack: the MAC sub-layer and the NWK layer.

At the NWL layer, the ZigBee cluster-tree topologies are known for a lack of flexibility in adapt-

ing to changes in the traffic or bandwidth requirements at run-time, making these infrastructures not

capable of allocating more bandwidth to a set of nodes sensing a particular phenomena, or reducing

the latency of a data stream. This causes unnecessary delays and longer data transmission times. In

this thesis we proposed a way of dynamically re-scheduling the clusters’ active periods to avoid this.

The DCS mechanism ([SPT13a], [SPT14]) was validated under both application scenarios.

Concerning the MAC sub-layer of the IEEE 802.15.4 protocol, we carried out an experimental

evaluation of a traffic differentiation mechanism, TRADIF [SBAK10], providing the support of differ-

ent traffic classes to the legacy protocol. This mechanism was also extended to support intra-cluster

communications. In addition to timeliness, this mechanism provides and improvement in terms of

energy-efficiency by improving the probability of successful transmissions.

Still at the MAC sub-layer, and to support the real-time traffic demands from both application

scenarios, the IEEE 802.15.4 Guaranteed Time Slot mechanism, missing from most stack implemen-

tations, was also implemented over the TinyOS operating system, providing real-time traffic support

to TinyOS-based applications. The code was submitted to the TinyOS 15.4 working group and it is

now part of the official TinyOS 2 release.

Scalability

Scalability was also addressed in this thesis with the proposal of a mechanism to support inter-cluster

synchronization. SSYNC [TKD+13] enabled nodes within multiple clusters in a ZigBee cluster-tree

11.2 Validation of thesis Statement 199

topology to synchronize to one specific point in time. This is specially important in applications where

nodes in different clusters must carry out some sort of signal acquisition in a synchronized fashion.

This was mandatory, for instance, to scale the structural health monitoring system to multiple clusters,

covering a larger area and extending the system to target larger structures such as tunnels or bridges.

Robustness

In communication networks, robustness is usually related to how well a network setup can adapt to

different circumstances, such as different traffic flows or timeliness requirements, on its own. In many

application scenarios a WSN must be left operating by several days, months or even years without

human interaction. In such scenarios, where the network is quite dynamic, finding the best network

setup (e.g. scheduling, bandwidth allocation), for instance, can become a daunting task if not even an

impossible one, specially for non-expert users.

To address this, in this thesis we proposed an online and cross-layer Traffic Efficiency Control

Module (TECM) [SUT15]. The proposed mechanism works by improving the probability of suc-

cessful transmissions and by minimizing memory requirements and queuing delays, through a careful

tuning of the IEEE 802.15.4 Slotted CSMA-CA parameters (using TRADIF) and an efficient band-

width allocation at the network clusters via DCS. Interestingly, this mechanism was instantiated in the

Datacenter Monitoring application scenario to enable more dynamic application modes.

Energy Efficiency

In this dissertation, this QoS topic is addressed indirectly by the previous proposals. The use of a traffic

differentiation mechanism such as TRADIF enables a higher probability of successful transmissions,

which in turn reduces the amount of energy spent by the high priority nodes at the MAC level, as

discussed in [KANS06].

Similarly, the use of a dynamic cluster scheduling mechanism such as DCS, reduces the amount

of time a data stream takes to be transmitted. The sooner it is transmitted, sooner the node can go into

sleep mode and save energy. Merging both mechanisms under an online and cross-layer module that

can trigger each when needed, clearly improves this aspect of QoS.

11.2 Validation of thesis Statement

In summary, we confirmed the initial hypothesis of this thesis, i.e., the use of IEEE 802.15.4 and

ZigBee set of standard protocols as a baseline, combined with a set of QoS mechanisms can effectively

support the requirements that future cyber-physical systems may impose.

In this dissertation, we proposed a set of mechanisms which effectively solve some of the most

prominent QoS issues on these WSN infrastructures. Importantly, we validated and demonstrated

these proposals over two real-world application scenarios, each presenting an important contribution

to the state-of-the-art in each application area.

200 General Conclusions and Future Work

11.3 Future Directions

In this dissertation, we verified the potential ZigBee tree-based WSN infrastructures had to support

future network embedded systems. However, several QoS challenges had to be addressed first, by

means of new add-ons, in order to fulfil this potential. In this thesis we focused on the most prominent

QoS issues identified in the chosen application scenarios. Nevertheless, there are still may other

aspects that need to be addressed if these systems are to become a reality. Mobility, for instance will

be a key issue in these systems as at least some nodes/agents are likely to be physically or logically

moving relatively to each other. Also, reliability, in particular by ensuring fault-tolerance, is another

fundamental aspect which must be addressed, specially when clustered-based topologies are used, as

a failure in a cluster-head can disable several sibling nodes.

In what follows we elaborate on a few envisaged future research directions trying to locate this

dissertation in the evolving panorama of the Internet of Things.

11.3.1 Towards a QoS Balancing Framework

In our perspective, QoS should be looked at and addressed in a wide and holistic perspective, instan-

tiated in a diverse range of functional and non-functional properties, namely heterogeneity, energy-

sustainability, timeliness, scalability, reliability, mobility, security, cost-effectiveness and invisibil-

ity. This differs from the traditional perspective which mostly associates QoS with bit-rate, network

throughput, message end-to-end delay and bit error rate. Besides, these properties alone do not reflect

the overall quality of the service provided to the user/application.

While, as we have already discussed, in most of these non-functional properties there is still a clear

lack of maturity, an even bigger challenge is to devise network methodologies and tools that are able to

support system designers on balancing these properties in a way that all application requirements are

simultaneously met. This is particularly difficult since most of them are contradictory (i.e. improving

one of them may harm the others). Ideally, the state-of-the-art should reach a point where, similar to a

sound studio mixing table, the network engineer could be provided with a front-end, to balance each

QoS aspect, while hiding the complexity of the QoS mechanisms behind it as much as possible. This

would enable a much easier network setup and deployment, even for the non-expert.

The TECM framework presented in chapter 10 of this dissertation aims at providing an initial but

significant step towards this objective, by proposing an integrated control of two QoS mechanisms

which operate at separate layers of the communications stack, and without expecting significant inter-

action with the network designer, except in setting a few initial parameters. Nevertheless, a more user

friendly front-end to the network designer would be required to ease the configuration process.

The next step would be to extend this framework to encompass other mechanisms such as H-

NAMe, a hidden-node avoidance mechanism, or the i-GAME mechanism which allows the sharing of

a GTS slot by multiple devices. These are just a few examples of already designed mechanisms which

11.3 Future Directions 201

could be adapted to run behind the envisaged front-end control. Similarly, these mechanisms could

be triggered by a decrease of a performance metric, even without the knowledge of the application

or the user, as long as a few "knobs and switches" had been previously set. These switches would

mostly consist of triggering points and other specific settings to each mechanism, always hiding as far

as possible the complexity of each module.

This QoS balancing front-end, would significantly reduce the complexity of setting up these net-

work infrastructures and specially in maintaining them increasing their robustness and accelerating

their adoption.

11.3.2 On the Engineered Application Scenarios

The application scenarios engineered and presented in this dissertation pushed forward on the current

state-of-the-art on each of their respective application areas. Notably, as presented in each respective

chapter (chapters 5 and 6), there was a lack of both commercial and academic solutions to tackle

the proposed application requirements. In this line, it is only logical that we use this momentum to

further develop these prototypes into products, considering that there is a clear and increasing need

for such systems. Civil engineers strive for the possibility to wirelessly monitor, in an accurate way,

the structural health of constructions. Companies try to optimize the energy consumption of their

increasingly power hungry datacenters at all cost.

Clearly, there are a few tune ups to be carried out in these prototypes before they can become a

commercial product. Nevertheless, in this section we would like to focus on the heading we foresee

for their future development.

Concerning the structural health monitoring system, we envisage the design of (distributed) data

processing and classification algorithms (for modal analysis and damage identification). This would

enable an automated and online evaluation of the structural health, which is specially important in

remote areas. Another potentially interesting aspect to include in the future would be actuation. This

could enable systems such as bridge weight-in-motion which so far is only carried out by very spe-

cialized and expensive wired systems.

Concerning the datacenter monitoring prototype, we envisage to support the possibility of creat-

ing models of the room micro-climate conditions to dynamically propose in an automated way, new

dispositions of the servers, and to enable a local actuation of the cooling equipment, avoiding the

over-cooling of the entire room.

11.3.3 Towards a Smarter World

The latest industrial revolution triggered by micro-electronics enabled a multitude of new devices such

as cell phones, GPS receivers, tablets, RFIDs, etc. Computing devices have become cheaper, more

mobile, more distributed, and more pervasive in everyday life, triggering an increasing number of

202 General Conclusions and Future Work

smart objects popping up everywhere around us, which besides the expected computing abilities are

also being fitted with extended sensing and communication capabilities. It is this proliferation of smart

objects that is rapidly leading towards a new communications paradigm, the Internet of Things, where

every object talk to each other, enabling smarter spaces, such as smart-homes, smart-buildings and

eventually smart-cities, improving on energy efficiency and quality of life, and permanently changing

the way individuals perceive the world and interact with it.

This new paradigm calls for a new generation of embedded systems, which is leading towards a

rethinking of the usual computing and networking concepts, to enable a tighter interaction between

embedded computing devices and the physical environment, via sensing and actuating actions - Cy-

ber Physical Systems (CPS). WSN technology quickly stepped up to the challenge by providing a

communication infrastructure to these systems. Interestingly, many communication protocols are still

fighting to become the de facto standard. No one knows which will rise victorious from the arena, or

even if there will be a winner at all. Perhaps, there is no one-size-fits-all applications standard. At the

moment, ZigBee seems to have the right momentum and to offer the necessary flexibility.

Nevertheless, independently of the communication standard, it is mandatory that these WSN en-

abled systems are conceived in a way that the quality of the service (QoS) recognized by their users

(e.g. directly humans or other information systems) is above an acceptable threshold. Unfortunately,

as discussed before, the traditional take on QoS alone does not reflect the overall quality of the service

provided to the user/application. In effect, according to each application/task requirement, which can

be rather diverse, computations and communications must be correct, secure, produced before a given

deadline and with the smallest energy consumption. Moreover, a number of other QoS aspects such

as heterogeneity, maintainability, scalability, robustness, must be taken into consideration to enable

these systems.

The slow pace at which real-world applications are being delivered, contrary to most market stud-

ies forecasts, is proof of the struggle product developers/engineers are facing due to the current state-

of-the-art and state-of-technology. There is a strong immatureness and a clear lack of solutions (pro-

tocols, software/hardware architectures, technology) with respect to these QoS properties. Research-

oriented test-beds exist in a relatively small number and still present quite limited features particularly

in what concerns such QoS issues, which limits research to computer simulation models.

We are aware of these challenges, and in this thesis, we tried to rely as much as possible on real-

world application scenarios to push forward the technology. We contributed on several QoS aspects

but there is still more work to be done. Mobility, fault-tolerance are just another two examples of QoS

aspects in which research is urgently needed. Many application scenarios require mobility, and it is

clear that the inclusion of fault-tolerance mechanisms is fundamental so that systems become reliable.

We hope that the work carried out in this thesis can push forward the current state-of-art and state-

of-technology in the area, contributing to foster the technology, paving the way towards a smarter,

interconnected and better world.

Appendix A

Papers and Materials

A.1 List of papers by the author

Books

S. Tennina, A. Koubaa, R. Daidone, M. Alves, P. Jurcik, R. Severino, M. Tiloca, J. Hauer, N. Pereira,

G. Dini, M. Bouroche and E. Tovar, IEEE 802.15.4 and ZigBee as enabling technologies for low-

power wireless systems with Quality-of-Service constraints, Lecture Notes in Electrical and Computer

Engineering, Springer Berlin Heidelberg, Germany, 2013.

Journals

R. Severino, S. Ullah, E. Tovar, A Cross-layer QoS Management Framework for ZigBee Cluster-Tree

Networks, Springer Telecommunications Systems, 60(4), 2015.

R. Severino, N. Pereira, and E. Tovar, Dynamic cluster scheduling for cluster-tree WSNS, Springer-

Plus Communication Networks, 3(493), 2014.

N. Pereira and S. Tennina and J. Loureiro and R. Severino and B. Saraiva and M. Santos and F.

Pacheco and E. Tovar, A Microscope for the Data Center, To be published in International Journal of

Sensor Networks (IJSNet) Inderscience, 2015.

203

204 Papers and Materials

Conferences and Workshops

R. Severino, N. Pereira, and E. Tovar, Dynamic cluster scheduling for cluster-tree WSNs, IEEE 16th

International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,

(ISORC), Germany, 2013.

J. Büsch, R. Daidone, J. Hauer, R. Severino, S. Tennina and M. Tiloca, An Open-Source IEEE

802.15.4 MAC Implementation for TinyOS 2.1, In Poster and Demo Session of the 8th European

Conference on Wireless Sensor Networks (EWSN 2011), pp 15-16, Bonn (Germany), 2011.

R. Severino, M. Batsa, M. Alves, A. Koubâa, A Traffic Differentiation Add-On to the IEEE 802.15.4

Protocol: implementation and experimental validation over a real-time operating system, 13th Eu-

romicro Conference on Digital System Design (DSD’2010), Lille, France, September 2010.

R. Severino, R. Gomes, M. Alves, P. Sousa, E. Tovar, L. Ramos, R. Aguilar, P. Lourenço, A Wire-

less Sensor Network Platform for Structural Health Monitoring: enabling accurate and synchronized

measurements through (COTS + custom)-based design, 5th IFAC International Conference on Man-

agement and Control of Production and Logistics, University of Coimbra, Portugal, September, 2010.

R. Aguilar, L. Ramos, P. Lourenço, R. Severino, R. Gomes, P. G. de Sousa, M. Alves, E. Tovar,

Operational Modal Monitoring of Ancient Structures using Wireless Technology, International Modal

Analysis Conference and Exposition on Structural Dynamics - IMAC-XXVIII, Jacksonville, Florida

USA, 2010.

Technical Reports

R. Severino, N. Pereira, and E. Tovar. Technical report: Dynamic cluster scheduling for cluster-tree

WSNs, CISTER Technical report, CISTER-TR-130205, 2013.

A.2 Materials

Most of the mechanisms implemented in this dissertation in TinyOS are available at the Open-ZB.net

website (http://www.open-zb.net). Remaining code that was developed in the context of the

TinyOS 15.4 Working Group, in particular the IEEE 802.15.4 GTS implementation, is available at the

TinyOS code repository (https://github.com/tinyos/tinyos-main). The implementation

files can be found under /tos/lib/mac/tkn154.

http://www.open-zb.net
https://github.com/tinyos/tinyos-main

References

[Wi10] WirelessHART(TM). Industrial communication networks – wireless communica-

tion network and commu- nication profiles – wirelesshart(tm). International Elec-

trotechnical Commission, (IEC) Std. 62 591, 2010.

[6Lo15] 6LoWPAN Working Group. Ipv6 over low power wpan, 2015. http://

datatracker.ietf.org/wg/6lowpan/charter.

[AHS06] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for fast and flexible

sensor network deployment. In Proceedings of the 32nd international conference

on Very large data bases, VLDB ’06, pages 1199–1202. VLDB Endowment, 2006.

[APK04] T.F. Abdelzaher, S. Prabh, and R. Kiran. On real-time capacity limits of multihop

wireless sensor networks. In Real-Time Systems Symposium, 2004. Proceedings.

25th IEEE International, pages 359–370, 2004.

[ARL+10] R. Aguilar, L. Ramos, P.B. Lourenço, R. Severino, R. Gomes, P. Gandra, M. Alves,

and E. Tovar. Operational modal monitoring of ancient structures using wireless

technology. In Proceedings of the XXVIII International Modal Analysis Confer-

ence, IMAC 2010, Jacksonville, Florida, USA, 2010.

[ARL+11] Rafael Aguilar, LuisF. Ramos, PauloB. Lourenço, Ricardo Severino, Ricardo

Gomes, Paulo Gandra, Mario Alves, and Eduardo Tovar. Operational modal mon-

itoring of ancient structures using wireless technology. In Tom Proulx, editor, Dy-

namics of Civil Structures, Volume 4, Conference Proceedings of the Society for

Experimental Mechanics Series, pages 247–256. Springer New York, 2011.

[AS14] ASC-Sensors. Advanced Sensors Calibration - Capacitive Accelerom-

eter ASC5631, 2014. http://www.asc-sensors.de/uploads/tx_

ascproducts/DB_ASC_5631_Apr2013.qxp_01.pdf.

[Atm15] Atmel. Ieee 803.15.4 stacks, 2015. http://www.atmel.com/products/

Wireless/802154/default.aspx.

[BEK+02] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles

Lefurgy, Chandler McDowell, and Ram Rajamony. Power aware computing. pages

261–289, 2002.

205

http://datatracker.ietf.org/wg/6lowpan/charter
http://datatracker.ietf.org/wg/6lowpan/charter
http://www.asc-sensors.de/uploads/tx_ascproducts/DB_ASC_5631_Apr2013.qxp_01.pdf
http://www.asc-sensors.de/uploads/tx_ascproducts/DB_ASC_5631_Apr2013.qxp_01.pdf
http://www.atmel.com/products/Wireless/802154/default.aspx
http://www.atmel.com/products/Wireless/802154/default.aspx

206 REFERENCES

[BSR09] N. Boughanmi, Y-Q. Song, and E. Rondeau. Online adaptation of the ieee 802.15.4

parameters for wireless networked control systems. In 8th IFAC International

Conference on Fieldbuses and networks in industrial and embedded systems (FET

2009), 2009.

[BW07] R. Burda and C. Wietfeld. A distributed and autonomous beacon scheduling al-

gorithm for ieee 802.15.4/zigbee networks. In Mobile Adhoc and Sensor Systems,

2007. MASS 2007. IEEE Internatonal Conference on, pages 1–6, 2007.

[CCCP06] Marcello Cinque, Domenico Cotroneo, Giampaolo De Caro, and Massimiliano

Pelella. Reliability requirements of wireless sensor networks for dynamic struc-

tural monitoring. In Proceedings of the International Workshop on Applied Soft-

ware Reliability (WASR 2006),, pages 8–13, 2006.

[CKSA07] A. Cunha, A. Koubaa, R. Severino, and M. Alves. Open-zb: an open-source imple-

mentation of the ieee 802.15.4/zigbee protocol stack on tinyos. In Mobile Adhoc

and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on, pages

1–12, 2007.

[CMP+09] Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Stefan Guna,

Michele Corra, Matteo Pozzi, Daniele Zonta, and Paolo Zanon. Monitoring her-

itage buildings with wireless sensor networks: The torre aquila deployment. In In

Proceedings of the 2009 International Conference on Information Processing in

Sensor Networks (IPSN ’09), pages 277–288. IEEE Computer Society, Washing-

ton, DC, USA„ 2009.

[Con15] Contiki. Operating system, online, 2015. http://www.contiki-os.org/.

[CSP+08] Andre Cunha, Ricardo Severino, Nuno Pereira, Anis Koubaa, and Mario Alves.

Zigbee over tinyos: implementation and experimental challenges. In 8th Por-

tuguese Conference on Automatic Control (CONTROLO’2008), Vila Real, Portu-

gal, pages 21–23, 2008.

[CWH09] Hongsik Choi, Ju Wang, and EstherA. Hughes. Scheduling for information gather-

ing on sensor network. Wireless Networks, 15(1):127–140, 2009.

[Dai15a] Daintree Networks. 2400e sensor network adaptor, 2015. http://www.

daintree.net.

[Dai15b] Daintree Networks. Sensor Network Analyzer (SNA), 2015. http://www.

daintree.net.

[DAS13] DASH7 Alliance Mode. An advanced communication system for wide-area low

power wireless applications and active rfid; dash 7 alliance: Morgan hill, ca, usa,

2013.

http://www.contiki-os.org/
http://www.daintree.net
http://www.daintree.net
http://www.daintree.net
http://www.daintree.net

REFERENCES 207

[DFPD12] Mario Di Francesco, Cristina M. Pinotti, and Sajal K. Das. Interference-free

scheduling with bounded delay in cluster-tree wireless sensor networks. In Pro-

ceedings of the 15th ACM international conference on Modeling, analysis and sim-

ulation of wireless and mobile systems, MSWiM ’12, pages 99–106, New York,

NY, USA, 2012. ACM.

[DZXY10] Liu Dan, Qian Zhihong, Zhang Xu, and Li Yue. Research on tree routing improve-

ment algorithm in zigbee network. In Multimedia and Information Technology

(MMIT), 2010 Second International Conference on, volume 1, pages 89–92, 2010.

[Ecl15] Eclipse. An open development platform, online, 2015. http://www.eclipse.

org.

[Eco10] Superstructures. The Economist, 2010. http://www.economist.com/node/

17647603.

[EGE02] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using

reference broadcasts. In In Proceedings of 5th symposium on Operating systems

design and implementation. OSDI 2002, Boston, MA, USA, page 147–163, 2002.

[Emb15] EmberZNnet, 2015. http://www.silabs.com/products/wireless/

zigbee/Pages/zigbee-software.aspx.

[Eura] European Institute of Innovation and Technology. EIT-ICT-RICH Contiky

Repository - IEEE 802.15.4e Implementation. https://github.com/

EIT-ICT-RICH/contiki.

[Eurb] European Institute of Innovation and Technology. EIT-ICT-RICH

Project - Reliable IP for time synchronized Channel Hopping networks.

https://www.eitdigital.eu/eindhoven-innovation-day/

eindhoveninnovationday/innovation-activities/

rich-eit-digital-initiative/.

[Eurc] European Institute of Innovation and Technology. EIT-ICT-RICH TinyOS

Repository - IEEE 802.15.4e Implementation. https://github.com/

EIT-ICT-RICH/tinyos-main.

[Evi12] Evidence. Flex embedded platform reference manual. Technical re-

port, 2012. http://download.tuxfamily.org/erika/webdownload/

manuals_pdf/flex_refman_1_0_2.pdf.

[Evi15] Evidence. Erika real-time operating system, online, 2015. http://erika.

sssup.it/.

[FB06] J. Flora and P. Bonnet. Never mind the standard here is the tinyos 802.15.4 stack.

technical report 06–10, university of copenhagen, 2006.

[Fle15] Flexipanel. 2.4ghz zigbee ready ieee 802.15.4 rf transceiver, 2015. http://www.

flexipanel.com.

http://www.eclipse.org
http://www.eclipse.org
http://www.economist.com/node/17647603
http://www.economist.com/node/17647603
http://www.silabs.com/products/wireless/zigbee/Pages/zigbee-software.aspx
http://www.silabs.com/products/wireless/zigbee/Pages/zigbee-software.aspx
https://github.com/EIT-ICT-RICH/contiki
https://github.com/EIT-ICT-RICH/contiki
https://www.eitdigital.eu/eindhoven-innovation-day/eindhoveninnovationday/innovation-activities/rich-eit-digital-initiative/
https://www.eitdigital.eu/eindhoven-innovation-day/eindhoveninnovationday/innovation-activities/rich-eit-digital-initiative/
https://www.eitdigital.eu/eindhoven-innovation-day/eindhoveninnovationday/innovation-activities/rich-eit-digital-initiative/
https://github.com/EIT-ICT-RICH/tinyos-main
https://github.com/EIT-ICT-RICH/tinyos-main
http://download.tuxfamily.org/erika/webdownload/manuals_pdf/flex_refman_1_0_2.pdf
http://download.tuxfamily.org/erika/webdownload/manuals_pdf/flex_refman_1_0_2.pdf
http://erika.sssup.it/
http://erika.sssup.it/
http://www.flexipanel.com
http://www.flexipanel.com

208 REFERENCES

[Fre14] Freescale. Zigbee stack, 2014.

[GCNS11] Veselin Ganev, Dave Chodos, Ioanis Nikolaidis, and Eleni Stroulia. The smart

condo: integrating sensor networks and virtual worlds. In Proceedings of the 2nd

Workshop on Software Engineering for Sensor Network Applications, SESENA

’11, pages 49–54, New York, NY, USA, 2011. ACM.

[GLVB+03] D. Gay, P. Levis, R. Von Behren, M. Welsh, Brewer E., and D. Culler. The nesc

language: A holistic approach to networked embedded systems. In Proceedings of

the Programming Language Design and Implementation., 2003.

[GRS03] S. Ganeriwal, Kumar R., and M. B. Srivastava. Timing-sync protocol for sensor

networks. In Proceedings of 1st international conference on Embedded networked

sensor systems (SenSys’03), Los Angeles, California, USA., pages 138–149, 2003.

[GSGSRHGH12] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, David Rodenas-Herraiz,

and Joan Garcia-Haro. On the synchronization of ieee 802.15.5 wireless mesh

sensor networks: Shortcomings and improvements. EURASIP Journal on Wireless

Communications and Networking, 2012(1):198, 2012.

[GXX07] J. Gibson, G.G. Xie, and Yang Xiao. Performance limits of fair-access in sensor

networks with linear and selected grid topologies. In Global Telecommunications

Conference, 2007. GLOBECOM ’07. IEEE, pages 688–693, 2007.

[GY03] G. Gupta and M. Younis. Fault-tolerant clustering of wireless sensor networks. In

Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE, vol-

ume 3, pages 1579–1584 vol.3, March 2003.

[GZH08] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed time-optimal

scheduling for convergecast in wireless sensor networks. Computer Networks,

52(3):610 – 629, 2008.

[HASL07] Tibor Horvath, Tarek Abdelzaher, Kevin Skadron, and Xue Liu. Dynamic volt-

age scaling in multitier web servers with end-to-end delay control. IEEE Trans.

Comput., 56(4):444–458, April 2007.

[Hau09] J.-H. Hauer. Tkn15.4: An ieee 802.15.4 mac—implementation for tinyos 2.

tkn technical report tkn-08-003, technical university berlin, telecommunication

networks group, department telecommunication networks (tkn), berlin, germany,

2009.

[HBT+09] Rob Hoes, Twan Basten, Chen-Khong Tham, Marc Geilen, and Henk Corporaal.

Quality-of-service trade-off analysis for wireless sensor networks. Performance

Evaluation, 66(3–5):191 – 208, 2009. Modeling and Analysis of Wireless Net-

works: Selected Papers from {MSWiM} 2007.

[HCB00] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.

Energy-efficient communication protocol for wireless microsensor networks. In

REFERENCES 209

Proceedings of the 33rd Hawaii International Conference on System Sciences-

Volume 8 - Volume 8, HICSS ’00, pages 8020–, Washington, DC, USA, 2000.

IEEE Computer Society.

[HCG+06] Taliver Heath, Ana Paula Centeno, Pradeep George, Luiz Ramos, Yogesh Jaluria,

and Ricardo Bianchini. Mercury and freon: temperature emulation and manage-

ment for server systems. SIGOPS Oper. Syst. Rev., 40(5):106–116, October 2006.

[HDS+11] J.-H. Hauer, R. Daidone, R. Severino, M. Tiloca J. Büsch, and S. Tennina. Poster

abstract: An open-source ieee 802.15.4 mac implementation for tinyos 2.1. In in

Proceedings of 8th European Conference on Wireless Sensor Networks (EWSN),

Bonn, Germany, 2011.

[HJ10] Z. Hanzalek and P. Jurcik. Energy efficient scheduling for cluster-tree wireless sen-

sor networks with time-bounded data flows: Application to ieee 802.15.4/zigbee.

Industrial Informatics, IEEE Transactions on, 6(3):438–450, 2010.

[HKL+06] Tian He, Sudha Krishnamurthy, Liqian Luo, Ting Yan, Lin Gu, Radu Stoleru, Gang

Zhou, Qing Cao, Pascal Vicaire, John A. Stankovic, Tarek F. Abdelzaher, Jonathan

Hui, Bruce Krogh, Tianhe@cs. Umn. Edu S. Krishnamurthy, Liqian Luo, T. Yan,

L. Gu, R. Stoleru, G. Zhou, and Qing Cao. Vigilnet: An integrated sensor network

system for energy-efficient surveillance. ACM Transaction on Sensor Networks,

2:1–38, 2006.

[HLhAC05] Tae Hyun, Doo Hwan Lee, Jae hyun Ahn, and Sunghyun Choi. Priority toning

strategy for fast emergency notification in ieee 802.15.4 lr-wpan. In Proceedings

of the 15th Joint Conference on Communications & Information (JCCI), 2005.

[HPH+12] Yu-Kai Huang, Ai-Chun Pang, Pi-Cheng Hsiu, Weihua Zhuang, and Pangfeng Liu.

Distributed throughput optimization for zigbee cluster-tree networks. IEEE Trans-

actions on Parallel and Distributed Systems, 23(3):513–520, 2012.

[HSC+08] G. Hackmann, F. Sun, N. Castaneda, C. Lu, and S. Dyke. A holistic approach

to decentralized structural damage localization using wireless sensor networks. In

Proceedings of the IEEE Real-Time Systems Symposium (RTSS’08), 2008.

[IDC13] Worldwide internet of things (iot) 2013-2020 forecast: Billions of things, tril-

lions of dollars, idc, online, 2013. http://www.idc.com/getdoc.jsp?

containerId=243661.

[IEE05] IEEE-802.11 Task Group E. Ieee std 802.11e: Wireless lan medium access control

(mac) and physical layer specifications„ 2005.

[IEE07] IEEE-802.11 Task Group. Ieee 802.11-2007: Wireless lan medium access control

(mac) and physical layer (phy) specifications, 2007.

[IEE15a] IEEE 802.15 WPAN Task Group 4e (TG4e), 2015. http://www.ieee802.

org/15/pub/TG4e.html.

http://www.idc.com/getdoc.jsp?containerId=243661
http://www.idc.com/getdoc.jsp?containerId=243661
http://www.ieee802.org/15/pub/TG4e.html
http://www.ieee802.org/15/pub/TG4e.html

210 REFERENCES

[IEE15b] IEEE 802.15.5. Ieee 802.15 wpan task group 5 (tg5) mesh networking website,

2015. http://www.ieee802.org/15/pub/TG5.html.

[IET03] IETF. Rfc 3561 ad hoc on-demand distance vector (aodv) routing, 2003.

[IGKC12] Ozlem Durmaz Incel, Amitabha Ghosh, Bhaskar Krishnamachari, and Krishnakant

Chintalapudi. Fast data collection in tree-based wireless sensor networks. IEEE

Transactions on Mobile Computing, 11(1):86–99, 2012.

[ISA09] ISA100.11a. Wireless systems for industrial automation: Process control and re-

lated applications, isa100.11a standard, 2009.

[IT06] IEEE-TG15.4. IEEE Standard for Information technology - Telecommunications

and information exchange between systems - Local and metropolitan area networks

- Specific requirements. Part 15.4: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-

works (WPANs), 2006.

[JK07] Petr Jurcik and Anis Koubâa. The ieee 802.15.4 opnet simulation model: Reference

guide v2.0. Technical report, CISTER Technical Report, 2007.

[JKS+10] Petr Jurcik, Anis Koubâa, Ricardo Severino, Mário Alves, and Eduardo Tovar. Di-

mensioning and worst-case analysis of cluster-tree sensor networks. ACM Trans.

Sen. Netw., 7(2):14:1–14:47, September 2010.

[JLKK07] Joseph Jeon, Jong Wook Lee, Hyung Seok Kim, and Wook Hyun Kwon. Pecap:

Priority-based delay alleviation algorithm for ieee 802.15.4 beacon-enabled net-

works. Wirel. Pers. Commun., 43(4):1625–1631, December 2007.

[KANS06] A. Koubaa, M. Alves, B. Nefzi, and Y.-Q. Song. Improving the ieee 802.15.4

slotted csma/ca mac for time-critical events in wireless sensor networks. In In Pro-

ceedings of the Workshop of Real-Time Networks (RTN 2006), Satellite Workshop

to (ECRTS 2006), July 2006.

[KAT06] A Koubaa, M. Alves, and E. Tovar. A comprehensive simulation study of slotted

csma/ca for ieee 802.15.4 wireless sensor networks. In 2006 IEEE International

Workshop on Factory Communication Systems,, pages 183–192, 2006.

[KC06] Tae Hyun Kim and Sunghyun Choi. Priority-based delay mitigation for event-

monitoring ieee 802.15.4 lr-wpans. Communications Letters, IEEE, 10(3):213–

215, Mar 2006.

[KCA07] A. Koubaa, A. Cunha, and M. Alves. A time division beacon scheduling mecha-

nism for ieee 802.15.4/zigbee cluster-tree wireless sensor networks. In Real-Time

Systems, 2007. ECRTS ’07. 19th Euromicro Conference on, pages 125–135, 2007.

[KCAT08] A. Koubâa, A. Cunha, M. Alves, and E. Tovar. Tdbs: A time division beacon

scheduling mechanism for zigbee cluster-tree wireless sensor networks. In Real-

Time Systems Journal, volume 40, pages 321–354. Springer, December 2008.

http://www.ieee802.org/15/pub/TG5.html

REFERENCES 211

[KFS08] V Krishnamurthy, K Fowler, and E Sazonov. The effect of time synchronization of

wireless sensors on the modal analysis of structures. Smart Materials and Struc-

tures, 17(5):055018, 2008.

[KKP+07] Taehong Kim, Daeyoung Kim, Noseong Park, Seong-Eun Yoo, and T.S. Lopez.

Shortcut tree routing in zigbee networks. In Wireless Pervasive Computing, 2007.

ISWPC ’07. 2nd International Symposium on, 2007.

[KKY+07] Eui-Jik Kim, Meejoung Kim, Sung-Kwan Youm, Seokhoon Choi, and Chul-Hee

Kang. Priority-based service differentiation scheme for {IEEE} 802.15.4 sensor

networks. International Journal of Electronics and Communications, 61(2):69 –

81, 2007.

[KM05] J. Fredrik Karlsson and Bahram Moshfegh. Investigation of indoor climate and

power usage in a data center. Energy and Buildings, 37(10):1075 – 1083, 2005.

[Koo11] Jonathan Koomey. Growth in data center electricity use 2005 to 2010. Technical

report, Analytics Press, Oakland, CA, August 2011. www.analyticspress.

com/datacenters.html.

[KPC+07] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, , and M. Turon.

Health monitoring of civil infrastructures using wireless sensor networks. In Infor-

mation Processing In Sensor Networks, volume 9, pages 254–263. 2007.

[KWHK08] D. Kipnis, A. Willig, J. H. Hauer, and N. Karowski. The angel ieee 802.15.4

enhancement layer: Coupling priority queueing and service differentiation. In In

Proceedings of 14th European Wireless Conference, Prague, pages 1–7, 2008.

[LA12] J. Liu and Terzis A. Sensing data centres for energy efficiency. Philosophical

Transactions of the Royal Society, (370):136–157, 2012.

[LKL08] Nai-Luen Lai, Chung-Ta King, and Chun-Han Lin. On maximizing the throughput

of convergecast in wireless sensor networks. In Song Wu, LaurenceT. Yang, and

TonyLi Xu, editors, Advances in Grid and Pervasive Computing, volume 5036 of

Lecture Notes in Computer Science, pages 396–408. Springer Berlin Heidelberg,

2008.

[LKPP10] E. K. Lee, I. S. Kulkarni, D. Pompili, and M. Parashar. Proactive thermal man-

agement in green datacenters. Journal of Supercomputing (Springer), 51(1):1–31,

June 2010.

[LL06] Jerome P Lynch and Kenneth J Loh. A summary review of wireless sensors and

sensor networks for structural health monitoring. Shock and Vibration Digest,

38(2):91–130, 2006.

[LLK+02] J. P. Lynch, K. H. Law, A. S. Kiremidjian, E. Carryer, C. R. Farrar, H. Sohn,

D. Allen, B. Nadler, and J. Wait. Laboratory and field validation of a wireless

sensing unit design for structural monitoring. In Proceedings of US-Korea Work-

shop on Smart Structural Systems, Pusan, Korea, 2002.

www.analyticspress.com/datacenters.html
www.analyticspress.com/datacenters.html

212 REFERENCES

[LLL+09] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis, and Feng Zhao. Rac-

net: a high-fidelity data center sensing network. In Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’09, pages 15–28,

New York, NY, USA, 2009. ACM.

[LLYL13] Wei Liang, Shuai Liu, Yutuo Yang, and Shiming Li. Research of adaptive fre-

quency hopping technology in wia-pa industrial wireless network. In Ruchuan

Wang and Fu Xiao, editors, Advances in Wireless Sensor Networks, volume 334 of

Communications in Computer and Information Science, pages 248–262. Springer

Berlin Heidelberg, 2013.

[Loc10] Dave Locke. Mq telemetry transport (mqtt) v3.1 protocol specifica-

tion, 2010. http://www.ibm.com/developerworks/webservices/

library/ws-mqtt/index.html.

[LWS+08] J. P. Lynch, Y. Wang, R. A. Swartz, K. C. Lu, and C. H. Loh. Implementation of a

closed-loop structural control system using wireless sensor networks. In Structural

Control and Health Monitoring, volume 15, pages 518–539. John Wiley & Sons,

Ltd, June 2008.

[Lyn05] Jerome Peter Lynch. Design of a wireless active sensing unit for localized structural

health monitoring. In Structural Control and Health Monitoring, volume 12, pages

405–423. 2005.

[M.B09] M.Batsa. Supporting Different QoS Levels in Multiple-Cluster Wireless Sensor

Networks. PhD thesis, MSc Thesis in Computer Science and Engineering, De-

partment of Electronics and Computer Engineering, Indian Institute of Technology

(IIT) Roorkee, 2009.

[MdPSP] P. Muthukumaran, R. de Paz, R. Spinar, and D. Pesch. Meshmac: Enabling mesh

networking over ieee 802.15. 4 through distributed beacon scheduling.

[MEM] MEMSIC. Telosb datasheet. www.memsic.com/userfiles/files/

Datasheets/WSN/telosb_datasheet.pdf.

[MEM15] MEMSIC. Wsn products, 2015. http://www.memsic.com/

wireless-sensor-networks/.

[MGW09] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating

server idle power. In Proceedings of the 14th international conference on Archi-

tectural support for programming languages and operating systems, ASPLOS ’09,

pages 205–216, New York, NY, USA, 2009. ACM.

[Mic14] Microchip. dspic33f family data sheet, 2014. http://www.microchip.com.

[MJR11] Lucas D. P. Mendes and Joel J.P.C. Rodrigues. Review: A survey on cross-layer

solutions for wireless sensor networks. J. Netw. Comput. Appl., 34(2):523–534,

March 2011.

http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/wireless-sensor-networks/
http://www.memsic.com/wireless-sensor-networks/
http://www.microchip.com

REFERENCES 213

[MKSL04] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchroniza-

tion protocol. In Proceedings of 2nd International Conference On Embedded Net-

worked Sensor Systems, Baltimore, MD, USA, pages 39–49, 2004.

[mod02] Modbus over serial line - specification & implementation guide - v1.0, February

2002. http://www.modbus.org/docs/Modbus_over_serial_line_

V1.pdf.

[Mon12] Gregory Mone. Redesigning the data center. Commun. ACM, 55(10):14–16, Octo-

ber 2012.

[NA10] Vinayak Naik and Anish Arora. Exscal: Dealing with scale. In Elena Gaura,

Michael Allen, Lewis Girod, James Brusey, and Geoffrey Challen, editors, Wireless

Sensor Networks, pages 223–244. Springer US, 2010.

[Nan15] NanoRK. Operating system, online, 2015. http://www.nanork.org/

projects/nanork/wiki.

[Nat98] National Instruments Corporation, USA. LabView User Manual, Release 8.0.,

1998.

[NKDM09] E D N Ndih, N Khaled, and G De Micheli. An analytical model for the contention

access period of the slotted ieee 802.15.4 with service differentiation. In ICC 2009,

International Conference on Communication, Dresden, 2009.

[NXP15] NXP Semiconductors. Jennet-ip stack, 2015. http://

www.nxp.com/products/interface-and-connectivity/

wireless-connectivity/2.4-ghz-wireless-solutions/

jennet-ip:JENNET-IP.

[NY11] Sukumar Nandi and Aditya Yadav. Cross layer adaptation for qos in wsn. Interna-

tional Journal of Computer Networks & Communications, 3(5):287, 2011.

[OGK06] K.-Y. Jang A. Joki J. Paek M. Vieira D. Estrin R. Govindan O. Gnawali, B. Green-

stein and E. Kohler. The tenet architecture for tiered sensor networks. In In

Proceedings of the 4th ACM Conference on Embedded Networked Sensor Systems

(Sensys ’06), 2006.

[OPN15] OPNET Technologies Incorporation. Modeler wireless suite, online, 2015. http:

//www.opnet.com.

[OSE04a] OSEK/VDX. Oil: Osek implementation language, 2004. http://portal.

osek-vdx.org/files/pdf/specs/oil25.pdf.

[OSE04b] OSEK/VDX. Standard, 2004. http://portal.osek-vdx.org.

[OZ15] Open-ZB. Online, 2015. http://www.open-zb.net.

http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf
http://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf
http://www.nanork.org/projects/nanork/wiki
http://www.nanork.org/projects/nanork/wiki
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/jennet-ip:JENNET-IP
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/jennet-ip:JENNET-IP
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/jennet-ip:JENNET-IP
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/jennet-ip:JENNET-IP
http://www.opnet.com
http://www.opnet.com
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org
http://www.open-zb.net

214 REFERENCES

[PA07] K. Shashi Prabh and Tarek F. Abdelzaher. On scheduling and real-time capacity of

hexagonal wireless sensor networks. In Proceedings of the 19th Euromicro Confer-

ence on Real-Time Systems, ECRTS ’07, pages 136–145, Washington, DC, USA,

2007. IEEE Computer Society.

[Pae05] Chintalapudi Krishna Govindan-Ramesh Caffrey John Masri Sami Paek,

Jeongyeup. A wireless sensor network for structural monitoring: Performance and

experience. In Proceedings of the Second IEEE Workshop on Embedded Networked

Sensors (EmNetS-II). Sidney, Australia., 2005.

[PCB] PCB-Piezotronics. Model 393B12 Installation and Operating Man-

ual. http://www.pcb.com/contentstore/docs/PCB_Corporate/

Vibration/products/Manuals/393B12.pdf.

[PCR+09] Paolo Pagano, Mangesh Chitnis, Antonio Romano, Giuseppe Lipari, Ricardo Sev-

erino, Mário Alves, Paulo G. Sousa, and Eduardo Tovar. Erika and open-zb: An im-

plementation for real-time wireless networking. In Proceedings of the 2009 ACM

Symposium on Applied Computing, SAC ’09, pages 1687–1688, New York, NY,

USA, 2009. ACM.

[PSK08] Luca Parolini, Bruno Sinopoli, and Bruce H. Krogh. Reducing data center energy

consumption via coordinated cooling and load management. In Proceedings of

the 2008 conference on Power aware computing and systems, HotPower’08, pages

14–14, Berkeley, CA, USA, 2008. USENIX Association.

[PT08] Meng-Shiuan Pan and Yu-Chee Tseng. Quick convergecast in zigbee beacon-

enabled tree-based wireless sensor networks. Comput. Commun., 31(5):999–1011,

March 2008.

[PTL+15] N. Pereira, S. Tennina, J. Loureiro, R. Severino, B. Saraiva, M. Santos, F. Pacheco,

and E. Tovar. A microscope for the data center. International Journal of Sensor

Networks (IJSNet), 18(3-4), 2015.

[Ram07] L. Ramos. Damage Identification on Masonry Structures Based on Vibration Sig-

natures. PhD thesis, Universidade do Minho, Guimaraes, Portugal., 2007.

[RBR11] A Rowe, M E Berge, and R Rajkumar. Sensor andrew: Large-scale campus-wide

sensing and actuation. International Business, 55(1):1–14, 2011.

[RC08] Bhaskaran Raman and Kameswari Chebrolu. Censor networks: a critique of "sen-

sor networks" from a systems perspective. SIGCOMM Comput. Commun. Rev.,

38(3):75–78, July 2008.

[ReT] ReTIsLab. Real-time systems laboratory, pisa, italy. http://retis.sssup.

it/.

[RJ07] Jeffrey Rambo and Yogendra Joshi. Modeling of data center airflow and heat trans-

fer: State of the art and future trends. Distrib. Parallel Databases, 21(2-3):193–

225, June 2007.

http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/products/Manuals/393B12.pdf
http://www.pcb.com/contentstore/docs/PCB_Corporate/Vibration/products/Manuals/393B12.pdf
http://retis.sssup.it/
http://retis.sssup.it/

REFERENCES 215

[RMS+11] J. A. Rice, K. A. Mechitov, S. H. Sim, B. F. Spencer, and G. A. Agha. Enabling

framework for structural health monitoring using smart sensors. Structural Control

and Health Monitoring, 18(5):574–587, 2011.

[Row06] Mangharam R. Rajkumar-R. Rowe, A. Rt-link: A time synchronized link protocol

for energy- constrained multi-hop wireless networks. In Proceedings of the 3rd

Annual IEEE Communications Society on Sensor and Ad Hoc Communications

and Networks, Reston, VA, USA., pages 402–411, 2006.

[SBAK10] R. Severino, M. Batsa, M. Alves, and A. Koubaa. A traffic differentiation add-on

to the ieee 802.15.4 protocol: Implementation and experimental validation over a

real-time operating system. In Digital System Design: Architectures, Methods and

Tools (DSD), 2010 13th Euromicro Conference on, pages 501–508, Sept 2010.

[SCI05] R. R. Schmidt, E. E. Cruz, and M. Iyengar. Challenges of data center thermal

management. IBM Journal of Research and Development, 49(4.5):709 –723, july

2005.

[SCW10] A. J. Stanford-Clark and G. R. Wightwick. The application of publish/subscribe

messaging to environmental, monitoring, and control systems. IBM J. Res. Dev.,

54(4):396–402, July 2010.

[SEN14] SENODS Project. Sustainable energy-optimized datacenters, 2014. http://

www.cister.isep.ipp.pt/projects/senods/.

[SGA+10a] R. Severino, R. Gomes, M. Alves, P. Sousa, E. Tovara, L. Ramos, R. Aguilar, and

P. Lourenço. A wireless sensor network platform for structural health monitoring:

enabling accurate and synchronized measurements through (cots + custom)-based

design. In Procedings of the 5th IFAC International Conference on Management

and Control of Production and Logistics., September 2010.

[SGA+10b] Ricardo Severino, Ricardo Gomes, Mário Alves, P. Sousa, Eduardo Tovar, Luís F.

Ramos, Rafael Aguilar, and Paulo B. Lourenço. A wireless sensor network plat-

form for structural health monitoring : enabling accurate and synchronized mea-

surements through cots+custom-based design. In 5th Conference on Management

and Control of Production Logistics (2010), pages 375–382, 2010.

[SK96] E. Straser and A.S. Kiremidjian. A modular, visual approach to damage monitoring

for civil structures. In Proceedings of the 2nd International Workshop on Structural

Control, Hong Kong, 1996.

[SLA12] G.A. Shah, Weifa Liang, and O.B. Akan. Cross-layer framework for qos sup-

port in wireless multimedia sensor networks. Multimedia, IEEE Transactions on,

14(5):1442–1455, Oct 2012.

[SLMR05] John A. Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar. Opportunities and

obligations for physical computing systems. Computer, 38(11):23–31, November

2005.

http://www.cister.isep.ipp.pt/projects/senods/
http://www.cister.isep.ipp.pt/projects/senods/

216 REFERENCES

[SMM+09] T. Semprebom, C. Montez, R. Moraes, F. Vasques, and R. Custodio. Distributed

dbp: A (m,k)-firm based distributed approach for qos provision in ieee 802.15.4

networks. In 14th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA 09), 2009.

[SPT13a] R. Severino, N. Pereira, and E. Tovar. Dynamic cluster scheduling for cluster-tree

wsns. In Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC), 2013 IEEE 16th International Symposium on, pages 1–8, June 2013.

[SPT13b] R. Severino, N. Pereira, and E. Tovar. Technical report: Dynamic cluster scheduling

for cluster-tree wsns. Technical report, CISTER-TR-130205, 2013.

[SPT14] R. Severino, N. Pereira, and E. Tovar. Dynamic cluster scheduling for cluster-tree

wsns. SpringerPlus Communication Networks, 3(493), 2014.

[SUT15] Ricardo Severino, Sana Ullah, and Eduardo Tovar. A cross-layer qos management

framework for zigbee cluster-tree networks. Springer Telecommunication Systems,

60(4), 2015.

[Tex14] Texas Instruments. Cc2420 transceiver datasheet, 2014.

[Tex15a] Texas Instruments. Chipcon packet sniffer for ieee 802.15.4 cc2420eb, 2015.

http://www.ti.com/lsds/ti/wireless_connectivity/overview.

page.

[Tex15b] Texas Instruments. Msp430x21x1 microcontroler datasheet, 2015. http://www.

ti.com/product/msp430f149.

[Tex15c] Texas Instruments. Smartrf studio, 2015. http://www.ti.com/tool/

smartrftm-studio.

[Tex15d] Texas Instruments. Z-stack, 2015. http://www.ti.com/tool/z-stack.

[The07] The Economist. When everything connects. May 2007.

[Tina] TinyOS. 15.4 working group, online. http://www.tinyos.net/scoop/

special/working_group_tinyos_154.html.

[Tinb] TinyOS. Main development repository. https://github.com/tinyos/

tinyos-main.

[Tinc] TinyOS. Network protocol working group, online. http://tinyos.

stanford.edu/tinyos-wiki/index.php/TinyOS_Network_

Protocol_Working_Group.

[Tind] TinyOS. Zigbee working group. http://tinyos.stanford.edu/

tinyos-wiki/index.php/TinyOS_ZigBee_Working_Group.

[Tin15] TinyOS. Online, 2015. http://www.tinyos.net/.

http://www.ti.com/lsds/ti/wireless_connectivity/overview.page
http://www.ti.com/lsds/ti/wireless_connectivity/overview.page
http://www.ti.com/product/msp430f149
http://www.ti.com/product/msp430f149
http://www.ti.com/tool/smartrftm-studio
http://www.ti.com/tool/smartrftm-studio
http://www.ti.com/tool/z-stack
http://www.tinyos.net/scoop/special/working_group_tinyos_154.html
http://www.tinyos.net/scoop/special/working_group_tinyos_154.html
https://github.com/tinyos/tinyos-main
https://github.com/tinyos/tinyos-main
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Network_Protocol_Working_Group
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Network_Protocol_Working_Group
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Network_Protocol_Working_Group
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_ZigBee_Working_Group
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_ZigBee_Working_Group
http://www.tinyos.net/

REFERENCES 217

[TKD+13] Stefano Tennina, Anis Koubaa, Roberta Daidone, Mario Alves, Petr Jurcik, Ri-

cardo Severino, Nuno Pereira Marco Tiloca, Jan-Hinrich Hauer, Gianluca Dini,

Melanie Bouroche, and Eduardo Tovar. IEEE 802.15.4 and ZigBee as Enabling

Technologies for Low-Power Wireless Systems with Quality-of-Service Constraints,

volume Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2013.

[TLB09] E. Toscano and L. Lo Bello. A multichannel approach to avoid beacon collisions in

ieee 802.15.4 cluster-tree industrial networks. In Emerging Technologies Factory

Automation, 2009. ETFA 2009. IEEE Conference on, pages 1–9, 2009.

[VLP11] H. Viswanathan, Eun Kyung Lee, and D. Pompili. Self-organizing sensing infras-

tructure for autonomic management of green datacenters. Network, IEEE, 25(4):34

–40, july-august 2011.

[VODM91] P. Van Overschee and B. De Moor. Subspace algorithms for the stochastic identi-

fication problem. In Proceedings of the 30th Conference on Decision and Control,

Brighton, England,, 1991.

[VTPVG+14] Xavier Vilajosana, Pere Tuset-Peiro, Francisco Vazquez-Gallego, Jesus Alonso-

Zarate, and Luis Alonso. Standardized low-power wireless communication tech-

nologies for distributed sensing applications. Sensors, 14(2):2663–2682, 2014.

[WA05] Tewari G. Patel A. Welsh M. Nagpal R. Werner-Allen, G. Firefly-inspired sensor

network synchronicity with realistic radio effects. In Proceedings of 3rd interna-

tional conference on Embedded networked sensor systems (SenSys’05), San Diego,

California, USA., page 142–153, 2005.

[WCLL10] Shengquan Wang, Jian-Jia Chen, Jun Liu, and Xue Liu. Power saving design for

servers under response time constraint. In Proceedings of the 2010 22nd Euromicro

Conference on Real-Time Systems, ECRTS ’10, pages 123–132, Washington, DC,

USA, 2010. IEEE Computer Society.

[Wei99] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.

Commun. Rev., 3(3):3–11, July 1999.

[Wel67] Peter D. Welch. The use of fast fourier transform for the estimation of power

spectra: A method based on time averaging over short, modified periodograms.

Audio and Electroacoustics, IEEE Transactions on, 15(2):70–73, Jun 1967.

[WF09] Stephen Wilson and Jeremy Frey. The smartlab: Experimental and environmental

control and monitoring of the chemistry laboratory. In Proceedings of the 2009

International Symposium on Collaborative Technologies and Systems, CTS ’09,

pages 85–90, Washington, DC, USA, 2009. IEEE Computer Society.

[WGJJ09] Matthew J. Whelan, Michael V. Gangone, Kerop D. Janoyan, and Ratneshwar Jha.

Real-time wireless vibration monitoring for operational modal analysis of an inte-

gral abutment highway bridge. Engineering Structures, 31(10):2224 – 2235, 2009.

218 REFERENCES

[WIA11] WIA-PA. Industrial communication networks – fieldbus specifications – wia-pa

communication network and communication profile, international electrotechnical

commission (iec) std. 62 061, 2011.

[WiS] Metageek’s wispy. http://www.metageek.net/products/wi-spy/.

[WL10] Otto VanGeet William Lintner, Bill Tschudi. FEMP best practices guide for energy-

efficient data center design. 2010. http://www1.eere.energy.gov/femp/

pdfs/eedatacenterbestpractices.pdf.

[WTB+12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J. P. Vasseur, and R. Alexander. Rpl: Ipv6 routing protocol for low-power and lossy

networks, internet engineering task force. RFC 6550, March 2012.

[WTC03] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges

of reliable multihop routing in sensor networks. In Proceedings of the 1st Inter-

national Conference on Embedded Networked Sensor Systems, SenSys ’03, pages

14–27, New York, NY, USA, 2003. ACM.

[WTS+11] Beat Weiss, Hong Linh Truong, Wolfgang Schott, Thomas Scherer, Clemens Lom-

briser, and Pierre Chevillat. Wireless sensor network for continuously monitoring

temperatures in data centers. IBM RZ 3807, 2011.

[WVK+12] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin

Weekly, Qin Wang, Steven Glaser, and Kris Pister. Openwsn: a standards-

based low-power wireless development environment. Transactions on Emerging

Telecommunications Technologies, 23(5):480–493, 2012.

[XMP] Xmpp standards foundation. http://xmpp.org.

[XRC+04] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan

Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for

structural monitoring. In Proceedings of the 2Nd International Conference on Em-

bedded Networked Sensor Systems, SenSys ’04, pages 13–24, New York, NY, USA,

2004. ACM.

[XZR+05] Ruibin Xu, Dakai Zhu, Cosmin Rusu, Rami Melhem, and Daniel Mossé. Energy-

efficient policies for embedded clusters. In Proceedings of the 2005 ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and tools for embedded sys-

tems, LCTES ’05, pages 1–10, New York, NY, USA, 2005. ACM.

[YIE11] M. Aykut Yigitel, Ozlem Durmaz Incel, and Cem Ersoy. Qos-aware {MAC} pro-

tocols for wireless sensor networks: A survey. Computer Networks, 55(8):1982 –

2004, 2011.

[YPT08] Lun-Wu Yeh, Meng-Shiuan Pan, and Yu-Chee Tseng. Two-way beacon scheduling

in zigbee tree-based wireless sensor networks. In Sensor Networks, Ubiquitous and

Trustworthy Computing, 2008. SUTC 08. IEEE International Conference on, pages

130–137, 2008.

http://www.metageek.net/products/wi-spy/
http://www1.eere.energy.gov/femp/pdfs/eedatacenterbestpractices.pdf
http://www1.eere.energy.gov/femp/pdfs/eedatacenterbestpractices.pdf
http://xmpp.org

REFERENCES 219

[ZA05] ZigBee-Alliance. Zigbee specification. Technical report, June 2005.

[ZG03] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in

dense wireless sensor networks. In Proceedings of the 1st International Conference

on Embedded Networked Sensor Systems, SenSys ’03, pages 1–13, New York, NY,

USA, 2003. ACM.

[ZWBM12] Rongliang Zhou, Zhikui Wang, Cullen E. Bash, and Alan McReynolds. Data center

cooling management and analysis – a model based approach. In 28 Annual Semi-

conductor Thermal Measurement, Modeling and Management Symposium (SEMI-

THERM 2012), San Jose, California, USA, March 2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	I Introduction
	1 Context and Motivation
	1.1 Research Context
	1.2 Challenges
	1.3 Approach
	1.4 Thesis Statement
	1.5 Contributions
	1.6 Outline

	2 Overview of the IEEE 802.15.4 and ZigBee Protocols
	2.1 The ZigBee Protocol
	2.1.1 General Aspects
	2.1.2 The case for the Cluster-tree Topology
	2.1.3 The ZigBee Network Layer

	2.2 Overview of the IEEE 802.15.4 Protocol
	2.2.1 Physical Layer
	2.2.2 Medium Access Control (MAC) Sub-layer

	2.3 A Review of Other Standard Protocols for WSNs

	3 Technological Platforms and Tools
	3.1 WSN Platforms and Development Tools
	3.1.1 Mote Platforms
	3.1.2 IEEE 802.15.4/ZigBee Protocol Analysers

	3.2 WSN Operating Systems
	3.2.1 TinyOS
	3.2.2 ERIKA Real-time Operating System

	3.3 IEEE 802.15.4/ZigBee Protocol Stacks
	3.3.1 Open-ZB Protocol Stack for TinyOS
	3.3.2 Open-ZB Protocol Stack for ERIKA
	3.3.3 The Official TinyOS v2.x IEEE 802.15.4/ZigBee Protocol Stack

	3.4 The Open-ZB IEEE 802.15.4 Simulation Model

	II On the Engineering of WSN enabled Cyber-physical Applications
	4 IEEE 802.15.4 GTS Implementation in TinyOS
	4.1 Introduction
	4.2 Overview of the IEEE 802.15.4 GTS Mechanism
	4.3 Implementation Details
	4.3.1 Overview
	4.3.2 GTS Allocation
	4.3.3 GTS Buffer Management
	4.3.4 GTS Deallocation

	4.4 Test and validation
	4.5 Final Remarks

	5 Structural Health Monitoring Application Scenario
	5.1 Context and Motivation
	5.2 Related Work
	5.3 System Overview
	5.3.1 System Requirements
	5.3.2 Snapshot of the System Architecture

	5.4 Hardware Platform and Signal Acquisition Sub-system
	5.5 WSN Architecture
	5.5.1 Guaranteeing Synchronization
	5.5.2 Communication Architecture
	5.5.3 Coordinator node
	5.5.4 Sensing Nodes

	5.6 Test and Validation
	5.6.1 Command and Configuration Application
	5.6.2 SHM System Validation

	5.7 Final Remarks

	6 Datacenter Monitoring Application Scenario
	6.1 Context and Motivation
	6.2 Related Work
	6.3 Architecture Overview
	6.3.1 Environment and Power Data Collection
	6.3.2 Data Distribution

	6.4 Mapping The World
	6.5 The Data Center Radio Environment
	6.6 Final Remarks

	III QoS Improvement Mechanisms
	7 Peformance Evaluation of a Traffic Differentiation Mechanism
	7.1 Introduction
	7.2 Related Work
	7.3 Traffic Differentiation Strategy
	7.4 Implementation Approach
	7.5 Performance Evaluation
	7.5.1 Testbed Setup
	7.5.2 Experimental Evaluation

	7.6 Final Remarks

	8 Achieving Scalable and Synchronized Sensing in ZigBee Cluster-trees
	8.1 Introduction
	8.2 Network Model
	8.3 Communication Protocol
	8.4 Synchronization Mechanism
	8.5 Theoretical Analysis of the Scalability Limits
	8.6 Experimental Analysis of the Scalability
	8.7 Final Remarks

	9 Providing Dynamic Cluster Scheduling Support to Synchronized Cluster-based Networks
	9.1 Introduction
	9.2 Related work
	9.3 System model
	9.4 Dynamic Cluster Scheduling
	9.4.1 Dynamic Cluster Re-ordering
	9.4.2 Dynamic Bandwidth Re-allocation
	9.4.3 The DCS communication protocol

	9.5 Instantiating DCS in IEEE 802.15.4/ZigBee
	9.6 Performance evaluation
	9.6.1 Application scenario
	9.6.2 Experimental setup
	9.6.3 Performance results

	9.7 Final Remarks

	10 Adding Online Cross-layer QoS Control to ZigBee Cluster-based Networks
	10.1 Introduction
	10.2 Related Work
	10.2.1 QoS improvements to the IEEE 802.15.4/ZigBee standard
	10.2.2 Online and cross-layer QoS proposals

	10.3 On the Supported QoS Mechanisms
	10.3.1 TRADIF
	10.3.2 Dynamic Cluster Scheduling

	10.4 Traffic Efficiency Control Mechanism
	10.4.1 TECM Architecture
	10.4.2 Beacon Payload Management Module
	10.4.3 Performance Indicators
	10.4.4 The TECM Online Algorithms

	10.5 Validation in a Real-World Scenario
	10.5.1 Application description
	10.5.2 Performance Results

	10.6 Conclusions and Future Work

	IV Conclusions and Future Work
	11 General Conclusions and Future Work
	11.1 Summary of the Results
	11.2 Validation of thesis Statement
	11.3 Future Directions
	11.3.1 Towards a QoS Balancing Framework
	11.3.2 On the Engineered Application Scenarios
	11.3.3 Towards a Smarter World

	A Papers and Materials
	A.1 List of papers by the author
	A.2 Materials

	References

