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Abstract—The devices running embedded applications tend to
be battery-powered, and the energy efficiency of their operations
is an important enabler for the wide adoption of the Internet-
of-Things. Optimization of energy usage depends on modelling
power consumption. A model-based simulation must consider
parameters that depend on the device used, the operating system,
and the distributed application under study. A realistic simulation
thus depends on knowledge regarding how and when devices
consume energy. Direct measurement in wireless sensors is a
common approach to evaluate the power consumed by the
embedded devices in their different execution states. This paper
presents an approach to direct measurement of consumed energy.
We present the architecture and the measurement process that
were implemented. Details are given regarding the setup of
the experimental tests, and a discussion of the results hints
at which architecture is the best for each application under
study. The presented methodology can be easily extended to
new architectures and applications, to streamline the process of
building realistic models of power consumption.

I. INTRODUCTION

The Internet-of-Things (IoT) is an active field of research,
since it is on the verge of the maturity needed to provide
added value to both industrial processes and people’s everyday
life. The Cyber Physical Systems (CPSs) that make up the
IoT address different application domains and services to
target different IoT scenarios, which span from Smart Cities
to Domotics (Smart Buildings), to Intelligent Transportation
Systems, to eHealth, etc. A common aspect of these scenarios
is that the involved devices tend to be embedded and resource
constrained (low power, small processing power, limited stor-
age capabilities, etc.). In particular, the energy available to the
devices is limited, since in most scenarios they are powered
by batteries. Energy saving is thus one of the most important
research topics in this area.

Research efforts, like other human activities, proceed by
trends. Past trends on energy saving were considering mainly
wireless sensor networks, and focused on minimizing the
energy spent for the communication activities of the devices,
in particular by studying network protocols and MAC layers.
Within network protocols, the goal was to minimize the
number of packets sent to perform a given activity in the sensor
network as a whole; within MAC layers, the objective was
to organize transmission and reception activities to maximize
the time that the each device’s wireless interface spent in
the sleep state. More recent activities have generalized this
vision in many ways. The focus has moved from wireless

sensor networks to CPSs, which are devices not limited to data
collection activities; the architecture of distributed systems and
their Operating Systems (OSs) have been object of analysis, to
maximize their energy efficiency; computations performed by
devices has become part of the game, and for example it has
been an important parameter in deciding which cryptographic
algorithms can be used by constrained devices.

An accurate analysis of power consumption is a fundamen-
tal support for other R&D activities, since it is instrumental to
predict expected devices lifetime and to allow developers to
optimize energy consumption in distributed IoT applications.
Two primary approaches have been followed up to now.
Direct measurement is performed by engineering the devices
to measure energy consumption while they are executing their
distributed applications; this approach is accurate but it is very
expensive since it involves engineering every single device
involved, and it is not practical in large distributed applications.
The second approach is related to simulation models, which
are more practical and scale better, but which depend on direct
measurement over smaller scenarios to collect the parameters
used to enhance the realism of the model.

This paper follows the direct measurement approach. An
architecture is presented, and implemented over a testbed. An
approach to the set up of experiments is given, and the results
of basic experimental tests are presented, to showcase how this
methodology can be applied to investigate energy efficiency.

II. BACKGROUND INFORMATION

A. Devices: Hardware and Operating Systems

Hardware technology for sensor nodes manufacturing is
changing due to the advances in Micro-Electro Mechanical
System (MEMS), and wireless communications and digital
electronics have led to smaller and cheaper sensor nodes [1]. A
wireless sensor node is composed by a micro-controller, mem-
ory, timer, transceiver, battery, sensing unit and Analogical-
Digital Converter (ADC) [2]. Figure ?? shows a simplified
block diagram of a sensor node typical architecture.

To manage efficiently sensor nodes’ constrained hardware
resources (memory, processor, communication interfaces and
energy) and to allow access to system resources by concur-
rent applications, several Operating Systems (OS) have been
proposed. According to the authors in [2][3] the most popular
OS for sensors are TinyOS, Contiki, MANTIS, Nano-RK and



Fig. 1. Typical Sensor Node Architecture.

LiteOS. The study conducted in [4], based on some known
scientific and engineering online databases including IEEE
Xplore, ACM Digital Library and Science Direct, states that
TinyOS (81%) and Contiki (9%) together account with 90%
of the global references.

B. TinyOS Operating System

TinyOS [5], developed at the University of California,
Berkeley, is a multi-platform, component-based and open-
source OS. It presents a footprint of about 400 bytes, it falls
under the monolithic architecture class and its execution model
is event-based. TinyOS is intended to support concurrent appli-
cations with low memory requirements. The applications are
designed as interaction between components, the latter being
independent computational entities that expose one or more
interfaces. The components are written and wired together
using nesC (Network Embedded System C) [6], a component-
based programming language based on C.

The earlier versions of TinyOS did not provide multithread-
ing and the programming was done following a pure event
driven model. Since version 2.1 TinyOS simulates concurrency
using TOS threads [7], which are lightweight (context switches
and system calls introduce an overhead of 0.92% or less)
and use either a non-preemptive First-In-First-Out (FIFO)
scheduling or the Earliest Deadline First (EDF) scheduling [5].
These two algorithms present known disadvantages (FIFO’s
waiting time depends on task execution time and EDF does not
produce a feasible schedule when task concur for resources),
and it can be concluded that TinyOS does not provide a solid
real-time scheduling algorithm. Other features supported by
TinyOS are efficient memory safety [8], support for commu-
nication through a number of routing protocols, among them
6lowpan [9], and MAC layers, among them IEEE 802.15.4,
virtualization mechanisms to provide independent instances
of resources shared between components, and a single level
file system, the latter justified by the assumption that at, any
given point in time, only a single application is accessing
it. The TinyOS provides further features, such as database
support (TinyDB [10]), security for communications (TinySec
[11]) and simulation of TimyOS applications (TOSSIM [12],
described in Subsection ??). TinyOS widely adoption is also
due to its extensive documentation, which can be found on the
TinyOS home page (http://www.tinyos.net).

C. Simulators

Usage of simulators allows to set up a measurement
pipeline by means of programming, i.e.: without working on

the hardware of devices. The approach scales well because
devices can be instantiated programmatically, while direct
measurement needs preparation work on each and any physical
device involved in the scenario. This subsection presents
the most widely used simulators tailored to wireless sensor
networks, to investigate how to maximize the impact of
our direct measurement approach. We are here disregarding
general-purpose simulators such as network simulator 2 and
3, since the few that are complete enough to provide energy
information, are very complex simulation platforms, possess
a steep learning curve, and can provide energy information
regarding communication activities only.

1) TOSSIM: TOSSIM is a C/C++ library included in the
TinyOS framework, and it works as a simulation tool for
TinyOS applications. TOSSIM replaces low-level hardware
components with simulated implementations, and it includes
models for CPUs, ADCs, clocks, timers, flash memories and
radio components. To perform a simulation, it is necessary
to write a program that configures the simulation and runs
it. The code used for the components simulated in TOSSIM
can be the same nesC code that is deployed onto nodes. The
abstract hardware model used by TOSSIM makes it impossible
to capture low-level details of timings and interrupts, which are
important for accurate power analysis. Moreover, TOSSIM is
a platform-specific (MicaZ) and OS-specific (TinyOS) tool.

PowerTOSSIM [13] is an extension to TOSSIM that en-
ables the estimation of node power consumption. It can be
customized for different platforms, and it is shipped with a
detailed model for hardware energy consumption of the Mica2
sensor node platform, built by extensive application-level
benchmarking. Simulation results for the energy consumption
of each node are achieved by applying the node activity trace
to the detailed hardware model of the nodes. PowerTOSSIM
authors ensure that it is able to achieve results within 0.4513%
of the power consumption of real hardware nodes.

2) Avrora: Like most simulators, Avrora [14] is event-
driven and thus based on discrete time. It is open-source
and widely used, but it is able to simulate the AVRMCU
core only. The simulator is a cycle-accurate instruction level
simulator, and scales to networks of up to 10,000 nodes. It is
language and operating system independent, presents support
for sensor platforms such as Mica2 and MicaZ, and run AVR
elf-binary or assembly codes. Avrora is written in Java, and
each hardware component is represented as an object-oriented
class. Avrora enables the use of monitors to retrieve useful
information from the application simulation, both at runtime
(e.g.: current LEDs state) and as a summary at the end of
the simulation (e.g.: total energy consumption). Avrora is not
actively maintained and it does not provide extensions for CPU
architectures different than the AVRMCU cores, making it a
platform-specific simulator.

3) Cooja: Cooja is devoted to simulating the Contiki
OS, on either TI-MSP430 or AtmelAVR microcontrollers. It
enables simultaneous simulations at the network, operating
system and machine code instruction set level [15], to verify
application before being uploaded to sensor nodes. Cooja is
designed to be flexible, and each node can differ not only
in on-board software, but also in the simulated hardware.
Contiki programs can be executed either by running compiled



TABLE I. SIMULATORS COMPARATIVE ANALYSIS.

Simulator: TOSSIM: Avrora: Cooja:

Simulation Level Operating System Instruction Level Network, OS and machine code

Hardware Representation Abstract Hardware Model Object Classes (Java) Not Available

Simulation Interface C++/Python Java Java

Energy Consumption PowerTOSSIM Yes No

Hardware Platform MicaZ AVRMCU cores (Mica2 and MicaZ) TI MSP430 cores, Atmel AVR cores

code directly on the host CPU, or by emulating the compiled
program code in an instruction-level TI-MSP430 emulator.

4) Comparative Analysis: In the following, the three simu-
lators of choice (TOSSIM, Avrora and the Cooja) are compared
to highlight their advantages and disadvantages. Results are
summarized in Table ??.

The simulators operate at different levels. With TOSSIM,
the applications are written in nesC and converted into the
TOSSIM simulation code. Avrora is capable of simulating
machine code, AVR elf-binary or assembly code. Cooja is
able to simulate Contiki applications as well as machine code.
Thus, Avrora and Cooja are considered to be language and OS
independent, while TOSSIM is dependent on the programming
language and OS [14].

Hardware is simulated with different approaches. TOSSIM
uses abstract hardware models to represent the device compo-
nents, making it hard to capture low-level details important
to the energy analysis. On the other hand, powerTOSSIM
introduces a detailed model for the hardware energy con-
sumption built from real-life tests of the Mica2 platform, and
it can be extended to other platforms. Avrora represents the
hardware through Java classes, but supports the AVRMCU
core only, and does not provide extensions for other CPU
architectures. Avrora is capable of performing energy con-
sumption simulations, but is known to have some issues
regarding the simulation of some components, and it is not
actively maintained. Concerning Cooja, no information on this
aspect was found, and it is believed to lack any kind of power
consumption simulation tool.

The presented discussion led us to focus our measuring ef-
forts, described in the rest of the paper, on applications running
over TinyOS, since this OS has got the largest market share
and its simulator powerTOSSIM is the only one compatible
with a deep analysis of energy consumption.

III. ENERGY MEASUREMENT PROCESS

The proposed process, represented in Figure ??, is based
on the basic formula that says that P = V I (consumed
power is equal to the tension multiplied by the current), and
it involves direct measurement of both tension and current
on a System Under Test (SUT), which is a device that is
executing a specified application and that is instrumented to
allow the direct measurement process. As shown in the figure,
the measurement process relies on two main blocks, called
Circuits and Micro-Controller, which are used together to
attain a reasonable resolution of consumed energy.

The Circuits block takes care of transforming the tension
and current physical values into analog signals. An analysis of
the operating values for the devices points out that the sensor
nodes, powered by two batteries having maximum voltage

between 3V and 3.3V, can work as long as batteries can
provide at least 2.1 V. Thus, the Circuit block was developed
to measure voltages between 1.65V to 3.3V. For the current
signal, no values can be excluded, and the signal is obtained
using a common sensing resistor assembly (a low resistor
value so it can not interfere relevantly in the SUT energy
consumption). For both elements, each measuring unit splits
the signal in the middle into two part, and the following unit
is tuned on the top or lower part of the signal, to gain an extra
bit of definition for each measuring unit in the Circuit block.

Fig. 2. Energy Measurement Process.

The Micro-Controller produces the digital values corre-
sponding to the current and tension analog signal. The block
has got at least three Analog-to-Digital Converter (ADC)
inputs, a good ADC transformer, a reasonable micro-controller
clock speed and some storage capabilities. The block can
easily transform the incoming analog signal into bits. It is
also possible to add bits using software, using the oversam-
pling technique. The theory says that collecting 4

n additional
samples leads to getting n more bits in the measured values,
but the implementation of this approach has the drawback of
a direct impact on the sampling rate, and the application of
the technique represents a trade-off to be considered at design
time. Currently, the Micro-Controller block is implemented
in a Arduino DUE (Table ?? summarizes its specifications)
coupled with a Micro-SD card shield for storage.

TABLE II. ARDUINO DUE - SPECIFICATIONS (RESUMED).

Microcontroller: AT91SAM3X8E SRAM: 96 KB

Operating Voltage: 3.3 V Clock Speed: 84 MHz

Digital I/O Pins: 54 Flash Memory: 512 KB

Analog Inputs: 16 ADC Resolution: 12-bit 1Msps

The implemented SUT aim at a final precision of 14-bit for
both voltage and current signals, obtained one bit by hardware,
plus 12-bits given by the ADC and another one using the
oversampling method. The sampling rate for the measurements
ended up being 34 KHz (one sample every ∼ 29.5µs).

IV. TESTS

The tests were designed based on an analysis on the market
share of IoT devices, and on the study on OS reported in



Section II. Four different devices were selected, having similar
features and compatible with both TinyOS and Contiki OS.
Figure ?? presents the list of devices used in the experimental
tests.

Fig. 3. Devices Selected to be Tested.

The XM1000, CM5000 and CM3300 are TelosB platforms,
using a MSP430 microcontroller and a Texas Instrument
CC2420 wireless interface. The XM2110 is an Iris sensor,
using an ATmega 1281 microcontroller and an Atmel-RF 230
wireless interface. The CM3300 device has got an amplifier
to provide more power to the antenna. One more difference
between the XM1000 and the other two TelosB devices, is
that the XM1000 has got a faster CPU (its MSP430 is set at
16 MHz vs the 8 MHz of the other two TelosBs), a larger
programmable flash chip (116 KB vs 48 KB of the other
devices) but a smaller RAM (10 KB vs 8 KB of the other two
devices). The Iris sensor’s processor is set at 8 MHz, it has
got a larger flash memory (128 KB) but just 8 KB of RAM.
Since it is the market leader, all applications were executed
over tinyOS (version 2.1.2).

Four simple applications were selected for this preliminary
study. The simplest application (Empty) is a void application,
and it helped studying how the devices take care of sleep
states, and provide a baseline for the power consumption in
the idle state. Since the most important job for sensor nodes is
to sense the environment, the second application (Timer 1000
ms) studied how the timers are managed by the OS and the
devices, by setting up and firing a timer with a fixed period
of 1 second. Finally, three applications (Blink Led 0, Blink
Led 1, Blink Led 2) were switching periodically on / off one
of the three LEDs of the device, and they were used to study
how these operations are scheduled, and how much power the
LEDs consume. In the experiments, the LEDs were turned on
and off with the toggle function of TinyOS. In the case of
Blink Led 0, the LED stayed on for 500 ms, then off for 500
ms, and so on for CM3300, XM2110 and CM5000; the led
stayed in the on and off states for 1s in the case of XM1000.
In the Blink Led 1 and Blink Led 2 applications, all LEDs
stayed on and off for 1s at a time.

Table ?? shows the memory footprint of programming each
application on the respective device.

TABLE III. PROGRAMMED APPLICATIONS SIZE (BYTES).

Empty

(ROM/RAM):

Timer 1000ms

(ROM/RAM):

Blink Led 0, 1 , 2

(ROM/RAM):
CM3300: 1320/6 2250/36 2420/56

XM1000: 1244/6 2174/36 2344/56

XM2110: 754/4 2088/33 2182/51

CM5000: 1320/6 2250/36 2420/56

V. RESULTS

The data collected from the tests is represented in the
Figures ??, ??, ??, ??, ??. The results made it clear that the
devices, which are sharing the same OS and applications, have
got different energy consumption.

From the results regarding the Empty application, it appears
a first difference between MSP430 controller and ATmega1281
(Iris). ATmega1281 is put to sleep completely, while the
MSP430 needs to wake every 1.85s to verify if it has received
any interrupt to process. This result is confirmed on the other
graphs too, since the MSP430-based sensors have got more
consumption spikes. The behaviour is related to the lack of a
wake up interrupt of the TeloSB microcontroller, causing it to
sleep for a fixed period, and then waking up to verify if it has
received data to process.

Another result from the Empty application is that the ampli-
fier used in CM3300 devices has an extra energy consumption
of 5 mA (as mentioned in its datasheet), even when the radio
is not part of the picture. Thus, the CM3300 sensor has got
no way to switch off the amplifier, at least with the current
TinyOS libraries.

Finally, results from the blink leds applications shows that
significant differences exist between devices, which are di-
rectly related to the led color used. For example, and excluding
the CM3300 since it consumes always the most energy for its
amplifier, the Iris mote consume more energy than the others
when it is blinking its Led 0. In the case of Led 1, the XM1000
is the mote that consumes the most energy.

Fig. 4. Current Results for the Empty Application.

Fig. 5. Current Results for Firing a Timer each 1000ms.

Based on the results, it is possible for an application
designer to select the mote that has got the longer lifetime.
For example, an application that can sleep for a long time and
get back to work only when receiving an interrupt, could be
deployed on an Iris. Another conclusion that can be drawn



Fig. 6. Current Results for Blink Application (Led 0).

Fig. 7. Current Results for Blink Application (Led 1).

Fig. 8. Current Results for Blink Application (Led 2).

is that it would be better not to use motes equipped with the
amplifier for most applications, since it is currently impossible
to switch it off and thus any application on that platform would
always consume a lot of energy.

VI. CONCLUSIONS

A number of conclusions can be drawn from the results.
It is hard for the programmer to have complete knowledge
of the energy consumption of his applications, since many
low level details are hidden by the OS, and the details of the
operations executed by the OS are device-dependant. What
started as a work to tune up the energy model for energy
simulations with data taken from real hardware, ended up being
a critical analysis of how the same application code is executed
on different platforms. For example, the results highlighted that
some capabilities of the OS are not implemented yet on some
hardware - such as switching off the amplifier of the radio on
the CM3300 sensor. Thus, it appears of the utmost importance
to have access to data measured directly on the hardware

devices with the correct configurations and software, to be
able to predict energy consumption of complex applications in
a realistic manner.

Future work involves the definition of a complete archi-
tecture, in terms of hardware and software, to facilitate the
direct measurement of energy consumption, to be distilled
into information to be used in model-based simulations of
energy consumption. The approach will streamline how data
is included into the model-based simulators, to allow the
application designer to receive realistic and accurate analysis
of the consumed energy by simulation only.
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