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Abstract 
Consider the problem of scheduling real-time tasks on a multiprocessor with the goal of meeting deadlines. Tasks arrive 
sporadically and have implicit deadlines, that is, the deadline of a task is equal to its minimum inter-arrival time. 
Consider this problem to be solved with global static-priority scheduling. We present a priority-assignment scheme with 
the property that if at most 38% of the processing capacity is requested then all deadlines are met. 
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Abstract. Consider the problem of scheduling real-time tasks on a mul-
tiprocessor with the goal of meeting deadlines. Tasks arrive sporadically
and have implicit deadlines, that is, the deadline of a task is equal
to its minimum inter-arrival time. Consider this problem to be solved
with global static-priority scheduling. We present a priority-assignment
scheme with the property that if at most 38% of the processing capacity
is requested then all deadlines are met.

1 Introduction

Consider the problem of preemptively scheduling n sporadically arriving tasks
on m ≥ 2 identical processors. A task τi is uniquely indexed in the range 1..n
and a processor likewise in the range 1..m. A task τi generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs cannot be controlled by
the scheduling algorithm and are a priori unknown. We assume that the arrival
time between two successive jobs by the same task τi is at least Ti. Every job
by τi requires at most Ci time units of execution over the next Ti time units
after its arrival. We assume that Ti and Ci are real numbers and 0 ≤ Ci ≤
Ti. A processor executes at most one job at a time and a job is not permitted
to execute on multiple processors simultaneously. The utilization is defined as
Us = (1/m) ·

∑n
i=1

Ci

Ti
. The utilization bound UBA of an algorithm A is the

maximum number such that all tasks meet their deadlines when scheduled by
A, if Us ≤ UBA.

Static-priority scheduling is a specific class of algorithms where each task
is assigned a priority, a number which remains unchanged during the opera-
tion of the system. At every moment, the highest-priority task is selected for
execution among tasks that are ready to execute and has remaining execution.
Static-priority scheduling is simple to implement in operating systems and it
can be implemented efficiently. Therefore, it is implemented in virtually all real-
time operating systems and many desktop operating systems support it as well,
accessible through system calls specified according to the POSIX-standard [1].
Because of these reasons, a comprehensive toolbox (see [2, 3]) of results (priority-
assignment schemes, schedulability analysis algorithms, etc) has been developed
for static-priority scheduling on a single processor. The success story of static-
priority scheduling on a single processor started with the development of the
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rate-monotonic (RM) priority-assignment scheme [4]. It assigns task τj a higher
priority than task τi if Tj < Ti. RM is an optimal priority-assignment scheme,
meaning that for every task set, it holds that if there is an assignment of prior-
ities that causes deadlines to be met then deadlines are met as well when RM
is used. It is also known [4] that UBRM = 0.69 for the case that m = 1. This
result is important because it gives designers an intuitive idea of how much a
processor can be utilized without missing a deadline.

Multiprocessor scheduling algorithms are often categorized as partitioned
or global. Global scheduling stores tasks which have arrived but not finished
execution in one queue, shared by all processors. At any moment, the m highest-
priority tasks among those are selected for execution on the m processors. In
contrast, partitioned scheduling algorithms partition the task set such that all
tasks in a partition are assigned to the same processor. Tasks may not migrate
from one processor to another. The multiprocessor scheduling problem is thus
transformed to many uniprocessor scheduling problems.

Real-time scheduling on a multiprocessor is much less developed than real-
time scheduling on a single processor. And this applies to static-priority schedul-
ing as well. In particular, it is known that it is impossible to design a partitioned
algorithm with UB > 0.5 [5]. It is also known that for global static-priority
scheduling, RM is not optimal. In fact, global RM can miss a deadline although
Us approaches zero [6]. For a long time, the research community dismissed global
static-priority scheduling for this reason. But later, it was realized that other
priority-assignment schemes (not necessarily RM) can be used for global static-
priority scheduling and the research community developed such schemes. Many
priority-assignment schemes and analysis techniques for global static-priority
scheduling are available (see for example [7–10]) but so far, only two priority-
assignment schemes, RM-US(m/(3m − 2)) [11] and RM-US(x) [12] have known
(and non-zero) utilization bounds. These two algorithms categorize a task as
heavy or light. A task is said to be heavy if Ci

Ti
exceeds a certain threshold num-

ber and a task is said to be light otherwise. Heavy tasks are assigned the highest
priority and the light tasks are assigned a lower priority; the relative priority or-
der among light tasks is given by RM. It was shown that among the algorithms
that separate heavy and light tasks and use RM for light tasks, no algorithm
can achieve a utilization bound greater than 0.374 [12]. And in fact, the current
state-of-art offers no algorithm with utilization bound greater than 0.374.

In this paper, we present a new priority-assignment scheme SM-US(2/(3 +√
5)). It categorizes tasks as heavy and light and assigns the highest priority to

heavy tasks. The relative priority order of light tasks is given by slack-monotonic
(SM) though, meaning that task τj is assigned higher priority than task τi if Tj

- Cj < Ti - Ci. We prove that the utilization bound of SM-US(2/(3 +
√

5)) is
2/(3 +

√
5), which is approximately 0.382.

We consider this result to be significant because (i) the new algorithm SM-
US(2/(3 +

√
5)) breaks free from the performance limitations of the RM-US

framework, (ii) the utilization bound of SM-US(2/(3 +
√

5)) is higher than the
utilization bound of the previously-known best algorithm in global static-priority
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scheduling and (iii) the utilization bound of SM-US(2/(3 +
√

5)) is reasonably
close to the limit

√
2−1 ≈ 0.41 which is known (from Theorem 8 in [13]) to be an

upper bound on the utilization bound of every global static-priority scheduling
algorithm which assigns a priority to a task τi as a function only of Ti and Ci.

Section 2 gives a background on the subject, presenting the main ideas
behind algorithms that achieve a utilization bound greater than zero. It also
presents results that we will use, in particular (i) lemmas expressing inequali-
ties, (ii) a lemma from previous research on the amount of execution performed
and (iii) a new schedulability test. Section 3 presents the new algorithm SM-
US(2/(3+

√
5)) and proves its utilization bound using the schedulability test in

Section 2. Conclusions are given in Section 4.

2 Background

2.1 Understanding global static-priority scheduling

The inventor of RM observed [14] that

Few of the results obtained for a single processor generalize directly to
the multiple processor case; bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact that a task can
use only one processor even when several processors are free at the same
time adds a surprising amount of difficulty to the scheduling of multiple
processors.

Example 1 gives a good illustration of this.

Example 1. [From [6]]. Consider a task set with n=m+1 tasks to be scheduled on
m processors. The tasks are characterized as ∀i ∈ {1, 2, . . . , m} : Ti = 1, Ci = 2ǫ
and Tm+1 = 1 + ǫ, Cm+1 = 1. If we assign priorities according to RM then τm+1

is given the lowest priority and when all tasks arrive simultaneously then τm+1

misses a deadline. Letting ǫ → 0 and m → ∞ gives us a task set with Us → 0
and it misses a deadline.

Based on Example 1, one can see that better performance can be achieved by
giving high priority to tasks with high Ci

Ti
. And in fact this is what the algorithms,

RM-US(m/(3m − 2)) [11] and RM-US(x) [12] do. The algorithm RM-US(x)
[12] computes the value of x and its utilization bound is x. The value of x de-
pends on the number of processors; it is given as (1-y)/(m · (1+y))+ln(1+y)=(1-
y)/(1+y)=x. Solving it for m → ∞ gives us that y=0.454 and x=0.375. One
can see that m → ∞ gives us the least value of x. Hence the utilization bound
of RM-US(0.375) is 0.375. And there is no other choice of x which gives a higher
utilization bound. Example 2 illustrates this.

Example 2. [Partially taken from [12]]. Figure 1 illustrates the example. Consider
n = m ·q+1 tasks to be scheduled on m processors, where q is a positive integer.
The task τn is characterized by Tn = 1+y and Cn = 1−y. The tasks with index
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Fig. 1. An example of a task set where RM-US(0.375) performs poorly. All tasks arrive
at time 0. Tasks τ1, τ2,. . ., τm are assigned the highest priority and execute on the m

processors during [0,δ). Then the tasks τm+1, τm+2,. . ., τ2m execute on the m processors
during [δ,2δ). The other groups of tasks execute in analogous manner. Task τn executes
then until time 1. Then the groups of tasks arrive again. The task set meets its deadlines
but an arbitrarily small increase in execution times causes a deadline miss.

i ∈ {1, 2, . . . , n − 1} are organized into groups, where each group comprises m
tasks. One group is the tasks with index i ∈ {1, 2, . . . , m}. Another group is
the tasks with index i ∈ {m + 1, m + 2, . . . , 2 · · ·m} and so on. The r:th group
comprises the tasks with index i ∈ {r · m + 1, r · m + 2, . . . , r · m + m}. All
tasks belonging to the same group have the same Ti and Ci. Clearly there are
q groups. The tasks in the r:th group have the parameters Ti = 1 + r · δ and
Ci = δ, where δ is selected as y = q · δ. Hence, specifying m and y gives us the
task set. By letting y = 0.454 and m → ∞ we have a task set that where all
tasks are light. The resulting task set is depicted in Figure 1. Also, all tasks meet
their deadlines but an arbitrarily small increase in execution time of τn causes
it to miss a deadline. That is, RM-US(0.375) misses a deadline at a utilization
just slightly higher than 0.375.
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One can see that if the light tasks in Example 2 would have been assigned
priorities such that Tj − Cj < Ti − Ci implies that τj has higher priority than
τi then deadlines would have been met. In fact, we will use this idea when we
design the new algorithm in Section 3.

2.2 Results we will use

Lemma 1-4 state four simple inequalities that we will find useful; their proofs
are available in the Appendix.

Lemma 1. Let m denote a positive integer. Consider ui to be a real number
such that 0 ≤ ui < 2

3+
√

5
and consider S to denote a set of non-negative real

numbers uj such that

(
∑

j∈S

uj) + ui ≤
2

3 +
√

5
· m (1)

then it follows that
1

m
· (
∑

j∈S

(2 − ui) · uj) + ui ≤ 1 (2)

Lemma 2. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. For those numbers, it holds that:

uj ·
1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) · uj ≤ (2 − ui) · uj (3)

Lemma 3. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. And two non-negative real numbers Tj and Ti such that

Tj · (1 − uj) ≤ Ti · (1 − ui) (4)

For those numbers, it holds that:

uj ·
Tj

Ti

+ (1 − uj ·
Tj

Ti

) · uj ≤ uj ·
1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) (5)

Lemma 4. Consider two integers Tj and Cj such that 0 ≤ Cj ≤ Tj. For every
t > 0 it holds that:

⌊ t

Tj

⌋ · Cj + min(t − ⌊ t

Tj

⌋ · Tj , Cj) ≤ Cj + (t − Cj) ·
Cj

Tj

(6)

Predictable scheduling. Ha and Liu [15] have studied real-time scheduling
of jobs on a multiprocessor; a job is characterized by its arrival time, its deadline,
its minimum execution time and its maximum execution time. The execution
time of a job is unknown but it is no less than its minimum execution time and
no greater than its maximum execution time. A scheduling algorithm A is said
to be predictable if for every set J of jobs it holds that:
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Scheduling all jobs by A with execution times equal to their maximum
execution times causes deadlines to be met. ⇒ Scheduling all jobs by A
with execution times being at least their minimum execution times and
at most their maximum execution times causes deadlines to be met.

Intuitively, the notion of predictability means that we only need to analyze
the case when all jobs execute according to their maximum execution time. Ha
and Liu also found that global static priority scheduling of jobs on a multiproces-
sor is predictable. Our paper deals with tasks that generate jobs with a certain
constraint (given by the minimum inter-arrival time, Ti). But since our model
is a special case of the model used by Ha and Liu, it also follows that global
static-priority scheduling with our model is predictable as well.

The notion of active. We let active( t, τi) be true if at time t, there is a
job of τi which has arrived no later than t and has a deadline no earlier than
t; otherwise active( t, τi) is false. Observe that a task τi may release a job and
at time t this job has no remaining execution but its deadline is greater than t.
Because of our notion active, this task τi is active at time t. Note that with our
notion of active, a periodically arriving task is active all the time after its first
arrival. Because we study sporadically arriving tasks, there may be moments
when a task is not active though. The notion of gap measures that.

The notion of gap. We let gap( [t0,t1), τi) denote the amount of time
during [t0,t1) where active( t, τi) is false.

Optimal algorithm. Consider a task τi and a time interval of duration ǫ
such that the task τi is active during the entire time interval. Let OPT denote
an algorithm which executes task τi for (Ci/Ti) · ǫ time unit during the time
interval of duration ǫ, where ǫ is arbitrarily small.

Work-conserving. We say that a scheduling algorithm is work-conserving
if it holds for every t that: if there are at least k tasks with unfinished execution
at time t then at least k processors are busy at time t. In particular, we note
that global static-priority scheduling is work-conversing.

Execution. Let t0 denote a time such that no tasks have arrived before
t0. Let W( A, τ , [t0,t1)) denote the amount of execution performed by tasks
in τ during [t0,t1) when scheduled by algorithm A. Philips et al. [16] studied
the amount of execution performed by a work-conserving algorithm. They found
that the amount of execution in a time interval performed by work-conserving
algorithm is at least as much as the amount of execution performed by any other
algorithm assuming that the work-conserving algorithm is given processors that
are (2m − 1)/m times faster. Previous research [11] in real-time computing has
used this result by comparing the amount of execution performed by global
static-priority scheduling against the algorithm OPT but that work considered
only the model of periodically arriving tasks. That result can be extended in a
straightforward manner to the model we use in this paper (the sporadic model)
though, as expressed by Lemma 5.
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Lemma 5. Let G denote an algorithm with global static-priority scheduling. If

∀j :
Cj

Tj

≤ m

2m − 1
(7)

and
∑

τj∈τ

Cj

Tj

≤ m

2m − 1
· m (8)

then

W (G, τ, [t0, t1)) ≥
∑

τj∈τ

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(9)

Proof. From Equation 7 and Equation 8 it follows that the task set τ can be
scheduled to meet deadlines by OPT on a multiprocessor with m processors of
speed m/(2m − 1). The amount of execution during [t0,t1) is then given by the
right-hand side of Equation 9. And the result by Philips et al gives us that also
algorithm G performs as much execution during [t0,t1). Hence Equation 9 is true
and it gives us that the lemma is true.

Schedulability analysis. Let t0 denote a time such that no tasks arrive
before t0. Let us consider a time interval that begins at time t0; let [t0, t2)
denote this time interval. We obtain that the amount of execution performed by
the task set τ during [t0, t2) is at most:

∑

τj∈hp(i)

(

⌊ t2 − t0 − gap([t0, t2), τj)

Tj

⌋ · Cj +

min(t2 − t0 − gap([t0, t2), τj) − ⌊ t2 − t0 − gap([t0, t2), τj)

Tj

⌋ · Tj , Cj)
)

(10)

From Lemma 5 we obtain that the amount of execution performed by the
task set τ during [t0, t1) is at least:

∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(11)

Let us consider the case that a deadline was missed. Let us consider the
earliest time when a deadline was missed. Let t1 denote the arrival time of the
job that missed this deadline and let τi denote the task that generated this job.
Let hp(i) denote the set of tasks with higher priority than τi. Let t2 denote the
deadline that was missed; that is, t2=t1+Ti. Applying Equation 8 and Equation 9
on hp(i) gives us that the amount of execution by hp(i) during [t1,t2) is at most:

∑

τj∈hp(i)

(

⌊ t2 − t0 − gap([t0, t2), τj)

Tj

⌋ · Cj +
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min(t2 − t0 − gap([t0, t2), τj) − ⌊ t2 − t0 − gap([t0, t2), τj)

Tj

⌋ · Tj , Cj)
)

−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(12)

Using t2 = t1 + Ti and rewriting gives us that the amount of execution by
hp(i) during [t1,t2) is at most:

∑

τj∈hp(i)

(

⌊Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj)

Tj

⌋ · Cj +

min(Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj) −

⌊Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj)

Tj

⌋ · Tj, Cj)
)

−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(13)

Applying Lemma 4 on Equation 13 gives us that the amount of execution by
hp(i) during [t1,t2) is at most:

∑

τj∈hp(i)

(

Cj + (Ti + t1 − t0 − gap([t0, t1), τj) − gap([t1, t2), τj) − Cj) ·
Cj

Tj

)

−
∑

τj∈hp(i)

(t1 − t0 − gap([t0, t1], τj)) ·
Cj

Tj

(14)

Simplifying Equation 14 gives us that the amount of execution by hp(i)
during [t1,t2) is at most:

∑

τj∈hp(i)

(

Cj + (Ti − gap([t1, t2), τj) − Cj) ·
Cj

Tj

)

(15)

Relaxing gives that the amount of execution by tasks in hp(i) during [t1,t2)
is at most:

∑

τj∈hp(i)

(

Cj + (Ti − Cj) ·
Cj

Tj

)

(16)

From Equation 16 it follows that the amount of time during during [t1,t2)
where all processors are busy executing tasks in hp(i) is at most:
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1

m
·
∑

τj∈hp(i)

(

Cj + (Ti − Cj) ·
Cj

Tj

)

(17)

Lemma 6. Consider global static-priority scheduling. Consider a task τi. If all
tasks in hp(i) meet their deadlines and

∀j ∈ hp(i) :
Cj

Tj

≤ m

2m − 1
(18)

and
Ci

Ti

≤ m

2m − 1
· m (19)

and
(

∑

τj∈hp(i)

Cj

Tj

)

+
Ci

Ti

≤ m

2m − 1
· m (20)

and
1

m
·
(

∑

τj∈hp(i)

(

Cj + (Ti − Cj) ·
Cj

Tj

))

+ Ci ≤ Ti (21)

then all deadline of τi are met.

Proof. Follows from the discussion above.

3 The new algorithm

Section 3.1 presents Slack-monotonic (SM) scheduling and analyzes its perfor-
mance for restricted task sets (called light tasks). This restriction is then removed
in Section 3.2; the new algorithm is presented and its utilization bound is proven.

3.1 Light tasks

We say that a task τi is light if Ci

Ti
≤ 2

3+
√

5
. We let Slack-Monotonic (SM) denote

a priority assignment scheme which assigns priorities such that task τj is assigned
higher priority than task τi if Tj − Cj < Ti − Ci.

Lemma 7. Consider global static-priority scheduling with SM. Consider a task
i. If all tasks in hp(i) meet their deadlines and

∀j ∈ hp(i) :
Cj

Tj

≤ 2

3 +
√

5
(22)

and
Ci

Ti

≤ 2

3 +
√

5
(23)

and

(
∑

τj∈hp(i)

Cj

Tj

) +
Ci

Ti

≤ 2

3 +
√

5
· m (24)
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then all deadline of τi are met.

Proof. The Inequalities 22,23 and 24 imply that Inequalities 18,19 and 20 are
true. Applying Lemma 1 on Inequalities 24 gives us:

1

m
· (
∑

j∈hp(i)

(2 − Ci

Ti

) · Cj

Tj

) +
Ci

Ti

≤ 1 (25)

Applying Lemma 2 on Inequalities 25 gives us:

1

m
·
(

∑

j∈hp(i)

(Cj

Tj

·
1 − Ci

Ti

1 − Cj

Tj

+ (1 − Cj

Tj

·
1 − Ci

Ti

1 − Cj

Tj

) · Cj

Tj

)

)

+
Ci

Ti

≤ 1 (26)

From the fact that SM is used we obtain that

∀j ∈ hp(i) : Tj − Cj < Ti − Ci (27)

Considering Inequality 26 and Inequality 27 and Lemma 3 gives us:

1

m
·
(

∑

j∈hp(i)

(Cj

Tj

· Tj

Ti

+ (1 − Cj

Tj

· Tj

Ti

) · Cj

Tj

)

)

+
Ci

Ti

≤ 1 (28)

Multiplying both the left-hand side and the right-hand side of Inequality 28
by Ti and rewriting yields:

1

m
·
(

∑

j∈hp(i)

(

Cj + (Ti − Cj) ·
Cj

Tj

)

)

+ Ci ≤ Ti (29)

Using Inequality 29 and Lemma 6 gives us that all deadline of τi are met.
This states the lemma.

Lemma 8. Consider global static-priority scheduling with SM. If it holds for
the task set that

∀τj ∈ τ :
Cj

Tj

≤ 2

3 +
√

5
(30)

and
∑

τj∈τ

Cj

Tj

≤ 2

3 +
√

5
· m (31)

then all deadline of τi are met.

Proof. Follows from Lemma 7.
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3.2 Light and heavy tasks

We say that a task is heavy if it is not light. We let the algorithm SM-US(2/(3+√
5)) denote a priority assignment scheme which assigns the highest priority to

heavy tasks and assigns a lower priority to light tasks; the priority order between
light tasks is given by SM.

Theorem 1. Consider global static-priority scheduling with SM-US(2/(3+
√

5)).
If it holds for the task set that

∀τj ∈ τ :
Cj

Tj

≤ 1 (32)

and
∑

τj∈τ

Cj

Tj

≤ 2

3 +
√

5
· m (33)

then all deadlines are met.

Proof. The proof is by contradiction. If the lemma was false then it follows that
there is a task set such that Inequality 32 and Inequality 33 are true and when
this task set was scheduled by SM-US(2/(3 +

√
5)) a deadline was missed. Let

τfailed failed denote this task set and let m denote the number of processors.
Let k denote the number of heavy tasks. Because of Inequality 33 it follows that
k ≤ m. Also, because of Lemma 8 is follows that k ≥ 1.

Let τfailed2 denote a set which is constructed from τfailed as follows. For
every light task in τfailed there is a light task in τfailed2 and their Ti and Ci are
the same. For every heavy task in τfailed there is a heavy task in τfailed2 and
its Ti is the same. For the heavy tasks in τfailed2 it holds that Ci = Ti. From
Inequality 33 it follows that

∑

τj∈light(τfailed)

Cj

Tj

≤ 2

3 +
√

5
· (m − k) (34)

where light(τfailed) denotes the set of light tasks in τfailed. Since the light tasks
are the same in τfailed and τfailed2 it clearly follows that

∑

τj∈light(τfailed2)

Cj

Tj

≤ 2

3 +
√

5
· (m − k) (35)

If the task set τfailed2 would meet all deadlines when scheduled by SM-
US(2/(3 +

√
5)) then it would follow (from the fact that global static-priority

scheduling is predictable) that all deadlines would have been met when τfailed

was scheduled by SM-US(2/(3 +
√

5)). Hence it follows that at least one dead-
line was missed by τfailed2. And since there are at most k ≤ m − 1 heavy tasks
it follows that no deadline miss occurs for the heavy tasks. Hence it must have
been that a deadline miss occurred from a light task in τfailed2. But the schedul-
ing of the light tasks in τfailed2 is identical to what is would have been if we
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deleted the heavy tasks in τfailed2 and deleted the k processors. That is, we
have that scheduling the light tasks on m − k processor causes a deadline miss.
But Inequality 35 and Lemma 8 gives that no deadline miss occurs. This is a
contradiction. Hence the theorem is correct.

4 Conclusions

We have presented a new priority-assignment scheme, SM-US(2/(3 +
√

5)), for
global static-priority multiprocessor scheduling and proven that its utilization
bound is 2/(3 +

√
5, which is approximately, 0.382. We left open the question

whether it is possible to achieve a utilization bound of
√

2−1 with global static-
priority scheduling.
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Appendix

Lemma 1. Let m denote a positive integer. Consider ui to be a real number
such that 0 ≤ ui < 2

3+
√

5
and consider S to denote a set of non-negative real

numbers uj such that

(
∑

j∈S

uj) + ui ≤
2

3 +
√

5
· m (36)

then it follows that
1

m
· (
∑

j∈S

(2 − ui) · uj) + ui ≤ 1 (37)

Proof. Let us define f as:

f = (2 − ui) ·
2

3 +
√

5
· m + m · ui − m − ui +

2

3 +
√

5
(38)

We have:
∂f

∂ui

= − 2

3 +
√

5
· m + m − 1 > 0 (39)

From Inequality 39 and the constraint ui ≤ 2
3+

√
5

we obtain that f is no

greater than f for the value ui = 2
3+

√
5
. And we have f(ui = 2

3+
√

5
) = 0. This

gives us:

f ≤ (2 − ui) ·
2

3 +
√

5
· m + m · ui − m − ui +

2

3 +
√

5
≤ 0 (40)

Applying Inequality 40 to Inequality 36 and rewriting yields:

(2 − ui) ·
(

(
∑

j∈S

uj) + ui

)

+ m · ui − ui +
2

3 +
√

5
≤ m (41)
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Rearranging terms in Inequality 41 gives us:

1

m
·
(

∑

j∈S

(2 − ui) · uj

)

+ ui +
(2 − ui) · ui − ui + 2

3+
√

5

m
≤ 1 (42)

Recall that ui ≤ 2
3+

√
5
. Clearly this gives us 2−ui ≥ 1. And hence the last term

in the left-hand side of Inequality 42 is non-negative. This gives us:

1

m
·
(

∑

j∈S

(2 − ui) · uj

)

+ ui ≤ 1 (43)

And this states the lemma. Hence the lemma is correct.

Lemma 2. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. For those numbers, it holds that:

uj ·
1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) · uj ≤ (2 − ui) · uj (44)

Proof. The proof is by contradiction. Suppose that the lemma is false. Then we
have:

uj ·
1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) · uj > (2 − ui) · uj (45)

Let us explore the following cases.

1. ui = 0 and uj = 0
Applying this case on Inequality 45 gives us:

0 > 0 (46)

which is a contradiction. (end of Case 1)
2. ui = 0 and uj > 0

Applying this case on Inequality 45 gives us:

uj ·
1

1 − uj

+ (1 − uj ·
1

1 − uj

) · uj > 2 · uj (47)

Since uj > 0 we can divide Inequality 47 by uj and this gives us:

1

1 − uj

+ 1 − uj ·
1

1 − uj

> 2 (48)

Rewriting Inequality 48 yields:

1

1 − uj

· (1 − uj) > 1 (49)

which is a contradiction. (end of Case 2)
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3. ui > 0 and uj = 0
Applying this case on Inequality 45 gives us:

0 > 0 (50)

which is a contradiction. (end of Case 3)
4. ui > 0 and uj > 0

Since uj > 0 we can divide Inequality 45 by uj and this gives us:

1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) > 2 − ui (51)

Rewriting Inequality 51 yields:

1 − ui

1 − uj

− uj ·
1 − ui

1 − uj

> 1 − ui (52)

Further rewriting yields:

1

1 − uj

− uj ·
1

1 − uj

> 1 (53)

Further rewriting yields:

1 > 1 (54)

which is a contradiction. (end of Case 4)

Since a contradiction occurs for every case we obtain that the lemma is false.

Lemma 3. Consider two non-negative real numbers uj and ui such that 0 ≤
uj < 1 and 0 ≤ ui < 1. And two non-negative real numbers Tj and Ti such that

Tj · (1 − uj) ≤ Ti · (1 − ui) (55)

For those numbers, it holds that:

uj ·
Tj

Ti

+ (1 − uj ·
Tj

Ti

) · uj ≤ uj ·
1 − ui

1 − uj

+ (1 − uj ·
1 − ui

1 − uj

) (56)

Proof. Rewriting Inequality 55 yields:

∀j ∈ hp(i) :
Tj

Ti

≤ 1 − ui

1 − uj

(57)

Let qi,j denote the left-hand side of Inequality 57. There are two occurrences
qi,j in the left-hand side of Inequality 56. Also observe that the left-hand side
of Inequality 56 is increasing with increasing qi,j . For this reason, combining
Inequality 57 and the left-hand side of inequality 56 gives us that the lemma is
true.
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Lemma 4. Consider two integers Tj and Cj such that 0 ≤ Cj ≤ Tj. For every
t > 0 it holds that:

⌊ t

Tj

⌋ · Cj + min(t − ⌊ t

Tj

⌋ · Tj , Cj) ≤ Cj + (t − Cj) ·
Cj

Tj

(58)

Proof. The proof is by contradiction. Suppose that the lemma is false. Then
there is a t > 0 such that:

⌊ t

Tj

⌋ · Cj + min(t − ⌊ t

Tj

⌋ · Tj , Cj) > Cj + (t − Cj) ·
Cj

Tj

(59)

Let us consider two cases:

1. t − ⌊t/Tj⌋ · Tj ≤ Cj

Let ∆ be defined as: ∆ = Ci − (t − ⌊ t
Tj
⌋ · Tj). Let us increase t by ∆. Then

the left-hand side of Inequality 59 increases by ∆ and the right-hand side
increases by (Cj/Tj) · ∆. Since Cj/Tj ≤ 1 it follows that Inequality 59 still
true. That is:

⌊ t

Tj

⌋ · Cj + min(t − ⌊ t

Tj

⌋ · Tj, Cj) > Cj + (t − Cj) ·
Cj

Tj

(60)

Repeating this argument gives us that t − ⌊t/Tj⌋ · Tj = Cj . Applying it on
Inequality 60 yields:

t − Cj

Tj

· Cj + Cj > Cj + (t − Cj) ·
Cj

Tj

(61)

Rewriting Inequality 61 gives us:

(t − Cj) > (t − Cj) (62)

which is impossible. (end of Case 1)
2. t − ⌊t/Tj⌋ · Tj ≥ Cj

Let ∆ be defined as: ∆ = (t − ⌊ t
Tj
⌋ · Tj) − Cj . Let us decrease t by ∆.

Then the left-hand side of Inequality 59 is unchanged and the right-hand
side decreases by (Cj/Tj) · ∆. Since 0 ≤ Cj/Tj it follows that Inequality 59
still true. That is:

⌊ t

Tj

⌋ · Cj + min(t − ⌊ t

Tj

⌋ · Tj, Cj) > Cj + (t − Cj) ·
Cj

Tj

(63)

Repeating this argument gives us that t − ⌊t/Tj⌋ · Tj = Cj . Applying it on
Inequality 63 and applying similar rewriting as in Inequality 61 and Inequal-
ity 62 yields:

(t − Cj) > (t − Cj) (64)

which is impossible. (end of Case 2)

We can see that regardless of which case occurs a contradiction occurs and
hence the lemma is correct.


