
  

 

 

 

 

 

 

Enhanced Race-To-Halt: A Leakage-Aware 
Energy Management Approach for Dynamic 
Priority Systems 

 
 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-110602 

Version:  

Date: 06-20-2011 

Muhammad Ali Awan 

Stefan M. Petters 
 



Technical Report HURRAY-TR-110602 Enhanced Race-To-Halt: A Leakage-Aware Energy Management 

                                                        Approach for Dynamic Priority Systems 

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 
 

Enhanced Race-To-Halt: A Leakage-Aware Energy Management Approach 
for Dynamic Priority Systems 
Muhammad Ali Awan, Stefan M. Petters 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 
Abstract 
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic 
power consumption. The recent technology trends have equipped the modern embedded processors with the several 
sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling 
(DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static 
(leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on 
assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach 
(ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate theeffectiveness of 
our approach showing an improvement of up to 8 % over an existing work. 
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Abstract—With progressing CMOS technology miniatur-
ization, the leakage power consumption starts to dominate
the dynamic power consumption. The recent technology
trends have equipped the modern embedded processors
with the several sleep states and reduced their overhead
(energy/time) of the sleep transition. The dynamic voltage
frequency scaling (DVFS) potential to save energy is di-
minishing due to efficient (low overhead) sleep states and
increased static (leakage) power consumption. The state-of-
the-art research on static power reduction at system level
is based on assumptions that cannot easily be integrated
into practical systems. We propose a novel enhanced race-
to-halt approach (ERTH) to reduce the overall system energy
consumption. The exhaustive simulations demonstrate the
effectiveness of our approach showing an improvement of up
to 8 % over an existing work.

I. INTRODUCTION

Embedded devices are designed to perform a set of
functions and interact with their environment. Typical
examples of such systems are cars, satellites or mobile
phones. Real-time (RT) embedded systems have additional
timing constraints, which are required to be met on top of
functional aspects for the overall system to be considered
correct.

Beyond the real-time constraints many embedded sys-
tems are also limited in the energy supply. Such power
constraints are induced by the battery powered mobile
devices or those with limited or intermittent power supply
(e.g. solar cells). The most prominent hardware features
available to system designers to use energy efficiently
are DVFS and sleep states. With the CMOS technology
scaling, the leakage power has become a significant factor
in overall power consumption. Leakage power consump-
tion is due to sub-threshold current that flows through the
transistors. The technology scaling resulted in the leakage
power often dominating the dynamic power [1].

The latest embedded processors are equipped with
several sleep states and also decrease the overhead of
transitioning into such a sleep state. Using DVFS is
complex [2] and may not be optimal in terms of energy
consumption, as DVFS increases the execution time and
thus the leakage energy. Instead, race-to-halt followed by
a sleep state is emerging as a candidate superior to DVFS
in energy management [1].

This work was financed by FEDER funds (EU) through the Op-
erational Programme ’Thematic Factors of Competitiveness’ - COM-
PETE, by National Funds (PT) through FCT - Portuguese Foun-
dation for Science and Technology and the ARTEMIS-JU, under
the projects RePoMuC (PTDC/EIA-EIA/112599/2009) and RECOMP
(ARTEMIS/0202/2009).

The increase in computing power also leads to a pro-
gressive integration of functionality in single devices. For
example, a current mobile phone combines applications of
soft real-time character (e.g. base station communication)
with such of best-effort character (e.g. SMS). Modern
cars integrate safety-critical components (e.g. airbag) with
comfort functionality. Additionally the different system
components and software modules are potentially pro-
vided by different third party suppliers. Consequently such
mixed criticality systems require temporal and functional
isolation not only to protect critical applications from less
critical ones, but also as a means to identify the offending
application in the case of a misbehaving system.

Most current research is based on one or more of the
following very strong assumptions: a simplistic power
and processor model for DVFS, a negligible time/energy
overhead of entering and leaving a sleep state or the
requirement of additional hardware to run the proposed ap-
proach [2]. This paper reduces the restrictive assumptions
that prevent the practical use of state-of-the-art research.
It assumes non-negligible time/energy overhead of sleep
transition and does not require specialized hardware.

The major contributions are as follows. 1) An en-
ergy efficient slack management approach to accumulate
the execution slack. 2) A simple method to calculate
the break-even-time offline for different sleep states. 3)
An enhanced race-to-halt (ERTH) algorithm to minimize
the leakage energy consumption for the mixed-critically
uniprocessor systems, while avoiding the impractical as-
sumptions made. 4) Some improvements are also made
in the procrastination approach (LC-EDF) to reduce the
computational time and implementation complexity.

Section II discuss the limitations of the state-of-the-art
followed by a system model in Section III. The break-
even-time and schedulability is discussed in Section IV.
The following section presents the slack management
algorithm. The ERTH algorithm is given in section VI.
Section VII discusses the offline and online overhead
of ERTH against LC-EDF. The simulations results and
conclusions are given in Sections VIII and IX respectively.

II. RELATED WORK

To reduce the leakage power, Lee et al. [3] addressed
the procrastination scheduling for periodic hard real-time
systems and proposed Leakage Control EDF (LC-EDF)
and Leakage Control Dual Priority (LC-DP) algorithms.
They maximized the idle interval by delaying the busy
period to increase the duration of the sleep state. An



external specialized hardware (ASIC or FPGA) is assumed
to implement the algorithm. Irani et al. [4] proposed offline
and online algorithms for power saving while considering
shutdown in combination with DVFS. Although the com-
bination of shutdown and DVFS has its merits, but their
work is not applicable in real systems due to a number
of very restrictive assumptions in terms of the power
model. Niu and Quan’s [5] scheduling technique also
integrates DVFS and shutdown to minimize the overall
energy consumption based on the latest arrival time of
jobs. However, this algorithm cannot be used online due to
extensive analysis overhead. Previously, Jejurikar et al. [6]
integrated the DVFS with LC-EDF, to minimized the total
power consumption. The critical speed ηcrit is estimated
that determines the lower bound on the processor fre-
quency to minimize the energy consumption per cycle.
Nevertheless, they did not relax on the requirement of
additional hardware and the power model used in their
approach is also very simple.

Jejurikar et al. [7] showed that procrastination under
LC-DP originally proposed by Lee et al. [3] may cause
some of the tasks to miss their deadline. They proposed
improvements in the original algorithm with an integration
of DVFS. However, they adopted the same assumptions
of [3] with simplistic power model. Later on Chen and
Kuo [8] showed that an approach given in [7] still might
lead to some tasks missing their deadlines. They proposed
a two phase algorithm that estimates the execution speed
and procrastination interval offline and predicts turn off/on
instances online. Their work also assumes a very simplistic
power and processor model.

The work of Jejurikar and Gupta [9] reclaims the
execution slack generated due to the difference between
worst-case execution time (WCET) and actual execution
time. They use LC-EDF and DVFS to minimize the overall
energy consumption. This algorithm follows the same
assumption made by previous work [3], [6], [7]. Chen
and Thiele [10] proposed leakage-aware DVFS scheduling,
where tasks execute initially with decelerating frequencies
to accumulate the slack to initiate sleep state and towards
the end execute with accelerating frequencies to reduce
the dynamic power consumption. However, it still relies
on a simplistic power model. The system-level power
management algorithm developed by Devadas and Aydin
[11] for frame-based embedded systems addresses the
interplay of DVFS and device power management (DPM).
While the approach is very promising, the simple power
model and the restriction of the frame-based tasks need
further work.

The common assumptions made in state-of-the-art are
simple, convex power model, a continuous spectrum of
available frequency/voltage, negligible time/energy over-
head of frequency/voltage switch/sleep transitions, exter-
nal specialized hardware to run the proposed algorithm.
These assumption cannot easily be integrated into practi-
cal systems and subsequently severely limit the practical
relevance of the proposed work.

III. SYSTEM MODEL

We assume a sporadic task model, with l independent
tasks T = {τ1, τ2, · · · , τl}. A task τi is described by
�Ci, Di, Ti�, where Ci is the worst-case execution time
(WCET), Di the relative deadline and Ti the minimum
inter-arrival time. The independent tasks are allocated a
periodic budget Ai and release as a sequence of jobs ji,m.
Each job ji,m has a deadline di,m, a budget ai,m, a release
time ri,m and an actual execution time ĉi,m.

We use the Rate-Based Earliest Deadline first (RBED)
framework [12], which provides temporal isolation via
enforced budgets ai,m associated with each job ji,m. This
temporal isolation allows the mixing of hard, soft and best-
effort type applications. The allocations of budget for soft
real-time (SRT) and best-effort (BE) tasks may be less than
or equal to WCET (Ai ≤ Ci). For hard real-time (HRT)
tasks the budget is equal to the WCET (Ai = Ci), to
ensure the timely completion of all jobs. The scheduler
pre-empts every job when it has used up its allocated
budget ai,m. Thus a job exceeding its budget cannot affect
the overall schedulability.

We assume N sleep states in our system, where each
sleep state n is characterized with a power Pn, a transition
overhead of tn and a break-even time (BET) ten. The time
tn includes transition time to sleep tsn, as well as the wake-
up time twn i.e. tn = tsn + twn . Top speed and idle mode
power are represented as PTs, PLs respectively.

IV. SLEEP INTERVAL LIMITS

In the context of our approach the break-even time ten
is defined as follows.

Definition 1. The break-even time ten is the time interval
during which energy consumption of that sleep state
n becomes equal to the energy consumption of system
running at a certain frequency set-point without a load
(in idle mode).

The interval ten includes the transition delays (tsn, twn )
and also compensates for the energy lost during transition
phase of the sleep state. In order to estimate ten, let’s
consider Figure 1. The overhead of the idle mode transi-
tion is assumed negligible. We assume power consumption
remains steady in idle and top speed mode. However, we
also assume the power consumption of the sleep state n

PLs

Pn

P
ow

er

tsn twn

ten

Time

PTs

Figure 1. Break-Even Time ten estimation



varies linearly during transition phase and remains uniform
during sleep interval as shown in Figure 1. The area under
the curve gives the energy consumption. According to our
definition by equating the energy consumption of both
curves, we get ten as given in Equation 1. A more accurate
model for ten is possible and would be a function of e.g. the
current DVFS state, type of the task (CPU intensive or
memory intensive), etc. For the purpose of this paper, the
approach presented here is sufficient, but does not prevent
at all the use of more sophisticated models.

ten =
(tsn + twn )(PTs − Pn)

2(PLs − Pn)
(1)

The definition of ten implies that the system will save
energy if a sleep state is initiated for more than ten.
Therefore ten gives a lower bound for the desired sleep
interval. In the running system a threshold value greater
than ten will be chosen as a minimum sleep interval.
Intuitively it is preferable to choose fewer, but longer
sleep intervals, when compared to more frequent sleep
transitions for small intervals. While the overhead of the
sleep transition has a major impact on the lower bound of
the sleep interval, the schedulability of the system enforces
an upper bound of the sleep interval. We define this upper
bound on the sleep interval as static limit tl for which the
system can, under certain conditions (explained later in
Section VI) be enforced to stay in a sleep state without
causing deadline misses.

Definition 2. The static limit tl describes the maximum
time interval for which the processor may be enforced in a
sleep state without causing any applications to miss their
deadlines under worst-case assumptions.

The schedulability analysis of the EDF on uniprocessor
[13], [14] is given in Theorem 1. However overall demand
bound function for a T can be represented as dbfT(L) def=
maxL0df(L0, L0 + L) following the definition of Rahni
et al. [15].

Theorem 1. A synchronous periodic task set T is schedu-
lable under EDF if and only if, ∀L ∈ L∗, df(0, L) ≤ L,
where L is an absolute deadline and L∗ is the first idle
time in the schedule.

Therefore formally the static limit is defined by exploit-
ing the demand bound function dbf . Assuming Theorem 1,
a static limit for sleep threshold tl is given in Equation 2.

∀L ∈ L∗, tl = min (L− dbf(L)) (2)

Where L is an absolute deadline and L∗ is the first idle
time in the schedule.

Theorem 2. Initiating sleep state for the static limit tl
does not violate the EDF schedule if and only if

∀L ∈ L∗, dbf(L) + tl ≤ L
Where L is an absolute deadline and L∗ is the first idle
time in the schedule.

Proof: The sleep interval tl can be interpreted as
highest priority task in the system. In an EDF scheduled

system it is equivalent to a task with deadline equal to the
shortest relative deadline of any task in the system. As
such the dbf∗(L) is increased over dbf(L) by tl, following
the definition in Equation 2 it follows that dbf∗(L) ≤ L.

V. SLACK MANAGEMENT ALGORITHM

The processing time not used in a system is called slack.
This slack may be categorized in two types, dynamic and
static slack. The static slack exists due to spare capacity
available in the system schedule. This spare capacity
occurs as the system is loaded less than what can be
guaranteed by the schedulability tests.

The dynamic slack occurs due to difference between
worst-case assumptions made in the offline analysis and
the actual online behavior of the system. It is further
divided into two components based on two different worst-
case assumptions. The first worst-case assumption made
is that each job of a task will execute for its WCET Ci.
Most of the jobs in the real system finish execution earlier
than their ai,m or Ci. Thus we term the first component
of the dynamic slack as execution slack Ŝi,m, which is
generated by the difference in Ci and ĉi.

Similarly, the system is analyzed with the second as-
sumption that each job of a sporadic task will be released
as soon as possible i.e. released periodically with the
minimum inter-arrival time. However, for truly sporadic
tasks that rarely happens in hard real-time systems. Jobs of
a sporadic tasks are released with a variable delay bounded
by the minimum inter-arrival time. The slack generated
due to sporadic delays is called sporadic slack and forms
the second component of the dynamic slack. Naturally, all
of the dynamic slack is generated online.

The execution slack and static slack are managed explic-
itly in our approach. Nevertheless, effect of the sporadic
slack is considered implicitly. Our slack management
approach is based on the basic principles of [16]. The
execution slack Ŝi,m received from previous tasks at time
instant t is represented by the tuple St = �St·s, St·d�,
where St·s corresponds to effective slack size and St·d
corresponds to the absolute deadline of the slack. During
idle mode, the system consumes available slack [17]. We
use only a single container for the slack management, as
keeping several containers for the slack at different priority
levels would add extra online computational overhead.

To preserve the schedulability, we assume tasks with
higher priority can only pass slack to the tasks of same or
lower priority. When a system receives execution slack
from a higher priority task, the slack deadline St·d is
updated accordingly (St·d = max{St·d, di,m}), while the
slack received from the previous task St�·s is added to
St·s (St·s+ = St�·s). On every scheduling event, the slack
priority is compared against the current job priority. If the
slack St has a higher or equal priority than the current
job to be executed, the actual budget ai,m of the current
job ji,m is incremented by St·s; i.e. ai,m+ = St·s. The
slack management in our approach will not pass slack to
BE tasks, as BE tasks are likely to consume the slack and



we want to retain that for energy management purposes.
The advantage of this approach is that slack generated
at different priority levels are eventually accumulated
implicitly with a very simplistic and transparent approach
using just one container to hold the slack. The complete
slack management algorithm is given in Algorithm 1.

Algorithm 1 Slack Managment
1: On Every Scheduling Event
2: if (St·d ≤ di,m) then
3: ai,m+ = St·s
4: St·d = 0
5: St·s = 0
6: end if
7: Slack Update On Job Completion
8: St·s+ = ai,m

9: St·d = max(St·d, di,m)
10: if (Ready Queue Empty) then
11: Consume slack St first
12: end if

VI. ERTH ALGORITHM

Three different principles are defined to initiate a sleep
mode. ERTH does not initiate a sleep state for less than
static limit tl.

Principle 1:
If the task to execute in the system is HRT or SRT
and the available St is less than tl, slack is added to
ai,m of the ji,m. The system performs a race-to-halt
with the likelihood of generating more slack in future.
If ((St·s ≥ tl)&&(St·d ≤ di,m)&&(HRT�SRT )) is true,
a timer is initialized with tl − twn and the sleep state is
initiated until the timer expires.

Theorem 3. If the next job to execute in the ready queue
ji,m is of type HRT or SRT, while the execution slack has
a size greater than or equal to the static limit (St·s ≥ tl)
and the slack deadline is less than or equal to the absolute
deadline di,m of the HRT or SRT job ji,m (St·d ≤ di,m),
then system can initiate a sleep state for a static limit of
tl without violating EDF schedulability.

Proof: Suppose the available St is considered as a
task τsleep with a budget and deadline equal the tl and
St·d respectively. We need to prove τsleep is schedulable
without an interruption in the presence of T. For this
we split the potentially affected jobs of T in two parts
which we address serarately: 1)∀τi not released yet. 2)∀τi

released but in ready queue.
Case 1: (∀τi not released yet)
This can be proven by contradiction. Suppose, the system
schedule a τsleep for tl and there is a synchronous arrival
of all the tasks not yet released, and some of the τi missed
their deadline. However from Theorem 2, all the τi in the
system can be delayed for an interval of tl without any
deadline misses, which is a contradiction. Therefore all
the τi not released yet will meet their respective deadline.
Case 2)∀τi released and in ready queue.

Due to the condition expressed in Principle 1, task τsleep

has a deadline earlier than any τi in the ready queue.
This task can be scheduled before its deadline and thus
τsleep will not affect the τi in the ready queue. Hence we
proved tasks in both cases do not violate the schedule,
thus theorem holds.

Principle 2:
In case of the task to execute being of BE type, we use
Equation 3 and Equation 4 below to evaluate the possible
sleep interval. This result in two main advantages. Firstly,
the sleep interval estimated ϕ is always equal to or greater
than tl (ϕ ≥ tl) as we assume that ϕ is computed when
St·s ≥ tl. Secondly, it is useful, when tl is very small
(i.e. high system utilization). We do not assume knowledge
about the previous release times of tasks, therefore a worst-
case situation is assessed with Equation 4. The worst-case
situation is when all higher priority tasks (di,m ≤ St·d)
arrive just after system has initiated a sleep state. Jobs
with a deadline after the deadline of the current job will
not be affected, as the slack has a shorter or equal deadline
to the current job. One way to visualize the working of
Equation 4 is through demand bound function. Assume
a synchronous arrival of all higher priority tasks at time
instant t and compute the demand bound function within
an interval of [t, St·d]. The minimum gap � is the one
that has the smallest distance between budget demand and
utilization bound.

The minimum gap identified by � using Equation 4 does
not relate to the schedulability of the lower priority tasks,
as it may also contain the processing time reserved for
those tasks. The amount of available slack in the system
gives us an exact upper bound on the sleep duration. To
avoid more complex schedulability checks we cannot use
more than the available slack even if the available gap �
is greater than the slack � ≥ St·s. Conversely, if the gap
� is less than the system slack � < St·s, than the sleep
interval of St·s would be obviously some higher priority
task. Therefore ϕ finds the minimum between the available
slack and the smallest-gap identified by � ensuring overall
system schedulability. Once a gap ϕ in the schedule is
identified, the timer is set for an interval of ϕ− twn .

Theorem 4. If the job to execute in the ready queue is of
BE type and the execution slack is greater than or equal
to the static limit (St·s ≥ tl) with a deadline less than or
equal to the absolute deadline of the BE job (St·s ≤ di,m),
the system can initiate a sleep state for ϕ without violating
any deadlines under EDF.

ϕ = min (St·s, �) (3)

Where

� = min
k,m∈V (St·d)




gk,m −
�

j∈V (dk,m)

�
gk,m

Tj

�
× Cj





(4)

gk,m = dk,m − t (5)

V(x) = {i : ri,m ≥ t ∧ di,m ≤ x} (6)



Proof: In this case the available sleep interval is not
defined offline. To prove that a system can afford to hold
the sleep state for an interval of ϕ, we segregated the T
into four different parts. The schedulabilty of each part is
proven individually.
1)∀ji,m not yet released and di,m ≤ St·d
2)∀ji,m not released and di,m > St·d
3)∀ji,m is in the ready queue
4)∀ji,m already completed
Let � define the maximum available interval by which the
higher priority jobs can be delayed at the current instant t.
� is computed by Equation 4 considering each deadline
within an interval of [t, St·d]. In principle it performs a
limited demand-bound analysis for the defined interval to
calculate the delay interval. Since there is a possibility
to get a delay larger than the available St·s, Equation 3
guarantees system is not delayed more than available slack
capacity. Assume a sleep interval as a task τsleep with a
deadline equal to St·d. Equation 4 implies scheduling a
τsleep for not more than � does not affect the schedule
of any ji,m that is not yet released and has a di,m ≤
St·d. Moreover, we restrict that τsleep will not execute
for more than St·s with Equation 3. This ensures that any
ji,m not released yet with di,m > St·d will not be affected.
Equation 6 exclude all ji,m such that di,m ≤ t. Similar to
our previous Theorem 3, the schedualablity of ∀ji,m in the
ready queue is not affected as well, as they have a deadline
later than that of τsleep. Any jobs already completed, are
obviously unaffacted. As none of the task in T miss their
deadline, hence theorem holds.

Principle 3:
tl is computed offline for the worst-case scenario in the
schedule. Therefore initiating a sleep state for tl − twn
during idle mode will not affect the schedulability in any
circumstance. However, the system cannot prolong the
sleep state beyond the static limit. While ϕ could be used
to increase the sleep interval, it would also substantially
increase the complexity of the algorithm.

Theorem 5. If the system is idle it can initiate a sleep
state for the static limit tl without violating the EDF
schedulability, assuming the available slack St that may
be less than the static limit tl is consumed first.

Proof: The proof of the Theorem 5 follows the same
reasoning as given for Theorem 2.

The sleep transition due to any of these principles
restricts the system to wake up until the timer expires.
This restriction applies to all higher priority tasks as well.
We assume that all interrupts bar the timer interrupt are
disabled on initiating a sleep state and re-enabled on
completion of the sleep. In many CPUs separate interrupt
sources can be used for this. As usual with such disabled
interrupts, events occurring during the sleep interval are to
be flagged in the interrupt controller for processing after
the interrupts are re-enabled. The complete algorithm is
given in Algorithm 2.

Algorithm 2 Energy Management Algorithm
1: if (System Idle) then
2: Manage Slack(tl)
3: Set Sleep Time(tl)
4: else if (GetSlack(ji,m) ≥ tl) then
5: if (HRT/SRT Task) then
6: Manage Slack(tl)
7: Set Sleep Time(tl)
8: else if BE Task then
9: Compute ϕ

10: Manage Slack(ϕ)
11: Set Sleep Time(ϕ);
12: end if
13: else
14: Race-To-Halt
15: end if
16: Set Sleep Time(η)
17: ∀ Sleep States N :η ≥ ten
18: Minimize {(η ∗ Pn) + (tn ∗ (PTs − Pn))}
19: Timer = η − twn
20: Mask and record interrupts
21: Get Slack(ji,m)
22: if di,m ≥ St·d then
23: return St·s
24: else
25: return 0
26: end if
27: Manage Slack(η)
28: if (η ≤ St·s) then
29: St·s− = η
30: else
31: St = 0
32: end if

VII. OFFLINE VS ONLINE OVERHEAD

We compare our approach with the procrastination ap-
proach (LC-EDF) as it is with its use of dynamic priorities
closest to our work. In LC-EDF, the system enters a sleep
mode whenever it is idle. While in the sleep state, on
each higher priority (shorter deadline) task arrival, the
algorithm recomputes the new procrastination interval for
that task, unless the system cannot further procrastinate.
The overhead of the algorithm depends on the number
of idle intervals and tasks in the system. The complexity
of the procrastination algorithm is O(p2), where p is the
number of tasks in the system.

LC-EDF needs an external hardware to compute its
algorithm, such as an ASIC or FPGA. The external
hardware is needed as the system has to compute the
algorithm on every task arrival while the processor is in a
sleep state. Such external hardware obviously has its own
energy cost and partly negates what LC-EDF is aiming
to achieve. Otherwise the system would need to transition
out of and back into a sleep state on each task arrival.
Considering the transition overhead (energy and time cost)
associated to each sleep, makes it impractical approach
from implementation perspective.



The ERTH proposed the more effective power saving al-
gorithm with lower complexity. We discuss the complexity
of ERTH in the three different cases. Firstly, the Principle
1 just needs one comparison against the offline computed
tl to initiate the sleep state. Secondly, Principle 2 requires
to compute ϕ in order to obtain the maximum available
gap to initiate a sleep state. The major overhead is the
computation of � that could be done offline or online. The
interval for computing � is no more than the longest Ti in
the τ . Thus the maximum available gaps can be computed
offline for each deadline and sorted in an increasing order
by time. The online overhead is to search the sorted
array of maximum available gaps for each given interval,
which can be done in O(ln(p)), where p is the number of
intervals. The online overhead to compute ϕ depends on
the number of jobs in an interval. This overhead is justified
when compared to its energy saving and benefits of using
it. The major advantage is that it is computed only once
before initiating the sleep state. Thirdly, when the system
is idle (Principle 3), we use tl to initiate a sleep state,
which does not generate any overhead.

Another advantage of ERTH is the existence of fixed
sleep-interval at the sleep-state initialization instant. Once
the sleep state is initiated, no matter how many tasks arrive
during the sleep mode, the system will wake up after
a defined limit (when timer expires). We have defined
bounds that ensures the schedulability of the system.
This simplifies the system implementation and no external
hardware is needed to compute the algorithm. The system
will have less interrupt overhead when compared with the
LC-EDF, as interrupts are recorded and evaluated after
the timer expires and are essentially processed in batch
and thus leads to fewer pre-emptions of running tasks.
Conversely, in LC-EDF, the system has to respond to each
interrupt at the time of its arrival.

We have also proposed some modifications in the LC-
EDF that simplified the implementation and reduced its
computational time. The improved form is shown in
Equation 7. The system utilization is normally known
offline/or can be computed once on system mode change.
Thus system just need to accumulate the δi while in
procrastination mode.

∆l = Tl ×



1−
n�

i=1

Ci

Ti
−

�

∀i∈W(l)

δi

Ti



 (7)

where W(l) is the set of indices of all tasks in the
ready queue, that re-evaluated the LC-EDF, from its last
activation.

VIII. EVALUATION

A. Experimental Setup
In order to evaluate the effectiveness of our approach,

we have implemented ERTH as well as the LC-EDF in a
simulator. While not a fundamental requirement of our
approach we assume implicit deadlines Di = Ti for
our evaluation to show the effectiveness over the LC-
EDF. It is obvious that Di > Ti leads to greater saving

opportunities, but does not provide greater insights. All
random numbers are taken from a uniform distribution
and unless explicit values are given, random numbers are
used for all assignments.

Task-set sizes |T| {10, 50, 200}
Share of HRT/SRT/BE tasks ξ =
{ξ1, ξ2}

{�10%, 30%, 60%�,
�20%, 40%, 40%�}

Inter-arrival time Ti for RT tasks [30ms, 50ms]
Inter-arrival time Ti for BE tasks [50ms, 1sec]
Sporadic delay limit Γx ∈ {0.1, 0.2}
Best-Case execution-time limit Cb 0.2
Sleep Threshold Ψx in {1, 2, 5, 10, 20}

Table I
OVERVIEW OF SIMULATOR PARAMETERS

To cover a wide range of different systems, different
task sets are evaluated from a large number of fine grained
small tasks (200) to a small number of coarse grained tasks
(10). The two different share distributions ξ1 and ξ2 are
applied to the number of tasks in a given class, as well
as the overall utilization of the respective task classes.
Moreover, utilization allocated to specific task classes is
also distributed randomly among the tasks of the same
class, where, for example, for ξ2 two HRT tasks would
share a total of 20% of the total system utilization claimed
by all tasks. The actual individual utilization per task is
generated such that the target share for each scheduling
class is achieved. Starting from the utilization Ui and a
minimum inter-arrival time Ti for each task according to
the limits in Table I, the WCET of each task is demeed
to be Ci = Ui ∗ Ti.

Beyond those initial settings a two level approach is
used for generating a wide variety of different tasks and
subsequently varying jobs. Tasks are further annotated
with a limit on the sporadic delay ∆s

i in the interval
[0,Γx ∗ Ti] and on the best-case execution time Cb

i in
the interval [Cb ∗ Ci, Ci].

However, not only tasks vary in their requirements,
the same task has also varying behavior dependent on
system state and input parameters. This is modeled, by
assigning each job ji,m an actual sporadic delay in the
interval [0,∆s

i ] and an actual execution time in the interval
[Cb

i , Ci].
As the break-even-time ten does not save energy, we

scale this with a factor Ψ = Ψx ∗ ten called threshold,
where Ψ10 = 10.

Overall system utilization is varied from 0.25 to 1 with
an increment of 0.01. Thus in total 4560 task-sets are
generated. For each task set, seed value of the random
number generator is varied from 1 to 100. In total we
simulated 456 thousand combinations of the above men-
tioned different parameters and each task set is simulated
for 100 seconds.

As previously noted we have implemented both ERTH
and the LC-EDF approach in our simulator. We have
assumed the overhead of the ERTH and LC-EDF to be
negligible. This is obviously a favorable treatment for
LC-EDF as the time/energy overhead of the external
specialized hardware is substantial. Our simulator takes



into account the effect of the sleep state transition delays
and its energy/time overhead is included in our power
model.

The power model of our simulator is based on the
Freescale PowerQUICC III Integrated Communications
Processor MPC8536 [18]. The power consumption values
are taken from its data sheet for different modes (Max-
imum, Typical, Doze, Nap, Sleep, Deep Sleep). As the
transition overheads are not mentioned in their data sheet,
we assumed the transition overhead for four different
sleep states: The transition overhead of the typical mode
is considered negligible. The overhead ten for the four
different sleep states are computed from Equation 1.

B. Results

All the parameters discussed in the experimental setup
remain same, except were explicitly fixed in the exper-
imental description or displayed as separate lines in the
figures. The figures present results averaged over the 100
runs with different seed value as well as all different free
parameters. As baseline we have simulated ERTH without
the use of sleep states and denoted it as ERTH-WS. During
execution ERTH-WS uses PTs, otherwise it consumes
typical power PLs. All the results are normalized to the
results of ERTH-WS.

We simulated two different scenarios. In scenario 1, we
assume that Ai = Ci for all task class (HRT, SRT, and BE
task) and have used only one sporadic delay limit of Γ0.1.
In scenario 2, we assume BE tasks often overrun beyond
their allocated periodic budget Ai. The mean of the BE
tasks actual-execution-time distribution is set to 95% of
the Ai in this scenario. However for HRT/SRT tasks, we
assume Ai = Ci. The borrowing mechanism [16] is also
integrated in scenario 2, where BE tasks may use their
future budgets.

1) Scenario 1: For the first four experiments we set
the minimum sleep threshold Ψ = 1. Figure 2 compares
the total energy consumption of ERTH and LC-EDF,
normalized to ERTH-WS for a task set of 200 tasks with
a distribution of ξ1. ERTH performs better than LC-EDF
for all and in particular for higher utilizations. In LC-
EDF, as the utilization increases, the maximum feasible
idle interval (procrastination interval) estimated by the LC-
EDF algorithm decreases. Thus LC-EDF cannot use at
higher utilizations the more energy efficient sleep states
with corresponding higher overhead ten. However, our
efficient slack management enables ERTH to use more
efficient sleep states for accumulated slack St. ERTH saves
energy at U = 1 due to the execution slack. For ξ2 we
observed a virtually identical behavior in terms of total
energy consumption to that of ξ1 in Figure 2.

The energy consumption for three different task sets
is analyzed for both ERTH and LC-EDF. ERTH is in-
sensitive to the number of tasks and the energy con-
sumption does not vary for different task sets at same
utilization. However, LC-EDF is susceptible to changes
to the task-set size, as shown in Figure 3. The major
reason of this variation in total energy consumption is the
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Figure 2. Total Energy Consumption (ξ1 and |T| = 200)
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Figure 3. Effect of Task-Set Size Variation on LC-EDF (ξ1)

algorithm, which computes the procrastination interval. As
the procrastination interval is recomputed on every arrival
of a job with deadline shorter than any of the currently
delayed jobs, an increase in the number of tasks means a
higher probability of recomputing the procrastination in-
terval. Each recomputation includes a nominal shortening
of the procrastination interval and increasing the virtual
utilization in the process. Thus the procrastination interval
decreases with an increase in the number of tasks.

To gauge the effect of task-set size with two different
distributions (ξ1, ξ2), we have plotted the gain of ERTH
over LC-EDF in Figure 4. As discussed, LC-EDF is
sensitive to the task-set size while from our observations
ERTH is not. Thus gain increases for larger task sets. As
previously discussed the differences between different dis-
tributions ξ1 and ξ2 is small, but nevertheless observable
in Figure 4. Generally the gains are larger with ξ2 than
those with ξ1. In ξ2 the number of BE decreases and RT
tasks is increased. The BE tasks have larger periods as
compared to RT tasks. In LC-EDF, the procrastination
interval also depends on the period of the tasks as shown
in Equation 7. More tasks with higher period, lead to a
larger procrastination interval. Therefore with a decrease
in BE tasks, performance of LC-EDF slightly degrades.

When the system is idle and the available interval is
infeasible to initiate a sleep state, then it consumes typical
power (idle power). The sleep state energy consumption
shown in Figure 5 also includes the energy consumption
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Figure 4. Gain of ERTH over LC-EDF for Different Task-Set Sizes
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Figure 5. Sleep Energy Consumption (ξ1 and |T| = 200)
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Figure 6. Effect of Extreme Threshold Ψ20 on Total Energy
Consumption of ERTH under ξ1
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Figure 7. Effect of Extreme Threshold Ψ20 on Total Energy
Consumption of ERTH under ξ2

of the system when the system is idle and cannot use
any sleep state. Figure 5 indicates, LC-EDF performance
degrades with an increase in utilization. Among the set
of available sleep states LC-EDF selects the single most
efficient sleep state based on its maximum feasible idle
interval. As the utilization increases, it cannot select the
more efficient sleep states due to their higher transition
delay ten, thus the energy consumption increases. The
efficient slack management is responsible for linearity of
curve in ERTH, and show the stability of the proposed
approach.

The effect of a higher threshold Ψ of ten is studied using
energy consumption of ERTH. Figure 6 and Figure 7 show
the energy consumption of ERTH for a distribution of ξ1

and ξ2 respectively, with a threshold of Ψ20. We also
analyzed the results of other threshold values (Ψ2,5,10)
and found these scaling factors do not alter the energy
consumption the corresponding curves overlap with that
of Ψ1. However Ψ20 is special case as it scales the ten of
some sleep states close to or above tl and increases the
dependency of ERTH on ξ and task-set size.

Firstly, consider the case of ξ1 and Ψ20 (Figure 6). At
a utilization of 0.6, the energy consumption of the task-
set |T| = 10 tasks is increasing. At higher utilizations tl
has decreased to such a degree, that it is less than some
Ψ20 ∗ ten. This affects naturally the more efficient sleep
states first. Consequently the system relies on Equation 3

which is utilized when the system switches to BE tasks.
In a system with a higher number of tasks, the increased
occurrences of BE tasks makes this more likely and allows
for the use of more efficient sleep states. At distribution ξ2

this behavior is more pronounced as depicted in Figure 7.
This is partially motivated in the reduced share of BE
tasks. The effect becomes so strong that at utilizations in
excess of 0.8 even the larger task sets start to loose certain
sleep states. In general we have observed that ERTH is
not very sensitive to Ψ values except for very high values
(i.e. 20) for which its performance decreases.

The effect of a higher threshold on LC-EDF is observed
in Figure 8, with |T| = 50 and ξ1. LC-EDF use a single
sleep state for each utilization and Ψ pair. Each hump
in the line for the same threshold refers to a switch to a
different sleep state. The vertical shift of Ψ20 at U = 0.25
shows an unavailability of the most efficient sleep state
from the start. Ψ20 scales the ten of the most efficient
sleep state larger than the maximum feasible idle period.
The effect of Ψ is also observed in conjugation with
the number of tasks. We selected a threshold of Ψ10 for
Figure 9, nevertheless same effect holds for different Ψ
values. It is evident that tasks set with a smaller number
of tasks perform better even at a higher threshold, which
affirms LC-EDF strong dependency on task-set size.

2) Scenario 2: In this case BE tasks may overrun from
their allocated periodic budget Ai. Both ERTH and LC-



0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilization

T
o

ta
l E

n
e

rg
y

 

 

Ψ
1

Ψ
2

Ψ
5

Ψ
10

Ψ
20

Figure 8. Effect of Threshold Change on Total Energy Consumption
of LC-EDF (|T| = 50 and ξ1)
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Figure 9. Effect of Elevated Threshold over Task-Set Size in LC-EDF
(ξ1 and Ψ10)
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Figure 10. Total Energy Consumption in Two Sporadic Delay Limits
Γ0.1 and Γ0.2 (|T| = 200 and ξ1)
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Figure 11. Total Energy Consumption with Two Distributions ξ1 and
ξ2 (|T| = 200 and Γ0.1)

EDF have been extended to allow for the borrowing of
budget from the future job releases of the same task. While
it was of little consequence in scenario 1 it has to be
noted that in ERTH, execution slack is not allocated to BE
tasks for two reasons. Firstly, in our slack management, it
reduces the priority of the execution slack, by extending
its deadline, as the borrowing mechanism extends the
deadline of the overrun job by one period from its current
deadline. Therefore, if slack is allocated to such job, the
deadline of the slack is also extended with it, its priority
reduces and thus most RT tasks wont be able to utilize
the slack. Secondly, the complexity of Equation 3 also
increases, as the algorithm needs to compute for increased
number of jobs when the deadline of the slack is longer.

The total energy consumption of the ERTH and LC-
EDF is compared for two different sporadic delay limits
(Γ0.1,Γ0.2) in Figure 10 for |T| = 200 and ξ1. Γ0.1

and Γ0.2 have a sporadic delay limit of 10% and 20%
of Ti respectively. The widening of the sporadic delay
limit means, that we are injecting more sporadic slack into
the system. As sporadic slack is dealt with implicitly, the
energy consumption of ERTH with Γ0.2 scales down when
compared to Γ0.1. LC-EDF follows the same reasoning,
however at higher utilization; extra sporadic slack does not
help to save energy, as LC-EDF cannot use more efficient
sleep states. Hence, while ERTH performs generally better

than LC-EDF, at higher utilizations ERTH and LC-EDF
depart extensively. The same reasoning holds for ξ2 with
the scaling down effect, due to the reason given below.

We observed the energy consumption of two different
distributions (ξ1,ξ2) with |T| = 200 and Γ0.1 in Figure 11.
In ξ2 percentage of the BE tasks in a task-set is reduced
to 40% and consequently also reduced borrowing, which
provides more slack for energy management. Thus in
Figure 11, the energy consumption scales down for ξ2

compared to ξ1. Nevertheless ERTH outperforms LC-EDF
in both distributions (ξ1,ξ2), even with the borrowing
mechanism integrated. The energy consumption scales
down, when the same experiment is done with Γ0.2 due
to extra sporadic slack in the system.

Figure 12 analyzes the gain of ERTH over LC-EDF for
different sporadic delay limits (Γ0.1, Γ0.2), with three task
sets (|T| ∈ {10, 50, 200} and ξ2. Though both approaches
implicitly manage sporadic slack, ERTH performs slightly
better than LC-EDF, especially at higher utilization for
large task sets. This small gain of Γ0.2 over Γ0.1 shows
efficient implicit use of sporadic slack in ERTH. We have
also explored this with the distribution ξ2 and the results
indicated that at utilizations close to 1, the performance
gain of ERTH is slightly less for all different task sets;
about 0.5% when compared to Figure 12. For smaller
utilizations the difference is less pronounced. This is a
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Figure 12. Gain of ERTH over LC-EDF (ξ2)

function of the reduced number of BE tasks in ξ2 and the
consequently smaller amount of borrowing.

Figure 12 illustrates the gain of ERTH over LC-EDF for
the distribution ξ1 and Γ0.1 and comparing that to Figure 4
one can notice the reduced gains returned when borrowing.
Generally, the gain of scenario 2 compared to scenario 1
is less at higher utilizations, but approximately the same at
lower utilizations. The gain rises exponentially in Figure 4,
Figure 12 after U = 0.8 for large task sets.

The sleep state energy consumption of the scenario
2 is approximately similar to the scenario 1. Similarly,
the higher threshold effect in scenario 2 is also identical
to scenario 1 for LC-EDF and ERTH, but energy con-
sumption, scales up linearly in scenario 2. The scaling
up effect is due to an increased in execution-time re-
quirement of the BE tasks that habitually overrun. For
different combinations of ξ and Γ, a scaling up effect
occurs in following ascending order (ξ2,Γ0.2), (ξ2,Γ0.1),
(ξ1,Γ0.2) and (ξ1,Γ0.1). An increase in sporadic delay
limit injects more sporadic slack to the system (therefore
saving more energy) and vice versa. Similarly more bor-
rowing consumes extra energy and vice versa. Thus with
the highest sporadic delay limit and minimum borrowing
(ξ2,Γ0.2) the energy consumption is least in scenario 2,
whilst with least sporadic delay limit and most borrowing
(ξ1,Γ0.1) energy consumption is maximized for different
threshold values (Ψ1,Ψ2,Ψ5,Ψ10 and Ψ20) and task sets
(|T| ∈ {10, 50, 200}).

IX. CONCLUSIONS AND FUTURE DIRECTIONS

We presented an efficient energy saving approach for
dynamic priority systems based on sleep states and elim-
inated unrealistic assumptions made in state-of-the-art
research. Furthermore we reduced the online complexity
of the system when compared to the original proposed
approach. Our approach exploits execution slack and static
slack explicitly, as well as sporadic slack implicitly using
an efficient slack management approach. For future re-
search, we intend to extend the approach to multicore pro-
cessors, as well as demonstrating its effectiveness on real
hardware. While our approach computes the sleep interval
assuming synchronous release of all higher priority tasks,
the sleep interval could be improved exploiting knowledge

of past releases of all tasks. The integration of DVFS is
an additional opportunity to save more energy. Finally,
we want to explore the effect of ERTH on the number of
preemptions and thus improving on required reservations.
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