IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

Implementing Slot-Based Task-Splitting
Multiprocessor Scheduling

Paulo Baltarejo Sousa
Bjorn Andersson
Eduardo Tovar

HURRAY-TR-100504
Version:
Date: 05-16-2010

Technical Report HURRAY-TR-100504

Implementing Slot-Based Task-Splitting Multiprocessor Scheduling
Paulo Baltarejo Sousa, Bjorn Andersson, Eduardo Tovar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
http://www.hurray.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of sporadic tasks on a multiprocessor to meet deadlines even at high processor
utilizations. We assume that task preemption and migration is allowed but because of their associated overhead, their
frequency of use should be kept small. Task-splitting (also called semi-partitioning) is a family of algorithms that offers
these properties. An algorithm in this class assigns most tasks to just one processor but a few tasks are assigned to two
or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors
simultaneously. A certain type of task-splitting algorithms, called slot-based split-task dispatching, is of particular
interest because of its ability to schedule tasks at high processor utilizations. Unfortunately, no slot-based task-splitting
algorithm has been implemented in a real operating system so far.

In this paper, we discuss challenges and design principles for implementing slot-based task-splitting algorithms on
multiprocessor systems and also present an implementation of such an algorithm; it is based on the Linux kernel 2.6.28.
We have conducted a range of experiments with an 8-core multicore desktop PC utilized to 88% with real-time tasks
executing empty for loops and we observe that the behavior of our implementation provides good correspondence
between theory and practice.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Implementing Slot-Based Task-Splitting Multiprocessor Scheduling

Paulo Baltarejo Sousa, Bjorn Andersson, and Eduardo Tovar
CISTER-ISEP Research Center
Polytechnic Institute of Porto
4200-072 Porto, Portugal
{pbsousa,bandersson,emt} @dei.isep.ipp.pt

Abstract— Consider the problem of scheduling a set of spo-
radic tasks on a multiprocessor to meet deadlines even at high
processor utilizations. We assume that task preemption and
migration is allowed but because of their associated overhead,
their frequency of use should be kept small. Task-splitting (also
called semi-partitioning) is a family of algorithms that offers
these properties. An algorithm in this class assigns most tasks to
just one processor but a few tasks are assigned to two or more
processors, and they are dispatched in a way that ensures that a
task never executes on two or more processors simultaneously.
A certain type of task-splitting algorithms, called slot-based
split-task dispatching, is of particular interest because of
its ability to schedule tasks at high processor utilizations.
Unfortunately, no slot-based task-splitting algorithm has been
implemented in a real operating system so far.

In this paper, we discuss challenges and design principles
for implementing slot-based task-splitting algorithms on mul-
tiprocessor systems and also present an implementation of such
an algorithm; it is based on the Linux kernel 2.6.28. We have
conducted a range of experiments with an 8-core multicore
desktop PC utilized to 88% with real-time tasks executing
empty for loops and we observe that the behavior of our
implementation provides good correspondence between theory
and practice.

Keywords-Multiprocessor scheduling, task-splitting, semi-
partitioned scheduling, Linux kernel.

I. INTRODUCTION

The real-time systems research community has developed
a comprehensive toolkit comprising scheduling algorithms
(RM and EDF), schedulability tests and implementation
techniques which have been very successful: they are cur-
rently taught at major universities world-wide; they are
incorporated in design tools and they are widely used in
industry. Unfortunately, the results were limited to computer
systems with a single processor only.

Today, a multiprocessor implemented on a single chip
(called multicore) is the preferred platform for many em-
bedded real-time applications however and this brings the
pressing need for developing an analogous toolkit for multi-
cores. Such a toolkit for multicore should ideally exhibit
the same properties as the uniprocessor toolkit exhibited
and that engineers valued: (i) high utilization bound; (ii) few
preemptions; (iii) dispatchers with low time-complexity; and
(iv) the ability to provide pre-run-time guarantees to sched-
ule sporadically arriving tasks to meet deadlines even with
deadlines much shorter than the minimum inter-arrival times.

Researchers have attempted to create real-time schedul-
ing algorithm with these properties. Partitioned scheduling
algorithms partition the task set and assign all tasks in one
partition to the same processor. This generates few preemp-
tions but unfortunately such algorithms have a utilization
bound of at most 50%. Global scheduling algorithms store
tasks in one global queue, shared by all processors. At
any moment, the m highest-priority tasks among those are
selected for execution on the m processors. A class of global
scheduling algorithms, called job-static priority algorithms
offers few preemptions but unfortunately, such algorithms
have a utilization bound of at most 50%. Pfair is a class of
global scheduling algorithms which uses dynamic priorities;
some algorithms in this class have the utilization bound
100% but unfortunately, they generate a large number of
preemptions.

During recent years, the research community has therefore
created a family of real-time scheduling algorithms which
exhibit all the above mentioned properties. This family
of algorithms is called rask-splitting or semi-partitioning
[11, 121, [3], [4], [5], [6], [7], [8], [9]. Recent evaluations
based on simulation experiments [3] and implementations in
real operating systems [10] have demonstrated the excellent
performance of this class of algorithms. The key idea of
these algorithms is that they assign most of the tasks
to just one processor but some of the tasks (called split
tasks) are assigned to two or more processors. Uniprocessor
dispatchers are used on each processor but they are modified
to ensure that a split task never executes on two or more
processors simultaneously.

One particularly interesting class of task-splitting algo-
rithms is those algorithms where time is subdivided into
timeslots such that within timeslots, processor reserves are
carefully positioned with a time offset from the beginning
of a timeslot. A split task is assigned to two or more
processor reserves located on different processors and the
positioning of the processor reserve in time is statically
assigned (relative to the beginning of a timeslot) so that no
two reserves serving the same split task overlap in time —
Fig. 2(a) depicts this. Among the types of split-task schedul-
ing algorithms, this is the class that provides the highest
utilization bound. In addition, its run-time dispatching does
not depend on any data structures that are shared among

all processors and therefore it has the potential to scale to
multicore processors with a very large number of processors.
For these reasons, we believe an implementation of a slot-
based task-splitting algorithm would be valuable.

Three implementations of multiprocessor scheduling algo-
rithms have recently been developed. Litmus RT 1111, [12],
[13] provides a modular framework for different scheduling
algorithms (global-EDF, pfair algorithms) for the Linux
kernel 2.6.32. Kato et al. [10] has also created a mod-
ular framework, RESCH, for using other algorithms than
Litmus®T (partitioned, semi-partitioned scheduling) for the
Linux kernel. Faggioli er al. [14] has implemented global-
EDF in the Linux kernel and made it compliant with POSIX
interfaces. The implementation of Litmus®T and the POSIX
compliant implementation do not support the class task-
splitting at all and hence they are not in the scope of our
interest. The framework by Kato et al. [10] shares some
of our goals in that it provides an implementation of task-
splitting algorithms. But it uses another type of task-splitting
(that is not slot-based split-task dispatching) which cannot
guarantee to meet deadlines at high processor utilization.
Hence, the current research literature provides no answer to
the question whether slot-based task-splitting multiprocessor
scheduling can be implemented and whether it works in
practice.

Therefore, in this paper, we show that slot-based task-
splitting multiprocessor scheduling can be implemented and
it works in practice. We do so by implementing a recently-
proposed algorithm based on slot-based split-task dispatch-
ing [2] in the Linux kernel 2.6.28!. It is a new scheduling
policy Sporadic Multiprocessor Scheduling (SMS) in the
modular scheduling framework in the Linux kernel and
we dub this implementation Sporadic Multiprocessor Linux
Scheduler (SMLS). We have conducted a range of experi-
ments with an 8-core multicore desktop PC utilized to 88%
with real-time tasks executing empty for loops. In order to
make the environment more controlled, we (i) set runlevel
to 1, (ii) disconnected the desktop PC from the network and
(iii) setup eight non-real-time tasks to ensure that the kernel
idle threads never start executing. With this experimental
setup, we observe that the behavior of our implementation
provides good correspondence between theory and practice.
Specifically, we observe that (i) no deadline misses occurred,
(ii) the release jitter was at most 33us and (iii) the time
when so-called reserves began deviates with at most 20us
from when they should occur.

The remainder of this paper is structured as follows.
Section II gives a background on task-splitting, in partic-
ular slot-based split-task dispatching and shows its related
challenges for implementation. Section III presents a new
task-splitting algorithm that is suited for implementation.

IThe source code of the implementation is available at
http://www.cister.isep.ipp.pt/activities/RESCORE/Software.ashx

Pl P2 ‘e P

1 Local Timcrr S~ -
T
/ ~

1 N -
Counter register

Generate an interrupt to local
processor when the counter reaches

Local Timer Local Timer

I Local Timer

Figure 1: Each processor (P;) has a local timer.

Section IV illustrates the new task-splitting algorithm that is
suited for implementation with an example. Section V shows
principles on how to implement slot-based task-splitting
and Section VI gives an overview of our implementation.
Section VII compares the actual behavior of SMLS to its
theoretical behavior. Section VIII gives conclusions.

II. BACKGROUND
A. System model

Consider n tasks and m identical processors. A task 7;
is uniquely indexed in the range 1..n and a processor in
the range 1..m. Each task 7; is characterized by worst-case
execution time C'; and minimum inter-arrival time 7; and by
the time that the execution must be completed, the deadline
D;. We assume 0 < C; < D;. If we do not state D; then we
assume that V7 : D; = T;. For convenience we also define:

» Th) ey

and let 7; ;, denote the k:th arriving job of task 7;.

A processor p executes at most one task at a time and
no task may execute on multiple processors simultaneously.
The utilization of task 7;, denoted wu;, is defined as % and
the system utilization, U, is defined as % DI

We assume that (i) all processors have the same instruc-
tion set and data layout (e.g. big-endian/little-endian), (ii) all
processors execute at the same speed and (iii) the speed at
which a task executes is independent of which processor
it executes on. We assume that the execution speed of a
processor does not depend on activities on another processor
(for example whether the other processor is busy or idle
or which task it is busy executing) and also does not
change at runtime. In practice, this implies that that (i) if
the system supports simultaneous multithreading (Intel calls
it hyperthreading) then this feature must be disabled and
(ii) features that allow processors to change their speed (for
example power and thermal management) must be disabled.

We assume that each processor has a local timer (see
Fig. 1). We assume that this timer provides two functions:
(i) one function allows reading the current real-time (that is
not calender time) as an integer; and (ii) another function
makes it possible to set up the timer to generate an interrupt
x time units in the future, where x can be specified.

TMIN = min(Tl, TQ,

B. Task-splitting

Consider n=m-+1 tasks with T;=1 and C; = 0.5+¢ (where
€ is a positive number smaller 1/6) to be scheduled on m
processors. It is easy to see that if task migration is not
allowed then there is a processor which is assigned at least
two tasks. And on this processor, the utilization exceeds
100% and hence a deadline miss occurs. This is problematic
since Uy = L. (0.5 + €) which becomes 1/2 as m — oo
and € — O; that is, a deadline miss can occur although only
50% of the entire processing capacity is requested.

Researchers observed [15], [1] that if the execution-
time of a task could be ”split” into two pieces then it is
possible to meet deadlines. For example, assign task 7; with
i€{1,2,3,...,m} to processor P; and assign task 7,11 to
two processors (for example processor 1 and processor 2)
so that a job by 7,41 executes 0.25+¢/2 units on one of
the two processors and 0.25+€/2 units on the other. This
makes it possible to meet deadlines, assuming that the two
“pieces” of task 7,41 are dispatched so that they never
execute simultaneously.

Many recent algorithms are based on this idea and they
differ in (i) how tasks are assigned to processors and split
before run-time and (ii) how tasks are dispatched, particu-
larly, how split tasks are dispatched at run-time. Anderson
et al. proposed [15] the idea that the second piece of a
job of a split task 7; should arrive 7); time units later.
This ensures that the two pieces of such a job do not
execute simultaneously but unfortunately it requires that
D, > 2T; so it is recommended only for soft real-time tasks.
Andersson and Tovar [1] proposed the idea that time should
be subdivided into timeslots of unequal duration and within
each timeslot, the first piece of a split task is executed in
the beginning of the timeslot and the second piece of a split
task is executed in the end of the timeslot. This provides
hard real-time scheduling with D; = T; and it allows good
utilization bounds to be attained and it provides bounds on
the number of preemptions but it works only for periodic
tasks. Levin et al. [16] proposed a related algorithm but
with the ability to schedule sporadic tasks. Both algorithms
[1], [16] require that when two absolute deadlines are close
in time, a task can be assigned a very short segment of
time and hence these algorithms [1], [16] are difficult to
implement in practice. Kato and Yamasaki [8] proposed
a suspension-based split-task dispatching approach where
the second piece of a split task is suspended whenever the
first piece is executing. This ensures that a split task never
executes on two or more processor simultaneously and it
provides hard real-time scheduling.

The two approaches for split-task dispatching that we
believe are the most promising for implementing and use
in practice are (i) job-based split-task dispatching [6], [9]
and (ii) slot-based split-task dispatching [2]. Job-based split-
task dispatching splits a job into two or more subjobs

and forms a sequence of subjobs and sets the arrival time
of a subjob equal to the absolute deadline of its pre-
ceding subjob. Job-based split-task dispatching provides a
utilization bound greater than 50% and few preemptions.
It has been implemented in a real operating system and
through experimental studies [10] of that implementation it
was found to outperform many other non-split approaches.
(Algorithms using slot-based split-task dispatching were not
part of the evaluation.) The main drawback of job-based
split-task dispatching is that utilization bounds greater than
69% have not been attained [9].

Slot-based split-task dispatching subdivides time into
equal-duration timeslots whose beginning and end are syn-
chronized across all processors; the end of a timeslot of
processor p contains a reserve and the beginning of a
timeslot of processor p+1 contains a reserve, and these
two reserves supply processing capacity for a split-task —
see Fig. 2(a). Slot-based split-task dispatching causes more
preemptions than job-based split-task dispatching but, in
return, it offers higher utilization bounds (higher than 69%
and configurable for up to 100%) [2] and a recent study
[3] of randomly generated task sets shows that it offers
the best performance (among all algorithms, not only task-
splitting algorithms) for providing pre-run-time guarantees
to arbitrary-deadline sporadic tasks. Despite the good per-
formance of slot-based split-task dispatching in theory, the
current research literature provides no answer to the question
whether slot-based task-splitting multiprocessor scheduling
can be implemented and whether it works in practice.

C. Challenges

From Fig. 2(a), we can identify three challenges for
implementing slot-based split-task dispatching:

C1. Timeslots must begin at the same time on all
processors;

C2. A split-task must migrate instantaneously in the
beginning of a timeslot;

C3. The reserves should begin and end at precisely
specified time instants.

Since each generation of multicore processors offers
greater core count than its preceding generation, we believe
it is also important that an implementation of a multiproces-
sor scheduling algorithm has a dispatching overhead that is
low as a function of the number of processors — ideally
independent of the number of processors. This poses no
challenges for scheduling non-split tasks. For split-tasks
however this brings the following two additional challenges:

C4. The run-time overhead of migration (manipulation
of data structures and concurrency control) should
be independent of the number of processors;

C5. The run-time overhead due to handling of timers
(reading the current value of a real-time clock;
setting up a timer to generate an interrupt signal

Capacity reserved for 7o on processor Pq

! ' . ' ! ' . '
! | | ! | |
P11 T2 72 T2 P11 T2 T2 T2
[[[[[[[[
P I ! I I I
> 2
0 S 35 t 0 35 t
Capacity reserved for 7o on processor Po

Capacity reserved for T on processor Po
(a) Original split-task dispatching (b) New split-task dispatching

Capacity reserved for 79 on processor P

Figure 2: An example of the operation of slot-based task-
splitting multiprocessor scheduling. Task 75 is a split-task.
A non-split task executes only on its dedicated processor; it
can execute in a reserve but it does so with a lower priority
than a split task.

at a certain time) should be independent of the
number of processors.

We will address these challenges in the forthcoming
sections. Challenges C1 and C3 will be resolved using high-
resolution local timers to each processor. Challenges C4
and C5 will be resolved through carefully designed data
structures which avoids synchronization between processors
and the local timers will help us overcome C5. The challenge
C2 is fundamental however — we can resolve it only
by a minor redesign of the actual scheduling algorithm.
Section III does that.

III. SLOT-BASED SPLIT-TASK DISPATCHING SUITED FOR
IMPLEMENTATION

Consider Fig. 2(a) again. It shows that task 7o must
migrate instantaneously at certain instants; this occurs at
time S, time 2.5, etc. We can move the reserves on processor
2 so that they start slightly later in each timeslot — Fig. 2(b)
shows this.

Let us consider the reserve on processor p such that this
reserve is used for the split-task between processor p — 1
and p. We let M[p] denote the time from the beginning
of a timeslot until the beginning of this reserve. For the
dispatching algorithm in [2], it holds that Vp : M[p] = 0.
In order to implement slot-based split-task dispatching, we
need to choose Vp : M[p] > 0; we will now discuss how to
choose M |p].

Previous work [2] used a positive integer parameter ¢
which can be selected by the designer. Based on this
parameter, the following definitions were made [2]:

S:M)
)
and 1
04:5—\/5-(5—1-1)—1—5 3)
and

SEP=4.(\/6-(0+1)—08)—1 @)

S is the duration of the timeslot. « is a parameter used
for sizing the reserves. SEP is a threshold such that tasks

with u; greater than SEP are assigned their own dedicated
processor. SEP also plays the role of being the utilization
bound of the algorithm in [2].

Consider Fig. 3 which shows a detailed view of a timeslot.
It shows that each processor p has a reserve of duration
x[p] and another reserve of duration y[p], and these reserves
are used for executing split tasks. The reserve z[p] is used
for executing the task split between processor p and p — 1.
The reserve y([p] is used for executing the task split between
processor p and p + 1. If the task which is assigned reserve
x[p] has finished execution at time ¢ then processor p selects
for execution at time ¢, a non-split task, which was assigned
to processor p. Analogously for y[p]. On each processor,
there is also a reserve of duration M [p] early in the timeslot
and another reserve of duration N[p] in the middle of the
timeslot. These reserves are used for executing non-split
tasks; the split tasks are forbidden to execute there.

We will assign and split tasks just like in our previous
work [2] — we deviate only from our previous work [2] in
the way that dispatching of tasks is performed. From our
previous work [2], we obtain that (i) adding the duration of
the x and y reserve on the same processor gives us at most
(1—2-«)-S and (ii) adding the duration of the z reserve
on processor p+1 and y reserve on processor p gives us at
most (1 —2- «) - S. Therefore, an appropriate choice is:

Vp: Mpl=«a-S 5)

It ensures that there is a gap of at least a - .S between
two reserves on the same processor and also that there is
a gap of at least « - S between two reserves on different
processors that serve the same split task. One can show that
the maximum amount of execution by a split-task in a time
interval ¢, is no higher for 0 < M|[p] < « - S than for
M]Ip] = 0 (see Appendix A in [17]). One can also show
that the minimum supply of processor time for a split-task
in a time interval ¢, is no lower for 0 < M[p] < - S than
for M[p] = 0 (see Appendix A in [17]). Basically, choosing
Mp] > 0 makes the execution of a split-task more smooth
over time. This gives us that the schedulability analysis in
previous work [2] applies also for the case when we choose
M[p] = - S (see Appendix A in [17]). We pay the price
of having one extra preemption per timeslot per processor
when M [p] > 0 though. (This is not visible in Fig. 2(b) but it
can be seen with an example with three processors and there
is one split-task between processors P; and P» and another
split-task between processors P> and Ps. A good illustration
of this is the preemption at time 1.25 on processor Ps in
Fig. 4 for task 74).

Because of the robustness attained and schedulability
maintained by choosing M[p] = « - .S, we will assume
M][p] = - S in the remainder of this paper. We could use
any scheduling algorithm in the reserves but in order to stay
as close as possible to the previously proposed slot-based

»

N[P{] =S — y[P1]

!

S — M[P3] — x[Py] — y[P1] > a - S

| reserve for task split between Pp and Po

y[P1] = S (o + hi_split[P1])

M[Py] =a- S

N[P3] = S — M[P3] — «[P3] — y[P2] 2 a - S
S — M[P3] — z[P3] — y[P2] =2

S

.S ‘

-
|
|
!
!
r
|

reserve for task split between P17 and Po

z[Py] = S - (o + lo_split[Pa)])

M[P3]=a S

y[P2] = S - (o + hi_split[Pa])

N[P3] = S — M[P3] — «[P3]

-
|
|
!
!
|
|

[7s]! |

reserve for task split between Po and Pg3

x[P3] = S - (o + lo_split[P3])

|
|
|
!
!
|
|
|
|
I reserve for task split between Po and Pg3 I
=
!
!
!
!
|
1
t

»

Figure 3: A detailed view of a timeslot, the reserves and their durations, used by our dispatching algorithm that is suited
for implementation. The reserves for the split task shared by P; and P» and shared by P> and P5 are shown by rectangles.

task-splitting algorithm [2], we choose preemptive EDF. The
reader can find detailed pseudo-code of the new dispatcher
in Appendix B in [17].

IV. AN EXAMPLE

In order to illustrate the behavior of the slot-based split-
task dispatching suited for implementation, let us consider an
example. We consider a system with four processors (m =
4) and seven tasks (n = 7) as specified by Table 1. The
value of § is four, which means that the processor utilization
should be at most 88.85% (SEP parameter is set to 0.8885),
except for the processors which have been assigned a task
with utilization exceeding SEP.

Table I: Task Set (time unit in Table II: Task assign-

millisecond) ment and splitting
[Task [C | T [u | [Processor | Task(s) |
1 4.5000 | 5.0000 | 0.9000 P 1
To 3.5000 | 6.0000 | 0.5833 P T2
T3 3.5000 | 6.5000 | 0.5385 2 Part of 3
T4 4.0000 | 8.0000 | 0.5000 Part of 3
T5 3.0000 | 7.0000 | 0.4286 Ps3 T4
T6 3.0000 | 8.0000 | 0.3750 Part of 75
7 1.5000 | 8.5000 | 0.1765 Part of 75
Py
16 and 77

The task assignment works as follows: 77 is assigned
a dedicated processor (P;) since the utilization of 71 is
higher than SEP. 75 is assigned to processor (P-), but
assigning task 73 to processor P, would cause the utilization
of processor P, to exceed SEP (0.5833+0.5385 > 0.8885).
Therefore, task 73 is split between processor > and proces-
sor P3. A portion of task 73 is assigned to processor Ps,
just enough to make the utilization of processor Py equal to
SEP, that is 0.3052. This part is referred to as hi_split[Ps)
and the remaining portion (0.2332) of task 73 is assigned
to processor Ps, which is referred to as lo_split[Ps]. The
procedure continues until all tasks have been assigned (see
Table II).

-

L N 1 N il
[P}) 1 7 |

I I I

L N 1 Y 1 N 1 Y il
[Po]| 72 I 72 =

Mo N Ly oM e N v
[Pel 75] 4 | 74 =5 1

M@ N M@ N J
[PalFd =5 76 F | 76 |

0 1.25 2.507

Figure 4: Execution timeline showing how tasks execute if
all tasks arrive at time 0.

Fig. 4 shows the execution timeline for the case that for
each task, its first job arrives at time 0. The execution of a
job is represented by a rectangle labeled with the identifier
of the task and above is identified the timeslot component.
Timeslot length is equal to S = % = % = 1.25 ms.
Recall that the online dispatching algorithm works over the
timeslot of each processor. As we can see from Fig. 4, for
instance, task 73 is split between processors P, and Ps and
hence it executes only on the z-reserve of processor Ps and
on the y-reserve of processor Ps.

Non-split tasks 74 and 77 execute on processor P, (within
M and N reserves), but task 77 does not appear in the Fig. 4
because it executes after time 2.5, since its absolute deadline
is higher than absolute deadline of task 7¢.

V. HOW TO IMPLEMENT SLOT-BASED TASK-SPLITTING

Recall the challenges listed in Section II. In order to cope
with them, we recommend that an implementation of a task-
splitting follows the following design principles:

P1. Each processor should have its own run-
queue (the queue that stores tasks which have
outstanding request for execution). The run
queue of processor p should store non-split
tasks assigned to processor p. The run-queue

of each processor should support the operations

(ms)

insert, peek highest priority task
and extract highest priority task
with low time-complexity (using for example a
red-black tree).

P2. For each processor p, there should be a data
structure with two variables hi split and
lo_split. The variable hi_ split of processor
p and the variable 1o split of processor p+1
should point to the process control block (called
task_ struct in the Linux kernel) for the task
that is split between them. If no such task exist
then these pointers are NULL.

P3. Each processor should have a variable called
begin curr timeslot. It should hold a time
which is no larger than the current time and it
should never be less than current time minus S.
The variable begin curr_ timeslot should
be incremented by S to ensure this. This assures
that the beginning of the timeslot on each processor
is synchronized and avoids the lock mechanism
that would be necessary if this variable was global.

P4. Each processor should have a timer queue of
events in the future. This should always include
the time of the beginning of the next timeslot, that
is begin_curr_ timeslot + S. If applicable,
it also contains the time when the reserve in the
beginning of the timeslot ends and also the time
when the reserve in the end of the timeslot begins.
Whenever the timer queue changes (for example an
event has expired and therefore should be removed
from the timer queue, or a new event is inserted
into the timer queue), the processor should disable
interrupts, set up a timer z time units in the future
where x is the time of the earliest event in the
timer queue minus current time, and then enable
interrupts. This is a standard approach for timers
and it ensures that cumulative drift because of finite
speed of the processor does not occur (see page 38
in [18] for discussion).

P5. The operating system should implement a
delay until system call (see page 38 in [18])
which makes it possible for a task to sleep until an
absolute time. This is important for implementing
periodically arriving tasks without suffering from
cumulative drift [18].

VI. THE IMPLEMENTATION

We have implemented the scheduling algorithm as de-
scribed in Section III (which is a slight modification of
our previously proposed scheduling algorithm in [2]) in the
Linux kernel 2.6.28. We developed a new scheduling policy
(called SMS) in the modular scheduling infrastructure of
the Linux kernel and when doing so we followed the design
principles stated in Section V.

Currently, the Linux kernel has three native scheduling
modules: RT (Real-Time), CFS (Completely Fair Schedul-
ing) and Idle. These modules are hierarchically organized
by priority in a linked list and the dispatcher looks for a
runnable task of each module in a decreasing order priority.

We added SMS scheduling policy module on top of the
native Linux module hierarchy, thus it is the highest priority
module (see Fig. 13).

SMS

\ 4

RT

\ 4

CFS » Idle

Figure 5: Priority hierarchy of scheduling policy modules

Before describing the SMS module implementation let
us give some details about the data structure used by the
SMS module. Note that, each processor holds a run-queue to
manage all active processes or tasks. In our implementation
we added the required data for the SMS algorithm to the
struct rq data structure (see Listing 1), which is the
data structure used for each run-queue. For instance, all
non-split tasks of each processor are organized in a red-
black tree by the absolute deadline. Red-black trees, which
are balanced binary trees whose nodes are ordered by a key
and most operations are done in O(logn) time, are already
implemented in the Linux kernel (1ib/rbtree.c).

struct rq {

struct split_task {

struct task_struct xlo_split;
struct task_struct sxhi_split;
}split_task;

struct rb_root root_non_split_tasks;

struct timeslot {

unsigned long long begin_curr_timeslot;
unsigned long long m;

unsigned long long x;

unsigned long long n;

unsigned long long y;

struct hrtimer timer;

}timeslot;

i
Listing 1: Fields added to struct rq kernel data structure.
There is one struct rq for each processor.

The Linux kernel is currently tick-driven, the dispatcher
is invoked periodically (with a period of 1 ms if the macro
HZ is set to 1000). Recall however (from Section II-C)
that in slot-based split-task dispatching, reserves must begin
at precisely specified instants and the periodic tick is not
sufficiently precise for our purpose. The Linux kernel is cur-
rently provided by the high-resolution timers infrastructure
(kernel/hrtimer.c) that allow us to specify when a
timer should fire at nanosecond resolution. Therefore, we
use the high-resolution timers to invoke callback functions
for the beginning of a reserve and we also use them to wake
up tasks that have executed delay until.

The data of each active process or task in the sys-
tem is managed using a data structure called struct
task_struct (see Listing 5). We added also some fields
to this data structure required by the algorithm. For in-
stance, cpul and cpu2 fields are used to set the log-
ical identifier of processor(s) in which the task will be
executed. In order to organize SMS tasks by the absolute
deadline on a red-black tree we added struct rb node
node non_split task field.
struct task_struct {

ét'l.‘uct sms_task_param{

int cpul;

int cpu2;

struct sms_job_param{

unsigned long long deadline;// absolute deadline
unsigned long long release; // release time of next job

struct rb_node node_non_split_task;

I
Listing 2: Fields added to struct task_struct kernel
data structure

According to the modular scheduling framework rules,
each module must implement the set of functions spec-
ified in the sched class structure. Listing 7 shows
the definition of sms_sched class, which implements
the SMS module. The first field (next) of this structure
is a pointer to sched class which is pointing to the
rt_sched_class that implements the RT module.

The other fields are functions that act as callbacks to
specific events. The enqueue task_sms is called when-
ever an SMS task becomes runnable. This function must
check if it is a non-split task or a split task. In the former
case it must insert a node in the red-black tree and in the
latter it does nothing. When an SMS task is no longer
runnable, then the dequeue task_sms function is called
that undoes the work of the enqueue_ task_sms func-
tion. As the name suggests, check preempt curr sms
function, checks whether the currently running task must be
preempted. This function is called following the enqueuing
or dequeuing of a task and it only sets a flag that indicates
to the scheduling infrastructure that the currently running
task must be preempted. pick next task_sms function
selects the task to be executed by the processor. This
function is called by the scheduling infrastructure whenever
the currently running task is marked to be preempted.
task tick_sms function is mostly called from time tick
functions. In the current implementation this function calls
the check preempt curr sms function, to check, if
the current task must be preempted.

const struct sched_class sms_sched_class = {
.next = &rt_sched_class ,

.enqueue_task = enqueue_task_sms,
.dequeue_task = dequeue_task_sms,
.check_preempt_curr = check_preempt_curr_sms ,
.pick_next_task = pick_next_task_sms ,

.task_tick = task_tick_sms,
}s
Listing 3: sms_sched_class definition

The dispatching algorithm is mainly implemented by
the check preempt curr sms and pick next
task sms functions. Next, the dispatching algorithm is
described assuming that processor p is executing the dis-
patcher.

One of the arguments of the check preempt curr
_sms function is a pointer (struct rq * rq)to the run-
queue of processor p (see Listing 4), where all runnable
SMS tasks assigned to it are stored, as well as other
important data necessary for SMS scheduling algorithm,
such as begin curr timeslot, the timeslot composi-
tion reserves and also hi_split and lo_split pointers.
The relative time instant within the current timeslot is
given by invocation of the get timeslot reserve
function. Assuming that, get _timeslot reserve in-
vocation returns RESERVE_ X, which means that the current
time instant falls in the x reserves. Then, the next step
is to check if the split-task is in running state. If it is
(get_lo split task function returns pointer to the
split-task) and if it is not the currently running task on
processor p, then, there is the need to check if the split-task
is currently running on processor p-1 (which is identified by
the cpul field) by invoking the cpu_curr function. If it is,
an interprocessor interrupt is sent to force rescheduling? on
processor p-1 to stop the execution of the split-task (invoking
the resched_cpu function), then, it checks if there is a
non-split task ready to execute on processor p. Otherwise,
resched_task function is invoked to mark the currently
running task on it to be preempted.

static void check_preempt_curr_sms(struct rq *rq, struct
task_struct xp)
{

r=get_timeslot_reserve (rq);
switch (r){

case RESERVE_X:
