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Abstract 

One of the major sources of pessimism in the response time analysis of globally schedule d real-time tasks is the 
computation of the upper-bound on the inter-task interference. This problem is further exacerbated when intra-
task parallelism is permitted, because of the complex internal structure of parallel tasks. This paper considers the 
global fie d-priority scheduling (G-FP) of sporadic real-time tasks, each one mo dele d by a directed acyclic graph 
(DAG) of parallel subtasks. We present a response time analysis technique based on the concept of problem 
window. We propose two novel techniques to derive tight upper-bounds on the workload produced by the carry-in 
and carry-out jobs of the interfering tasks, by taking into account the precedence constraints between their 
subtasks. We show that with these new upper-bounds, the proposed schedulability test does not only theoretically 
dominate state-of-the-arttechniques but also offers significant improvements on the schedulability of DAG tasks 
for randomly generate d task sets. 
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ABSTRACT
One of the major sources of pessimism in the response time analysis
of globally scheduled real-time tasks is the computation of the
upper-bound on the inter-task interference. This problem is further
exacerbated when intra-task parallelism is permitted, because of the
complex internal structure of parallel tasks. This paper considers the
global ixed-priority scheduling (G-FP) of sporadic real-time tasks,
each one modeled by a directed acyclic graph (DAG) of parallel
subtasks. We present a response time analysis (RTA) technique
based on the concept of problem window. We propose two novel
techniques to derive less pessimistic upper-bounds on the workload
produced by the carry-in and carry-out jobs of the interfering tasks,
by taking into account the precedence constraints between their
subtasks. We show that with these new upper-bounds, the proposed
schedulability test does not only theoretically dominate state-of-
the-art techniques but also ofers signiicant improvements on the
schedulability of DAG tasks for randomly generated task sets.

1 INTRODUCTION
For the real-time research community, the analysis of the worst-case
timing behavior of parallel systems requires a detailed representa-
tion of the intrinsic parallelism within the application as well as
a complete picture of the precedence constraints that it imposes
on its parallel activities. These new challenges have been progres-
sively tackled as shown by the diferent parallel task models and
respective schedulability analysis recently proposed in the litera-
ture [2ś8, 12ś16]. In this paper, we study the sporadic DAG task
model introduced in [4] under global ixed-priority (G-FP) schedul-
ing. In this model, each task is characterized by a directed acyclic
graph (DAG). The nodes of the graph represent sequential compu-
tation units (e.g., openMP tasks) and the edges deine precedence
constraints between the execution of nodes; nodes that are not
directly or transitively connected with each other in the graph may
execute in parallel, otherwise they must follow the sequential order
given by the DAG structure.

A key challenge in the response time analysis (RTA) of globally
scheduled multiprocessor task systems is to compute an upper-
bound on the interference that tasks generate on each other. The
complexity of computing such inter-task interference bound is exac-
erbated for parallel tasks, DAGs in particular, due to their complex
and irregular internal structure. To the best of our knowledge, the
work proposed by Melani et al. [15] represents the irst attempt at
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analyzing the schedulability of a set of general sporadic DAG tasks
with a G-FP scheduling policy. Their RTA is based on the concept
of problem window developed originally by Baker in [1]. This tech-
nique consists in estimating the maximum interfering workload
produced by a higher priority task in a time interval of arbitrary
length. While the work in [15] succeeded in upper-bounding the
interfering workload generated by DAG tasks, it does so by con-
sidering that every job in the problem window is a compact block
of execution which uniformly occupies all the available processors
until its completion. Since most DAGs exhibit diferent degrees of
parallelism throughout their execution, such abstraction leads to a
signiicant pessimism in the schedulability analysis. Motivated by
this observation, this paper proposes techniques to derive improved
bounds on the inter-task interference by exploiting the knowledge
of the precedence constraints in the internal structure of the DAGs.

Contributions.We present two novel techniques that exploit
the internal structure of the DAGs to upper-bound the worst-case
interference between tasks. We then use these new upper-bounds
to reine traditional schedulability analysis techniques and we show
that the resulting schedulability test not only dominates the state-of-
the-art analysis [15] but it is also robust to systems with increased
number of cores.

Related work. The real-time community has been devoting
signiicant attention to the problem of scheduling parallel tasks on
multiprocessor platforms. Parallel task models have been proposed
to cope with the diferent forms of task parallelism introduced by
widely used parallel programming models. Among the models that
impose more restrictions on the parallel features, we highlight both
the fork-join model [12] and the synchronous parallel model [6, 14,
16]. For the DAG model, most of the work published in the past
few years target G-EDF [2, 4, 5, 13], partitioned scheduling [8] and
federated scheduling strategies [7]. Recently, the DAG model has
been extended to support conditional constructs, allowing a parallel
task to experience diferent lows of execution [3, 15].

2 MODEL
We consider a set of n sporadic real-time tasks τ = {τ1, . . . ,τn } to
be globally scheduled by a preemptive ixed-priority algorithm on
a platform composed ofm unit-speed processors. We assume that
priorities are per-task and that task τi has higher-priority than τk if
i < k . Each task τi is characterized by a 3-tuple (Gi ,Di ,Ti ) with the
following interpretation. Task τi is a recurrent process that releases
a (potentially) ininite sequence of jobs, with the irst job released at
any time during the system execution and subsequent jobs released
at leastTi time units apart. Every job released by τi has to complete
its execution within Di time units from its release. We consider
that τ is comprised of constrained-deadline tasks, i.e., Di ≤ Ti ,∀i .

Each job of τi is modeled by a DAG Gi = (Vi ,Ei ), where Vi =
{vi,1, . . . ,vi,ni } is a set of ni nodes and Ei ⊆ (Vi × Vi ) is a set of
directed edges connecting any two nodes. Each node vi, j ∈ Vi
represents a computational unit (referred to as subtask) that must
execute sequentially. A subtask vi, j has a worst-case execution

https://doi.org/10.1145/3139258.3139288
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time (WCET) denoted by Ci, j . Each directed edge (vi,a ,vi,b ) ∈ Ei
denotes a precedence constraint between the subtasksvi,a andvi,b ,
meaning that subtask vi,b cannot execute before subtask vi,a has
completed its execution. In this case,vi,b is called a successor ofvi,a ,
whereas vi,a is called a predecessor of vi,b . A subtask is then said
to be ready if and only if all of its predecessors have inished their
execution. For simplicity, wewill omit the subscript i when referring
to the subtasks of task τi if there is no possible confusion. A subtask
with no incoming (resp., outgoing) edges is referred to as a source
(resp., a sink) of the DAG.Without loss of generality, we assume that
each DAG has a single sourcev1 and a single sinkvni . Note that any
DAG with multiple sinks/sources complies with this requirement,
simply by adding a dummy source/sink with zero WCET to the
DAG, with edges from/to all the previous sources/sinks.

For each subtask vj ∈ Vi , its set of direct predecessors is given
by pred (vj ), while succ (vj ) returns its set of direct successors.
Formally, pred (vj ) = {vk ∈ Vi | (vk ,vj ) ∈ Ei } and succ (vj ) =
{vk ∈ Vi | (vj ,vk ) ∈ Ei }. Furthermore, ances (vj ) denotes the set
of ancestors of vj , deined as the set of subtasks that are either
directly or transitively predecessors of vj . Analogously, we denote
by desce (vj ) the descendants of vj . Formally, ances (vj ) = {vk ∈
Vi | vk ∈ pred (vj ) ∨ (∃vℓ ,vℓ ∈ pred (vj ) ∧ vk ∈ ances (vℓ ))} and
desce (vj ) = {vk ∈ Vi | vk ∈ succ (vj ) ∨ (∃vℓ ,vℓ ∈ succ (vj ) ∧vk ∈
desce (vℓ ))}. Any two subtasks that are not ancestors/descendants
of each other are said to be concurrent. Concurrent subtasks may
execute in parallel.

Definition 1 (Path). For a given taskτi , a path λ = (v1, . . . ,vni )
is a sequence of subtasks vj ∈ Vi such that v1 is the source ofGi , vni
is the sink of Gi , and ∀vj ∈ λ \ {vni }, (vj ,vj+1) ∈ Ei .

Informally, a path λ is a sequence of subtasks from the source
to the sink in which there is a precedence constraint between any
two adjacent subtasks in λ. Thus, there is no concurrency between
the subtasks that belong to a same path. The length of a path λ,
denoted len(λ), is the sum of the WCET of all its subtasks, i.e.,
len(λ) =

∑

∀vj ∈λ Cj .

Definition 2 (Length of a task). The length Li of a task τi is
the length of its longest path.

Definition 3 (Critical path). A path of τi that has a length Li
is a critical path of τi .

Note that when the number of coresm is greater than the maxi-
mum possible parallelism of τi (for instance,m ≥ ni ), the length Li
represents the worst-case response time (WCRT) of τi in isolation
(also known as the makespan of the graph). Therefore, an obvious
necessary condition for the feasibility of τi is Li ≤ Di .

Definition 4 (Workload). The workloadWi of a task τi is the

sum of the WCET of all its subtasks, i.e.Wi =
∑ni
j=1Cj .

Finally, we prove the following property on τi ’s execution and
its critical path.

Lemma 1. At mostWi −max{0, Li − ℓ} units of workload can be
executed by a job of τi in a window of length ℓ.

Proof. By Def. 1, all subtasks in a critical path have prece-
dence constraints and must therefore execute sequentially. Since
the length of every critical path is Li , ℓ time units after its release, a
job of τi must still execute during at least max{0, Li − ℓ} time units
to complete. Hence, at mostWi −max{0, Li − ℓ} units executed in
the interval of length ℓ. □

Figure 1: Worst-case interfering workload of a HP task τi .

Corollary 1. No schedule of Gi whose length is shorter than Li
can accommodateWi units of workload.

3 BACKGROUND
In this section, we summarize the RTA introduced by Melani et
al. [15] as it sets the foundations for the schedulability analysis
proposed in the upcoming sections. Although their work uses a
more general task model, known as łconditional DAG tasksž, em-
pirical evaluation in [15] shows that it is also state-of-the-art for
the non-conditional DAG task model used in this paper.

A key challenge in the RTA of globally scheduled multiprocessor
systems is to compute an upper-bound on the interference between
tasks. That is, when analyzing the response time of a task τk , the
analysis must ind an upper-bound on the delays that may be in-
curred by every subtask in the critical paths of τk . These delays are
the intervals of time during which those subtasks are ready but
cannot execute because all the cores are busy executing tasks of
higher-priority than τk (inter-task interference), or subtasks from
τk that are not part of its critical paths (self interference).

Regarding the self-interference, in a constrained-deadline system
two jobs of a same task τk cannot interfere with each other, because
one must inish before the next one is released. Therefore, the self
interfering workload denoted Ik,k , is independent of the response
time of τk . Furthermore, because of the absence of priorities at
the subtask-level, every subtask that is not part of a critical path
of τk may potentially contribute to the overall response time of τk
and thus to its self interfering workload Ik,k . In other words, an
upper-bound on the self interfering workload Ik,k of τk is given by

Ik,k ≤Wk − Lk (1)

Contrary to the self interference, the amount of inter-task inter-
fering workload depends on the length of the time interval that we
consider. The longer the time interval, the more workload can be
generated by the higher-priority tasks and thus the larger is the
inter-task interference on the analyzed task τk . For a time window
of length ∆, the computation of the maximum cumulative execution
time of all the subtasks of a higher-priority task τi that are released
within these ∆ time units divides the window in three consecutive
portions: the carry-in, the body, and the carry-out (see Fig. 1). The
irst portion (i.e., the carry-in) starts at the release time rk of the
analyzed task τk . It assumes that one job of τi has been released
before the beginning of the window but has not yet completed its
execution (its łcarry-inž job). The carry-in portion inishes at the
release of the next job of τi . Then, all the subsequent job releases
that are fully contained in the window constitute the body portion
(they are called the body jobs of τi ). Finally, the carry-out portion
is deined as the remaining subinterval of time at the end of the
window, and its start is coincident with the release of the last job of
τi that still executes within the time window (its łcarry-outž job).
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In [15], the authors formulated a generic upper-bound on the
interfering workload of a task τi on a task τk . This upper-bound con-
siders a time window of length ∆ = Rk (the response time of τk ) and
works for any work-conserving algorithm. It is given byWi (Rk ) =⌊
Rk+Ri−Wi /m

Ti

⌋
Wi + min (Wi ,m((Rk + Ri −Wi/m)modTi )). This

upper-bound ignores completely the structure of the DAGGi of τi
and corresponds to the scenario depicted in Fig. 1. The irst term
includes both the contributions from the carry-in and body jobs,
whereas the second term represents the carry-out component. The
interference produced by τi on τk within the problem window is
maximized when: (1) the carry-in job starts executing at the start
of the time window and inishes by its WCRT, (2) all subsequent
jobs are released and executed as soon as possible and (3) every job
of τi is assumed to execute on all the cores duringWi/m time units.

Putting all the pieces together, for a given task τk , the schedula-
bility condition Rk ≤ Dk relies on a classic iterative RTA. Starting
with Rk = Lk , an upper-bound on the response time of task τk
under G-FP scheduling can be derived by the ixed-point iteration
of the following expression [15]:

Rk = Lk +
1

m
(Wk − Lk ) +

1

m

∑

∀i<k

Wi (Rk ) (2)

4 RATIONALE
Looking at the RTA described in the previous section, it is obvious
that one of the major sources of pessimism in the computation of
the WCRT is the computation of the inter-task interference within
the problem window. This is clear by examining the execution
pattern assumed for every job of the tasks τi that interferes with the
analyzed task τk (see Fig. 1). All these jobs are assumed to execute as
a big compact block which uniformly occupies them cores during
Wi/m time units. Although this assumption provides a safe upper-
bound on the interference that they cause, the upper-bound may
be greatly improved by not overlooking the rich internal structure
of their DAG. Both the precedence constraints and the number of
subtasks in the DAG deine the possible shapes that the execution
of τi entails. In general, wider and uneven shapes limit the amount
of workload that efectively enters the problem window. In fact,
most DAGs do not exhibit a constant degree of parallelism equal to
m throughout their entire execution (as it is assumed in the state-of-
the-art analysis). Instead, the maximumworkload they may execute
in a given time interval is limited by their internal structure. This
is illustrated in Fig. 2, where the maximum interfering workload
imposed by the carry-in and carry-out jobs of a task τi is presented.

In this paper, we use the internal structure of each DAG to derive
more accurate upper-bounds on their contributions to the carry-in
and carry-out interfering workload. Note that, according to this
analysis method, the DAG’s internal structure does not afect the
contribution of the body jobs to the interfering workload since
they are fully contained in the problem window. Thus, their exact
execution pattern is irrelevant. Similar to the work in [15], our
analysis of the inter-task interference is based on the notion of
a problem window of length ∆. However, as illustrated in Fig. 2,
we model more accurately the worst-case scenario by taking into
account diferent execution patterns for the carry-in and carry-out
jobs. The workload produced by task τi is maximized in the problem
window [rk , rk + ∆) of τk when: (i) every subtask of the body jobs
of τi executes for its WCET; (ii) the carry-in job released at a time
ri ≤ rk inishes its execution at time ri + Ri and executes as much

Figure 2: Worst-case scenario for the interfering workload
computation of τi on τk .

workload as possible as late as possible (to maximize its workload
contribution to the window); (iii) all subsequent jobs are released
Ti time units apart; and (iv) the carry-out job starts its execution as
soon as it is released and executes as much workload as possible as
early as possible (hence maximizing its workload in the window).

Our main problem to solve is the lack of a relative reference
point between the release time of the carry-in job of τi and the
window [rk , rk +∆). More speciically, the value rk −ri is unknown
a priori because, as will be shown later in this paper, the worst-case
schedules of the carry-in and carry-out jobs are incomparable. Let

∆CIi and ∆COi denote the length of the carry-in portion and the
length of the carry-out portion of τi ’s schedule, respectively. We
seek to derive (i) an upper-bound on theworkload done by the carry-

in job as a function of ∆CIi , ii) an upper-bound on the workload

done by the carry-out job as a function of ∆COi , and iii) determine

concrete values for∆CIi and∆COi such that the interferingworkload
of τi on task τk cannot be larger under any possible execution
scenario. To characterize the execution pattern of a carry-in and
carry-out job of τi , we introduce the notion of workload distribution.

Definition 5 (Workload Distribution). For a given task τi
and a given schedule S of τi ’s subtasks, the workload distribution

WDS
i = [B1, . . . ,Bℓ] describes S as a sequence of consecutive blocks.

Each block Bb ∈ WD
S
i is a tuple (wb ,hb ) with the interpretation

that there are hb subtasks (height) of Gi executing during wb time
units (width) in S , immediately after the completion of the subtasks

that execute in the (b − 1)th block.

Note thatWDS
i does not provide any information about the

precedence constraints in the DAGGi , neither it is required for S to
be a valid schedule ofGi . Also, according to Def 5, every interfering
job of a task τi is modeled in [15] with a workload distribution

WDS
i that comprises only one block B1 = (

Wi
m ,m).

5 CARRY-IN
This section presents the analysis to compute the carry-in workload
of a higher-priority task τi in the problem window [rk , rk + ∆) of
τk . Remember that the carry-in job is the irst job of τi that enters
the window of interest such that its release time ri is earlier than rk
and its deadline falls within [rk , rk +∆). Therefore, to upper-bound
the interfering workload generated by the carry-in job, we need
to determine which subtasks of τi may execute within the carry-

in window [rk , rk + ∆CIi ), either fully or partially. Intuitively, to
maximize the interfering workload the carry-in job should execute
as much workload as possible, as late as possible.

For ease of understanding, we will use Fig. 3a as an example task
throughout our discussion on the carry-in job.
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(a) DAG example. Numbers
in nodes are their WCET.

(b) Workload distribution

WDUCI
i . Numbers in blocks

are their height.

Figure 3: Example for the carry-in interfering workload.

5.1 Upper-bounding the carry-in workload
When the degree of parallelism of the DAGGi is not constrained by
the number of cores (assumingm = ∞ for instance), the schedule of
Gi that yields the maximummakespan is simply that in which every
subtask executes for its WCET. We call this particular schedule
łunrestricted carry-inž (UCI ). If fj denotes the relative completion
time of each subtask vj ∈ Vi inUCI , then it holds that:

fj =



Cj if vj is the source

Cj + max
vh ∈pred (vj )

( fh ) otherwise (3)

Note that the length (makespan) ofUCI is given by the comple-
tion time fni of the sink ofGi and according to Eq. (3), fni is equal
to the critical path length Li .

Assuming that the source of τi starts executing at a relative time
0, the number of subtasks inUCI that execute at any time t ∈ [0,Li )
can be computed by the function AS (t ) deined as

AS (t ) =
∑

vj ∈Vi

actv (vj , t ) (4)

where actv (vj , t ) is equal to 1 if vj is executing at time t and 0
otherwise. That is,

actv (vj , t ) =

1 if t ∈

[
fj −Cj , fj

)

0 otherwise
(5)

Let Fi be the set of inishing times of the subtasks vj ∈ Vi (with-
out duplicates) sorted in non-decreasing order. We build a workload

distributionWDUCI
i modeling the schedule UCI .WDUCI

i has

as many blocks as there are elements in Fi . The b
th element of

WDUCI
i is the tuple (tb+1 − tb ,AS (tb )) such that tb is the bth

time instant in the ordered set {0} ∪ Fi . That is,WD
UCI
i mod-

els the maximum parallelism of τi at any time t assuming that all
subtasks execute for their WCET. An example of such workload
distribution is depicted in Fig. 3b for the DAG presented in Fig. 3a.

Based on both theworkload distributionWDUCI
i and theWCRT

Ri estimated by Eq. (2), we compute an upper-bound on the inter-
fering workload produced by τi ’s carry-in job within its carry-in

window [rk , rk +∆
CI
i ). To do so, we push the workload distribution

WDUCI
i as much as possible łto the rightž. We irst align the end

ofWDUCI
i with the worst-case completion time of the carry-in

job of τi . That is, we align the end ofWD
UCI
i with the time-instant

rk + ∆
CI
i − (Ti − Ri ) (see Fig. 2). Therefore, the carry-in job of τi is

released at rk +∆
CI
i −Ti and completes at most at rk +∆

CI
i −Ti +Ri .

(a) (b)

Figure 4: Interference (blue block) onWDUCI
i critical path.

Next, we compute the cumulative workload found in the last

∆CIi − (Ti − Ri ) time units of the workload distributionWDUCI
i .

Since the problem window starts at rk and the carry-in job must

complete by rk + ∆
CI
i − (Ti − Ri ), the part of the carry-in job that

efectively interferes with τk is given by ∆CIi − (Ti −Ri ). Therefore,
under the scheduleUCI , the maximum workload produced by τi ’s
carry-in job is upper-bounded by the function1:

CIi (WD
UCI
i ,∆CIi ) =

|WDUCI
i |

∑

b=1

hb ×

[
∆CIi −Ti + Ri −

|WDUCI
i |

∑

p=b+1

wp

]wb

0
(6)

Eq. (6) returns 0 if ∆CIi is smaller than (Ti − Ri ) (i.e., if the carry-
in job of τi completes before the beginning of the problem win-
dow). Otherwise, it sums the height hb of the workload distribution

WDUCI
i in its last ∆CIi − (Ti − Ri ) time units.

Example 1. If ∆CIi = 9, Ti = 20, Ri = 15 andWDUCI
i is given

by the workload distribution presented in Fig. 3b, then Eq. (6) sums

the height of the blocks in the last ∆CIi − (Ti − Ri ) = 4 time units

ofWDUCI
i . Hence, it gives us CIi (WD

UCI
i ,∆CIi ) = 6. If ∆CIi was

equal to 4, then Eq. (6) would return 0 since ∆CIi − (Ti − Ri ) is then

smaller than 0.

Wenowprove that theworkload imposed by the carry-in job of τi
is upper-bounded by the workload distributionWDUCI

i , when the

end ofWDUCI
i is aligned with the time-instant (rk +∆

CI
i −Ti +Ri ).

Recall that Ri is computed by Eq. (2).

The workload distributionWDUCI
i assumes that (i) all subtasks

of τi execute for their WCET, (ii) the number of cores does not
limit τi ’s parallelism and (iii) the carry-in job of τi executes as one

block just before its completion time at (rk + ∆CIi −Ti + Ri ). We
prove in Lemmas 2 to 4 that those three assumptions maximize the
interfering workload of τi in the carry-in window.

Lemma 2. The interfering workload generated by the carry-in job
of a higher priority task τi is maximized when all its subtasks execute
for their WCET.

Proof. If a subtask vj ∈ Vi executes for less than its WCET Cj ,
then eithervj contributes less to the interferingworkload (assuming
that vj is executed within the carry-in window), or it may allow
its successors (and subsequently its descendants) to execute earlier.
In the latter case, it may cause those descendants to inish before
(instead of within) the carry-in window and thus reduce the total
interfering workload. □

1[x ]
y
z =max {min {x, y }, z }, that is,y and z are an upper-bound and a lower-bound

on the value of x , respectively.
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(a) (b)

Figure 5: y units of workload (green blocks) ofWDUCI
i are

moved in the carry-in window.

Lemma 3. Let Ri be an upper-bound on the worst-case response
time of τi and letWDi be any workload distribution of length Li
representing any possible schedule of τi . Assume thatWDi is aligned

to the right with the time-instant (rk + ∆
CI
i −Ti +Ri ). The workload

that can be generated byWDi in the carry-in window cannot be
increased by delaying subtasks in τi ’s critical path.

Proof. Remember that the length of the workload distribution
WDi is Li , i.e., the length ofWDi is equal to the length of the
critical path of τi . Therefore, there must be a subtask of each τi ’s

critical path executing at any time instant between (rk +∆
CI
i −Ti +

Ri − Li ) and (rk + ∆
CI
i −Ti + Ri ) (becauseWDi is aligned to the

right with (rk + ∆
CI
i −Ti + Ri )). This case is illustrated on Fig. 4a.

Now consider the case whereWDi is subject to self- and/or
higher-priority interference such that the execution of at least one
subtask vj of a critical path of τi is delayed by x time units.

Postponing the execution of vj by x time units leads to move
both the workload of vj and its descendants x units łto the rightž.
Becausevj belongs to a critical path of τi , the length of τi ’s carry-in
job schedule is increased by x (see Fig. 4b). However, because Ri is
assumed to be an upper-bound on τi ’s worst-case response time,

τi ’s carry-in job cannot complete later than (rk + ∆CIi −Ti + Ri ).
Therefore, as visualized in Fig. 4b, it is not the subtask vj or its
descendants that are moved by x time units łto the rightž, but
instead it is all the workload executed by predecessors of vj that is
pushed by x time units to the left. Hence, the workload executed

by τi in the carry-in window [rk , rk + ∆
CI
i ) can only decrease. □

Lemma 4. Let Ri be the upper-bound on the worst-case response

time of τi computed by Eq. (2). AligningWDUCI
i to the right with

the time-instant (rk + ∆
CI
i −Ti + Ri ) gives an upper-bound on the

maximum interfering workload that can be generated by τi in the
carry-in window, independently of the interference imposed on τi .

Proof. Remember that the length of WDUCI
i is Li . Hence,

Lemma 3 proved that the workload generated in the carry-in win-
dow cannot increase by interfering with the critical path of τi .
Therefore, this proof needs to show that the claim is still true even
when the interference exerted on τi does not interfere with its
critical paths but may delay the execution of other subtasks of τi .

The proof is by contradiction. Assume that there is a schedule
of τi such that y extra units of workload enter the carry-in window

[rk , rk + ∆
CI
i ) comparatively toWDUCI

i by delaying subtasks of
τi . By the above discussion, those subtasks do not belong to any
critical path of τi and the length of τi ’s schedule is therefore not
afected, i.e., it remains equal to Li .

Let x be the maximum distance between the execution instant
inWDUCI

i of any of the delayed subtasks, and the beginning of
that carry-in window (see Fig. 5a). That is, at least one subtask has
been delayed by at least x time units to enter the carry-in window.

Sincem subtasks are allowed to execute in parallel onm cores
and the critical path of τi is not delayed, postponing a subtasks by
x time units implies that at least (m − 1) × x interfering workload
executes in parallel with the critical path to prevent the delayed
subtask to execute on any of them cores. Additionally, note that the
y units of shifted workload do not interfere with the critical path
either since by assumption the schedule length is not increased.
Therefore, we have at least

(m − 1) × x + y

workload that does not interfere with the critical path but execute
in parallel with it instead.

Let R′i be an upper-bound on the actual response time of τi ’s
carry-in job under this modiied schedule. Since Ri is computed
with Eq. (2), and Eq. (2) assumes that all higher priority jobs and all
subtasks that do not belong to the critical path of τi interfere with
it, R′i must be smaller than Ri and we have

R′i ≤ Ri −

(

(m − 1) × x + y

m

)

= Ri −

(

m × y

m
+

(m − 1) × (x − y)

m

)

≤ Ri − y −
(m − 1) × (x − y)

m
(7)

We analyse two cases:

• If y ≤ x , then the last term in (7) is negative and we have
R′i ≤ Ri − y. Hence, the response time of τi and thus the
length of τi ’s schedule in the carry window has been reduced
by at leasty time units (see Fig. 5b). Since at least one subtask
of each critical path of τi must execute at each of those time
units (because the length of the schedule is Li ), the workload
in the carry-in window has decreased by at least y time
units. This is in contradiction with the assumption that the
workload increased in the carry-in window.
• If y > x , then the last term of (7) is positive and we have
R′i ≤ Ri −y − (x −y) = Ri −x . Hence, τi ’s response time has
reduced by at least x time units. Therefore, the subtasks that
were delayed by x time units could not enter the carry-in
workload since the whole schedule of τi is pushed to the left
by x time units too (see Fig. 5b). Therefore, it contradicts the
assumption that extra workload of τi entered the carry-in
window by delaying subtasks by x time units.

The two cases above prove the claim. □

Theorem 1. The interfering workloadWCI
i generated by the carry-

in job of a higher priority task τi in a window of length ∆CIi is upper-

bounded by CIi (WDUCI
i ,∆CIi ).

Proof. The proof follows directly from Lemmas 2 to 4. □

5.2 Improved carry-in workload
The lemma below presents another upper-bound on the maximum
interfering workload that can be generated by a task τi in a carry-in

window of length ∆CIi . Since this upper-bound cannot be compared
with that given by Equation 6, Theorem 2 below shall present an
improved upper-bound that is simply the minimum between that
given by Equation 6 and that presented in Lemma 5.
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(a) DAG example. (b) Workload distributionWDUCO
i .

Figure 6: Running example for the carry-out workload.

Lemma 5. An upper-bound on the maximum interfering workload

that can be generated by a task τi in a carry-in window of length ∆CIi
is given by max{0, ∆CIi − (Ti − Ri )} ×m.

Proof. Since τi cannot complete later than Ri , we know that
τi does not execute during the last (Ti − Ri ) time units of the
carry-in window (see Fig. 2). Therefore, τi executes during at most

max{0, ∆CIi − (Ti − Ri )) time units on m processors within the

carry-in window of length ∆CIi , hence the claim. □

Theorem 2. The interfering workloadWCI
i generated by the carry-

in job of a higher priority task τi in a window of length ∆CIi is upper-

bounded bymin{CIi (WD
UCI
i ,∆CIi ), max{0, ∆CIi − (Ti −Ri )}×m}.

Proof. Follows from Theorem 1 and Lemma 5. □

6 CARRY-OUT
This section presents the analysis for computing an upper-bound
on the carry-out part of the interfering workload of a higher pri-
ority task τi in the problem window [rk , rk + ∆) of a task τk . The
carry-out job is the last job of τi that enters the window of interest
such that its release time is earlier than rk + ∆ and its deadline is
after rk +∆. Contrary to the carry-in job, the maximum interference
generated by the carry-out job of τi is found when it starts execut-
ing as soon as it is released and at its highest possible concurrency
level. That is, we are interested in pushing the workload of that job
as much as possible łto the leftž of the schedule. Also, contrary to
the carry-in and the body jobs, inding an upper-bound on the inter-
ference generated by the carry-out job does not necessarily imply
that its subtasks execute for their WCET. Indeed, unless the entire
workload can contribute to the interference generated by τi , one
must consider that any subtask may instead be instantly processed
(i.e., its execution time is 0). With this assumption, some dependen-
cies may be immediately resolved and the degree of parallelism in
the DAG is potentially increased, leading to more workload at the
beginning of the carry-out job.

Example 2. Consider the DAG in Fig. 6a. If every subtask executes
for its WCET then initially, only one subtask is active (v1) for 5 time
units. On the other hand, if the subtasks v1 and v4 both execute for 0
time units, then the subtasksv2,v3,v6 andv7 are instantly ready and
there are four subtasks active during the irst time unit. Thus, if the
carry-out window is only one time unit long, the latter case generates
more workload.

Hence, we seek to derive a schedule that maximizes the cumula-
tive parallelism throughout the execution of the job. We call this
schedule łunrestricted carry-outž (UCO).

Figure 7: Decomposition tree of the NFJ-DAG in Fig. 6a.

6.1 DAG’s maximum parallelism
Computing the maximum degree of parallelism in an arbitrary
graph consists in identifying the largest set of subtasks that can
execute concurrently. The complexity of computing the maximum
parallelism of a DAG is therefore equivalent to the problem known
as the maximum independent set problem in graph theory [9]. For
DAGs in particular, this problem is known to be NP-hard in the gen-
eral case [9]. Hence, we restrict our attention to a well-structured
(less general) type of DAG, which we call łnested fork-join DAGž
(NFJ-DAG). We deine a NFJ-DAG2 recursively as follows.

Definition 6 (Nested Fork-Join DAG). A DAG comprised of
two nodes connected by a single edge is NFJ. If G1 and G2 are two
independent NFJ-DAGs, then the DAG obtained through either of the
following operations is also NFJ:
a) Series composition: merge the sink of G1 with the source of G2.
b) Parallel composition: merge the source of G1 with the source of
G2 and the sink of G1 with the sink of G2.

The series composition links two NFJ-DAGs one after another,
whereas the parallel composition juxtaposes two NFJ-DAGs by
merging their sources and sinks. For example, the DAG of Fig. 6a is
not a NFJ-DAG because it cannot be constructed without violating
the rules in Def. 6. However, if the edge (v4,v5) is removed, then
the DAG becomes NFJ.

Many eicient algorithms exist in the literature to identify if a
DAG is NFJ [11, 17]. However, it is out of the scope of this paper to
describe how those algorithms work. We assume here that one of
those tests is performed on the graph Gi describing τi ’s structure.
If it turns out that the original DAGGi is not NFJ, a transformation
is required. Traditionally, in graph theory, the transformation is
performed by adding new edges between conlicting subtasks, so
that the original precedences are preserved [10]. However, we are
interested in removing edges so as to reduce the number of prece-
dence constraints. This way, the set of all the valid schedules of τi
(those that satisfy the precedence constraints of its original DAG
Gi ) is a subset of all the valid schedules of the resulting NFJ-DAG.
That’s because any schedule derived according to the DAG Gi will
always respect all the precedence constraints of the NFJ-DAG. As
a result, the maximum carry-out workload that can be generated
by the NFJ-DAG is at least as large as the maximum interfering
workload that can be generated by the initial DAG Gi .

Let us refer to a subtask vj as a join-node if its łin-degreež is
larger than one, i.e. |pred (vj ) | > 1. Similarly, we refer to a subtask
vj as a fork-node if its out-degree is larger than one, i.e. |succ (vj ) | >
1. According to Def. 6, a DAG is NFJ if and only if it respects the
following property.

2In graph theory, it is known as two terminal series parallel digraph [11].
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Property 1. Let Ji be the set of join-nodes in Vi and let Fi be
the set of fork-nodes in Vi . DAG Gi is a NFJ-DAG if ∀vj ∈ Ji , there
exists a subgraphG ′ ofGi such that vj is the sink ofG

′, the source of
G ′ is a fork-node vf ∈ Fi and

∀va ∈ G
′ \ {vf ,vj },∀vb ∈ {succ (va )∪pred (va )},vb ∈ desce (vf )∪

vf ∧vb ∈ ances (vj ) ∪vj .

Proof. The property directly follows from Def. 6, which en-
forces that any join-node is the result of a parallel composition.
Hence, for every join-node vj there must exist a fork-node vf such

that the subgraphG ′ that has vf as a source and vj as a sink is NFJ.
Moreover, according to the construction rule deined in Def. 6, there
cannot be any edge between a node va ∈ G

′ and a node vb < G
′.

Therefore, ∀va ∈ G
′,∀vb ∈ {succ (va ) ∪ pred (va )},vb ∈ G

′, imply-
ing that vb ∈ desce (vf ) ∪vf ∧vb ∈ ances (vj ) ∪vj . □

Using Property 1, a high-level algorithm for transforming a DAG

Gi into a NFJ-DAG G
N F J
i , can be deined as follows.

(1) Select the unvisited join-node vj ∈ Ji that is the closest to
the source of Gi .

(2) Find all the edges (vc ,vj ) in Ei for which there is no fork-
node vf ∈ Fi such that Prop. 1 is true. Call this set the set

of conlicting edges EC .

(3) Remove as many edges in EC as needed for join-node vj to
respect Prop. 1 or its in-degree become equal to 1.

(4) For each edge (vc ,vj ) ∈ E
C that was removed, if succ (vc ) =

∅, add an edge (vc ,vni ) from node vc to the sink of Gi .
(5) Mark vj as visited. Repeat until all join-nodes have been

visited.

Example 3. The DAG of Fig. 6a has two join-nodes {v5,v8}. The
above algorithm starts by analyzing join-node v5. Since its ancestor
v4 has two direct successors {v6,v7} which are not ancestors of v5,
(v4,v5) is a conlicting edge. Because there is no other conlicting edge
with respect to join-nodev5, our only choice is to remove (v4,v5) from
the DAG. In the next iteration, the DAG is already NFJ as join-node
v8 does not violate Property 1.

By Def. 6, a NFJ-DAG can be reduced to a collection of basic
DAGs by successively applying series and parallel binary decompo-

sition rules. Therefore, a NFJ-DAG G
N F J
i can be represented by a

binary tree Ti , called decomposition tree (see Fig. 7 for an example).
Each external node (leaf) of the decomposition tree corresponds
to a subtask vj ∈ Vi , whereas each internal node represents the
composition type (series or parallel) applied to its subtrees. That
is, the children of a internal node are either smaller NFJ-DAGs
or subtasks. A node depicting a parallel or series composition is
labeled P or S , respectively. The algorithm proposed by Valdes et
al. in [17] can be used to eiciently build the decomposition tree of
any NFJ-DAG. Fig. 7 shows the decomposition tree of the NFJ-DAG
depicted in Fig. 6a (without the red edge).

The structure of the decomposition tree allows us to compute
the sets of subtasks yielding the maximum parallelism of a NFJ-

DAGG
N F J
i in an eicient manner. The recursive function par (TUi )

deined below returns a set of subtasks in a decomposition tree TUi
such that all subtasks in par (TUi ) can execute in parallel and the

size of par (TUi ) is maximum. Note that, in Equation (8) below, T L
i

and TR
i denote the left and right subtrees of the binary tree TUi

rooted in nodeU , respectively.

par (TUi ) =



par (T L
i ) ∪ par (T R

i ) if U is a P-node

par (T L
i ) if U is a S-node and

|par (T L
i ) | ≥ |par (T R

i ) |

par (T R
i ) if U is a S-node and

|par (T R
i ) | > |par (T L

i ) |

{U } otherwise

(8)

Eq. (8) works as follows. When nodeU denotes a parallel com-
position, the maximum parallelism corresponds to the sum of the
maximum parallelism of its children. On the other hand, the maxi-
mum parallelism in a series composition is given by the maximum
parallelism among its children. The recursion of Eq. (8) stops when
U is a leaf of the decomposition tree and hence corresponds to a

subtask in the associated NFJ graph. The set of subtasks in G
N F J
i

with maximum parallelism is obtained by calling par (.) forG
N F J
i ’s

decomposition tree.

6.2 Upper-bounding the carry-out workload
As discussed earlier in this section, the carry-out job of an interfer-
ing task τi generates the maximum interfering workload when it
starts executing as soon as it is released and at its highest possible
concurrency level. Therefore, we use the par (.) function deined

above to build the workload distributionWDUCO
i that character-

izes theUCO schedule for the carry-out job of τi .

The workload distributionWDUCO
i is constructed using Algo-

rithm 1. In short, the algorithm identiies the maximum number of
subtasks that can run in parallel at any point during the execution
of the carry-out job as follows. It inds the largest list of subtasks
which may execute in parallel according to the decomposition tree

ofG
N F J
i (line 3). Then, it adds a new block (line 5) to the workload

distributionWDUCO
i with a width equal to the minimum WCET

among those subtasks (line 4) and a height equal to the number of
elements in the list. Finally, it proceeds by updating the subtasks’
execution times in the reduction tree, i.e., decreasing their execu-
tion time by the amount of time they executed in parallel (line 6).
When a subtask reaches an execution time equal to 0 (it inishes), its
corresponding leaf is removed from the decomposition tree (lines
7-8). Whenever a node of the decomposition tree has no children
anymore, it is also removed from the tree. Algorithm 1 is called
iteratively until all leaves have been removed.

Example 4. The workload distributionWDUCO
i for the DAG of

Fig. 6a (without the red edge) is presented in Fig. 6b. It tells us that

Algorithm 1: ConstructingWDUCO
i of G

N F J
i .

Input :G
N F J
i , T

N F J
i - A NFJ-DAG and its decomposition tree.

Output :WDUCO
i - Workload distribution of the scheduleUCO .

1 WDUCO
i ← ∅;

2 while T
N F J
i , ∅ do

3 P ← par (T
N F J
i );

4 width ←min {Cp | vp ∈ P };

5 WDUCO
i ← [WDUCO

i , (width, |P |)];

6 ∀vp ∈ P : Cp ← Cp −width;

7 ∀vj ∈ T
N F J
i such that Cj = 0 : remove vj from T

N F J
i ;

8 end

9 returnWDUCO
i ;
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the NFJ-DAG in Fig. 6a can execute with a parallelism of 4 during 1
time unit. It can execute with a parallelism of 2 during 3 more time
units and then it can inally execute with a parallelism of 1 during 8
additional time units.

Similarly to what was presented for the carry-in workload, an
upper-bound on the carry-out interfering workload generated by τi
is calculated using the workload distributionWDUCO

i . Let ∆COi
denote the length of the carry-out window of τi , that is, the distance
between the last release of τi in the problem window and the end
of the problem window of the analyzed task τk (see Fig. 2):

∆COi = (rk + ∆) −

(

ri +

⌊
(rk − ri ) + ∆

Ti

⌋
×Ti

)

The maximum workload executed by τi in any window of length

∆COi is upper-bounded by the cumulative workload found in the

irst ∆COi time units of the workload distributionWDUCO
i . Such

cumulative workload is denoted by COi (WD
UCO
i ,∆COi ) and can

be computed by the function:

COi (WD
UCO
i , ∆COi ) =

|WDUCO
i |

∑

b=1

hb ×
[
∆COi −

b−1
∑

p=1

wp

]wb

0
(9)

Example 5. If ∆COi = 3 andWDUCO
i is given by the workload

distribution presented in Fig. 6b, then Eq. (9) sums the height of the

blocks inWDUCO
i up to 3. That is, COi (WD

UCO
i ,∆COi ) = 8. If

∆COi was equal to 10, then COi (WD
UCO
i ,∆COi ) would be equal to

16.

We now prove that COi (WD
UCO
i ,∆COi ) is indeed an upper-

bound onWCO
i .

Theorem 3. The interfering workload WCO
i generated by the

carry-out job of a higher priority task τi in a carry-out window of

length ∆COi is upper-bounded by COi (WD
UCO
i ,∆COi ).

Proof. Due to space limitation, we provide a proof sketch. First,

we note that the NFJ-DAG G
N F J
i , built from Gi by removing some

of Gi ’s edges, has a concurrency level at least as high as Gi . Hence,

the workload distributionWDUCO
i constructed based on G

N F J
i

has at least as much workload than Gi in the carry-out window.

SinceWDUCO
i is constructed with Alg. 1, and because Alg. 1

computes the maximum parallelism of G
N F J
i at each time t , the

height of WDUCO
i on its irst ∆COi time units maximizes the

workload that τi can generate in the carry-out window.

Finally, because COi (WD
UCO
i ,∆COi ) provides the cumulative

workload inWDUCO
i over its irst∆COi time units,COi (WD

UCO
i ,

∆COi ) upper-bounds the interfering workload that can be generated
by τi ’s carry-out job. □

6.3 Improved carry-out workload

Note that because the workload distribution WDUCO
i is built

based on the NFJ-DAG of τi and not on its DAG, the length of
the schedule UCO may become shorter than Li when any of the
removed edges belongs to the critical path ofGi . In fact, the length

ofWDUCO
i matches the critical path length ofG

N F J
i , which may

be shorter than the critical path of the initial DAGGi (since edges
may have been removed).

As stated by Cor. 1, task τi cannot executeWi time units in less
than Li time units. Therefore, we derive a new upper-bound on the
interfering workload of τi ’s carry-out job, that respects Cor. 1.

Lemma 6. The workloadWCO
i generated by the carry-out job of a

higher priority task τi in a window of length ∆COi is upper-bounded

byWi −max{0,Li − ∆COi }.

Proof. Directly follows from Lem. 1. □

Theorem 4. The interfering workload WCO
i generated by the

carry-out job of a higher priority task τi in a window of length ∆COi
is upper-bounded by min

{
COi (WD

UCO
i ,∆COi ), ∆COi ×m, Wi −

max{0,Li − ∆COi }
}
.

Proof. Because at mostm subtasks can execute simultaneously

onm cores, ∆COi ×m is an upper-bound on the workload that can

execute in a window of length ∆COi . Since COi (WD
UCO
i ,∆COi )

(Th. 3) andWi −max{0,Li − ∆COi } (Lem. 6) are also upper-bounds

onWCO
i , so is the minimum between the three values. □

7 SCHEDULABILITY ANALYSIS
In the previous two sections we have derived upper-bounds on
the workload produced by the carry-in and carry-out jobs of τi as

a function of ∆CIi and ∆COi , respectively. Now we show how to

balance ∆CIi and ∆COi such that the interfering workload in the
problem window of length ∆ is maximized.

The diiculty in computing the values ∆CIi and ∆COi comes from
the fact that the worst-case scenario for τk does not necessarily
happen when the problem window is aligned with the start of the
carry-in job or the end of the carry-out job (see Fig. 2). Furthermore,
the positioning of the problemwindow of τk relatively to the release
pattern of τi may have to vary according to the value of ∆ in order
to guarantee that the workload imposed by τi on τk is maximized.

Let ∆Ci be the sum of the carry-in and the carry-out windows

lengths, i.e, ∆Ci = ∆CIi + ∆
CO
i , and letWC

i (∆Ci ) be the maximum
workload produced by the carry-in and carry-out jobs of τi over

∆Ci . An upper-bound on the total interfering workload generated
by τi in a time interval of length ∆ is therefore given by

Wi (∆) =W
C
i (∆Ci ) +max


0,


∆ − ∆Ci

Ti




×Wi (10)

where the irst term is the maximum workload produced by both
the carry-in job and the carry-out job of τi and the second term
is the maximum number of body jobs that can be released by τi
within (∆ − ∆Ci ), multiplied by their maximum workload. To use

Eq. (10), we need to compute ∆Ci andWC
i (∆Ci ). The value of ∆

C
i

can be computed as follows.

∆Ci = ∆ −max

{

0,

⌊
∆ − Li

Ti

⌋}
×Ti (11)

∆Ci is given by aligning the problem window with the end of the
carry-out job of τi (which is no less than Li time units long ac-
cording to Cor. 1) and removing all the body jobs of τi from the
problem window ∆. This way, the number of full jobs of τi in the
problem window is maximized, and so is its interference. Note that

the fact that ∆Ci is computed by aligning the problem window with
the end of τi ’s carry-out job does not mean that τi ’s interference is
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maximized when ∆COi contains the full carry-out job of τi . Instead,
the window may be shifted left (yet without changing the number
of body jobs) to include a larger portion of τi ’s carry-in job if it
increases the total interfering workload generated by τi .

Lemma 7. The interfering workloadWi (∆) generated by a higher

priority task τi in a window of length ∆ is maximized when ∆Ci is

computed by Eq. (11).

Proof. Note that Li ≤ ∆Ci < Li + Ti when computed with
Eq. (11) (assuming that ∆ ≥ Li ). Two cases must be considered.

Case 1. If ∆Ci is shortened then at most one more body job can

be added to the problem window ∆ (remember that ∆Ci < Li +Ti ,
Li ≤ Ti and each body job execute in a window of length Ti ).
Therefore, the interfering workload generated by τi ’s body jobs
increases by at most Wi (i.e., the workload of exactly one job).

Moreover, because ∆Ci is nowTi time units shorter, one less job can

execute in ∆Ci and the interfering workloadWC
i (∆Ci ) generated by

τi ’s carry-in and carry-out jobs must decrease by at leastWi time
units too. Hence, in total, the interfering workloadWi (∆) does not
increase.

Case 2. The length of ∆Ci is increased. Using Equation (11), the

computed value of ∆Ci is ∆ minus an integer multiple of Ti and
thus, when injecting Equation (11) into Equation (10), we get that⌊
∆−∆Ci
Ti

⌋
=

∆−∆Ci
Ti

. By increasing ∆Ci by a positive value ϵ , it thus

holds that
⌊
∆−(∆Ci +ϵ )

Ti

⌋
<

⌊
∆−∆Ci
Ti

⌋
for ϵ > 0. Therefore, at least one

less body job can execute in the time window of length ∆ and the
interfering workload generated by τi ’s body jobs is decreased by at
leastWi . Furthermore, since the carry-out job is already completely

included in ∆Ci (i.e., ∆Ci ≥ Li ), in the best case increasing the length

of ∆Ci will allow us to fully integrate τi ’s carry-in job inWC
i (∆Ci ).

Hence,WC
i (∆Ci ) may be increased by at mostWi time units (the

workload of τi ’s carry-in job). Summing all the contributions to
the interfering workloadWi (∆), we have thatWi (∆) does not
increase. □

The problem of computingWC
i (∆Ci ) can be formulated as the

maximization of CIi (WD
UCI
i ,x1) +COi (WD

UCO
i ,x2) subject

to ∆Ci = x1 + x2. The optimal solution of this optimization prob-

lem is an upper-bound onWC
i (∆Ci ), whereas the inal values of

the decisions variables x1 and x2 correspond to ∆CIi and ∆COi ,
respectively. We solve this problem by using Algorithm 2 that is
based on a technique named łsliding windowž introduced in [14].
It computes the maximum solution to the optimization problem
deined above in linear time by checking all possible scenarios in

which the problem window is aligned with any block ofWDUCI
i

orWDUCO
i . Speciically, the scenarios tested can be divided into

two groups: (i) the beginning of the problemwindow coincides with

the start of a block inWDUCI
i ; or (ii) the problem window ends

at the completion of a block inWDUCO
i . It was proven in [14],

that the maximum interfering workload is obtained in one of those
scenarios.

By replacing the termsWi (Rk ) (1 ≤ i < k ) with Eq. (10) in
Eq. (2), a schedulability condition for task τk is stated in the next
theorem.

Algorithm 2: ComputingWC
i .

Input :∆Ci ,WD
UCI
i ,WDUCO

i .

Output :WC
i - Upper-bound on the workload of both the carry-in and

carry-out jobs.

1 WC
i ← COi (WD

UCO
i , ∆Ci );

2 x1← Ti − Ri ;

3 foreach (wb , hb ) ∈ WD
UCI
i in reverse order do

4 x1← x1 +wb ;

5 x2← ∆Ci − x1;

6 WC
i ←max {WC

i , CIi (WD
UCI
i , x1) +COi (WD

UCO
i , x2);

7 end

8 WC
i ←max {WC

i , CIi (WD
UCI
i , ∆Ci );

9 x2← 0;

10 foreach (wb , hb ) ∈ WD
RCO
i do

11 x2← x2 +wb ;

12 x1← ∆Ci − x2;

13 WC
i ←max {WC

i , CIi (WD
UCI
i , x1) +COi (WD

UCO
i , x2);

14 end

15 returnWC
i ;

Theorem 5. A task τk is schedulable under G-FP if Rk ≤ Dk ,

where Rk is the smallest ∆ > 0 to satisfy ∆ = Lk +
1
m (Wk − Lk ) +

1
m

∑

∀i<kWi (∆).

The task set is declared schedulable if all tasks are schedulable.
This can be checked by applying Theorem 5 to each task τi ∈ τ ,
starting from the highest priority task (i.e., τ1) and proceeding in
decreasing order of priority.

8 EXPERIMENTAL EVALUATION
The analysis presented in this paper has been implemented within
the MATLAB framework released by the authors of [15]. We follow
the same technique in [11] and [15] to generate random task sets
composed of DAG tasks. Each DAG in the set is initially a com-
position of two NFJ-DAGs connected in series. The NFJ-DAGs are
constructed by recursively expanding their nodes. Each node has
a probability ppar to fork and a probability pterm to join, where
pterm + ppar = 1. Each parallel branch as a maximum depth that
limits the number of nested forks. Additionally, the number of par-
allel branches leaving from a fork node is uniformly chosen within
[2,npar ]. Finally, a general DAG is obtained by randomly adding
directed edges between arbitrary pairs of nodes, granted that such
randomly-placed precedence constraints do not violate the łacyclicž
semantics of the DAG. The probability of adding an edge between
two nodes is given by padd . Once the DAG Gi of a task τi is con-
structed, the task parameters are assigned as follows. The WCET
Cj of a subtask vj ∈ Vi is uniformly chosen in the interval [1, 100].
The task length Li , the workloadWi and the maximum makespan
Mi of τi are computed based on the internal structure of the DAG
and the WCET of its nodes. The minimum inter-arrival time Ti is
uniformly chosen in the interval [Mi ,Wi/β], where the parameter β
is used to deine the minimum utilization of all the tasks. Therefore,
the task utilization becomes uniformly distributed over [β ,Wi/Mi ].
The relative deadline Di is set to its period Ti . When the number
of tasks is not speciied, we keep generating and adding new tasks
to the task set until the target total utilization Utot is met. Utot
is achieved by adjusting the period of the last task added to the
system. Priorities are assigned following the Rate Monotonic policy.

We compare our response time analysis (referred to as IRTA-FP)
to the test described in [15] (referred to as Mel-DAG). 500 task sets
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Figure 8: Number of schedulable task sets when varyingUtot , n andm.

were generated for each tested coniguration. In all experiments
reported herein, we have set ppar = 0.8, pterm = 0.2, depth =
2, npar = 5, padd = 0.2 and β = 0.035 ×m. These settings lead
to a rich variety of internal DAG structures: we observed diferent
degrees of parallelism and sequential segments in each task set.
The maximum parallelism of a DAG (i.e., the number of subtasks
that can execute in parallel) with such coniguration is 25.

In the irst set of experiments, the system utilization Utot was
varied in [1,m] by steps of 0.25. The left-most plot of Fig. 8 shows
the number of schedulable task sets when m = 8. For both low
and very high utilization (i.e., when all or none of the task sets are
schedulable), IRTA-FP and Mel-DAG are indistinguishable. How-
ever, for Utot ∈ [4, 6], IRTA-FP performs substantially better. In
particular, when Utot = 5.25, IRTA-FP schedules 341 task sets
against 156 for Mel-DAG.

The center plot of Fig. 8 reports the schedulability as a function
of the number of tasks n. n was varied from 4 to 20 by step of 2,
whilem was set to 8 and the platform utilization to 70%. We used
UUnifast to derived individual task utilizations (and consequently
their period) for a ixed value of n. IRTA-FP outperforms Mel-DAG
for any value ofn, although both tests converge to full schedulability
for larger n. Intuitively, it is easier to schedule many light tasks
than few heavy tasks.

The right-most plot of Fig. 8 illustrates how IRTA-FP performs
whenm varies according to the sequence [2, 4, 6, 8, 10, 12, 14, 16],
with Utot = 0.7m and n = 1.5m. Mel-DAG degrades for higher
values ofm, while IRTA-FP maintains a schedulabity ratio around
72%. Such improvement is due to the characterization of the carry-
in and carry-out jobs: IRTA-FP exploits the internal structure of
the DAGs to bound the parallelism of such jobs, hence limiting
the number of cores on which they execute for largerm; whereas
Mel-DAG assumes that all interfering jobs always use them cores.

9 CONCLUSIONS
With the ubiquity of massively parallel architectures, it is expected
that conventional real-time applications will increasingly exhibit
general forms of parallelism. In this paper, we studied the sporadic
DAG model under G-FP scheduling. Motivated by the fact that a
poor characterization of the higher priority interfering workload
leads to pessimistic analysis of parallel task systems, we presented
new techniques to model the worst-case carry-in and carry-out
workload. These techniques exploit both the internal structure and
worst-case execution patterns of the DAGs. Following a sliding win-
dow strategy that leverages from such workload characterization,

we then derived a schedulability analysis to compute an improved
upper-bound on the WCRT of each DAG task. Experimental results
not only attest the theoretical dominance of the proposed analy-
sis over its state-of-the-art counterpart, but also showed that its
efectiveness is independent of the number of cores and it substan-
tially tightens the schedulability of DAG tasks on multiprocessor
systems.
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