

Improved Bus Contention Analysis for 3-Phase

Tasks
The paper is accepted as a full paper in RTCSA 2023.

Conference Paper

*CISTER Research Centre

CISTER-TR-230505

2023/08/30

Jatin Arora*

Syed Aftab Rashid*

Geoffrey Nelissen

Cláudio Maia*

Eduardo Tovar*

Conference Paper CISTER-TR-230505 Improved Bus Contention Analysis for 3-Phase Tasks

© 2023 CISTER Research Center
www.cister-labs.pt

1

Improved Bus Contention Analysis for 3-Phase Tasks

Jatin Arora*, Syed Aftab Rashid*, Geoffrey Nelissen, Cláudio Maia*, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, syara@isep.ipp.pt, gnn@isep.ipp.pt, clrrm@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

The 3-phase task execution model has shown to be a good candidate to tackle the memory bus contention

problem. It divides the execution of tasks into computation and memory phases that enable a fine-grained

memory bus contention analysis. However, existing works that focus on the bus contention analysis for 3-phase
tasks, neglect the fact that memory bus contention strongly relates to the number of bus/memory requests

generated by tasks, which, in turn, depends on the content of the cache memories during the execution of those
tasks. These existing works assume that the worst-case number of bus/memory requests will be generated during

all the memory phases of all tasks, irrespective of the already existing content in the cache memory. This
overestimates the memory bus contention of tasks, leading to pessimistic worst-case response time (WCRT)

bounds.

This work proposes a holistic approach towards bus contention analysis for 3-phase tasks by (1) deriving an upper

bound on the actual cache misses of tasks that lead to bus/memory requests; (2) improving State-of-the-Art (SoA)
bus contention analysis of two bus arbitration schemes that dominate all existing works on the bus contention

analysis for 3-phase tasks; and (3) performing an extensive experimental evaluation under different settings to
compare the proposed analysis against the SoA. Results show that incorporating a tighter bound on the number of

cache misses of tasks into the bus contention analysis can lead to a significant improvement in task set
schedulability.

Improved Bus Contention Analysis for 3-Phase

Tasks

Jatin Arora†*, Syed Aftab Rashid†§, Geoffrey Nelissen‡, Cláudio Maia†, Eduardo Tovar†

†CISTER, ISEP, Porto, Portugal §VORTEX CoLab, Portugal ‡Eindhoven University of Technology, Eindhoven, the Netherlands

Abstract—The 3-phase task execution model has shown to
be a good candidate to tackle the memory bus contention
problem. It divides the execution of tasks into computation and
memory phases that enable a fine-grained memory bus contention
analysis. However, existing works that focus on the bus contention
analysis for 3-phase tasks, neglect the fact that memory bus
contention strongly relates to the number of bus/memory requests
generated by tasks, which, in turn, depends on the content of
the cache memories during the execution of those tasks. These
existing works assume that the worst-case number of bus/memory
requests will be generated during all the memory phases of all
tasks, irrespective of the already existing content in the cache
memory. This overestimates the memory bus contention of tasks,
leading to pessimistic worst-case response time (WCRT) bounds.

This work proposes a holistic approach towards bus contention
analysis for 3-phase tasks by (1) deriving an upper bound on the
actual cache misses of tasks that lead to bus/memory requests;
(2) improving State-of-the-Art (SOTA) bus contention analysis of
two bus arbitration schemes that dominate all existing works on
the bus contention analysis for 3-phase tasks; and (3) performing
an extensive experimental evaluation under different settings to
compare the proposed analysis against the SOTA. Results show
that incorporating a tighter bound on the number of cache misses
of tasks into the bus contention analysis can lead to a significant
improvement in the task set schedulability.

I. INTRODUCTION

The adoption of multicore platforms in hard real-time

systems, i.e., systems that run applications with stringent

timing requirements, is still under the scrutiny of academia

and industry. The main challenge that hinders the use of

commercial off-the-shelf (COTS) multicore platforms in hard

real-time systems is their unpredictability, which originates

from the sharing of different hardware resources, e.g., Last-

Level Cache (LLC), the interconnect (e.g., memory bus), and

the main memory. A task executing on one core of a multicore

platform has to compete with other co-running tasks (running

on other cores) to access these shared resources. For instance,

the shared memory bus connects all the cores to the main

memory. Due to such sharing, tasks running on different cores

may have to compete to access the memory bus in order to

read/write data/code from/to the main memory, resulting in

bus contention. This bus contention can significantly increase

the Worst-Case Execution Time (WCET) and Worst-Case

Response Time (WCRT) of tasks.

The 3-phase task model [3], [19] has been extensively used

by the state-of-the-art to tackle the memory/bus contention

*Corresponding author

problem [1], [5], [8], [9], [16], [18]. The 3-phase task model

divides the execution of each task into distinct computation

and memory phases such that a task can only access the

shared memory bus/main memory during its memory phase

and the core execute the task during the computation phase

without accessing the shared bus/main memory. Although the

3-phase task model makes bus/memory access patterns of tasks

more predictable, 3-phase tasks can still suffer bus/memory

contention, e.g., when multiple concurrent tasks running on

different cores try to access the bus/memory. Considering

the impact bus contention can have on the WCET/WCRT of

tasks, several works in the state-of-the-art [1], [8], [9], [16],

[25] have focused on analyzing the maximum bus contention

that can be suffered by 3-phase tasks and its impact on

taskset schedulability. In a few recent works, Arora et al. [8],

[9] have presented bus contention analysis for 3-phase tasks

that dominate all the existing bus contention analysis for 3-

phase tasks. However, when computing bus contention, these

works [8], [9] assume that the number of bus/memory requests

that can be generated during the memory phases of each job

of a task is always equal to its worst-case memory access

demand in isolation. Although this assumption is safe, it can

lead to pessimistic results, especially for platforms with cache

memories. Caches are smaller faster memories that store the

recently referenced data/instructions of tasks and allow for

data re-use, i.e., cache content fetched during the execution

of one job of a task may be re-used during the execution of

a subsequent job of the same task [20]. This can significantly

reduce the number of bus/memory requests generated during

the execution of subsequent jobs of tasks. However, this

assumption is not considered by [8], [9] and hence these works

result in overestimating the bus contention of tasks.

In this work, we exploit the interdependence between the

cache memory, bus requests and bus contention, i.e., the bus

contention suffered by tasks depends on the number of bus

requests which in turn depends on the number of cache misses,

to improve the analysis presented in [8], [9]. First, we analyze

the cache to tightly upper bound the number of cache misses

that lead to bus/memory requests during the memory phases.

We then improve the existing bus contention analyses [8],

[9] by incorporating a tighter bound on the number of cache

misses/bus requests into the analysis. Finally, we propose a

WCRT-based schedulability analysis by integrating the bounds

on bus contention into the WCRT of tasks. Formally, our main

contributions are:

(1) Upper bounding cache misses of 3-phase tasks to compute

bus/memory requests generated during the memory phases of

tasks;

(2) Using the derived bound on cache misses, we improve the

existing memory bus contention analyses for 3-phase tasks

considering fixed-priority partitioned scheduling [8], [9];

(3) Integrating the bounds on bus contention into a WCRT

formulation to perform schedulability analysis; and

(4) Extensive empirical evaluation under different settings to

compare our proposed improved bus contention analyses to

the existing bus contention analyses [8], [9]. Experimental

results show that bus contention analyses that consider the

interdependence between the cache misses and bus requests

can improve taskset schedulability by up to 55%.

II. SYSTEM MODEL

We assume a multicore system comprising m identical cores

(π1, π2, . . . , πm) that share the Last-Level Cache (LLC). The

LLC is assumed to be partitioned among all the cores such that

each core has an individual non-overlapping partition. Each

cache partition assigned to the cores is assumed to be large

enough to store all the data/code required by the task with the

largest memory footprint that executes on that core. We assume

that cache employs the write-back policy, is direct-mapped,

and, is unified, i.e., it can store data as well as instructions.

Furthermore, the write-allocate write-miss policy is assumed

in the case of write-miss, which means that the memory block

being written to is first loaded in the cache before performing

the write operation. Note that the cache analysis presented in

Section IV assumes a direct-mapped cache, however, it can be

extended to set-associative caches by building on the analysis

presented in [21].

We assume that a shared memory bus connects all cores

to the main memory. Similarly to existing works [1], [6], [8],

[9], [16], [22], [25], a single channel shared memory bus is

assumed that can handle one memory request at a time and

remains busy until the completion of the ongoing memory

request. The maximum service time taken by the bus and the

main memory to serve one memory request is given by tmem.

Although the proposed cache-aware analysis is applicable to

all the bus arbitration policies, in this work, we focus on

Round Robin (RR) and First-Come-First-Serve (FCFS) based

bus arbitration schemes studied in [8] and [9], respectively.

A. Task Model

This work considers the 3-phase task model (also known as

the AER model) in which the execution of a task is divided

into three phases namely Acquisition (A), Execution (E), and

Restitution (R). The A- and R-phases are considered memory

phases, i.e., the time intervals in which the task can fetch

and write-back data/code from/to the main memory via the

memory bus, and the E-phase is the computation phase, i.e.,

the time interval in which the task only performs computations

using the preloaded data and does not issue any main memory

request. When a task is released, it executes its A-phase to

fetch the required data/code from the main memory and store

it in cache memory. It then executes its E-phase by accessing

the data/code that is already available in the cache, without

the need to access bus/memory. Finally, the task writes the

modified data back to the main memory during the R-phase.

We consider a task set Γ comprising n sporadic tasks

(τ1, τ2, . . . τn) partitioned among cores at design time. Ti de-

notes the minimum inter-arrival time between two consecutive

jobs of task τi, and Di denotes its relative deadline. We

assume that tasks have constrained deadline, i.e., Di f Ti.

The maximum number of memory requests that can be issued

during the A-phase (resp. R-phase) of one job of task τi in

isolation is denoted by MDA
i (resp. MDR

i). Similarly, the

WCET of the E-phase is denoted by CE
i . Note that the values

of MDA
i , MDR

i , and CE
i can be obtained by static analysis,

measurement-based analysis, or by using the combination of

both [27]. Finally, the WCET of task τi in isolation is denoted

by Ci where Ci = (MDA
i +MDR

i)×tmem+CE
i . We assume

that tasks are scheduled using fixed-priority non-preemptive

scheduling with priorities assigned using any fixed-priority

algorithm such as Rate Monotonic/Deadline Monotonic [15].

Throughout the paper, we refer to the core on which task

τi (i.e., the task under analysis) executes as the local core,

denoted by πl. Similarly, any core other than the local core is

referred to as a remote core, usually denoted by πr.

For notational convenience, we define hepi,l to denote the

set of tasks with a priority higher than or equal to that of τi
running on a given core πl. Similarly, hpi,l (and lpi,l) denote

the set of tasks with a priority higher (and lower) than that of

τi, running on core πl.

III. BACKGROUND

This section presents the essential background on cache

related concepts that we later use to build our analysis in

Section IV.

When analyzing the worst-case memory access demand of

tasks, many existing works [1], [2], [5]–[9], [11], [16], [24],

[25] assume that each job of a task τi that execute during

a time window of length ∆ will always issue MDi main

memory accesses, i.e., the worst-case memory access demand

of τi in isolation. This, in other words, means that each job of

task τi that executes during ∆ will always load all its ECBs

from the main memory to the cache.

Evicting Cache Blocks (ECBs) [26]: The set of all memory

blocks that may be used by a task τi during its execution.

Clearly, this assumption is pessimistic, as subsequent jobs

of task τi that execute during ∆ can re-use some ECBs already

available in the cache due to a previous job of τi. These re-

usable ECBs are called Persistent Cache Blocks (PCBs) [20].

Persistent Cache Blocks (PCBs) [20]: All memory blocks used

by a task, that once loaded in the cache, will never be evicted

or invalidated by the task itself.

For a task τi executing in isolation, if all its PCBs are

already loaded in the cache, e.g., by a previous job of τi,

the memory access demand for subsequent jobs of τi can be

much lower than the worst-case memory access demand of

τi in isolation. This memory access demand of the task τi is

called residual memory access demand.

Residual Memory Access Demand [20]: The worst-case

memory access demand of any job of task τi considering that

all its PCBs are already loaded in the cache.

Considering the PCBs and residual memory access demand

of task τi, the total number of main memory accesses made by

all the jobs of task τi when it executes in isolation during any

time window of length ∆ is given by (see Lemma 1 of [20]):

MDtot
i (∆) = min

(⌈

∆

Ti

⌉

×MDi,

⌈

∆

Ti

⌉

× M̄Di + |PCBi|

)

(1)

where
⌈

∆
Ti

⌉

bounds the maximum number of jobs released

by task τi during any time window of length ∆; MDi is the

worst-case memory access demand of one job of τi measured

in isolation; M̄Di is the worst-case residual memory access

demand of one job of task τi; and |PCBi| represents the

cardinality of the set of PCBs of task τi, i.e., the total number

of PCBs of task τi.

Equation 1 upper bounds the total memory access demand

of a task in isolation. However, a task τi will likely have to

share the core on which it executes with other tasks. So, the

PCBs that were loaded by one job of τi can be evicted by other

tasks executing on the same core. This results in generating

additional main memory overhead called Cache Persistence

Reload Overhead (CPRO) [20].

Cache Persistence Reload Overhead (CPRO) [20]: The num-

ber of main memory accesses that τi must make due to the

evictions of its PCBs caused by the execution of tasks in

hepi,l \ τi.
The maximum CPRO that can be suffered by one job of task

τi is denoted by ρi, and is given by (from Theorem 1 of [20])

ρi = PCBi ∩

(

⋃

∀τk∈hepi,l\τi

ECBk

)

(2)

where PCBi is the set of PCBs of task τi; and
⋃

∀τk∈hepi,l\τi
ECBk is the set union of the ECBs of all tasks

in hepi,l \ τi that can potentially evict PCBs of τi.

IV. CACHE-AWARE BUS CONTENTION ANALYSIS FOR

3-PHASE TASKS

For a task τi scheduled using fixed-priority non-preemptive

scheduling, the WCRT is observed during the longest level-

i busy window [12]. Formally, the level-i busy window is

defined as follows.

[Level-i busy window (from [14])]: A level-i busy window is

a time interval (a, b) in which the pending workload of tasks

with priorities higher or equal to that of task τi is positive for

all t ∈ (a, b) and 0 at the boundaries a and b.

Due to the problem of bus contention, the length of the

level-i busy window depends not only on the behavior of set of

tasks running on the same core but also on the bus contention

caused by tasks running on remote cores. Consequently, a

plethora of works have been proposed in the literature to bound

bus contention for 3-phase tasks [1], [8], [9], [16]. Among all

these approaches, the works like [8], [9] have proven to be the

best approaches to bound bus contention for 3-phase tasks con-

sidering partitioned fixed-priority scheduling. Specifically, the

analysis presented in [8] bound the bus contention for 3-phase

tasks considering the RR bus arbitration policy. Similarly, the

analysis presented in [9] bound the bus contention for 3-phase

tasks considering the FCFS bus arbitration policy.

Even though the solutions presented in [8], [9] are safe, the

bounds on bus contention derived in [8], [9] can be pessimistic.

This is mainly because [8], [9] assume that the number of

bus/memory requests that can be generated during the memory

phases of each job of a task is always equal to its worst-

case memory access demand in isolation. As discussed in

Section III, this assumption can be pessimistic, as the cache

content fetched during the execution of one job of a task

may be re-used during the execution of a subsequent job

of the same task, resulting in a reduction in the number of

bus/memory requests. In the following subsections, we show

that a tighter bound on cache misses/bus requests of tasks can

improve the bus contention analysis presented of [8], [9].

A. Cache-aware Bus Contention Analysis for RR Policy

In the RR bus arbitration policy, when multiple cores require

access to the bus then each core can only access the bus during

its bus slot. Considering this, the bus contention that can be

suffered by tasks will also depend on the number of bus slots

that the local core as well as the remote core requires during

the level-i busy window. Building on this, the SOTA RR bus

contention analysis presented in [8] upper bounds the bus

contention by first computing the maximum number of bus

slots required by the local core as well as the remote cores.

The maximum number of bus slots required by tasks running

on the local core πl during the level-i busy window of length

Wi,l is upper-bounded by βπl
(Wi,l), given by the following

equation (From Lemma 1 of [8])

βπl
(Wi,l) =

∑

τh∈hepi,l

⌈

Wi,l

Th

⌉

×
(

⌈

MDA
h × tmem

SS

⌉

+

⌈

MDR
h × tmem

SS

⌉

)

+ max
∀τj∈lpi,l

{

⌈

MDA
j × tmem

SS

⌉

+

⌈

MDR
j × tmem

SS

⌉

}

(3)

In Equation 3, the term
⌈

Wi,l

Th

⌉

upper bounds the maximum

number of jobs that task τh can release during any time

window of length Wi,l. MDA
h (resp. MDR

h) is the maximum

number of main memory accesses that can be generated by

the A-phase (resp. R-phase) of one job of task τh; tmem is

the maximum time required to serve one memory request; SS

is the length of the bus slot which is always greater than or

equal to tmem. The term
⌈

MDA
h ×tmem

SS

⌉

(resp.
⌈

MDR
h ×tmem

SS

⌉

)

represents the maximum number of bus slots required by

the A-phase (resp. R-phase) of one job of task τh. Sim-

ilarly, due to fixed-priority non-preemptive scheduling, the

term max
∀τj∈lpi,l

{

⌈

MDA
j ×tmem

SS

⌉

+

⌈

MDR
j ×tmem

SS

⌉

} integrates the

maximum number of bus slots required by lower priority tasks.

Similarly, the maximum number of bus slots required by

tasks running on a remote core πr during the level-i busy

window of length Wi,l is upper-bounded by βπr
(Wi,l), given

by the following equation (From Lemma 2 of [8])

βπr (Wi,l) =
∑

τu∈Γ′
r

⌈

Wi,l

Tu

⌉

×

(

⌈

MDA
u × tmem

SS

⌉

+

⌈

MDR
u × tmem

SS

⌉

)

(4)

We can see in Equations 3 and 4 that when bounding

βπl
(Wi,l) and βπr

(Wi,l), it is assumed that the number of

memory requests issued by each A- and R-phase of every job

of each task τi is given MDA
i and MDR

i , respectively. As

discussed earlier, this can yield a pessimistic bound on bus

contention as well on the length of the level-i busy window

and WCRT. To address this, we will now present the cache-

aware bus contention analysis to improve the bounds on bus

contention considering the RR bus arbitration policy.

1) Upper Bounding Memory Access Requests of the Local

Core: In this section, we will upper bound the maximum

number of main memory accesses generated by all tasks that

execute on the local core πl during the level-i busy window

Wi,l. We start by bounding the maximum number of main

memory accesses during the A-phases of those tasks.

Applying the notion of PCBs and residual memory access

demand to the 3-phase task model, the total number of main

memory accesses that can be generated during the A-phases

of all the jobs of task τi when it executes in isolation during

the level-i busy window Wi,l is given by the following lemma.

Lemma 1. The total number of main memory accesses that

can be generated during the A-phases of all jobs of task τi
when they execute in isolation within any time window of

length Wi,l is given by MD
A,tot
i , where

MD
A,tot
i (Wi,l) = |PCBi|+M̄D

A
i + (

⌈

Wi,l

Ti

⌉

− 1)× M̄D
A
i (5)

where PCBi is the set of PCBs of task τi and M̄D
A

i is the

residual memory access demand of the A-phase of task τi.

Proof. τi releases at most
⌈

Wi,l

Ti

⌉

jobs in the level-i busy

window of length Wi,l. We know that the A-phase of the

first job of τi must load all its ECBs, i.e., |PCBi|+M̄D
A

i .

Furthermore, by definition of the residual memory access

demand M̄D
A

i , the A-phases of subsequent jobs of τi can

make at most (
⌈

Wi,l

Ti

⌉

− 1)× M̄D
A

i memory accesses. Thus,

Equation 5 bounds the maximum number of main memory

accesses that can be generated during all the A-phases of task

τi when it executes in isolation during Wi,l.

As discussed earlier, other tasks that can execute on the

same core as τi can evict the PCBs of τi. Thus, we also need

to account for the maximum CPRO that can be suffered by

task τi, when computing the memory accesses of its A-phases.

The maximum CPRO that can be suffered by an A-phase of

one job of task τi is upper bounded by the following equation

(from [20])

ρi = PCBi ∩

(

⋃

∀τh∈hepi,l\τi

ECBh

)

(6)

where PCBi is the set of PCBs of task τi, and
⋃

∀τh∈hepi,l\τi
ECBh is the set union of the ECBs of all tasks

in hepi,l \ τi that can potentially evict the PCBs of τi.

The key insight for Equation 6 is that a task τh ∈ hepi,l
can only evict the PCBs of task τi if the ECBs of τh shares

the same cache lines as the PCBs of τi. Note that a lower

priority task cannot evict the PCBs of τi within the level-i

busy window as it can only execute at the start of the level-i

busy window.

Using Equations 5 and 6, the maximum number of memory

accesses that can be generated during all the A-phases of τi
within a level-i busy window is given by the following lemma.

Lemma 2. The maximum number of main memory accesses

that can be generated during the A-phases of all the jobs of

task τi during any time window of length Wi,l is denoted by
ˆMDA

i (Wi,l), where

ˆMDA
i (Wi,l) = min

(

⌈

Wi,l

Ti

⌉

×MDA
i , |PCBi|+M̄D

A
i

+(

⌈

Wi,l

Ti

⌉

− 1)× (M̄D
A
i + |ρi|)

)

(7)

Proof. By the definition of MDA
i , the maximum number of

memory accesses that can be generated during the A-phases

of
⌈

Wi,l

Ti

⌉

jobs of τi cannot be greater than
⌈

Wi,l

Ti

⌉

×MDA
i .

From Equation 5, we know that |PCBi|+M̄D
A

i +(
⌈

Wi,l

Ti

⌉

−

1) × M̄D
A

i upper bounds the maximum number of main

memory accesses generated during the A-phases of τi dur-

ing Wi,l when it executes in isolation. Furthermore, from

Equation 6, we know that ρi bounds the maximum CPRO

that can be suffered by the A-phase of one job of τi. In the

worst-case, the CPRO can be suffered by the A-phases of

all the jobs except the A-phase of the first job of τi (as it

loads all its ECBs) that execute during Wi,l. Consequently,

(
⌈

Wi,l

Ti

⌉

− 1) × |ρi| bounds the maximum CPRO that can be

suffered by task τi during Wi,l. Therefore, Equation 7 upper

bounds the maximum number of main memory accesses that

can be generated during all the A-phases of all jobs of task τi
during Wi,l. The Lemma follows.

Applying Lemma 2 to each task in hepi,l, the maximum

number of main memory accesses that can be generated during

the A-phases of all tasks in hepi,l that can execute on the local

core πl during any time window of length Wi,l is given by

αA
i,l(Wi,l), where

αA
i,l(Wi,l) =

∑

∀τh∈hepi,l

ˆMDA
h
(Wi,l) (8)

Having bounded the number of main memory accesses that

can be generated during the A-phases, we can now bound the

maximum number of main memory accesses generated during

the R-phases of tasks.

The R-phase is mainly responsible to write-back all the dirty

cache lines (after the execution of the E-phase) to the main

memory. In order to tightly bound the number of main memory

accesses generated during the R-phase, a task should only

write back a subset of dirty cache blocks that can potentially be

used by other tasks to load their ECBs. However, achieving

this from the implementation perspective can be extremely

complex because: 1) determining the address of specific cache

lines that will be dirty at the end of the E-phase of the task

is complex, as it depends on the run-time state; 2) enforcing

a task to write-back a subset of dirty cache blocks (based

on the set of ECBs of other tasks) during the R-phase can

be extremely challenging, as it may require additional run-

time monitoring/control mechanisms. Therefore, we assume

that all cache lines that are dirty at the end of the E-phase

of a task will be written-back (and invalidated) during the R-

phase. By definition, all such cache lines cannot hold PCBs.

Consequently, the memory access demand of an R-phase of a

task will account for write-backs due to non-persistent memory

blocks and is given by MDR
i . Building on this, the maximum

number of main memory accesses that can be generated during

the R-phases of all tasks in hepi,l executing on the local core

during Wi,l is upper bounded by αR
i,l(Wi,l), where

αR
i,l(Wi,l) =

∑

∀τh∈hepi,l

⌈

Wi,l

Th

⌉

×MDR
h (9)

Now we will integrate the proposed cache analysis to compute

the maximum number of bus slots required by the local core

during the level-i busy window using the following lemma.

Lemma 3. The maximum number of bus slots required by

tasks executing on the local core πl during any time window

of length Wi,l is upper-bounded by β̂πl
(Wi,l), where

β̂πl
(Wi,l) =

∑

τh∈hepi,l

min
(

⌈

Wi,l

Th

⌉

×

⌈

MDA
h × tmem

SS

⌉

,

⌈

MDA
h × tmem

SS

⌉

+ (

⌈

Wi,l

Th

⌉

− 1) ×

⌈

(M̄D
A
h + |ρh|) × tmem

SS

⌉

)

+

⌈

Wi,l

Th

⌉

×

⌈

MDR
h × tmem

SS

⌉

+ max
∀τj∈lpi,l

{

⌈

MDA
j × tmem

SS

⌉

+

⌈

MDR
j × tmem

SS

⌉

}

(10)

Proof. From Lemma 2, we know that the min
(⌈

Wi,l

Ti

⌉

×

MDA
i , |PCBi|+M̄D

A

i + (
⌈

Wi,l

Ti

⌉

− 1) × (M̄D
A

i + |ρi|)
)

upper bounds the number of main memory accesses of the

A-phases of all jobs of task τh during Wi,l. Furthermore,

from Equation 3, we know that it is necessary to determine

the maximum number of bus slots required by the memory

phases of tasks that execute on the local core πl during

Wi,l. Consequently, using Lemma 2, the maximum number

of bus slots require by A-phases of all jobs of a task τh that

execute on the local core πl during Wi,l is upper bounded by

min
(⌈

Wi,l

Th

⌉

×
⌈

MDA
h ×tmem

SS

⌉

,
⌈

MDA
h ×tmem

SS

⌉

+(
⌈

Wi,l

Th

⌉

−1)×
⌈

(M̄D
A
h +|ρh|)×tmem

SS

⌉)

. This is further extended for all tasks

in hepi,l set (including task τi). Since we do not apply cache

persistence to the R-phases, the number of bus slots required

by R-phases can be computed identically to that of Equation 3,

i.e.,
⌈

Wi,l

Th

⌉

×
⌈

MDR
h ×tmem

SS

⌉

. Finally, the maximum number

of bus slots required by one job of a lower priority task is

bounded by max
∀τj∈lpi,l

{

⌈

MDA
j ×tmem

SS

⌉

+

⌈

MDR
j ×tmem

SS

⌉

}.

2) Upper Bounding Memory Access Requests of Remote

Core: As discussed in Section IV-A1, the maximum number of

main memory accesses of tasks depends on the PCBs, residual

memory access demand, and CPRO. The notion of PCBs and

residual memory access demand can be applied to the A-

phases of tasks running on the remote core identically to tasks

of the local core (using Equation 5). However, we cannot use

Equation 6 to compute CPRO because the interfering task τu
executing on πr may not be executing within an uninterrupted

level-u busy window during the whole interval Wi,l. Therefore,

we cannot assume that only tasks of higher or equal priority

execute between two jobs of τu. We must therefore consider

that any task executing on core πr may interfere with the

PCBs of τu during Wi,l. Thus, the maximum CPRO that can

be suffered by the A-phase of one job of task τu that executes

on a remote core πr is given by ρ̄u, where

ρ̄u = PCBu ∩

(

⋃

∀τk∈Γr\τu

ECBk

)

(11)

where Γr is the set of all tasks running on a remote core πr,

PCBu is the set of PCBs of task τu, and
⋃

∀τk∈Γr\τu
ECBk

is the set union of all ECBs of all tasks in Γr except τu.

Lemma 4. The maximum number of main memory accesses

that can be generated during the A-phases of all the jobs of a

task τu running on the remote core πr during any time window

of length Wi,l is given by ˆMDA
u (Wi,l), where

ˆMDA
u (Wi,l) = min

(

⌈

Wi,l

Tu

⌉

×MDA
u , |PCBu|+M̄D

A
u

+(

⌈

Wi,l

Tu

⌉

− 1)× (M̄D
A
u + ¯|ρu|)

)

(12)

Proof. The proof directly follows from Lemma 2 except that

the computation of ρ̄u is given by Equation 11.

Applying Lemma 4 to all tasks of the remote core, the

maximum number of main memory accesses that can be

generated during all the A-phases of all tasks released on the

remote core πr during any time window of length Wi,l is upper

bounded by
∑

∀τu∈Γr
ˆMDA

u (Wi,l).

As discussed earlier, we assume that a task can invalidate

and write back all its non-persistent cache blocks during the

R-phase. Considering this, the maximum number of memory

requests that can be generated during the R-phase of a task τu

is upper bounded by MDR
u . Consequently,

∑

τu∈Γ′
r

⌈

Wi,l

Tu

⌉

×

MDR
u bounds the maximum number of memory accesses that

can be generated during the R-phases of all tasks released on

a remote core πr during Wi,l. We can now use Equation 12

to bound the number of memory accesses of tasks executing

on a remote core πr under the RR bus arbitration scheme.

Lemma 5. The maximum number of bus slots required by

tasks running on the remote core πr during any time window

of length Wi,l is upper-bounded by β̂πr
(Wi,l), where

β̂πr (Wi,l) =
∑

τu∈Γ′
r

min
(

⌈

Wi,l

Tu

⌉

×

⌈

MDA
u × tmem

SS

⌉

,

⌈

MDA
u × tmem

SS

⌉

+ (

⌈

Wi,l

Tu

⌉

− 1) ×

⌈

(M̄D
A
u + ¯|ρu|) × tmem

SS

⌉

)

+

⌈

Wi,l

Tu

⌉

×

⌈

MDR
u × tmem

SS

⌉

(13)

Proof. The proof directly follows from Lemma 3 except that

the computation of ρ̄u is given by Equation 11.

In a similar manner to that of Equation 13, we can improve

Equations 9 and 16 of [8].

Since a system is likely to have multiple remote cores, we need

to bound the maximum number of bus slots that can be utilized

by tasks running on each of the remote core πr ∈ m such that

πr ̸= πl using Lemma 5. Based on the values of β̂πl
(Wi,l)

and β̂πr
(Wi,l), we can compute the maximum bus contention

ˆBusi,r(Wi,l) that the local core πl can suffer from a remote

core πr during Wi,l by improving equations 9 and 16 of [8].

Having bounded the maximum bus contention ˆBusi,r(Wi,l)
w.r.t each remote core πr ∈ m such that πr ̸= πl, we can

compute the total bus contention Busmax
i,l (Wi,l) that tasks of

local core πl can suffer due to tasks of all remote cores during

Wi,l using the following equation (from Equation 17 of [8]).

Busmax
i,l (Wi,l) =

m
∑

r=1,r ̸=l

ˆBusi,r(Wi,l) (14)

B. Cache-aware Bus Contention Analysis for FCFS Policy

The bus contention analysis presented in [9] considers the

FCFS bus arbitration policy. The first step of their analysis is to

compute the maximum number of times the bus contention that

can be suffered by tasks running on the local core πl during

Wi,l using Nπl
(Wi,l) where Nπl

(Wi,l) is upper bounded by

the following equation (from Equation 9 of [9]).

Nπl
(Wi,l) =

∑

τh∈hepi,l

⌈

Wi,l

Th

⌉

+ 1 (15)

The main insight behind Equation 15 is that the maximum

number of times bus contention suffered by tasks of the local

core depends on the number of jobs/memory phases that tasks

release on the local core πl during Wi,l.

Similarly, the next step is to compute the maximum number

of times the bus contention that can be caused by tasks running

on a remote core πr during Wi,l using Nπr
(Wi,l) where

Nπr
(Wi,l) is upper bounded by the following equation (from

Equation 10 of [9]).

Nπr (Wi,l) =
∑

τu∈Γ′
r

⌈

Wi,l

Tu

⌉

(16)

Equation 16 is also derived on the basis of the number of

jobs/memory phases that tasks running on a remote core πr

can issue during any time window of length Wi,l.

Finally, the maximum bus contention Busi,r(Wi,l) can

be computed using different cases based on the values of

Nπl
(Wi,l) and Nπr

(Wi,l). For example, Section 5.3 of [9]

computes the bus contention using three cases:

1) Nπl
(Wi,l) > Nπr

(Wi,l); 2) Nπl
(Wi,l) = Nπr

(Wi,l); and

3) Nπl
(Wi,l) < Nπr

(Wi,l).
We will now briefly discuss how the analysis in [9] can be

improved for case 1 and the same approach can be used for

all the cases considered in [9].

If Nπl
(Wi,l) > Nπr

(Wi,l), the maximum bus contention

that can be suffered by tasks executing on the local core due

to tasks running on a remote core πr during any time window

of length Wi,l is upper bounded by Busi,r(Wi,l), where (from

Equation 11 of [9])

Busi,r(Wi,l) =
∑

τu∈Γ′
r

⌈

Wi,l

Tu

⌉

×(MDA
u ×tmem+MDR

u ×tmem) (17)

We can see that the bound on bus contention given by

Equation 17 is pessimistic since it considers the maximum

number of memory requests issued during each memory phase

in isolation. To address this pessimism, we can apply the

exact cache analysis presented in Section IV-A to Equation 17.

Using Lemma 4 proposed in Section IV-A2, we can improve

and reformulate Equation 17 as follows.

ˆBusi,r(Wi,l) =
∑

τu∈Γ′
r

min
(

⌈

Wi,l

Tu

⌉

×MDA
u × tmem,

MDA
u × tmem + (

⌈

Wi,l

Tu

⌉

− 1)× (M̄D
A
u + ¯|ρu|)× tmem

)

+

⌈

Wi,l

Tu

⌉

×MDR
u × tmem

(18)

In a similar manner to that of Equation 18, we can improve

all cases considered in [9]. For example, the bus contention

for cases 2 and 3 in [9] is derived by forming sets MA
r ,

MR
r that contains the length of A- and R-phases in isolation.

Consequently, applying the proposed persistence-aware cache

analysis allows tightly bounding the length of each of the

memory phases, thus, the maximum bus contention.

After bounding the maximum bus contention ˆBusi,r(Wi,l)
that can be caused by each remote core πr ∈ m such that πr ̸=
πl, we can compute the total bus contention Busmax

i,l (Wi,l)
that tasks of local core πl can suffer due to tasks of all remote

cores during Wi,l using Equation 14.

V. WORST CASE RESPONSE TIME ANALYSIS

Having bounded the maximum number of memory requests

using the analysis presented in Section IV, the bound on the

maximum bus contention can be computed by improving the

bus contention analysis presented in [8] and [9]. Now we can

incorporate the resulting bound on the bus contention into the

WCRT analysis of tasks. For this, we propose improved WCRT

formulation that accounts for cache reuse when computing bus

contention as well as the maximum interference from higher

priority tasks. By applying cache persistence to higher priority

tasks, we can tightly bound the number of memory accesses

issued during their memory phases which in turn reduces the

length of their memory phases. Consequently, it can reduce the

overall interference that can be caused by the memory phases

of higher priority tasks that execute on the local core during

the level-i busy window. Building on this, the length of the

level-i busy window is given by the following lemma.

Lemma 6. The length of the level-i busy window for a given

task τi executing on core πl is denoted by Wi,l, where Wi,l is

given by the first positive solution to the fixed-point iteration

of the following equation

Wi,l = (αA
i,l(Wi,l) + αR

i,l(Wi,l))× tmem + max
τj∈lpi,l

{Cj}

+
∑

τh∈hepi,l

⌈

Wi,l

Th

⌉

× CE
h +Busmax

i,l (Wi,l)
(19)

Proof. From Equations 8 and 9, we know that αA
i,l(Wi,l) and

αR
i,l(Wi,l) upper bounds the maximum number of memory

requests that can be generated during the A- and R-phases

of all tasks in hepi,l (including task τi) that execute on

the local core πl during any time window of length Wi,l.

Assuming that each memory request will take tmem time units,

(αA
i,l(Wi,l)+αR

i,l(Wi,l))×tmem upper bounds the contribution

of the memory phases of all tasks in hepi,l that execute on

the local core πl during Wi,l. Due to the fixed priority non-

preemptive scheduling, at most one job of a task in lpi,l can

cause blocking to τi. This blocking is maximized by consider-

ing a task with the largest WCET among all tasks in lpi,l, given

by max
τj∈lpi,l

{Cj}.1 Similarly, the term
∑

τh∈hepi,l

⌈

Wi,l

Th

⌉

×CE
h

upper bounds the contribution of the E-phases of all tasks

in hepi,l (including task τi) that execute on the local core πl

during Wi,l. Finally, Busmax
i,l (Wi,l) is the total bus contention

that can be suffered by tasks that execute on the local core πl

from all remote cores during Wi,l and can be computed using

Equation 14 for the RR and FCFS bus arbitration policies. The

Lemma follows.

Note that Wi,l appears on both sides of Equation 19

so it needs to be solved iteratively using Wi,l =
∑

τh∈hepi,lCh+ max
τj∈lpi,l

{Cj}
as the starting point.

Having bounded the length of the level-i busy window, we

can compute the response time of the kth job of τi on core

πl, i.e., τi,k, using the following lemma.

Lemma 7. The response time of τi,k is denoted by Ri,k, where

Ri,k is given by the first positive solution to the fixed-point

iteration on the following equation:

Ri,k = (αA
i,l(Ri,k) + αR

i,l(Ri,k))× tmem + max
τj∈lpi,l

{Cj}

+
∑

τh∈hepi,l

⌈

Ri,k

Th

⌉

× CE
h +Busmax

i,l (Ri,k)
(20)

Proof. The proof directly follows from Lemma 6 except

considering any time window of length Ri,k.

1Note that a task in lpi,l with the largest A+R-phases was considered
while deriving the number of memory requests to compute bus contention
(see Lemma 3) so it is safe to consider max

τj∈lpi,l

{Cj} for maximum blocking.

Finally, the WCRT of task τi is denoted by Rmax
i and can

be computed by maximizing Equation 20 over all jobs of τi
that execute during the level-i busy window as follows.

Rmax
i = max

k∈[1,Ki]
{Ri,k} (21)

where Ki =
⌈

Wi,l

Ti

⌉

.

A taskset is only said to be schedulable if Rmax
i f Di for

each task τi ∈ Γ and the total bus utilization of the taskset is

less than or equal to 1, i.e.,
∑

τi∈Γ
(MDA

i +MDR
i)×tmem

Ti
f 1.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate how much cache-aware bus

contention analyses can improve the performance of the SOTA

RR-based [8] and FCFS-based [9] bus contention analysis. For

the RR analysis, we assume that the bus slot size is equal

to tmem. This is chosen due to the observation in [8] that

the bus contention is least when the bus slot size is equal to

tmem. Similarly, for the FCFS bus policy, we only consider

Fair Memory Access Model (FMAM) based bus contention

analysis of [9] since it is the best performing FCFS-based

analysis presented in [9] (see Section 8 of [9]).

For the default configuration, we model a quad-core plat-

form with a direct-mapped unified LLC of 32KB (1024 cache

sets, 32-byte block) evenly partitioned to the cores. By default,

we assume that there were 32 tasks in each taskset with 8

tasks randomly assigned to each core. Tasks utilization Ui

was generated using the UUnifast-discard algorithm [4]. Task

periods Ti were randomly generated in the range of [1000-

10000] using log-uniform distribution. The WCET in isolation

Ci was then assigned by applying the relation Ci = Ui × Ti.

The total memory access demand (MD) of tasks was derived

using Ci such that, MDi = rand(10%, 40%)×Ci. The length

of the A-phase was chosen randomly in the range [60%-90%]

of MDi, i.e., MDA
i × tmem = rand(60%, 90%)×MDi. The

length of the R-phase was then given by MDR
i × tmem =

MDi − (MDA
i × tmem). Finally, the length of the E-phase

was given by CE
i = Ci−(MDA

i +MDR
i)×tmem. We assume

that tasks are mapped to the cache partition sequentially and

in priority order. The number of ECBs of tasks was generated

using the length of A-phase, i.e., |ECBi|=
MDA

i

tmem . Similarly,

the number of PCBs for each task was generated randomly

in the range [20%-80%] of its ECBs. Task priorities were

assigned using rate monotonic algorithm [15]. Task deadlines

were equal to task periods, i.e., Di = Ti.

We compare the performance of the improved bus con-

tention analysis with the existing RR [8] and FCFS policy-

based bus contention analysis [9] by varying: 1) the core

utilization; 2) the number of cores; 3) the memory access

demand; and 4) the number of cache sets. We use taskset

schedulability, i.e., the percentage of schedulable tasksets, as

a metric to evaluate the performance of each approach.

In all figures, the improved bus contention analyses for

the RR computed using Section IV-A and FCFS bus policy

computed using IV-B are marked as "Improved RR" and

"Improved FCFS", respectively. Similarly, the State-of-the-Art

(a) RR bus policy, m=2 (b) RR bus policy, m=4 (c) RR bus policy, m=8

Fig. 1: Varying Core Utilization and Number of Cores for the RR bus arbitration policy

(a) FCFS bus policy, m=2 (b) FCFS bus policy, m=4 (c) FCFS bus policy, m=8

Fig. 2: Varying Core Utilization and Number of Cores for the FCFS bus arbitration policy

(SOTA) analysis for RR bus [8] is marked as "SOTA RR"

and for FCFS bus [9] is marked as "SOTA FCFS". For all

experiments, we randomly generated 1000 tasks per point. In

all figures, the x-axis represents the core utilization and the

y-axis represents the percentage of schedulable tasksets.

1) Varying Core Utilization: In this experiment, we varied the

core utilization of each core under the default configuration,

i.e., m=4, from 0.05 to 1 in steps of 0.025 and plotted the per-

centage of tasksets deemed schedulable by all the approaches.

Figure 1b (resp. Figure 2b) shows the percentage of tasksets

deemed schedulable using the improved analysis and SOTA

analysis for the RR bus arbitration policy (resp. FCFS bus arbi-

tration policy). For all approaches, we observe that increasing

the core utilization decreases the taskset schedulability. This

is because an increase in the core utilization also increases

tasks utilization which in turn increases the WCET of tasks

as Ci = Ui × Ti. This increase in WCET also increases the

number of memory requests, which in turn increases the bus

contention suffered by tasks, resulting in a decrease in taskset

schedulability. However, we note that the improved analyses

for FCFS and RR bus policies outperform the SOTA analysis.

For example, we can see in Figure 1b that at a core utilization

of 0.475, the improved RR analysis was able to schedule up to

34% more tasksets than the SOTA RR analysis [8]. Similarly,

we can see in Figure 2b that at a core utilization of 0.425,

the improved FCFS analysis was able to schedule up to 18%
more tasksets than the SOTA FCFS analysis [9]. These gains

were observed because the improved bus contention analyses

use a tighter bound on the number of LLC misses (computed

using the analysis in Section IV) when computing bus requests

and bus contention. On the contrary, the SOTA bus contention

analyses [8], [9] are cache-oblivious policies as they always

assume the worst-case number of LLC misses.

Interestingly, we observe that the gain of the improved

analysis over the existing analysis was significant for the

RR policy (see Figure 1b) but was relatively smaller for the

FCFS bus arbitration policy (see Figure 2b). This is mainly

because the FCFS bus contention analysis [9] mainly relies

on the number of jobs/memory phases that can suffer/cause

bus contention during a given time window. In such a case,

applying the improved analysis to the FCFS bus may reduce

the number of memory accesses per memory phase but it

may not reduce the number of memory phases. On the other

hand, the bus contention analysis for the RR policy [8] is fine-

grained because it depends on the number of bus slots required

by the local/remote core which further depends on the number

of memory phases as well as the number of memory requests

issued during each memory phase. Consequently, the improved

analysis is more effective for the RR bus arbitration policy.

2) Varying Number of Cores: In this experiment, we varied

the number of cores m from 2 to 8 and plotted the results for

the RR and FCFS bus policies in Figures 1 and 2, respectively.

As shown in Figures 1 and 2, for all the approaches, increasing

the number of cores decreases the taskset schedulability. For

instance, when m = 8, the number of remote cores as well as

the total number of tasks in the taskset increases, i.e., 64 tasks.

This results in increasing bus contention, which decreases

taskset schedulability. Due to the same reason, decreasing

the number of cores improves the performance of all the

approaches. Nonetheless, the improved analyses outperform

the SOTA bus contention analyses for the FCFS and RR bus

policies for all the values of m.

3) Varying Memory Access Demand (MD): In this exper-

iment, we varied the Memory Access Demand (MD) of all

tasks in the taskset. For this, we consider four configurations:

(a) Very Low (VL) MD, i.e., MDi = rand(5%, 20%) × Ci;

(a) RR bus policy, VL MD (b) RR bus policy, L MD (c) RR bus policy, H MD (d) RR bus policy, VH MD

Fig. 3: Varying Memory Demand (MD) for the RR bus arbitration policy

(a) FCFS bus policy, VL MD (b) FCFS bus policy, L MD (c) FCFS bus policy, H MD (d) FCFS bus policy, VH MD

Fig. 4: Varying Memory Demand (MD) for the FCFS bus arbitration policy

(a) Varying Cache Sets for RR bus policy (b) Varying Cache Sets for FCFS bus policy

Fig. 5: Varying Number of Cache Sets

(b) Low (L) MD, i.e., MDi = rand(20%, 40%) × Ci; (c)

High (H) MD, i.e., MDi = rand(40%, 60%) × Ci; and (d)

Very High (VH) MD, i.e., MDi = rand(60%, 80%)× Ci.

The resulting percentage of schedulable taskset for the RR

and FCFS bus policies are plotted in Figures 3 and 4, re-

spectively. From Figures 3 and 4, we can observe that for

all approaches, the MD of tasks can significantly impact the

taskset schedulability. Specifically, all approaches perform the

best under the VL MD configuration and the worst under the

VH MD configuration. This happens because increasing the

MD value can increase the number of memory requests which

in turn increases the bus contention and decreases the taskset

schedulability. However, for all the MD configurations, the

improved bus contention analyses dominate the existing bus

contention analyses. In fact, the improved RR analysis was

able to schedule up to 55% more tasksets than the SOTA

RR analysis at the core utilization value of 0.275 under VH

configuration as shown in Figure 3d.

4) Varying Cache Size: In the default configuration, we

assume that the total number of sets in the cache are 1024 and

256 cache sets are allocated per-core. In this experiment, we

consider different per-core cache set sizes, i.e., 64, 128, 256,

512, and plot the resulting taskset schedulability in Figure 5a

for the RR bus policy and in Figure 5b for the FCFS bus

policy. Note that increasing the number of cache sets allocated

per-core will effectively increase the total size of the cache.

For this experiment, we do not show the taskset schedulability

for the existing bus contention analyses as their schedulability

does not depend on the cache size.

We can see in Figures 5a and 5b that decreasing the per-

core cache sets to 64 or 128 also decreases the schedulability

for both the bus arbitration policies. Intuitively, this happens

because for a smaller number of cache sets per-core, i.e., 64,

128, the overlap between the PCBs of a task with ECBs of

other tasks increases. This leads to a higher CPRO which

results in increasing the number of memory requests as well

as bus contention. On the contrary, increasing the per-core

cache sets to 256 or 512 also increases the schedulability for

all approaches. This happens because increasing the number

of cache sets allocated per-core reduces the overlap between

the PCBs of tasks with ECBs of other tasks, thereby reducing

CPRO. This results in improving taskset schedulability.

Interestingly, we observe that the difference between the

taskset schedulability for cache set sizes of 256 and 512 is

negligible. This happens because, in the default configuration,

the value of MD is low, i.e., MDi = rand(10%, 40%)× Ci,

which is further divided among A- and R-phases, with the

length of A-phases used to generate ECBs of tasks. This

implies that a per-core cache set size of 256 is sufficient

enough to ensure that the PCBs of tasks do not overlap with

the ECBs of other tasks, i.e., tasks do not suffer CPRO.

Consequently, a further increase in the per-core cache set sizes

does not significantly impact taskset schedulability.

VII. RELATED WORK

Several works have focussed on the problem of memory

bus contention in multicore systems considering both the

generic task model as well as the 3-phase task model (see

survey [17]). For the generic task model, earlier works have

analyzed bus contention by considering TDMA-based bus

arbitration policies [10], [13], [24]. Dasari et al. [6] proposed

an analysis that computes bus contention of tasks considering

an unspecified work-conserving bus arbiter and integrates the

resulting bounds on bus contention into the WCRT analysis.

The work in [6] is extended in [2] to consider a wide range

of bus arbitration policies. Davis et al. [11] have proposed the

multicore response time framework that computes the WCRT

of tasks for different cache configurations and memory bus

arbitration policies. Similarly, for the 3-phase tasks, Maia et

al. [16] have proposed the bus contention analysis for the 3-

phase task model by considering fixed priority global schedul-

ing. Arora et al. have proposed the bus contention analysis for

3-phase tasks considering partitioned fixed-priority scheduling

using the RR [8] and FCFS bus arbitration policy [9].

Although all the above-mentioned works provide important

solutions to the bus contention problem, most of these works

focus only on the memory bus and ignore the interdependence

between the cache memory and the memory bus. To the

best of our knowledge, the first work that focused on the

interdependence between the number of bus/memory requests

of tasks and the cache memory was presented by Rashid et

al. [22]. In that work, the authors used the notion of cache

persistence (introduced in [20]) to produce tighter bounds on

the number of cache misses of tasks and integrated them into

the memory bus contention analysis. It was shown in [22]

that a tighter bound on the bus contention can be obtained by

analyzing and integrating the actual number of LLC misses of

tasks into the bus contention analysis rather than assuming the

worst-case number of LLC misses of tasks derived in isolation.

However, the work in [22] considers a generic task model, and

hence the bus contention analysis developed in [22] may not

be used for the 3-phase task model, which is the focus of

this work. Another recent work presented in [23] has focused

on the cache-aware schedulability analysis of PREM tasks.

However, the work in [23] only focuses on the cache analysis

and does not focus on the bus contention suffered by tasks.

VIII. CONCLUSION

In this work, we presented improved bus contention analysis

for 3-phase tasks. First, we present an analysis to upper bound

the number of cache misses of tasks that lead to bus/memory

requests. We then use that bound to improve bus contention

that can be suffered by tasks under different bus policies

and integrate it into a WCRT-based schedulability analysis.

Experimental evaluation performed using synthetic tasksets

under different settings show that improved bus contention

analyses can improve taskset schedulability by up to 55%. In

future works, we plan to extend our approach to heterogeneous

platforms.
Acknowledgments. This work was supported by the CISTER Research

Unit (UIDP/UIDB/04234/2020), financed by National Funds through FCT/MCTES

(Portuguese Foundation for Science and Technology); by project ADACORSA (EC-

SEL/0010/2019 - JU grant nr. 876019) financed through National Funds from FCT

and European funds through the EU ECSEL JU. The JU receives support from the

European Union’s Horizon 2020 research and innovation programme and Austria,

Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland, Netherlands,

Turkey - Disclaimer: This document reflects only the author’s view and the Commission

is not responsible for any use that may be made of the information it contains. This work

is also a result of the work developed under project Aero.Next Portugal (nº C645727867-

00000066) and FLY-PT (grant nº 46079, POCI-01-0247-FEDER-046079), also funded

by FCT under PhD grant 2020.09532.BD.

REFERENCES

[1] J. Arora et al. Bus-contention aware schedulability analysis for the 3-
phase task model with partitioned scheduling. In 29th RTNS, 2021.

[2] D. Dasari et al. A framework for memory contention analysis in multi-
core platforms. Real-Time Systems, 52, 06 2015.

[3] G. Durrieu et al. Predictable Flight Management System Implementation
on a Multicore Processor. In ERTS’14, TOULOUSE, France, 2014.

[4] P. Emberson et al. Techniques for the synthesis of multiprocessor
tasksets. WATERS’10, 01 2010.

[5] D. Casini et al. A holistic memory contention analysis for parallel real-
time tasks under partitioned scheduling. In RTAS, pages 239–252, 2020.

[6] D. Dasari et al. Response time analysis of cots-based multicores
considering the contention on the shared memory bus. In ICESS, 2011.

[7] G. Schwäricke et al. Fixed-Priority Memory-Centric Scheduler for
COTS-Based Multiprocessors. In ECRTS 2020, LIPIcs, 2020.

[8] J. Arora et al. Bus-contention aware wcrt analysis for the 3-phase task
model considering a work-conserving bus arbitration scheme. Journal

of Systems Architecture, 122:102345, 2022.
[9] J. Arora et al. Schedulability analysis for 3-phase tasks with partitioned

fixed-priority scheduling. Journal of Systems Architecture, 131, 2022.
[10] J. Rosen et al. Bus access optimization for predictable implementation

of real-time applications on multiprocessor systems-on-chip. In RTSS

2007, pages 49–60, 2007.
[11] R. I. Davis et al. An extensible framework for multicore response time

analysis. Real-Time Systems, July 2017.
[12] R. J. Bril et al. Worst-case response time analysis of real-time tasks

under fixed-priority scheduling with deferred preemption revisited. In
ECRTS’07, pages 269–279, 2007.

[13] T. Kelter et al. Bus-aware multicore wcet analysis through tdma offset
bounds. In 2011 ECRTS, pages 3–12, 2011.

[14] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. [1990] 11th RTSS, pages 201–209, 1990.

[15] C. L. Liu et al. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, January 1973.

[16] C. Maia et al. Schedulability analysis for global fixed-priority scheduling
of the 3-phase task model. In IEEE RTCSA, Hsinchu, Taiwan, 2017.

[17] C. Maiza et al. A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems. ACM Computing Surveys, 52(3):1–38, 2019.

[18] C. Pagetti et al. Automated generation of time-predictable executables
on multi-core. In RTNS 2018, POITIERS, France, October 2018.

[19] R. Pellizzoni et al. A Predictable Execution Model for COTS-Based
Embedded Systems. In RTAS, pages 269–279, USA, April 2011. IEEE.

[20] S. A. Rashid et al. Cache-persistence-aware response-time analysis for
fixed-priority preemptive systems. In 28th ECRTS, pages 262–272, 2016.

[21] S. A. Rashid et al. Bounding cache persistence reload overheads for
set-associative caches. In IEEE 26th RTCSA, pages 1–10, 2020.

[22] S. A. Rashid et al. Cache persistence-aware memory bus contention
analysis for multicore systems. In DATE, pages 442–447, 2020.

[23] S. A. Rashid et al. Cache-aware schedulability analysis of prem
compliant tasks. In DATE, pages 1269–1274. IEEE, 2022.

[24] A. Schranzhofer et al. Timing analysis for tdma arbitration in resource
sharing systems. In 2010 16th IEEE RTAS, pages 215–224, 2010.

[25] T. Thilakasiri et al. An exact schedulability analysis for global fixed-
priority scheduling of the aer task model. In 28th ASP-DAC, pages
326–332, 2023.

[26] H. Tomiyama et al. Program path analysis to bound cache-related
preemption delay in preemptive real-time systems. In 8th CODES2000

(IEEE Cat. No. 00TH8518), pages 67–71. IEEE, 2000.
[27] R. Wilhelm et al. The worst-case execution-time problem—overview of

methods and survey of tools. ACM TECS, 7(3):1–53, April 2008.

