

Energy-Aware Partitioning of Tasks onto a
Heterogeneous Multi-core Platform

Technical Report

CISTER-TR-130506

Version:

Date: 5/29/2013

Muhammad Ali Awan

Stefan M. Petters

Technical Report CISTER-TR-130506 Energy-Aware Partitioning of Tasks onto

 a Heterogeneous Multi-core Platform

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Energy-Aware Partitioning of Tasks onto a Heterogeneous Multi-core Platform
Muhammad Ali Awan, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: muaan@isep.ipp.pt, smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Modern multicore processors for the embedded market are often heterogeneous in nature. One feature often
available are multiple sleep states with varying transition cost for entering and leaving said sleep states. This
research effort explores the energy efficient task-mapping on such a heterogeneous multicore platform to reduce
overall energy consumption of the system. This is performed in the context of a partitioned scheduling approach
and a realistic power model, which improves over some of the simplifying assumptions often made in the state-of-
the-art. The developed heuristic consists of two phases, in the first phase, tasks are allocated to minimise their
active energy consumption, while the second phase trades off a higher active energy consumption for an
increased ability to exploit savings through more efficient sleep states. Extensive simulations demonstrate the
effectiveness of the approach.

Energy-Aware Partitioning of Tasks onto a
Heterogeneous Multi-core Platform

Muhammad Ali Awan Stefan M. Petters
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

maan,smp@isep.ipp.pt

Abstract—Modern multicore processors for the embedded mar-
ket are often heterogeneous in nature. One feature often available
are multiple sleep states with varying transition cost for entering
and leaving said sleep states. This research effort explores the
energy efficient task-mapping on such a heterogeneous multicore
platform to reduce overall energy consumption of the system.
This is performed in the context of a partitioned scheduling
approach and a realistic power model, which improves over
some of the simplifying assumptions often made in the state-
of-the-art. The developed heuristic consists of two phases, in
the first phase, tasks are allocated to minimise their active
energy consumption, while the second phase trades off a higher
active energy consumption for an increased ability to exploit
savings through more efficient sleep states. Extensive simulations
demonstrate the effectiveness of the approach.

I. INTRODUCTION

For embedded real-time (RT) systems it is imperative that
timing constraints posed by the environment are met. In
this general context a number of trends can be identified.
Firstly, Moore’s law is no longer sustained by increasing clock
frequencies, but rather by addition of extra cores in multi-
processors. This is driven for example, by the performance
per watt ratio, as higher clock ratios demand also higher
supply voltages. Besides symmetric multicore processors, ho-
mogeneous and heterogeneous multicores gain in popularity.
The move beyond symmetric multicores is driven by both
using cores geared to perform specific tasks well and cheap.
A second trend is an increased interest in multi-criticality
devices, where part of the system is critical and other parts
are executed in a best effort manner. Finally, there is the
move towards increased use of embedded devices with limited
energy supply. These might be, for example, solar powered
devices in the field or handheld rechargeable devices. In these
kind of devices effective management of the limited resource
(energy) is another constraint in the system requirements.

The real-time community has recognised these trends and
provided solutions to these challenges. However, in most cases,
the power and energy models used make many simplifying
assumptions, which limit the applicability of the presented so-
lutions. Common assumptions are, on one side homogeneous
multicore processors with a constant speed factor between the

This work was partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by ERDF (Euro-
pean Regional Development Fund) through COMPETE (Operational Pro-
gramme ’Thematic Factors of Competitiveness’), within REPOMUC project,
ref.FCOMP-01-0124-FEDER-015050, and by ESF (European Social Fund)
through POPH (Portuguese Human Potential Operational Program), under
PhD grant SFRH/BD/70701/2010.

different cores; on the other side, the energy consumption of
different applications are only a function of execution time
rather than other task characteristics (e.g. number of cache
misses). The latter has been shown to be widely off the mark
[1]. Finally, the use of multiple available sleep states is rare.

The fact that task characteristics, like the cache miss pattern
have an influence on the energy consumption beyond the mere
change of execution time, means that analytical solutions are
bound to be suboptimal for most specific cases. As such,
the way forward is an effective heuristic to be used for
energy management. Within this work, we assume that the
system has such non-linear dependencies on execution time
and energy consumption and several sleep states. In order to
guarantee the temporal isolation requirement, we work with a
partitioned scheduling approach. The underlying approach per
CPU, ERTH [2], allows reconfiguration at run-time and thus
enables limited migration, however, in this work we focus on
the task partitioning and mapping problem. In the allocation
stage the approach considers average-case energy consumption
as objective function, considering real-time constraints based
on worst-case execution and minimum inter-arrival time.

The proposed approach is divided into two phases. Firstly,
the novel algorithm performs assignments with an objective to
reduce the active/dynamic energy consumption of the system
by allocating tasks to their favourite processors. A processor
is considered favourite for a task where its active energy
consumption is minimal when compared to all other processor
types. In the second phase, it trades off the higher active energy
consumption of tasks to enhance the processor’s ability to use
more efficient sleep states. The sleep states allow the processor
to reduce the static power consumption of the system in idle
intervals. The second phase is motivated by the fact that the
static power consumption has become non negligible portion
of the overall energy consumption of the system.

Traditional task assignment algorithms aim to reduce the
active power consumption of the system by assigning the
tasks to their favourite processor, while ignoring the static
power consumption. The management of the static power
consumption of the processor depends on the properties of
the tasks such as their respective minimum inter-arrival times
and worst-case execution times. For instance, assume the
task assignment is such that it generates large amount of
idle intervals in combination with a short period task. The
processor may not be able to exploit it to use deeper sleep
states due to a combination of the larger transition overhead
of those and a short period task.

The paper is organised as follows. Section II discusses the
related work followed by the system model in Section III.
Section IV presents the two phase approach to do the task
assignment followed by the experimental setup and results
given in Section V. We conclude and provide future directions
in Section VI.

II. RELATED WORK

Energy efficient scheduling for the homogeneous multipro-
cessors has been widely explored in RT systems in the last
decade. For instance, Kandhalue et al. [3] recently presented
a Single-clock domain multi-processor Frequency Assignment
Algorithm (SFAA) for periodic, implicit deadline tasks under
fixed priority (Rate-Monotonic) scheduling. It exploits the task
period relationships to determine energy efficient frequency
assignment. Chen et al. [4] provided a comprehensive survey
of such techniques. In contrast, the state-of-the-art in power-
aware heterogeneous multiprocessors is limited.

Yu and Prasanna [5] proposed the static allocation of the
tasks in a RT system for the heterogeneous processing units
under Dynamic Voltage Scaling (DVS). They formulated the
problem as an Integer Linear Programming (ILP) and provided
a linearisation heuristics. A pseudo polynomial time greedy
algorithm [6] is proposed by Huang et al. for the frame-based
RT task model and heterogeneous systems. Furthermore, a
greedy heuristics is provided to migrate the tasks from the
overloaded processor to reduce energy consumption. Luo and
Jha addressed the task model with precedence constraints and
proposed the list-scheduling strategy [7] for the heteroge-
neous distributed systems. Chen and Thiele [8] considered
a case of 2-type heterogeneous processors and proposed a
polynomial time approximation scheme based on the ratio of
task execution times on the different processor types. The
synthesis problem for heterogeneous platform is addressed
by Hsu et al. [9] for the RT task model. They proposed an
approximation algorithm based on a rounding technique by
applying a parametric relaxation on an ILP to minimise the
processor cost under the given timing and energy cost. Hung et
al. [10] considered a heterogeneous platform with 2 processing
elements, one with DVS enabled core and second without
DVS capability, with an objective to reduce the overall energy
consumption and maximise the energy saving in migration
from DVS enabled core to non-DVS core. While DVS has
its advantages, the state-of-the-art [5]–[10] ignores the static
power consumption. We focus on the shut-down mechanism
in this paper that effectively exploits the idle intervals in the
schedule to reduce the static power consumption of the system
that has become a considerable factor of the overall power
consumption of the modern embedded systems.

Yang et al. [11] proposed an approximation algorithm
based on dynamic programming and provides polynomial-
time solution when the number of processor types is a small
constant. However, in the general case when the restriction
over the number of processor types is relaxed, this scheme has
exponential time/space complexity. They also assume static
power consumption of the system as a constant factor. The
work of Chen et al. [12] presented a task assignment algorithm

for periodic real-time tasks on heterogeneous platforms. The
problem is formulated as an ILP problem. They relax some of
the assumptions to adopt it into linear programming (LP) and
solve it through extreme point theory [13]. The tasks assigned
fractionally in the previous steps are reassigned through known
heuristics such first-fit, best-fit, worst-fit or last-fit. They ([11],
[12]) assume the static power consumption of the system is a
constant factor and it cannot be reduced due to the significant
overhead of the sleep transitions. This assumption does not
hold for modern processors which contains several sleep states
to reduce the static power consumption of the system. More-
over, the static power consumption has become a considerable
part of the overall energy consumption. Therefore, the effect
of the task allocation on the power consumption in the sleep
states should be considered to avoid suboptimal assignments.

Our proposed algorithm is based on the realistic power
model. It considers the effect of task properties on both active
and static power consumption of an assigned processor. In
the context of heterogeneous multicores, the state-of-the-art
assumes only dynamic power consumption, either ignores
static power consumption or considers it a constant factor
while doing task allocation on such platforms.

III. SYSTEM MODEL

A. Platform
We assume a partitioned multicore architecture, with M dif-

ferent types of heterogeneous processors/cores. Each processor
type has a unique characteristic of power consumption and
execution capability when compared to others. We consider
only a single processing unit of each processor type ⇡m, for
the separation of concerns and ease of notation. Each processor
type ⇡m has a utilisation of Um.

B. Task Model
We assume sporadic task-model with ` independent tasks

⌧
def

= {⌧1, ⌧2, · · · , ⌧`}. Each task ⌧
i

is represented as a
quadruple hCall

i

, D
i

, T
i

, ¯Eall

i

i, where Call

i

is a vector of worst-
case execution times of ⌧

i

on M different processor types.
D

i

is the deadline and T
i

is the minimum-inter arrival time.
¯Em

i

is a vector of the average-case energy consumption of
⌧
i

on M different processor types at their maximum speed.
The worst-case execution time and energy consumption of
task ⌧

i

on processor type ⇡m is represented as Cm

i

and ¯Em

i

respectively. As derived value individual utilisation of ⌧
i

on
⇡m is Um

i

= Cm

i

/T
i

. For the sake of simplicity, we assume
implicit deadline meaning D

i

= T
i

for ⌧
i

.
Each independent task will release a sequence of unlimited

jobs jm
i,k

= hr
i,k

, ĉ
i,k

, d
i,k

i, where r
i,k

, ĉ
i,k

and d
i,k

are
the absolute release time, actual execution time and absolute
deadline respectively. Jobs of the same task are allowed to vary
their execution between ⌧

i

’s best-case execution time (BCET)
and the worst-case execution time (WCET).

The Enhanced Race-To-Halt (ERTH) algorithm [2] is used
on each processor, which is a leakage aware energy manage-
ment approach for dynamic priority systems. It allows multiple
sleep states per processor and utilises spare capacity available
online to save total energy consumption of the system. ERTH

is based on the Rate-Based Earliest Deadline first (RBED)
framework [14], which provides temporal isolation via an
enforced budget associated with each task. This temporal iso-
lation allows for mixed criticality workloads. Though RBED
supports many application classes (such as Hard RT, Soft RT
and Best Effort (BE) tasks), we focus in our discussion on BE
and Hard RT tasks without loss of generality.

C. Power Model

The power model used in state-of-the-art assumes two
different parts: dynamic (active) power and static (leakage)
power. Dynamic power consumption varies with the frequency
of the processor, while static power consumption is considered
as a constant factor. Consequently, such power model assumes
the energy consumption of an application on a processor
is only a function of its execution time. However, in real
terms, energy consumption on a certain processor depends
also on the set of instructions it has to execute to perform
the desired functionality. Different instructions use different
parts of CPU, and hence may result in a different energy
consumption. Therefore, two applications with identical ex-
ecution time may consume different energy depending on the
characteristics of the instructions used, and the number of
cache misses involved. Secondly, the static power consumption
of the system cannot be regarded as a constant factor. If the
energy saving mechanism is based on sleep states then the
static power consumption of the system depends on the energy
characteristics of the used sleep states. We employ this more
refined power model where energy consumption of a system is
not constant per unit time, rather depends on the behaviour of
the application, the sleep-states characteristics of the processor
and the use of sleep states by the scheduling algorithm.

We assume only a single speed per core (i.e. no DVS), as
DVS would add another dimension for optimisation and is
hence avoided due to separate concerns. The power consump-
tion of the processor type ⇡m in active mode and idle mode are
Pm

a

and Pm

i

respectively. Similarly, we assume each processor
has N sleep states (low power states). Each sleep state Sm

n

is characterised with the tuple hPm

n

, trm
n

, Esm
n

i, where Pm

n

is the power consumption of the system in the sleep state
Sm

n

, trm
n

is the transition overhead of going into or out of
sleep state and Esm

n

is the energy overhead associated to each
sleep transition. For brevity, it is assumed that the transition
overhead of going into or out of sleep state is same i.e. trm

n

.
The break-even-time BETm

n

of the sleep state Sm

n

describes
the minimum interval for which entering a given sleep state is
more efficient than any shallower sleep state, despite the extra
overhead (time/energy) of entering and leaving this sleep state.
The sleeps states parameters can be used to derive its break-
even-time BETm

n

using any known techniques [2]. Note that
the BETm

n

for practical consideration is atleast 2⇥ trm
n

.
The average energy consumption of all tasks on all proces-

sor types is determined offline using any known techniques
(for instance, energy measurement technique based on perfor-
mance monitoring counter [15]). Nevertheless, one can also
use our approach with the naı̈ve power model that assumes
in active mode, the energy consumption of the processor is

constant per unit time or consider worst case energy con-
sumption as optimisation target. The preference of the task
to any processor is set with respect to its ascending order of
energy consumption. The most favourite processor type for
a task is the one where its energy consumption is minimal.
Similarly, a processor type is least preferred where the energy
consumption of a task is maximal. We assume the static power
consumption of the system is not constant. It can be reduced
by using efficient low power sleep states in the idle intervals.

D. Problem Statement

We consider M-type Heterogeneous platform with per core
several sleep states assuming their energy/time overhead in a
setting of partitioned scheduling and map a given task-set onto
this platform such that the overall energy consumption (active
+ sleep) of the system is minimised.

IV. ALLOCATION HEURISTICS

In order to tackle active and static power consumption, a two
phase algorithm is proposed to perform the task assignment for
the given M-type heterogeneous platform. The first phase of
the algorithm optimises the assignment such that it reduces
the active energy consumption of the system. The second
phase trades tasks active energy consumption to enhance the
ability of the processors to use efficient sleep states to reduce
static power consumption of the system. We will use the terms
processor type, core type and core interchangeably.

A. First Phase of Allocation

We propose two different assignment algorithms to reduce
the dynamic power consumption of the system.

1) Least Loss Energy Density Algorithm (LLED): This
algorithm attempts to allocate tasks to their favourite core to
optimise the individual task energy consumption of the system.
However, not all tasks may be allocated to their respective
favourite core type due to the limited capacity on each core.
In such a scenario, where more than one task are competing
for their favourite core type, we need to rank the tasks among
each other on same core type.

We defined the energy density EDm

i

def

=

¯Em

i

/T
i

of a task
⌧
i

on a core ⇡m. The energy density of a task gives its average
energy consumption per unit time on the respective core type.
This value does not provide any global perspective on how
the power consumption of the system changes when a certain
task is not allocated to its preferred core type. The global
perspective can be achieved through a metric termed as density
difference (DD). The density difference can be determined by
subtracting the energy density of a task on the current core type
from the next higher energy density value of the same task on
another core. It can be computed with the following expression
DDm

i

def

= min{EDk

i

: k 6= m ^ EDk

i

� EDm

i

} � EDm

i

.
It defines how much extra energy will be consumed, if the
task is allocated to the next higher energy consumption core
instead of its current preferred core type. To get the ranking
of the tasks on the given core, we sort all the tasks on this
core in descending order with respect to their DD values. The
tasks from the top of the list i.e. tasks with higher DD values

are allocated first. The intuition behind such a mechanism
is to reduce the losses by allocating the tasks with higher
energy density difference first. The process can be started from
any core type. A task allocated to a core is not considered
for an allocation on any other core where it consumes more
energy than its currently allocated core. The same procedure is
repeated for all cores. In the worst-case scenario, the process
is iterated over each core at most ` times.

The pseudo-code of Least Loss Energy Density algorithm
(LLED) is given in Algorithm 1. Initially, we compute the
energy density EDm

i

of every task on all core types (line
2). Using energy density values, the DD values of all tasks
are estimated on each core and stored in a matrix called
MT (line 3-6, 10). (Note: MT q

w

value in a matrix MT
corresponds to the DD value of ⌧

w

on a core type ⇡q). To
obtain the DD value of the task ⌧

w

on its least preferred core
type (max

x=1,···,M
EDx

w

), its energy density value on the least
preferred core type is subtracted from 0 (line 8) to obtain
a negative value. Afterwards, the algorithm iterates through
the processors in any order (for example, we used processors
indices to order them). Starting from the first core type ⇡q , all
tasks on ⇡q have their entries in MT q sorted in descending
order with respect to their MT q

w

or DD values. Our algorithm
iterates by picking a task from the top of the sorted list and
attempts to allocate it to ⇡q . For instance, ⌧

x

is the current
task on top of the sorted list with respect to DD values on
core ⇡q . The algorithm attempts to allocate ⌧

x

to ⇡q . If ⇡q

can accommodate ⌧
x

(line 17-18), it does not consider ⌧
x

on
other cores ⇡m for which this inequality ¯Em

x

� ¯Eq

x

holds
and removes its entries of DD values in MT matrix (line
19). In other words, ⌧

x

is not considered for allocation on
other core types where it consumes more or equal energy
compared to this core type ⇡q . If the task ⌧

x

was previously
allocated to these higher energy consuming core types, it is
deallocated on such cores (line 20). Once the allocation for
⌧
x

is completed on ⇡q , LLED attempts to allocate the next
task in the sorted list. If any of the task in the order cannot
be allocated to ⇡q , the algorithm moves to the next core type
instead of checking the next tasks in the order. This action
is performed to avoid allocation of any unfavourable task to
the current core type, which may have a chance of allocation
in the next iteration. The same procedure is repeated for the
next core type and so on. On completion of the first iteration,
the algorithm starts again from the first processor type. These
iterations are repeated unless all the tasks are allocated to
exactly one core type. In worst-case, the algorithm has to
check each task in each core type for ` times. Lines 13�26 in
Algorithm 1 corresponds to these steps. Therefore, complexity
of this algorithm is O(`2⇥M). The working of the algorithm
is demonstrated with an example.

a) Example: We consider a set of 4 tasks and 3 core
types. The tasks specifications are given in Figure 1(a). Entries
under each core type specifies Cm

i

, ¯Em

i

, EDm

i

for ⌧
i

. The DD
values are computed for all tasks and presented in Figure 1(b).
As an example, the DD value of ⌧1 in ⇡1 is computed by
an expression ED2

1 � ED1
1 . We start from the first core

Algorithm 1 First Phase: Least Loss Energy Density (LLED)
1: Um

= 0 for each core ⇡m

2: Compute EDm

i

for each ⌧
i

on each core
3: for q = 1 to M do {/* For all processor types */}
4: for w = 1 to ` do {/* For all tasks */}
5: if EDq

w

6= max

x=1,···,M
EDx

w

then

6: EDr

w

= min

x={1,···,M}\q&&ED

x

w

�ED

q

w

EDx

w

7: else
8: EDr

w

= 0

9: end if
10: MT q

w

= EDr

w

� EDq

w

11: end for
12: end for
13: for all Tasks ` do
14: for q = 1 to M do {/* For all processors types */}
15: Sort all tasks having entry in MT q , w.r.t MT q

w

values in
descending order

16: for all ⌧
w

2 ⌧ on core type q in descending order of Mq

w

values do
17: if Uq

+ Uq

w

 1 then
18: Assign ⌧

w

to ⇡q

19: 8
x2[1,···,M]\q remove MT x

w

iff(¯Ex

w

� ¯Eq

w

)

20: 8
x2[1,···,M]\q Ux� = Ux

w

iff(¯Ex

w

� ¯Eq

w

&&⌧
w

is
assigned)

21: else
22: Break;
23: end if
24: end for
25: end for
26: end for

type ⇡1 and sort the tasks in descending order of DD values as
presented in the first column of Figure 1(c). ⌧4 can be allocated
to ⇡1, therefore, its entry that consumes more energy compared
to this core type is deleted in ⇡3 type. ⌧2 cannot be allocated,
therefore we move to ⇡2 and sort the task-set according. In
core type ⇡2, ⌧1 and ⌧4 can be allocated. ⌧1’s entry in ⇡3 and
⌧4’s entries on ⇡1

&⇡3 will be deleted due to higher energy
consumption. Similarly, after appropriate sorting of tasks with
respect to their DD values on ⇡3, ⌧2 and ⌧3 can be allocated
to ⇡3. Therefore, ⌧2’s entry in ⇡2 and ⌧3’s entry in ⇡2,⇡1

are deleted. This completes our first iteration and status of the
tasks after first iteration are shown in Figure 1(c). Similarly, we
perform the second iteration. On ⇡1, the ⌧4’s entry is deleted,
so it is not considered for allocation and the system attempts
to allocate the next task in the order (i.e. ⌧2). The rest of the
process is similar to the first iteration. The end result of 2

nd

iteration is shown in Figure 1(d). We do not need any further
iterations as all the tasks are assigned. The worst-case number
of iterations is equal to a task-set size.

2) MaxMin Algorithm (MM): Another simple heuristic
MaxMin labelled as MM can be used to assign tasks in
M-type heterogeneous platform to reduce the active power
consumption is given in Algorithm 2. Assume, EDmin

i

is
the energy density of task ⌧

i

on its most favourite core type,
while EDmax

i

corresponds to its energy density on the least
preferred core type. This heuristic for each task computes the
difference of EDmax

i

and EDmin

i

, i.e. EDmax

i

�EDmin

i

. All
tasks are globally sorted in descending order with respect to

Fig. 1: First Phase Mapping of Least Loss Energy Density Algorithm

(a) Cm

i

/Ēm

i

/EDm

i

Values

⇡1 ⇡2 ⇡3 T
i

⌧1 4.5/16.5/1.65 3/17.2/1.72 7/52.5/5.25 10

⌧2 8/37.65/2.51 10/65.1/4.34 8/57/3.80 15

⌧3 18/84/2.80 12/78.9/2.63 10/75.9/2.53 30

⌧4 60/259.2/2.16 35/210/1.75 80/649.2/5.41 120

(b) Density Difference (DD) in MT

⇡1 ⇡2 ⇡3

⌧1 0.07 3.53 �5.25
⌧2 1.29 �4.34 0.54
⌧3 �2.8 0.17 0.10
⌧4 3.25 0.41 �5.41

(c) 1st Iteration

⇡1 ⇡2 ⇡3

⌧4 ⌧1 ⌧2
⌧2 ⌧4 ⌧3
⌧1 ⌧3 ⌧1
⌧3 ⌧2 ⌧4

(d) 2nd Iteration

⇡1 ⇡2 ⇡3

⌧4 ⌧1 ⌧2
⌧2 ⌧4 ⌧3
⌧1 ⌧3 ⌧1
⌧3 ⌧2 ⌧4

Algorithm 2 Alternative First Phase: MaxMin (MM)
1: Um

= 0 for each core ⇡m

2: Compute EDm

i

for each ⌧
i

on each core
3: 8⌧

i

: Find EDmax

i

= max

x=1,···,M
EDx

w

4: 8⌧
i

: Find EDmin

i

= min

x=1,···,M
EDx

w

5: Sort task-set with respect to
�
EDmax

i

� EDmin

i

�
in descending

order
6: for all Tasks i = 1 to ` do
7: Sort cores with respect to the energy consumption of ⌧

i

in
ascending order

8: for all Processors j = 1 to M do
9: if U j

+ U j

i

 1 then
10: Assign ⌧

i

to ⇡j

11: U j

+ = U j

i

12: Break
13: end if
14: end for
15: end for

this difference (line 5). The MM algorithm picks a task from
the top of the list and assigns to its favourite core type. If
the favourite core cannot accommodate this task, an allocation
attempt is made on the next core type in its ascending order
of energy consumption (line 8-14). If the task is assigned to
a core type, the utilisation of the corresponding core type is
incremented accordingly. The MaxMin algorithm is simple and
has a complexity of O(`⇥M).

B. Second Phase of Optimisation

While, the first phase of allocation is derived with an objec-
tive to optimise an individual task’s active energy consumption
in the system, it ignores its effect on the mechanism to reduce
the static power consumption. For instance, a core may have
less active energy consumption but some small group of tasks
allocated to it may prevent it from using a more efficient
deeper sleep state in the idle intervals of the schedule to reduce
the static power consumption of the system. In this second
phase of optimisation, our algorithm analyses the properties
of the allocated tasks to a core in this broader context and
considers its effect on the core’s ability to use more efficient
sleep states by trading off higher active energy consumption
of a task for energy savings in sleep states.

As mentioned previously, we assume ERTH per core. The
ERTH scheduler is based on a race-to-halt strategy and reduces
static power consumption with a shut-down mechanism. It
determines the maximum time interval offline for which the
processor may be enforced in a sleep state without causing
any task to miss its deadline under worst-case assumptions.
This maximum time interval of a sleep state is termed as

maximum-feasible-sleep-threshold thm and it can be deter-
mined using the demand bound function (DBF) [2]. Assuming
synchronous release of all tasks allocated to a core ⇡m,
thm

def

= min

8LL

⇤
(L�dbf(L)), where L is an absolute deadline

and L⇤ is the first idle time in the schedule. In other words,
thm is the minimum distance between the supply and the
request bound functions in the first busy interval, assuming
the synchronous release of all tasks allocated to ⇡m. ERTH
initiates a sleep transition online when the system is idle or has
sufficient slack. The length of thm defines which sleep state
can be used online on core ⇡m. For instance, if a sleep state
Sm

n

has a break-even-time BETm

n

> thm, it is not beneficial
(energy-wise) to use such sleep state, as a sleep state saves
energy when used for greater than BETm

n

time interval.
ERTH selects a sleep state for a core ⇡m to be used online

based on the value of thm. However, the properties of tasks
involved in the computation of thm have a high impact on
its value. For example, tasks with shorter difference between
their T

i

and Cm

i

give a small value of thm and restrict usage
of those sleep states with BETm

n

> T
i

� Cm

i

. The intuition
behind the second phase is to collate tasks on a core with
similar properties such that it can use a more efficient sleep
state. As we are using a heterogeneous platform, each core has
sleep states with different characteristics. A task(s) restricting
a more efficient sleep state on one core may not effect the
sleep state on the other core and hence can be considered
for migration. However, the algorithm must ensure that such
migration reduces the overall average energy consumption.

We propose the heuristics given in Algorithm 3 to do such
a trade-off. Tasks assigned in the first phase are sorted in each
core with respect to their difference between T

i

and Cm

i

in de-
scending order. Consider one of the core type ⇡m and assume
`m are the number of tasks allocated to it in the first phase
(through LLED or MM). The second phase initially computes
the maximum time interval of the sleep duration also known as
a maximum-feasible-sleep-threshold with just one task picked
from the top of the sorted list (w.r.t T

i

�Cm

i

) of tasks allocated
to ⇡m. This value is denoted as thm

1 and computed through
DBF. As there is just one task, therefore, thm

1 = T
i

�Cm

i

. Now
we superimpose the next task on the current DBF and new
maximum-feasible-sleep-threshold thm

2 = min

8LL

⇤
(L�dbf(L))

is computed. Similarly, a third task is superimposed and
correspondingly thm

3 is computed. This process is repeated
for all sorted tasks allocated to ⇡m and at the end we have a
set of maximum-feasible-sleep-threshold values called ⇢m =

{thm

1 , thm

2 , thm

3 , · · · , thm

`

m

}. As the tasks are superimposed
in the descending order of T

i

� Cm

i

, therefore, one of the
property of ⇢m is that thm

1 � thm

2 � thm

3 � · · · � thm

`

m

.

Fig. 2: Demand Bound Function
(a) Individual Demand

2

2

4

4

6

6

8

8

10

10

12

12

⌧1(1,4)
⌧2(0.75,3)
⌧3(0.5,2)

(b) Superimposed

2

2

4

4

6

6

8

8

10

10

12

12

⌧1

⌧1 + ⌧2

⌧1 + ⌧2 + ⌧3

Moreover, thm

def

= thm

`

m

. To illustrate the computation of ⇢m
set, let us consider an example. Assume, we have three tasks
⌧(Cm

i

, T
i

)) ⌧1(1, 4), ⌧2(0.75, 3), ⌧3(0.5, 2) sorted in the
descending order of T

i

�Cm

i

and allocated to ⇡m. Individual
demands of these tasks are shown in Figure 2(a). Firstly, thm

1
with ⌧1 is computed, i.e. 3 units. Then ⌧2 is superimposed on
⌧1 and thm

2 is computed, which is equal to 2.25. Finally, ⌧3 is
superimposed on the demand of ⌧1 + ⌧2 and thm

3 is estimated
to be 1.25. These steps are demonstrated in Figure 2(b). This
example has ⇢m = {3, 2.25, 1.25}.

The number of elements in ⇢m is equal to `m. Each element
in ⇢m gives the maximum sleep interval with the correspond-
ing number of tasks. A core ⇡m can use this sleep interval
to initiate a sleep state, if the tasks used to compute such
interval are allocated to it. We determine the most efficient
sleep state (among the available set of sleep states in ⇡m) for
all elements of ⇢m using the following expression {8x 2 ⇢m,
find Sm

n

: Sm

n

minimises (x ⇥ Pm

a

+ Esm
n

)}. We know, ⇢m
holds the property that thm

1 � thm

2 � thm

3 � · · · � thm

`

m

.
Therefore, thm

2 cannot get a better sleep state when compared
to thm

1 and so on.
After computing the sleep states for each ⇢m element

we group the tasks that allow the same sleep state. We
define a set Gm

n

that holds the tasks for a sleep state Sm

n

.
Starting from thm

1 , ⌧1 is added to a set of its computed sleep
state. Similarly, ⌧2 is added to the set corresponding to a
sleep state determined for thm

2 and so on. Lets demonstrate
this step with an example. Suppose, we have five elements
in ⇢m = {thm

1 , thm

2 , thm

3 , thm

4 , thm

5 }. Assume, sleep states
corresponding to these ⇢m elements are determined to be
{Sm

1 , Sm

1 , Sm

2 , Sm

3 , Sm

3 }. Then the tasks are added to the sets
corresponding to the sleep states as follow: Gm

1 = {⌧1, ⌧2},
Gm

2 = {⌧3} and Gm

3 = {⌧4, ⌧5}. We refer to these sets as
groups of tasks corresponding to different sleep states. These
groups of tasks are ordered from the least efficient to the most
efficient sleep states. Thus, if we remove the top most group
of tasks, a core can achieve the next better sleep state. This
complete process is repeated for all cores and finally we have
different groups of tasks on each core corresponding to its
different sleep states. This step is given in line 4 (Algorithm 3).

All cores compete to gain the next more efficient sleep state
to save energy by getting rid of their tasks in the top most
group that enforces the less efficient sleep state. However, the

Algorithm 3 Second Phase of Task Mapping (SP)
1: repeat
2: Previous Assignment = Current Assignment
3: Energy Old = Energy New
4: Group tasks per core such that next better sleep state can be

achieved
5: Order core by gains when removing group
6: Feasible = TRUE
7: for all Processor Types M do
8: for all Tasks in a top group do
9: Compute the local cost of migration on energy consump-

tion of this task for all other cores
10: Sort other cores by decreasing order of cost
11: for all Cores except the core of the currently assigned

task do
12: if Feasible on core then
13: Assign to a core
14: Success = True
15: Break
16: end if
17: end for
18: if !Success then
19: Feasible = FALSE
20: Break
21: end if
22: end for
23: if Feasible && Energy New < Energy Old then
24: Break
25: else
26: Undo all Assignments
27: end if
28: end for
29: until Previous Assignment == Current Assignment

algorithm will first consider the core which would result in the
most system energy gain. To identify this core, each core will
remove all the tasks associated to the first group (that cause
less efficient sleep state). Let Gm

top

corresponds to the tasks
in the top least efficient sleep state group on ⇡m. The energy
saving by removing such group from this core will be equal to
�

¯Em as given in Equation 1. Where thm

old

and thm

new

are the
maximum-feasible-sleep-threshold intervals before and after
removing Gm

top

respectively on ⇡m. After computing thm

old

and thm

new

, their corresponding sleep states are determined.
Suppose, Sm

n1 and Sm

n2 are the sleep states selected for thm

old

and thm

new

respectively. Moreover, ¯Em

old

= (thm

old

� trm
n1) ⇥

Pm

n1+Esm
n1 and ¯Em

new

= (thm

new

�trm
n2)⇥Pm

n2+Esm
n2 represent

the energy consumption of a single sleep transition with and
without Gm

top

. All Cores are sorted in descending order with
respect to �

¯Em as given in line 5 of Algorithm 3, which will
be used to attempt a reallocation of the top most group of the
cores in this determined order.

Assume ⇡1,⇡2, · · · ,⇡m represent the cores in descending
order of �

¯Em. Initially, we select ⇡1. G1
top

are the tasks in
the top least efficient sleep state group of ⇡1. The local cost
of migration LCo

⌧

j

of each task ⌧
j

2 G1
top

will be computed
on every other core type ⇡o excluding ⇡1. The expression
to determine the local cost of migration LCo

⌧

j

is given in
Equation 2. This value is computed by finding ⌧

j

’s energy
density on ⇡o plus the energy consumption per unit of time in

TABLE I: Overview of Simulator Parameters
Parameters Specifications

Task-set sizes |T| {100, 200, 500}
Inter-arrival time T

i

for RT tasks [30ms, 50ms]

Inter-arrival time T
i

for BE tasks [50ms, 200ms]

Sporadic delay limit ⌥ {10%}
Best-Case execution-time limit Cb {10%}

Share of RT/BE tasks ⇠ h30%, 70%i
Characteristic Factor � {10%, 20%, 40%}

idle period with ⌧
j

on ⇡o minus the energy consumption per
unit of time in idle period without ⌧

j

on ⇡o. Where, tho

new

and tho

old

are the maximum-feasible-sleep-thresholds with and
without including ⌧

j

on ⇡o respectively. The sleep states
corresponding to tho

new

and tho

old

are determined. ¯Eo

new

and
¯Eo

old

are the energy consumption of a single sleep transition
with or without ⌧

j

respectively. The algorithm sorts all the
core types in ascending order of LCo

⌧

j

to move ⌧
j

.

�

¯Em

=

0

@P
8⌧

i

2⇡

m

Ē

m

i

T

i

+

⇣
1�

P
8⌧

i

2⇡

m

U

m

i

⌘
Ē

m

old

th

m

old

1

A�

0

@P
8⌧

i

2⇡

m\Gm

top

Ē

m

i

T

i

+

⇣
1�

P
8⌧

i

2⇡

m\Gm

top

U

m

i

⌘
Ē

m

new

th

m

new

1

A (1)

LCo

⌧

j

=

Ē

o

j

T

j

+

⇣
1�

P
8⌧

i

2⇡

o+⌧

j

U

o

i

⌘
Ē

o

new

th

o

new

�

⇣
1�

P
8⌧

i

2⇡

o

U

o

i

⌘
Ē

o

old

th

o

old

(2)

TE =

P
8⇡m

8
<

:

⇣P
⌧

i

2⇡

m

Ē

m

i

T

i

⌘
+

0

@

⇣
1�

P
⌧

i

2⇡

m

U

m

i

⌘
Ē

S

m

n

th

m

1

A

9
=

; (3)

The algorithm attempts to assign it to a core type with
the least migration cost provided it is schedulable on that
core. This process is repeated 8⌧

j

2 G1
top

. Lines 8 to 22

in Algorithm 3 correspond to this step. In case any of the
tasks ⌧

j

2 G1
top

is not schedulable, all the assignments are
undone and we move to the next core type. On the other side,
if the assignments of G1

top

are successful, we compute the new
expected total energy TE consumption of the system with
Equation 3 and compare it with the previous expected total
energy consumption, where ¯ES

m

n is the energy consumption
of a sleep state Sm

n

and Sm

n

is the selected sleep state that
consumes the least energy when initiated for thm. If it is less
than previous expected TE consumption, we iterate over the
algorithm again unless the energy consumption of the previous
iteration is greater than this iteration.

The maximum number of groups (of tasks) in each pro-
cessor is equal to its number of sleep states and we migrate
the complete group to another core. The complexity of each
iteration is O(`M). Theoretically, the complexity of the entire
algorithm is combinatorial, as a migrant task from one core
type can be reassigned to it in another iteration, but for all
practical reasons it converges very quickly. The algorithm
avoids already computed assignments with a constraint that
new assignment should reduce the energy consumption. The
actual computation time and the number of migrations are
discussed in Section V-B(2).

TABLE II: Processors Power Model Parameters
⇡m Pm

a

Pm

i

⌘m Sm

1 Sm

2 Sm

3 Sm

4

⇡1 1.0 0.39 1.0 0.31 0.21 0.12 0.05
⇡2 2.2 0.86 0.5 0.67 0.47 0.27 0.11
⇡3 6.0 2.33 0.2 1.83 1.29 0.74 0.30
⇡4 13.0 5.05 0.1 3.98 2.79 1.61 0.64
⇡5 12.1 4.7 0.15 3.70 2.60 1.50 0.6

V. EVALUATION

A. Experimental Setup

In order to evaluate the effectiveness of our algorithms, we
have extended the SPARTS (Simulator for Power Aware and
Real-Time Systems) [16] and implemented our algorithms for
the experiments. SPARTS is used with the parameters defined
in Table I. The underlined values are the default values if
not specified in the description of an individual experiment.
Heterogeneous multicore platforms are used for a wide variety
of complex applications, therefore, the task-set size is varied
from small number of coarse grained 100 tasks to fine grained
large tasks-set sizes of 500 tasks. The share distributions ⇠
divide the task-set size and overall effective system utilisation
between RT and BE tasks. Moreover, the utilisation allocated
to each task type is randomly distributed among the tasks of
the same class. The minimum inter-arrival time of RT and BE
tasks is randomly chosen within a range of [30ms; 50ms] and
[50ms; 200ms] respectively. SPARTS selects one of the core
type and reference it as a default core type ⇡D. The task-set
is initially generated for ⇡D. The WCET CD

i

of ⌧
i

is deemed
to be UD

i

⇥ T
i

, where UD

i

is the utilisation of ⌧
i

on ⇡D.
The average system capacity U

a

of the given platform is
computed through the average speed-up-factor ⌘m. The speed-
up-factor defines a ratio of the clock cycle of a core ⇡m with
reference to ⇡D. Suppose speed-up-factor of a core type ⇡m

is ⌘m, then the average capacity of the system will be U
a

=

1/⌘1 + 1/⌘2 + · · ·+ 1/⌘m. However, the effective utilisation
U of the task-set in the experiments is controlled through a
helper variable ⇣, and U = U

a

⇥⇣. The range of ⇣ is (0; 1]. In
our experiments, ⇣ is varied from 0.5 to 0.9 with a step size
of 0.05. Individual utilisation of ⌧

i

on each ⇡m is a random
number within a range of Um

i

= [(1��); (1+�)]⇥⌘m⇥UD

i

,
where � is a characteristic factor that models the fact that
different tasks will respond differently in terms of execution
time when moved from one core to another.

Beyond those initial settings, a two level approach is used
for generating a wide variety of different tasks and their
subsequently varying jobs on all cores. Tasks are further
annotated with a limit on the sporadic delay �

s

i

in the interval
[0,⌥ ⇥ T

i

] and on the best-case execution time Cb

i

in the
interval [Cb⇥Cm

i

, Cm

i

]. The second level varies the behaviour
of individual jobs of a task. The interested reader is referred
to [16] for details. Each set points of parameters is evaluated
with 100 different task sets.

The hardware parameters of heterogeneous platform used
in our experiments are shown in Table II. The power model
for the default core in our experiments is modelled after
the FreeScale PowerQUICC III Integrated Communication
Processor MPC8536 [17]. The FreeScalePowerQUICC III
core specifications are given in Table II under m = 5. The

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.9

0.905

0.91

0.915

0.92

0.925

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP
MM−SP

Fig. 3: 4 Core Types (S1)

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.8

0.85

0.9

0.95

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP, β = 10%

MM−SP, β = 10%

LLED−SP, β = 20%

MM−SP, β = 20%

LLED−SP, β = 40%

MM−SP, β = 40%

Fig. 4: Variation in � (S1)

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP, |τ| = 100

MM−SP, |τ| = 100

LLED−SP, |τ| = 200

MM−SP, |τ| = 200

LLED−SP, |τ| = 500

MM−SP, |τ| = 500

Fig. 5: Variation in Task-set Size (S1)

4.52 4.93 5.34 5.76 6.17 6.58 6.99
0.55

0.6

0.65

0.7

0.75

0.8

0.85

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP, Asimilar
MM−SP, Asimilar

Fig. 6: Asimilar Platform (S1)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2
0.8

0.9

1

1.1

1.2

1.3

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED
LLED−SP
MM
MM−SP

Fig. 7: 4 Core Types (S2)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP, β = 10%

MM−SP, β = 10%

LLED−SP, β = 20%

MM−SP, β = 20%

LLED−SP, β = 40%

MM−SP, β = 40%

Fig. 8: Variation in � (S2)

values of the other core types are derived from this core type to
generate a heterogeneous platform. We assume each core type
has four sleep states, with {Sm

x

: x 2 1, 2, 3, 4} representing
different sleep states such as Doze, Nap, Sleep and Deep Sleep
respectively. We have assumed their transition overheads and
estimated break-even-time accordingly. We assume a single
unit of each core type. The average system capacity U

a

=

1
1 +

1
0.5 +

1
0.2 +

1
0.1 = 18. As we are changing ⇣ in an interval

of [0.5; 0.9], therefore, the effective utilisation of the system
U is within a range of [0.5; 0.9]⇥ 18 = [9; 16.2]. The energy
consumption of a task is, however, not a mere function of its
execution time. As such the values of ¯Em

i

are computed using
the average execution time ¯Cm

i

and a random value similar to
the utilisation conversion ¯Em

i

= [1� �; 1 + �]⇥ Pm

a

⇥ ¯Cm

i

.

B. Results

The parameters described previously remain the same, ex-
cept where explicitly specified. In the state-of-the-art there
is no such algorithm proposed that has a power model
such that this work could be compared with it. Moreover,
fundamental assumptions made in the state-of-the-art restrict
their extension to the more realistic power model proposed
in this paper. Therefore, we have implemented a worst-fit
decreasing (WFD) and first-fit (FF) algorithm as a base
line to compared against our algorithms. It has been shown
by Aydin and Yang [18] that WFD performs better when
compared to other conventional bin packing algorithms for
homogeneous platforms. In our experiments, we observed that
WFD performs worst in heterogeneous platforms. It was able
to schedule few tasks-set at higher utilisations making it hard
to compare against our algorithms. Therefore, we use only the
FF algorithm for the comparison. The experiments of WFD
are omitted in this paper but these results are available in a

technical report [19] for the interested readers. Moreover, the
FF algorithm allocates the tasks sorted with respect to their
D

i

or T
i

following the order from the slowest core type to
the fastest core type. The results under labels LLED-SP and
MM -SP represent the second phase applied on the allocation
of LLED and MM respectively. We have created 2 different
scenarios. In the first scenario, we have modelled the system
with very efficient sleep states having low transition overhead
(time and energy). The second scenario models the system,
with substantially less efficient sleep states. All results are
normalised to the corresponding values of the FF algorithm.

1) First Scenario: In this scenario, as the overheads of the
sleep state is low, therefore, different cores can still achieve the
most efficient sleep state even at high utilisation. This scenario
does not leave much room for the second phase to save any
additional energy when compared to LLED. Nevertheless,
MM -SP saves in some cases energy over MM but it is fairly
minimal. Therefore, for this scenario, we compare the energy
consumption of MM -SP and LLED-SP .

Firstly, the performance of LLED-SP and MM -SP is
analysed for different number of core types. Figure 3 shows
the normalised energy consumption of the system with 4

core types. The figure for 2 cores looks similar to Figure 3
but does not provide as high energy gains over FF due to
the limited scope for optimisation. Similarly, in the second
case of 4 core types, initially, the difference of LLED-SP
and MM -SP increases but then starts to shrink towards the
higher utilisations. This behaviour is obvious as LLED-SP
and MM -SP have more chance at low utilisation to allocate
task to their favourite core. However, towards high utilisations,
this flexibility decreases along with their difference. In best-
case, LLED-SP consumes 10% less energy when compared
to FF , while MM -SP saves energy slightly under 10%.

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.9

1

1.1

1.2

1.3

1.4

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED, β = 10%

MM, β = 10%

LLED, β = 20%

MM, β = 20%

SP, β = 40%

MM, β = 40%

Fig. 9: Variation in � (S2)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.8

0.85

0.9

0.95

1

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED−SP, |τ| = 100

MM−SP, |τ| = 100

LLED−SP, |τ| = 200

MM−SP, |τ| = 200

LLED−SP, |τ| = 500

MM−SP, |τ| = 500

Fig. 10: Variation in Task-set Size (S2)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED, |τ| = 100

MM, |τ| = 100

LLED, |τ| = 200

MM, |τ| = 200

LLED, |τ| = 500

MM, |τ| = 500

Fig. 11: Variation in Task-set Size (S2)

3.29 3.7 4.11 4.52 4.93 5.34 5.76 6.17 6.58 6.99
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

System Utilization

N
o

rm
a

lis
e

d
 T

o
ta

l E
n

e
rg

y

LLED, Asimilar
MM, Asimilar
LLED−SP, Asimilar
MM−SP, Asimilar

Fig. 12: Asimilar (S2)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

4

6

8

10

12

14

16

18

20

System Utilization

E
xe

cu
tio

n
 T

im
e

 (
m

se
c)

|τ| = 100

|τ| = 200

|τ| = 500

Fig. 13: Time Calculation (S2)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

50

100

150

200

250

System Utilization

N
o

 o
f

T
a

sk
s

S
h

ift
s

|τ| = 100

|τ| = 200

|τ| = 500

Fig. 14: Decisions (S2)

We evaluate the effect of variation in the characteristic factor
� on the normalised total energy consumption of the system.
� controls the variation of task dynamic power consumption
from the average dynamic power consumption of the core.
Figure 4 demonstrates that the energy consumption of both
approaches decreases with an increase in the range of �. The
developed power model on average favours the slow core.
However, this factor (�) can change this behaviour. With
� = 10%, small portion of tasks are more favourable to the
fast cores. Hence, the FF algorithm that fills the slowest core
first does a few task allocation to their unfavourable cores.
Consequently, the gains of LLED-SP and MM -SP are less
at � = 10%. However, as the � range increases, the tasks
probability to favour a fast core becomes higher. Therefore,
LLED-SP and MM -SP give better allocations for higher
values of �. Similar to the previous observation, the difference
of MM -SP and LLED-SP is higher at low utilisation and
decreases with an increase in the system utilisation.

Figure 5 demonstrates the effect of task-set size variation on
the given allocation mechanism. In general a large task-set size
increases the probability of the tasks to be allocated to their
unfavourable core with FF . Therefore, energy consumption
of the LLED-SP and MM -SP algorithms decreases with
an increase in the task-set size. However, this saving reduces
with an increase in the effective utilisation. In the beginning
LLED-SP with the different task-set sizes do the same allo-
cation but with an increase in effective system utilisation, the
difference in allocation also increases. The same observations
hold for the MM -SP as well. For small task-set size of 100,
FF also performs well at low utilisation. However, this effect
deteriorates with an increase in the effective system utilisation.

Processor types given in Table II have approximately similar
ratio of P x

a

/P y

a

⇡ ⇣y/⇣x. We have generated a case where this

ratio is not the same and tasks always favour the same core
i.e. P x

a

/P y

a

6= ⇣y/⇣x. This case allows us to evaluate a system,
where all the tasks are competing for the best core types.
For this experiment, we modified the heterogeneous platform
given in Table II and generated an asimilar heterogeneous
platform by changing the ⌘m values from 1, 0.5, 0.2, 0.1 to
1, 0.6, 0.45, 0.3. The average capacity of the asimilar platform
is U

a

=

1
1 +

1
0.6 +

1
0.45 +

1
0.3 = 8.22. The effective utilisation

U is varied within a range of [0.5; 0.9] ⇥ 8.22 = [4.11; 7.4].
Figure 6 presents the results for the asimilar platform. The
energy consumption of LLED-SP and MM -SP is low at
low utilisation and gradually increases towards high utilisation.
All the algorithms attempt to allocate tasks in order from the
slowest core to the fastest core. LLED-SP can rank tasks in
an efficient way and saves more energy. Similarly, MM -SP
also performs better when compared to FF as it also does
some ranking of the tasks but FF does not prioritise the tasks
to account for global energy benefits.

2) Scenario 2: In this scenario, we have modelled a system,
in which the core types have large overheads of sleep transi-
tions (time/energy). To generate such model, we have scaled
the transition delays of all the sleep states by a factor of 12 and
determined their BET accordingly. We have observed a very
interesting result, which shows, it is not necessary that tasks
assigned to their favourite core will always reduce the overall
system energy consumption of the system. In this scenario, the
overall energy consumption depends mostly on the character-
istics of the core and it depends less on those of the tasks. This
fact will be evident in the following experiments, in which we
are comparing LLED, MM , LLED-SP and MM -SP . The
base line is still the corresponding energy consumption of FF .
Furthermore, the range of ⇣ is increased to [0.4; 0.9] with a
step size of 0.05 for this scenario.

Figure 7 shows the normalised total energy consumption of
system for 4 core types. At low utilisation, though LLED
and MM had a chance to allocate tasks to their favourite
core but globally it is not energy efficient. The reason is
that these algorithms are not accounting the effect of their
allocation on the core sleep states. The FF algorithm which
is also sleep state agnostic allocation mechanism surprisingly
performs well compared to LLED and MM . It allocates
the core from the slowest one and allows fast core to have
empty space to use their efficient sleep state. However, our
LLED-SP and MM -SP algorithms compare well to FF
at low utilisations and compensate for the wrong allocation
done by LLED and MM respectively. It is interesting to see
that for low utilisations LLED-SP and MM -SP achieve
substantial gains. For high utilisations, LLED and MM
energy consumption reduces when compared to FF . Hence, a
combination of initial first phase allocation (LLED or MM)
with the second phase is a good choice for most of the system
utilisations, except for some corner cases (at a utilisation of
9.9 in Figure 7). In the detailed analysis of utilisations between
7.2 and 9, we have observed that FF loses the efficient
sleep states earlier than LLED-SP or MM -SP . Hence, the
energy consumption of LLED-SP and MM -SP is dropped
at U = 8.1 when compared to FF . Figure 7 shows that
the performance of the LLED algorithm is always dominant
over the MM algorithm, and similarly, the performance of
LLED-SP over MM -SP .

The variation in the characteristics factor � is demonstrated
in Figure 8 and Figure 9. Similar to the results in scenario 1
(Figure 4), the performance of LLED-SP and MM -SP
given in Figure 8 increases with an increase in the value of
� and the similar trend is followed by LLED and MM
in Figure 9. Figure 8 also shows that LLED-SP always
dominates MM -SP and the same is true in Figure 9 for
LLED and MM . The effect of variation in the task-set size
is presented in Figure 10 and Figure 11. Unlike to Figure 5, in
this scenario the task-set size does not make any difference on
the performance of all the algorithms. To evaluate the platform,
where all the tasks prefer similar core type, the same setup
of Figure 6 is adopted. The results of this experiment are
shown in Figure 12. All the algorithms follow the same race
to allocate tasks to the slowest core. Furthermore, LLED per-
formance dominated over MM , and towards high utilisations,
it even consumes less energy compared to MM -SP . Overall,
LLED-SP performs better for all utilisations. Figure 13 and
Figure 14 present the execution times and the number of tasks
migrations between different core types of the second phase
of allocation respectively. To generate the results in Figure 13,
we used a server with 8 Intel Xenon 1.60GHz processors
and a memory size of 8GB. The allocation process of the
second phase is very fast even for a large task-set size of 500.
Figure 14 shows that the number of migrations (also execution
time) decrease with an increase in effective utilisation as the
tasks have less freedom to manoeuvre due to high utilisations.
Less loaded systems (U = 7.2) allow cores to use their more
efficient sleep anyway. Therefore, U = 7.2 has fewer number
of migrations (executions time) when compared to U = 8.1.

VI. CONCLUSION

Heterogeneous multicore platforms are becoming popu-
lar in industry. This trend demands an advancement in RT
scheduling theory. We have explored the problem of task
assignment with an objective to reduce the average-case energy
consumption of the system, while satisfying RT constraints.
This research effort demonstrates the importance of a realistic
power model and its effect on the overall energy consumption.
In the future, we have an intention to relax the assumption of
single processing unit of each processor type and extend this
work to allow the job migration to further reduce the energy
consumption of the system.

REFERENCES

[1] D. C. Snowdon, S. M. Petters, and G. Heiser, “Accurate on-line
prediction of processor and memory energy usage under voltage scaling,”
in 7th EMSOFT, Salzburg, Austria, Oct 2007, pp. 84–93.

[2] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware
energy management approach for dynamic priority systems,” in 23rd
ECRTS, 2011, pp. 92–101.

[3] A. Kandhalu, J. Kim, K. Lakshmanan, and R. Rajkumar, “Energy-aware
partitioned fixed-priority scheduling for chip multi-processors,” in 17th
RTCSA, vol. 1, aug. 2011, pp. 93 –102.

[4] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms,” in 13th RTCSA,
aug. 2007, pp. 28 –38.

[5] Y. Yu and V. Prasanna, “Power-aware resource allocation for independent
tasks in heterogeneous real-time systems,” in Parallel and Distributed
Systems, 2002, pp. 341 – 348.

[6] T.-Y. Huang, Y.-C. Tsai, and E.-H. Chu, “A near-optimal solution for
the heterogeneous multi-processor single-level voltage setup problem,”
in IPDPS, 2007, pp. 1–10.

[7] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in ASP-DAC, 2002.

[8] J.-J. Chen and L. Thiele, “Energy-efficient task partition for periodic
real-time tasks on platforms with dual processing elements,” in 14th
ICPADS, dec. 2008, pp. 161 –168.

[9] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo, “Multiprocessor synthesis for
periodic hard real-time tasks under a given energy constraint,” in 43rd
DATE, 2006.

[10] C.-M. Hung, J.-J. Chen, and T.-W. Kuo, “Energy-efficient real-time task
scheduling for a dvs system with a non-dvs processing element,” in 27th
RTSS, 2006.

[11] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approximation
scheme for energy-efficient scheduling of real-time tasks in heteroge-
neous multiprocessor systems,” in 46th DATE, 2009, pp. 694–699.

[12] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization for
periodic real-time tasks on heterogeneous processing units,” in IPDPS,
2009, pp. 1 –12.

[13] G. B. Dantzig and M. N. Thapa, “Linear programming: 1: Introduction,”
in Springer Verlag, 1997.

[14] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time
processes,” in 24th RTSS, Cancun, Mexico, Dec 2003, p. 396.

[15] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser, “Koala:
A platform for OS-level power management,” in 4th EuroSys Conf.,
Nuremberg, Germany, Apr 2009.

[16] B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for
power aware and real-time systems,” in 8th IEEE Int. Conf. Emb. Softw.
& Syst. Changsha, China: IEEE, Nov 2011, pp. 999–1004.

[17] MPC8536E PowerQUICC III Integrated Processor Hardware
Specifications, FreeScale Semiconductor, document Number:
MPC8536EEC, Rev 3, Nov. 2010. [Online]. Available: http://cache.
freescale.com/files/32bit/doc/data sheet/MPC8536EEC.pdf?fpsp=1

[18] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in IPDPS 2003, april 2003.

[19] M. A. Awan and S. M. Petters, “Energy-conscious tasks parti-
tioning onto a heterogeneous multi-core platform,” Technical Re-
port: 2012, https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%
2BAwan/publications/.

