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Abstract 

Minimum Cycle Time is a common performance indicator adopted to compare Real-Time Ethernet protocols. 
Though serving its purpose, Minimum Cycle Time excludes the delays inside the sending and receiving nodes, so it 
is insufficient to estimate the end-to-end latency. In this work, we describe some implementation possibilities of 
an Ethernet node in a System-on-Chip and present measurements of the delay to send/receive packets from/to 
the application layer. We chose different points in the software to make the measurement, so the results cover 
more use-cases. We found the Ethernet Lite Media Access Controller (MAC) to be faster than the hard MAC (GEM) 
and the Lightweight IP stack to add less than 2.2 ;cs. Finally, we show how a hardware accelerator can reduce the 
delay of high-priority packets by 1.4 ;cs. 
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Abstract—Minimum Cycle Time is a common performance
indicator adopted to compare Real-Time Ethernet protocols.
Though serving its purpose, Minimum Cycle Time excludes
the delays inside the sending and receiving nodes, so it is
insufficient to estimate the end-to-end latency. In this work, we
describe some implementation possibilities of an Ethernet node
in a System-on-Chip and present measurements of the delay
to send/receive packets from/to the application layer. We chose
different points in the software to make the measurement, so
the results cover more use-cases. We found the Ethernet Lite
Media Access Controller (MAC) to be faster than the hard MAC
(GEM) and the Lightweight IP stack to add less than 2.2 µs.
Finally, we show how a hardware accelerator can reduce the
delay of high-priority packets by 1.4 µs.

Index Terms—Industrial communication systems, real-time
Ethernet, end-to-end latency.

I. INTRODUCTION

Industrial Internet of Things and Industry 4.0 are hot topics

in the academia and industrial world nowadays, but sometimes

industry is slow in adopting new technologies. Ethernet, for in-

stance, already supports transfer rates up to 100 Gbps, but the

Real-Time Ethernet (RTE) deployed in Factory Automation

are mainly based on Fast Ethernet (100 Mbps), with CC-Link

IE being an exception [1].

Since the early 2000s, several RTE protocols emerged

for Factory Automation, e.g. EtherCAT, POWERLINK, CC-

link IE, Sercos III, and PROFINET. To help matching applica-

tion requirements with the network capabilities, the standard

IEC 61784-2 defines several performance indicators, such as

throughput RTE, non-RTE bandwidth, and delivery time [2].

Though not included in the standard, minimum cycle time, the

minimum time between two consecutive data updates on a

node, is also a popular performance indicator [3], [4], [5], [6],

[7].

However, the minimum cycle time typically ignores the

latency inside the nodes. In critical, high performance appli-

cations, like drives [8] or the control of Modular Multilevel

Converters [9], [10], not only the cycle time has to be low

but also the end-to-end latency must be as short as possible,

because it adds to the loop delay and degrades the control

performance [11].

In our research, we found few information on the time the

nodes need to make incoming data available to the application

layer or the time necessary to effectively start transmitting

data through the link. As RTE inexorably moves to higher

data rates, these delays will become more relevant, so it is

important to know their magnitude and what are the main

aspects influencing it. Orfanus et al. [12] list some strategies

they adopted to optimize the implementation of an EtherCAT

master, such as zero-copy buffers, memory pre-allocation, and

mapping of application variables directly onto EtherCAT tele-

grams, but they omit timing figures. We wanted to characterize

the delay inside the nodes and understand how both hardware

and software implementations affect it. For that, we run

experiments on Xilinx Zynq System-on-Chip (SoC), adopting

different MAC implementations, data copy strategies and using

or not the UDP/IP protocol stack. Curiously, we observed

intriguing results in which an FPGA implemented MAC option

(Ethernet Lite) outperformed a hardware-based one (Gigabit

Ethernet MAC) in several scenarios. The results show not only

how to reduce the delay in this specific device but also give

hints on the key aspects to observe when choosing a hardware

platform.

This work is organized as follows: in Section II we describe

the options available in the Zynq SoC and introduce the

protocol stack employed; in Section III we show measurement

results of the delay to receive a packet till the data reaches

the application layer, and the delay to send a packet, from

the application layer command until the link becomes active.

To make the results more useful, we present also delays

from intermediate points, so they cover several use-cases and

designs strategies.

II. IMPLEMENTATION DETAILS AND POSSIBILITIES

The Zynq System-on-Chip combines a single or dual core

ARM processor with an FPGA fabric. It includes up to two

hard Media Access Controller (MAC), named Gigabit Ethernet

Mac (GEM). The GEM interface with the Physical Layer

(PHY) is either RGMII or GMII and with the core and memory

is a 32-bit AHP bus. A Direct Memory Access (DMA) engine,

operating at a maximum frequency of 150 MHz (IC speed

grade -2) [13], controls the flow of data to/from the main

memory.

Besides the GEM, Xilinx provides two types of MAC as

Intellectual Properties (IP) for synthesis and implementation

inside the FPGA: the Ethernet Lite, free of charge but lim-
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ited to 100 Mbps, and the soft Tri-Speed MAC (TEMAC),

supporting up to 2.5 Gbps.

The Ethernet Lite soft MAC connects to the main memory

via either AXI4-lite or AXI4 slave interfaces. The former

does single transactions, only, what limits performance, and

has a maximum clock of 150 MHz. The latter supports burst

transactions of 256 words with a single addressing phase

[14]. The AXI Master, though, does not use data bursts

when running the demo echo server application, so the AXI4

performance is similar to AXI4-lite, with a minor gain due

to the higher clock rate (up to 180 MHz). In both cases,

the bandwidth can be increased by configuring the Ethernet

Lite memory address region as Device Memory1 instead of

the standard strong-ordered (see [15], chapter 3): the number

of clocks between valid write responses reduces from 18 to

3 and between read transactions from 17 to 5, according to

our measurements. The impact in the delay is large: 35 µs

against 7.73 µs to receive an 1024 B UDP packet. We tried

using DMA to accelerate the data transfer, but its rate was the

same as before and the total delay increased, due to the time

spent configuring and triggering the DMA.

The other type of MAC available, TEMAC, supports AXI4-

stream. AXI4-stream removes the addressing phase altogether

[14] and, combined with a AXI DMA, can connect to the

main memory using either of the high bandwidth interfaces

AXI ACP or AXI HP. In both cases, the maximum clock is

also 180 MHz, but the bus width is 64-bits, so one can expect

twice the data transfer rate. However, experiments with this

MAC are on-going work and are not included in this paper.

A. Lightweight IP

Lightweight IP (lwip) is an open-source TCP/IP stack

developed from the beginning to be modular and use little

RAM, so even small processors are able to run it. Adam

Dunkels started lwip at the Swedish Institute of Computer

Science in the early 2000s [16] and today a worldwide group

of programmers maintains and further develops it. Several

processor manufacturers ported it to their devices and Xilinx

is no exception. During our work, we found lwip to be a

good starting basis, not only due to the several protocol stacks

themselves but also because it implements the drivers for the

MAC and the routine to configure the PHY.

Lwip main feature to reduce RAM footprint is avoid copy-

ing data as it moves up and down the protocol layers. For

that, it defines a data structure called PBUF that can be

allocated dynamically, but to improve performance, lwip pre-

allocates PBUFs for incoming packets, only trimming the size

according to the amount of incoming data. The PBUFs make

lwip efficient, as the experimental results show, even though

it was not developed with real-time applications in mind.

When receiving a packet, the initial steps differ according

to the MAC type: the Ethernet Lite MAC checks data integrity

and immediately calls the interrupt service routine (ISR); the

1Unlike strong-ordered memory, a write to device memory is allowed to
complete before it reaches the peripheral accessed by the write.

GEM and TEMAC first transfer the packet to an intermediate

position inside the main memory and, upon completion, calls

the ISR. Then, in all cases, the MAC driver identifies the

origin of the interrupt (send, receive or error) and calls the

corresponding handler. The receive handler copies the data to

a PBUF structure, puts it into the receive queue, and exits (see

Fig. 1a). The processing of the packet then happens outside

the interrupt context, by pooling the receive queue for new

data in a routine inside the infinite loop (Fig. 1b).

When sending a packet, the following processing sequence

takes place (Fig. 2): after the user moves data to a PBUF

and calls the routine UDP_sendto(), the stack adds the UDP

header, selects an interface to send from, includes the IP and

Ethernet headers, resolves the destination MAC address based

on the destination IP address, and copies the packet to an

intermediate memory location. The last steps depend on the

MAC type: if using Ethernet Lite, the driver copies the packet

to the MAC buffer and handles control to the MAC hardware

to start transmission; with the GEM or TEMAC, the driver

passes the control to the MAC hardware that transfers data to

the internal buffer using DMA and starts transmission.

From the description above, the reader could identify that

Xilinx implementation of lwip does copies that could be avoid

if the user needs to reduce the delay. In the next section, where

we show experimental results, we modify the implementation

to assess the influence of these options in the total sending and

receiving delays, as well as the performance of the different

MACs.

III. EXPERIMENTAL RESULTS

The employed experimental platform was a 7020 Zynq-

based board with a Microchip Fast Ethernet PHY connected

to a host PC. The host PC sends packets with total length

of 64 bytes, 256 bytes and 1024 bytes, without considering

preamble, start of frame delimiter and frame check sequence.

The embedded processor runs the echo server demo applica-

tion configured to echo UDP packets, i.e. it sends back packets

received in a given port.

To measure the different delays, we designed a capture unit

in VHDL to count the number of clock cycles between the

positive edges of the start and stop ports. The time resolution

was 10 ns. When measuring the incoming delays, the inverted

RX_DV signal triggered the capture unit and a software-

controlled output stopped it. When measuring outgoing delays,

the software-controlled output triggered the start and the

positive edge of the TX_EN stopped it. We verified the capture

unit measurement by connecting the start and stop signals to

an oscilloscope. For every test run, the program logged 512

measurements and sent them to the host PC for processing.

For incoming packets, we measured the time delay between

when the MAC finished receiving a packet and three points in

the software: when the processor entered the interrupt service

routine (Fig. 3); when the processor finished copying the

data to the PBUF structure and queued it (Fig. 4); and when

entering the user defined UDP receive callback (Fig. 5).
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Figure 1: Incoming packet processing.

For outgoing packets, we measured the time delay from

three points in the software to when the MAC starts send-

ing data to the PHY. They are: when the user calls the

UDP_sendto() routine (Fig. 6); when the processor starts

copying the packet from the original PBUF (Fig. 7); and when

the software triggers the MAC to send the packet (Fig. 8).

Table I summarizes the delays obtained in terms of mean value

and standard deviation σ.

A. Results Discussion

The results show a shorter latency to enter the ISR when

using Ethernet Lite (Fig. 3). This MAC requests an interrupt

just after the packet is received, because it saves the data

UDP
sendtoif()

IP
output()

MAC
output()

ETH ARP
output()

Low Level
output()

UDP_sendto()

Transmission

Add IP header

Add Ethernet header

Resolve MAC addr.

MAC driver

(data copy)

Chose netif to send from

Add UDP header

Capture
start (a)

Capture
start (c)

Capture
start (b)

Figure 2: Outgoing packet sending.
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Figure 3: Incoming packet: delay to enter ISR after receiving

packet (cap. stop (a) in Fig. 1). In Fig. 3a, the results are

overlapping.
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Figure 4: Incoming packet: delay to transfer data to PBUF

after receiving packet (cap. stop (b) in Fig. 1).

internally and henceforth further data movement needs the

participation of the core, i.e., the core utilization for sending

and receiving data is the total latency less the ISR one.

The delay around 680 ns is expected, because the minimum

interrupt latency of the A9 core is 360 ns [17] and the MAC

takes around 150 ns to flag the interrupt. In contrast, the GEM

has longer latency, depending on the packet size, because the

DMA transfers the packet from the MAC FIFO to the main

memory before flagging the interrupt.

When triggering the MAC to send a packet, again the

Ethernet Lite shows a more predictable behavior (Fig. 8), for

the same reason (absence of DMA transfer). In applications

where accurate timing and low jitter are desired, e.g. when

implementing a master stack or using time-triggered protocols,

this is a considerable advantage of the soft MAC and the jitter

is fairly low if considering the pure software implementation

(Table I).

As explained in Section II, the configuration of Ethernet Lite

memory as device has a significant impact in the delays, both

for receiving (Fig. 5) and sending data (Fig. 6). The results

show Ethernet Lite outperforming GEM independently of the

packet size and direction when using delay as figure of merit.

This result is surprising, as one would expect a dedicated hard

peripheral, integrated to the processor, to be faster. The price

to pay for Ethernet Lite shorter delays is higher utilization of

the CPU.
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(a) Ethernet Lite, strong-ordered.
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(b) Ethernet Lite, device memory.
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(c) GEM.

Figure 5: Incoming packet: delay to enter UDP callback after

receiving packet (cap. stop (c) in Fig. 1).

The experiments conducted allow quantifying the costs of

using IP and UDP protocols by computing the difference

between the values after copying the packet to the PBUF

and the UDP callback (see Table I). Besides the additional

payload to accommodate the protocol headers, less than 2.2 µs

are necessary to process the packet and call the user defined

routine.

When the traffic is mixed, certain packets have higher pri-

ority and must be processed faster. For this, we can implement

a packet identifier accelerator in the FPGA that will read

all incoming packets and check their headers for some pre-

defined characteristics, like being of IP type, being targeted

to the node IP address, being an UDP packet with a given
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(b) Ethernet Lite, device memory.
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Figure 6: Outgoing packet: delay to start sending packet after

UDP command (cap. start (a) in Fig. 2).

port number, etc. The receive handler can verify the register

where the accelerator puts its findings and, if all “high priority”

characteristics are met, it fast-tracks the payload directly to

the application. Adopting this strategy we could reduce the

reception delay of 64 Bytes and 256 Bytes to 1.51 µs and

2.85 µs , respectively (Fig. 9). Unexpectedly, the delay of

1024 Byte packets stayed the same, i.e. 7.74 µs. We verified

the reason for such result and found that the CPU implements

the read transactions over the AXI bus differently, with a

slower data transfer when the fast-track strategy is adopted.

This slower data transfer counterbalances the “jump” to the

application layer as the payload increases.
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Figure 7: Outgoing packet: delay to send packet after starting

copying from PBUFs (cap. start (b) in Fig. 2).

Table I: Incoming and outgoing packet mean delay and devi-

ation, in µs.

Packet GEM EL, DM EL, SO
size x 3σ x 3σ x 3σ

Rx PBUF
64 B 6.84 0.33 1.75 0.17 3.32 0.19

256 B 7.69 0.32 2.70 0.18 8.22 0.18
1024 B 11.45 0.31 5.44 0.19 27.80 0.18

Rx UDP
64 B 7.48 0.35 2.95 0.20 4.53 0.23

256 B 8.44 0.38 4.13 0.21 9.65 0.2
1024 B 12.09 0.34 7.74 0.20 30.09 0.21

Tx PBUF
64 B 3.01 0.45 1.52 0.05 2.74 0.06

256 B 4.13 0.38 2.48 0.05 8.02 0.05
1024 B 8.71 0.35 6.23 0.05 29.05 0.06

Tx UDP
64 B 3.65 0.32 2.10 0.07 3.62 0.08

256 B 4.77 0.34 3.31 0.07 9.18 0.08
1024 B 9.38 0.34 7.92 0.08 31.07 0.08

IV. CONCLUSIONS

In this work we investigated the delay to receive and

send Ethernet packets with different MAC architectures and

communication stack implementation details. We run extensive

tests and included several results to help the designer esti-

mate more accurately the total end-to-end latency when using

Ethernet. The results show effective bandwidth of the MAC

interface to the processor memory as a critical aspect. Others

are minimizing copying data and pre-allocating memory.

The platform chosen to do this investigation was a Zynq-

ＳＲＷ



0 1 2 3 4 5 6 7 8

Delay (µs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s

64 B

256 B

1024 B

(a) Ethernet Lite.

0 1 2 3 4 5 6 7 8

Delay (µs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
la

ti
v
e
 n

u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s

64 B

256 B

1024 B

(b) GEM.

Figure 8: Outgoing packet: delay to send packet after trigger-

ing the MAC hardware (cap. start (a) in Fig. 2). In Fig. 8a,

the results are overlapping.
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Figure 9: Fast-track for incoming UDP port 1026 packets.

based board using the Lightweight IP stack. First, we describe

the different MACs available in the selected platform and the

packet processing implementation. Second, we measured the

delays between the packets being received by the MAC and

selected points in the software to characterize the delay when

adopting different strategies. We did the same for outgoing

packets, but measuring the delay from selected points in the

software to when the MAC effectively starts sending data.

The results show Ethernet Lite to be faster than the hard

MAC available in this device, for any payload and both

incoming and outgoing packets, when we change the memory

model from the default Strong-Ordered to Device Memory.

Short packets can be received and sent using the full UDP/IP

stack with 3.3 µs and 2.1 µs, respectively. Additionally, we

discussed how to reduce the delay by simplifying the protocol

or adopting a packet identifier accelerator to fast-track high

priority data to the application, avoiding unnecessary copies

and the delay of the protocol stack.
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