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Abstract—Knowing exactly where a mobile entity is and

monitoring its trajectory in real-time has recently attracted a

lot of interests from both academia and industrial communities,

due to the large number of applications it enables; nevertheless, it

is nowadays one of the most challenging problems from scientific

and technological standpoints. In this work we propose a tracking

system based on the fusion of position estimations provided

by different sources, that are combined together to get a final

estimation that aims at providing improved accuracy with respect

to those generated by each system individually. In particular,

exploiting the availability of a Wireless Sensor Network as an

infrastructure, a mobile entity equipped with an inertial system

first gets the position estimation using both a Kalman Filter and

a fully distributed positioning algorithm (the Enhanced Steepest

Descent, we recently proposed), then combines the results using

the Simple Convex Combination algorithm. Simulation results

clearly show good performance in terms of the final accuracy

achieved. Finally, the proposed technique is validated against

real data taken from an inertial sensor provided by THALES

ITALIA.

Keywords-WSN; Localization and Tracking; Inertial Systems;

Sensor Fusion.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are distributed net-
worked embedded systems where each node combines sensing,
computing, communication, and storage capabilities [1]. Due
to their unprecedented design challenges and potentially large
revenues, in recent years WSNs have witnessed a tremendous
upsurge in interest and activities in both academia and indus-
try [2]. In particular, they have become increasingly popular
in military and civilian sectors, and have been proposed for a
wide range of application domains, e.g., control and automa-
tion, logistics and transportation, environmental monitoring,
health-care and surveillance.

In general, WSNs are required to possess self–organizing
capabilities, so that little or no human intervention for network
deployment and setup is required. A fundamental component
of self–organization is the ability of sensor nodes to “sense”
their location in space, i.e., determining where a given node
is physically located in a network [3], [4]. In particular, node
localization is a key enabling capability to support a rich set
of geographically aware protocols for distributed and self–
organizing WSNs [5], and for achieving context–awareness.

Several interesting applications are triggered by the possi-
bility offered by the network to allow tracking of a mobile
entity (ME). In this case it is important to differentiate among
two distinct scenarios: (i) the ME is a node belonging to
the WSN, and as a consequence it is equipped with the
needed instruments, (i.e., collaborative localization) or (ii) the
ME does not belong to the WSN, (i.e., not collaborative
localization) as in “surveillance” applications [6] [7].

In this work we focus on the former scenario: a WSN where
a limited number of anchor nodes knows a-priori its own
position and a mobile node needs to first estimate its starting
position then track its own movement in an environment.
To do so, we address a combination (fusion) of positioning
techniques such as our recently proposed distributed Enhanced
Steepest Descent (ESD) algorithm [8] and an Inertial Naviga-
tion System (INS) composed by an Inertial Measurements Unit
(IMU) such as accelerometer and gyroscope.

Although the idea of combining information from multiple
types of positioning sensors to improve the final estimation is
not new [9], the key to obtain an efficient position estimation,
and, thus, a good tracking, is the implementation of valid
(WSN-based) algorithms together with the use of sensors able
to provide very accurate measurements.

The remainder of this paper is as follows. Section II
overviews on the inertial navigation systems while Section III
briefly summarizes the ESD algorithm. Both serve as back-
ground for Section IV where the fusion technique to integrate
INS and ESD estimations is shown. Section V presents (i) the
simulation model and the performance results of the proposed
technique, and (ii) the preliminary experiments using a real
IMU platform, provided to the Center of Excellence DEWS in
L’Aquila (Italy) by Thales Italia. Finally, Section VI provides
concluding remarks and future on-going work.

II. INERTIAL NAVIGATION SYSTEM

The fundamental idea of the Inertial (or Newton) Navigation
derives from the physics: “The second integral of acceleration
is position” [10]. Inertial navigation systems are based on the
dead–reckoning and include a set of sensors, called IMU, and
a navigation computer as shown in Fig. 1.



Fig. 1. Basic INS scheme.

The sensing part is often composed by an accelerometer (to
measure changes in position) and a gyroscope (to maintain
absolute angular references). Generally, there is at least one
sensor for each of the three axes (mutually orthogonal to each
other) to capture pitch (up and down), yaw (left and right)
and roll (clockwise or counter–clockwise rotation) movements.
The navigation processor gets IMU’s measurements to output
position, speed and attitude. In particular, the gyroscopes
provide the angular speed, needed to estimate the attitude
and the accelerometers provide acceleration measurements that
are first integrated to compute the speed and then integrated
again to obtain the position. However, since the position is
obtained through a double integration, the processor needs to
know its initial position. Moreover, to compute the necessary
corrections due to the effects of the Earth gravity on the
acceleration measurements, a gravity model is also included.

These systems have been well investigated in literature and
in synthesis there are several advantages of using them [10]:
(i) they use fully autonomous systems, which can operate with-
out the need of the human control and do not need connectivity
to external elements; (ii) they can be integrated with other
navigation systems (as e.g., the GPS) to obtain the initial
position estimation and re-calibrate it periodically; (iii) they
are insensitive to jamming or attacks from external entities,
since they do not transmit nor receive data to perform their
computations, and (iv) since new sensors are recently being
produced using Micro Electro Mechanical Systems (MEMS)-
based technology, their weight and size are extremely reduced.
On the other hand, there are also some drawbacks, such
as [10]: (i) since they use integration process, their estimation
errors usually tend to grow over the time; (ii) an initial
calibration of the system is often needed, and that might
require time, and (iii) their energy consumptions are usually
high, especially if the sensors’ sampling frequency is high.

Summarizing, the INS has two fundamental characteristics:
the autonomy and accuracy of the estimations over the short
periods. On the other hand, its main drawback is that the
estimation errors grow fast over the time. For this reason, in
real applications, where long term navigation is needed, an
auxiliary navigation system is used to reset the INS estima-
tions. Usually, this system is the GPS that, however, suffers
from several limitations, like e.g., the need to constantly have
visibility with the satellites. In this work, we show that the
ESD positioning algorithm over WSN can be efficiently used

as an auxiliary system, instead of the GPS, to improve the
final accuracy of the navigation.

III. ENHANCED STEEPEST DESCENT

In this section, the ESD distributed positioning algorithm is
briefly introduced as an enhancement of the well-known Steep-
est Descent (SD) method. The following notation will be used
here: (i) bold symbols denote vectors and matrices, (ii) (·)T
denotes transpose operation, (iii) ∇ (·) is the gradient operator,
(iv) �·� is the Euclidean distance, (v) � (·, ·) is the phase
angle between two vectors, (vi) (·)−1 denotes matrix inversion,
(vii) ûj = [ûj,x, ûj,y, ûj,z]

T is the estimated position of the
mobile node {Uj}NU

j=1, (viii) uj = [uj,x, uj,y, uj,z]
T is the trial

solution of the positioning algorithm, (ix) ūi = [xi, yi, zi]
T

denote the positions of the reference nodes {Ai}NA

i=1, and
(x) d̂j,i is the estimated (via ranging measurement) distance
between reference node {Ai}NA

i=1 and blind node {Uj}NU

j=1.
Both SD and ESD are gradient descent methods [11]. This

means that the position of a node U1 is obtained by minimizing
the error cost function F (·) defined as follows:

F (u1) =
NA�

i=1

�
d̂1,i − �u1 − ūi�

�2
(1)

such that û1 = argmin
u1

{F (u1)}. The minimization of (1) can

be done using a variety of numerical optimization techniques,
each one having its own advantages and disadvantages in terms
of accuracy, robustness, convergence speed, complexity, and
storage requirements [11].

1) Classical Steepest Descent: The classical Steepest De-
scent (SD) is an iterative line search method that allows to
find the (local) minimum of the cost function in (1) at step
k + 1 as follows [11, pp. 22, sec. 2.2]:

u1 (k + 1) = u1 (k) + αkp (k) (2)

where αk is a step length factor, which regulates the conver-
gence speed [11, pp. 36, ch. 3] and p (k) = −∇F (u1 (k)) is
the search direction of the algorithm. In particular, since the
optimization problem is non-linear, a fixed and small value of
αk is in general preferred in order to reduce the oscillatory
effect when the algorithm approaches the solution.

2) Enhanced Steepest Descent: The SD method provides,
in general, good accuracies in estimating the final solution.
However, it may require a large number of iterations, which
may result in a convergence speed too slow, especially when
mobility is considered. In order to improve such convergence
speed, we proposed an enhanced version, we called ESD.

The basic idea behind the ESD algorithm is to continuously
adjust the step length value αk as a function of the current and
previous search directions p (k) and p (k − 1), respectively. In
particular, αk is adjusted as follows:






αk = αk−1 + γ if θk < θmin

αk = αk−1/δ if θk > θmax

αk = αk−1 otherwise

(3)



where θk = � (p (k) ,p (k − 1)), 0 < γ < 1 is a linear
increment factor, δ > 1 is a multiplicative decrement factor,
and θmin and θmax are two angular threshold values that
control the step length update.

By using the four degrees of freedom γ, δ, θmin and θmax,
we can simultaneously control the convergence rate of the
algorithm and the oscillatory phenomenon when approaching
the final solution in a simple way, and without appreciably
increasing the complexity of SD. Basically, the main advantage
of the ESD algorithm is the adaptive optimization of the step
length factor αk at run time, which allows to dynamically
either accelerate or decelerate the convergence speed of the
algorithm as a function of the actual value of the function (1).

IV. DISTRIBUTED SENSOR FUSION

As mentioned earlier, the INS can give very accurate
position estimations, but only over short periods. On the other
hands, the ESD is able to provide position estimations that are
more stable over time, but less accurate. As a consequence,
the two systems are complementary to each other and can be
fused to improve the final system performance.

Basically, we have two estimations x̂i (i = 1, 2), i.e., the
positions computed by the two systems, and the problem is to
generate a single “optimal” estimation x̂1e2 as a fusion of x̂1

and x̂2. To do so, we need also to compute the two error
covariance matrices [12]-[14] Pij = E [(x− x̂i)(x− x̂j)�],
i = 1, 2; j = 1, 2. The main problem for these systems is that
the values of the cross–correlation matrices P12 = P �

21 are not
known a-priori. However, if the two systems generating the es-
timations x̂1 and x̂2 are independent from each other, then the
cross-correlation matrices Pij (for i �= j) can be assumed to
be negligible and the Simple Convex Combination (SCC) [15]
fusion algorithm can be efficiently used. In general, the SCC
algorithm is often used due to its ease of implementation. It
provides optimal estimates if the cross–covariance matrix Pij

is close to zero, otherwise, the estimates are sub–optimal.
Hence, the new estimation is computed as follows1:

x̂1e2 = P2 (P1 + P2)
−1 x̂1 + P1 (P1 + P2)

−1 x̂2

= P1e2

�
P−1
1 x̂1 + P−1

2 x̂2

�
(4)

and the error covariance matrix is P1e2 =
�
P−1
1 + P−1

2

�−1.

V. NAVIGATION SYSTEM

In this section we show how the sensor fusion can be applied
in tracking scenarios. The system performance is assessed
by first relying on a MATLAB simulation model, then on
preliminary experimental activities with a real IMU hardware.

To simulate the motion of a ME over a given area, we
implemented a kinematic model. From this model, acceler-
ation, speed and position of the ME are derived. Then, the
INS system has been simulated (in a bi-dimensional space)
as two acceleration sensors that feed a Kalman filter to track
the movements of the ME. In parallel, the measurements of
distances of the ME from four anchor nodes in the field

1To simplify the notation, we assume P1 = P11 and P2 = P22

have been simulated, using an additive zero-mean Gaussian
ranging error model, and feed the ESD algorithm to produce
the position estimation. These two estimations finally feed the
SCC fusion, that provides a global position estimation.

A. Kinematic Model
Among the plethora of solutions presented in literature to

model the movement of an entity [9], [12], in this work the
Discrete White Noise Acceleration (DWNA) model has been
adopted. DWNA is also called as piecewise constant white
acceleration, since it considers the acceleration as constant
during the sampling intervals. The model is described by the
following system of equations:






xk+1 = xk + ẋk∆T + 1
2 ẍk∆T 2

yk+1 = yk + ẏk∆T + 1
2 ÿk∆T 2

ẋk+1 = ẋk + ẍk∆T

ẏk+1 = ẏk + ÿk∆T

ẍk+1 = nẍ

ÿk+1 = nÿ

(5)

where: (i) k and k + 1 are the sampling instants; (ii) ∆T =
Tk+1 − Tk, is the sampling period; (iii) x and y are the
2D coordinates of ME; (iv) ẋ, ẏ, ẍ, ÿ are the coordinates of
the speed (ms ) and acceleration (ms2 ) vectors, respectively, and
(v) nẍ, nÿ are the random values of acceleration (ms2 ), assumed
as constants within each ∆T , and having a 0-mean Gaussian
distribution with standard deviation σnẍ and σnÿ .

These equations can be written using matrices as:

xk+1 = Axk + F̃N
�
k (6)

where xk is the state vector at the step k, A is the state
transition matrix, F̃ is a gain matrix and N

�
k is the noise vector.

For the sake of simplicity, in this model we implicitly
assumed that rotations of the ME are negligible with respect
to the movements along the axes: in other words, the ME is as
a point that moves on the xy-plane. However, in order to make
the DWNA more realistic, an additional noise term has been
included to model the interaction of the ME with obstacles.
Basically, the interaction is modeled as a random acceleration
vector computed at time k added to the acceleration provided
by the model: this causes the ME to move on a different direc-
tion. Moreover, this additional vector is applied or not based
on a Bernoulli random decision variable (with probability µ).

After having simulated the true trajectory of the ME, a
Kalman Filter has been implemented as the INS’ navigation
processing core to estimate the coordinates (x,y) of the ME
from its acceleration measurements. In parallel, the gradient
descent methods have been implemented as described in
Section III to estimate the position from the measurements
of distances w.r.t. the anchors.

1) Kalman Filter: In realistic conditions, the acceleration
measurements given by the IMU are noisy. As a consequence,
the observation vector z, i.e., the measurements from the
sensors, is modeled as:

zk = Cxk + G̃N
��
k (7)



where C is the state observation matrix, G̃ is the noise matrix
and N

��
k is the observation noise vector, which is supposed

to have a zero-mean Gaussian distribution. Similarly to the
state noise, it is possible to compute the covariance matrix for
N��

k = [�ax, �ay]Tk as:

E[N��
kN

��T
j ] =

�
σ2
�ax

0

0 σ2
�ay

�
(8)

where �ax, �ay are the noise of the acceleration measurements
over the two axes.

Thus, the final system is:
�

xk+1 = Axk + F̃N
�
k

zk = Cxk + G̃N
��
k

(9)

Since the state noise (N�
k) and the measurement noise (N��

k)
are zero-mean Gaussian random vectors and independent from
each other, they can be grouped into a single noise vector
Nk = [N�

k,N
��
k ]

T , with the associated covariance matrix:

E[NkN
T
j ] =





σ2
nẍ

0 0 0

0 σ2
nÿ

0 0

0 0 σ2
�ax

0

0 0 0 σ2
�ay




(10)

2) Gradient Descent Methods: In order to apply the SCC,
the covariance matrices must be computed. While the Kalman
Filter provides already such error covariance matrix together
with the position estimation, with the SD and ESD the
covariance matrices have to be computed from scratch. This
computation is done through a time-based technique, consid-
ering the estimated position by the SD and the ESD at each
time k and the measured distances from the reference nodes. In
particular, since the error function to be minimized is defined
as in (1), the variance of the error can be computed as the
variance of a vector Error

�
ũh
j

�
whose elements are:

Error
�
ũh
j

�
=

NA�

i=1

�
ehi,j

�2
(11)

where ehi,j = d̂i,j −
��ui − ūh

j

�� is the error w.r.t. the anchor ui,
ūh
j is the position estimation at the step h and i = 1, . . . , NA,

j = 1, . . . , NU . Then the variance of this error must be com-
puted considering in such a vector the estimations obtained at
steps h, with h = k − m, . . . , k (i.e., considering a moving
window of the last m estimations).

B. Simulation Analysis

The simulated scenario is similar to Fig. 2, where a ME
is supposed to move from an environment equipped with a
WSN (and in particular with four anchor nodes) to another
similar one. In the middle, the ME traverses an area where no
anchor nodes are present, but we suppose the ME still maintain
the radio connectivity with the old anchors. This is a typical
scenario mixed indoor–outdoor. The goal is to show that the

Fig. 2. Mixed Indoor–Outdoor Scenario [16].

fusion is able to choose the optimal position estimation along
the trajectory.

The simulation setup is as follows2: (i) simulation duration
n = 100 s; (ii) ∆T = 1 s; (iii) standard deviations of
the state noise, distances3 and accelerations equal to σnẍ =
σnÿ = 0.5 m

s2 , σdi,j
= 0.1 m and σ�ax = σ�ay = 0.25 m

s2 ,
respectively; (iv) the maximum number of iterations for both
SD and ESD algorithms is 100, (v) the error tolerance for the
minimization is ε = 0.001 (i.e., when for a given position
estimation the error function falls below ε the gradient-based
algorithms stop, before reaching the maximum number of
iterations); (vi) the initial position estimation for both SD and
ESD at every run (i.e., every ∆T ) is reset into the origin of
the system’s coordinates; (vii) the learning speed4 is α0 = 0.5;
(viii) the degrees of freedom for the ESD algorithm are:
γ = 0.1, δ = 1.75, θmin = 5◦ and θmax = 30◦; (ix) the
Bernoulli probability of the ME to change direction due to
obstacles is µ = 0.1, and (x) the dimension of the mobile
window to compute both SD and ESD error covariances is
m = 20 s, according to (11).

We suppose that every ∆T the estimations from the INS
and the gradient methods are available and synchronous and,
since the ME motion is computed using the kinematic model
described in Section V-A, to simplify the simulation, we
assume that at the step k = 80 (i.e., after 80 seconds) both SD
and ESD instantaneously switch to the second set of anchor
nodes. Finally, in order to compare the performance of the
solutions proposed, even if the traces are synchronous, the
Dynamic Time Warping tool [17] was chosen as similarity
metric. This tool generally measures the similarity5 between
two traces, by automatically correcting any timing discrepancy.

Given the above setup and assumptions, Fig. 3 reports the

2Due to space constraints, the results are shown w.r.t. a single setup.
3In [8] a RSS-based ranging technique has been adopted with the ESD

algorithm. Here σdi,j
accounts for the statistics of the ranging errors,

independently from which (RSS-, Angular- or Time-based) model is actually
used.

4Initial value for the ESD and fixed value for the SD
5Similarity is measured as a distance between the two curves; thus lesser

the DTW value, more similar the two curves are.



results of a simulation run composed by 100 trials, in each of
them a ME travels from an initial position close to anchors
A1-A4 to one close to A5-A8, similarly to the reference
scenario in Fig. 2, following a random walk, as described in
Section V-A. Fig. 3 shows the cumulative distribution of the
error measured by the DTW for all the tracking algorithms
available: INS, SD, ESD and two SCC fusions, one that
considers INS and SD and the other between INS and ESD.

Fig. 3. Cumulative error distributions of the considered tracking methods.

From Fig. 3 the following conclusions can be drawn: (i) the
INS as a tracking solution alone suddenly shows bad perfor-
mance being really sensible to the high value of σ1,σ2 and the
presence of obstacles; (ii) the ESD and the SD as independent
solutions show better performance than INS and this is mostly
due to the choice of σdi,j

with respect to σ�ax ,σ�ay ; (iii) as
evidenced in previous work [8], it is confirmed that ESD
outperforms SD in terms of accuracy of the final estimation,
and (iv) overall, the sensor fusion algorithm improves the
performance of the tracking system.

In general, the comparison of SCC(INS,SD) with
SCC(INS,ESD) confirms that the key to obtain good tracking
performance is the implementation of efficient algorithms
together with the use of sensors able to provide very accurate
measurements. With the help of this MATLAB tool, future
work will include the analysis of the system performance as a
function of parameters, such as σnẍ ,σnÿ ,σdi,j

,σ�ax and σ�ay .

C. Experimental Analysis

The encouraging simulation results have been validated
against preliminary real experiments using the XSENS MTi
Motion Tracker [18]. It is a small-size IMU with a 3D compass
and an embedded processor able to compute in real-time roll,
pitch and yaw, as well as the linear 3D accelerations, angular
speed and Earth magnetic field.

1) XSENS MTi Motion Tracker: The MTi orientation is
estimated using a XSENS internal Kalman filter (XKF3) which
fuses the signals from the gyroscopes, accelerometers and
magnetometers to compute an optimal statistical 3D orien-
tation with high accuracy. By the XKF3 algorithm, the Earth
magnetic field and gravity measurements enable an attitude
and heading drift errors compensation [18].

Fig. 4(a) shows how the MTi can be connected to a PC
through the USB-serial adapter, where the sensor outputs
are collected. Every sensor measurement is referred to the
Cartesian system as shown in Fig. 4(b). This reference system
is called S and is body-fixed to the device. The orientation of
the sensors are then computed between S and the Earth-fixed
system (called G), as shown in Fig. 4(c).

(a) Scheme and interface with the PC.

(b) Coordinates system. (c) Reference system.

Fig. 4. Details of the MTi IMU.

2) 2D tracking: The Kalman filter and DWNA kinematic
model have been applied to estimate the trajectory of the MTi
sensor, starting from its acceleration measurements. However,
in order to use the Kalman filter, the covariance matrices of the
state and the output noises are needed. While the former was
computed using the whole set of the acquired measurements,
the latter was inferred from the nominal noise density values
reported in the MTi datasheet [18].

To simplify the experiment, the MTi device was moved on
a table, like a PC’s mouse. By this way, Roll and Pitch contri-
butions are close to zero, then the Earth’s gravity contribution
can be filtered out by simply subtracting the average value of
the measured accelerations for the x and y axes.

Fig. 5 shows the reconstructed trajectory of a clockwise
movement of the MTi device along a rectangular shape6 of
10 cm x 8 cm. Interestingly, the system shows very good
performance in estimating the trajectory for quick movements
of the device, while, as confirmed in [19], for low acceleration
values the reconstructed trajectory is not satisfactory, due to
the effects of the noise in the measurements.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we proposed a positioning and tracking system
based on the fusion of position estimations provided by two
different and independent techniques. Thanks to the MATLAB

6An experimental campaign is currently on-going at the University of
L’Aquila using the platform in more realistic and wider scenarios.



Fig. 5. Example of estimated trajectory.

simulator we developed, we are able to assess the performance
limits of the algorithms (i.e., INS, SD, ESD and SCC) when
they are used to estimate the positions of a mobile entity. Sim-
ulation results clearly show the advantage of the integration
of different systems: sensor fusion provides better accuracies
with respect to those provided by each individual algorithmic
component, but the best joint performance are dependent on
the accuracy of each individual component.

The Kalman Filter built on top of the DWNA kinematic
model has been tested also using measurement traces acquired
by a real platform, the XSENS Motion Tracker MTi, that
Thales Italia made available to the Center of Excellence
DEWS in L’Aquila (Italy). Preliminary results confirm the
good performance when the movement traces have large
acceleration impulses, while for slow movements, i.e. small
acceleration, the noise level becomes dominant.

In the current version of the simulator, the Kalman filter
needs to know the covariance statistic matrices, thus the
acceleration measurements must be already available. This
limits the applicability of the proposed solution in scenarios
requiring hard real-time constraints. On-going work includes
the substitution the INS of the Kalman filter with a faster,
but sub-optimal time-based algorithm (such as a trajectory
prediction). By this way, the INS system can reset its initial
position estimation, as soon as the SCC detects that the ESD
is going to have a better accuracy.

Longer term future work will include the development of
realistic signal propagation models [20] in the MATLAB tool,
in order to enable a smoother transition for the ESD among
different WSN-equipped spaces (as in Fig. 2). This will foster
new studies about anchor deployment planning for WSNs,
to cope with tracking requirements but with knowledge of
the new performance limits provided by the sensor fusion
technology.
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