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Abstract

Modern embedded systems have increasingly penetrated our daily life, and have facilitated and
accelerated our regular activities. Some of these systems are constrained with strict timing re-
quirements, and have limited and/or intermittent power supply. One of the major challenges in
the design process of such systems is to minimise their energy consumption and thus to increase
the battery life and enhance their mobility. In order to address this objective, it is important to
understand the current trends in the embedded systems industry. With progressing CMOS tech-
nology miniaturisation, the leakage power dissipation — once neglected — has become a major
contributor to the overall power dissipation of modern embedded systems and as a matter of fact it
has started to dominate its counterpart, the dynamic power dissipation. To cope with current trend
of increasing leakage current, hardware vendors have equipped modern embedded processors with
several sleep states and reduced the overhead (energy/time) of a sleep transition. Secondly, there is
a trend towards an increased number of devices, as an ever increasing need for extra functionality
in a single embedded system demands for extra Input/Output (I/O) devices, which are expensive
in terms of energy consumption. Similar to processors, these devices are also equipped with low
power sleep states to reduce their energy consumption. Thirdly, modern embedded processors
have started to suffer from thermal issues due to increase in power density. It is essential to keep
the temperature within recommended limits for the safe operation of the system and to increase the
durability/reliability of hardware platforms. Finally, the CMOS industry experienced a paradigm
shift in the last decade from single processor design to multicore hardware platforms as the clock
frequency cannot be further increased efficiently to enhance the performance of the system. This
is driven by the increase in performance per watt ratio that demands special packaging techniques
to dissipate the generated heat at high frequencies.

This dissertation attempts to provide energy efficient solutions and techniques to cope with the
aforementioned arising trends, while closing the gap between theoretical research and practice. In
particular, it focuses at the operating-system-level power management and exploits the available
sleep states to improve on energy efficiency while mainly concentrating on the leakage power
dissipation. Uniprocessor power management has been widely explored in the last two decades.
Several procrastination approaches has been proposed in the literature to deal with the leakage
current. However, these solutions approximate the procrastination interval to ease the analysis
and sub-optimally utilise the available resources to minimise energy consumption. Such approx-
imation is eliminated in this dissertation with the optimal algorithm to maximise energy savings.
A practical limitation of the procrastination scheduling algorithm is relaxed by eliminating the
need for an external hardware to implement the power saving algorithm. These newly developed
algorithms with low complexity save energy comparable to procrastination scheduling. Further-
more, this dissertation demonstrates that idealised dynamic voltage and frequency scaling, and the
thermally constrained dynamic power management are equivalent in nature. Hence, existing solu-
tions proposed for dynamic voltage and frequency scaling can be easily ported to increase energy
efficiency in thermally constrained systems.
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Intra-task I/O device scheduling was vastly ignored in the past due to an increased overhead of
sleep transitions. A decrease in sleep transition overheads allows to explore this new paradigm of
device scheduling. This solution not only minimises the pessimism involved in traditional device
scheduling algorithms but also reduces the online overhead of scheduling algorithms and has the
flexibility to scale easily with an increase in I/O devices. Finally, this dissertation addresses the
power management in the context of multicore hardware platforms. Global scheduling algorithms
have become an attractive choice to schedule applications on a homogeneous multicore platform.
The proposed energy saving algorithm exploits the spare capacity in the schedule and exploits the
sleep states available in homogeneous multicore platform to save energy consumption. Heteroge-
neous multicore platforms are famous in modern computing to perform specific tasks efficiently.
Energy efficient mapping on heterogeneous multicore platforms addressed in the literature consid-
ers only dynamic power dissipation while assuming leakage power dissipation a constant factor.
Opposed to the state-of-the-art, the proposed allocation heuristics in the thesis are divided into two
phases to tackle both dynamic and leakage power dissipation. All the algorithms proposed in this
dissertation are evaluated with extensive set of simulations for a variety of hardware platforms and
workloads.



Resumo

E um facto constatado que os sistemas embebidos tém tomado um lugar relevante na nossa vida
quotidiana, tendo facilitado e até acelerado as nossas actividades diarias. Alguns destes sistemas
caracterizam-se por requisitos temporais bastante rigorosos e sdo alimentados por fontes de en-
ergia limitadas e/ou intermitentes. Um dos maiores desafios no projecto deste tipo de sistemas
consiste em minimizar o seu consumo de energia e, consequentemente, aumentar a sua autono-
mia e mobilidade. De forma a atingir este objectivo, é fundamental compreender as tendéncias
actuais na industria dos sistemas embebidos. Com a progressiva miniaturizagdo da tecnologia
CMOS, a poténcia devida a corrente de fuga — anteriormente desprezdvel — tornou-se numa das
principais contribui¢des para o total da poténcia dissipada. Na realidade, a poténcia da corrente
de fuga consegue j4 ultrapassar em certos casos aquela que era a principal fonte de dissipacdo de
poténcia nos circuitos CMOS: a poté€ncia dindmica, associada a transi¢cao entre estados. Para lidar
com esta crescente poténcia da corrente de fuga, os fabricantes de circuitos equiparam os actu-
ais processadores embebidos com vérios estados de laténcia (sleep modes) e reduziram os custos
energéticos e temporais associados a uma transicao por um estado latente. Adicionalmente, h4 a
tendéncia de se aumentar o ndmero de dispositivos incluidos num unico sistema embebido, dev-
ido a crescente complexidade da funcionalidade exigida as aplicacdes embebidas, requerendo um
maior ndmero de dispositivos de entrada-saida (I/O), traduzindo-se na prética por um aumento do
consumo energético. Tal como no caso dos processadores, estes dispositivos também estio equipa-
dos com estados de laténcia, de forma a reduzir o consumo de energia. Um outro ponto a ter em
conta relaciona-se com os problemas térmicos, devidos ao aumento da densidade de poténcia,
presentes nos actuais processadores embebidos. E fundamental manter a temperatura dentro dos
limites especificados para a operacao segura do sistema e aumentar da durabilidade/fiabilidade da
plataforma computacional. Por dltimo, o paradigma de fabrico CMOS evoluiu na dltima década,
do projecto de sistemas com um tnico processador para plataformas com multiplos niicleos de ex-
ecucgdo (multi-core), pois tornou-se impossivel continuar a obter ganhos de desempenho através do
aumento da frequéncia de reldgio. Esta mudanca é motivada pelo aumento da relacdo de desem-
penho por watt, através de técnicas especiais de desenho dos circuitos integrados que permitem
dissipar o calor gerado a altas-frequéncias.

Esta dissertacdo apresenta um conjunto de novas solucdes eficientes do ponto de vista en-
ergético para lidar com as tendéncias previamente referidas, estabelecendo simultaneamente a
ponte entre a investigacdo tedrica e a prética. Este trabalho centra-se em particular na gestdo de
energia ao nivel do sistema operativo, e explora os estados de laténcia disponiveis para melhorar
a eficiéncia energética, concentrando-se na dissipac@o de poténcia devida as correntes de fuga. A
gestdo de energia em sistemas uniprocessador foi largamente explorada nas ultimas duas décadas.
Neste periodo, publicaram-se vérias abordagens baseadas na procrastinacio de tarefas para lidar
com o problema da corrente de fuga. No entanto, estas solucdes estimam um valor aproximado
do intervalo de procrastinacio para facilitar a andlise e utilizar de forma sub-6ptima os recursos
disponiveis para minimizar o consumo de energia. Este trabalho conseguiu eliminar a referida
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aproximag¢do com um algoritmo éptimo para maximiza¢do da poupanga de energia. A limitacio
pratica do algoritmo de escalonamento com procrastinacio de tarefas é relaxado através da elim-
inacdo da utiliza¢do de hardware externo para implementar o algoritmo de poupanca de energia.
Estes novos algoritmos de baixa complexidade, desenvolvidos neste trabalho, atingem poupancas
de energia compardveis ao escalonamento com procrastinagdo de tarefas. Além disso, esta disser-
tacdo demonstra como a variagdo dindmica ideal de tensdo e frequéncia, e a gestdo dindmica de
consumo de poténcia baseada em factores térmicos sdo, por natureza, equivalentes. Desta forma,
as actuais solucdes propostas para variacdo dindmica de tensao e frequéncia podem ser facilmente
convertidas para aumentar a eficiéncia energética em sistemas com restri¢des térmicas.

O escalonamento de dispositivos de entrada-saida ao nivel da tarefa tem sido negligenciado
devido aos custos elevados de transicdes por estados de laténcia. A diminui¢do desses custos
permite explorar este novo paradigma de escalonamento de dispositivos. Esta solu¢cdo ndo sé
minimiza o pessimismo relacionado com os algoritmos tradicionais de escalonamento de dispos-
itivos como também reduz os custos de execucdo dos algoritmos de escalonamento, possuindo
a flexibilidade necessaria para facilmente acompanhar um ndmero crescente de dispositivos de
entrada-saida. Por fim, esta dissertacdao aborda a gestdo de poténcia no contexto das plataformas
baseadas em arquitecturas de processadores com multiplos niicleos de execucao (multi-core). Os
algoritmos de escalonamento globais tornaram-se uma opg¢ao interessante para ordenar a execucao
de tarefas em plataformas cujos multiplos sdo homogéneos. O algoritmo para poupanca de ener-
gia proposto, explora a capacidade excedente do sistema decorrente do escalonamento, bem como
os estados de laténcia disponiveis nestas plataformas de nicleos homogéneos, afim de reduzir o
consumo de energia. As plataformas de nucleos heterogéneos sdo reconhecidas pela capacidade
de realizar eficientemente tarefas especificas. Os processos de afectagdo de tarefas por nicleos
de execucdo baseada em critérios de eficiéncia energética publicados até hoje, consideram apenas
a dissipag¢do dindmica de poténcia assumindo um factor constante para a poténcia devida a cor-
rente de fuga. Em oposicdo ao estado-da-arte actual, as heuristicas de afectacdo proposta nesta
dissertacdo dividem-se em duas fases para abordar tanto a dissipacdo de poténcia dinAmica como
a dissipacdo de poténcia de fuga. Todos os algoritmos propostos nesta dissertagdo sdo avaliados
através de um extenso conjunto de simulag¢des para uma variedade de plataformas computacionais
submetidas a diversas cargas.
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Chapter 1

Introduction

1.1 Embedded Systems

The technology evolution has made embedded systems an integral part of our life. These systems
perform a set of dedicated functions and interact with their environment. In fact most of the embed-
ded systems are hidden from our eyes and thus make us forget their existence. These sophisticated
systems are rapidly replacing complex jobs previously preformed by human evolving our society
to the era of automation. These systems not only reduce the risk of failure as humans are prone to
errors but also provide increased precision and high efficiency previously not possible with human
interaction. Up to some extent, the credit goes to these systems that have raised our quality of life
in this modern era of computing. Nowadays, embedded systems are deployed in various aspect
of our life. Typical domains in which such systems are deployed includes consumer electronics,
medical equipment, avionics, automotive industry, banking, and defence industry [Noe05, Nell1].
The list is not limited to the aforementioned domains. Despite their existence in a variety of dif-
ferent domains, the basic principles of their design tend to resemble. Before going into the details
of embedded system design, trends, challenges and constraints, lets visit a definition of this term.
The term “embedded system” is not rigorously defined in the literature. Experts in the field have
come up with different meaning of this term corresponding to different properties, features and
constraints of embedded systems. Some of the definitions from various experts in the domain are
summarised by Raj Kamal [KamO03]. In the context of this thesis, an embedded system is defined

as follows.

Definition 1. An embedded system is a microprocessor-based system composed of hardware, soft-

ware and/or mechanical components to perform a dedicated function or a range of functions.

These dedicated functions vary from a simple task of toasting a slice of bread to an air traffic
control system that involves numerous workstations, networks and radar sites. Nevertheless, an
embedded system is still considered different from general purpose computer system designed
to satisfy a variety of end-user requirements. A general purpose computer system provides a
flexibility to craft the system according to the needs of a user and designed to run a variety of

applications. The desired functionality of an embedded system is usually known at design time.
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The information on dedicated function or a range of functions that an embedded system is desired

to perform allows to design these systems with optimised software and hardware capabilities.

In general, an embedded system is designed to provide extra reliability over its counterpart
general purpose computing system such as a personal computer. Some embedded systems are
mission critical such as aircraft flight control and satellites, and any malfunction in such systems
can risk human life, equipment damage, property loss and mission failure. Embedded systems
deployed in avionics, automotive industry, industrial controllers and military equipments have to
deal with vibration, shock, extreme heat, cold and radiations. Contrary to personal computers, the
luxury of a software update is also sometimes trickier as these systems are embedded inside a big
system and/or deployed in remote areas such as undersea applications or space voyagers. These
system must have a mechanism to solve its issues remotely. On top of this, any faults that leads to
a failure of the system can also destroy the reputation of a manufacturer. Therefore, such systems
are exhaustively tested in their design phase to ensure their functional correctness. Such reliability
in personal computers is hard to maintain due to the dynamic nature of applications designed by
various third party companies with different tools and made compatible for a variety of hardware

platforms available in the market.

Another strict requirement over the dimensions (weight and size) of an embedded system is
usually dictated by aesthetics or a limitation to fit in interstices among mechanical parts. Users
demand to increase the endurance also prompts a system designer to optimise the dimensions of
embedded systems. The extra fuel cost in transportation system and space ventures is another
factor that imposes size and weight constraint on embedded systems. Similar to other technology
markets, embedded systems in the consumer electronics domain are sold in a very competitive
market. The cost sensitivity is usually attached with the performance, precision and the quantity
of items produced. For example, a management is less sensitive to a cost issue of a high end
embedded system produced in a small quantity when compared to a system produced in an order
of millions. Time-to-market is another important constraint that system designers has to cope with.
The designers need to deliver systems on time to gain a maximum advantage out of their product
and have to adopt very quickly according to new technology trends. One of the recent example is
Nokia in the market of mobile systems. Nokia [Cor] has a dominating market share in the mobile
phone industry in the last decade. Samsung [Gro] brought its smart-phones very quickly in the

market and acquired a large share in the mobile industry.

The primary requirement of an embedded system is to correctly perform a desired functional-
ity. There is a class of embedded systems that has an additional constraint of temporal requirement
to be met on top of the functional correctness for the overall system to be considered correct. This
class of embedded systems is named as real-time (RT) systems in the literature. Consider an ex-
ample of an anti-lock breaking system (ABS) in cars. The RT or temporal constraint in this system
requires to release breaks for a very short period of time before reaching the skidding point that
may cause the car to get out of a driver’s control. The timing is an important property of the sys-
tem as a minor delay can cause a system failure. Stephan J. Young [ You82] formally defined a RT

system as follows.



1.1 Embedded Systems 3

Definition 2. “Any information processing activity or system which has to respond to externally

generated input stimuli within a finite and specified period.” — Stephan J. Young[You82]

Similarly, Oxford dictionary of computing [Wri] gives the following comprehensive definition

of a RT system.

Definition 3. “Any system in which the time at which output is produced is significant. This is
usually because the input corresponds to some movement in the physical world, and the output
has to relate to that some movement. The lag from input time to output time must be sufficiently

small for acceptable timeliness.” — Oxford Dictionary of Computing [Wri]

These definitions cover a wide range of RT systems but fortunately, all these different RT
systems can be classified into two main categories depending on the nature of timing require-

ment [BW09]. These two different categories of RT systems are given as follows.

e Hard Real-Time Systems: Hard real-time systems (HRT) are the class of embedded sys-
tems in which a desired operation violating the temporal constraint, i.e., completing after
the predefined time interval, may cause catastrophic or irreversible consequences. In other
words, it is imperative to meet the timing requirements regardless of a system’s state. The
constraint on the timing is commonly known as a deadline. These catastrophic or irre-
versible consequences may lead to a damage to the physical surrounding or threaten human
life. The results obtained after a given time interval (or deadline) are considered useless
in HRT systems. A simple example is an operation of an air-bag in our modern cars. The
air-bag control unit (ACU) must inflate the fabric bag within 60-80 milliseconds after the
first moment of a car’s contact with the opposing object in case of an accident. ACU failing
to meet this specification may even increase the risk of injury to the persons inside the car.
Another example of a HRT system is an automatically controlled train. The train cannot
stop immediately. In order to stop the train at some desired point say x, it must activate the
break command a certain distance away from x. The controller of the train considers the
safe deceleration rate and the speed of the train to compute the distance before x to apply
breaks. Any delay in computation and/or activating the break command my cause disastrous
consequences. Similarly, other examples of HRT systems are artificial heart pacemaker that

regulate the beating of a heart patient, industrial process controllers, ABS, engine control

This thesis focuses on HRT systems. I

o Soft Real-Time Systems: Opposed to HRT systems, soft real-time systems (SRT) can tol-

system etc.

erate occasional temporal violations, but the significance of the results degrades with the
passage of time after their deadline. In literature, the usefulness of the results is sometimes
referred to as tardiness. A desired function completing before or at its deadline has tardi-

ness equal to zero. An operation failing to meet its deadline has a tardiness equal to the
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difference between the completion time of an operation and its deadline. It is desirable to
meet all deadlines and minimise tardiness if not all deadlines can be met. However, it does
not cause dire consequences due to any misbehaviour in the timing constraint. For exam-
ple, a degradation in the quality of electronics games is annoying but not life threatening.
Similarly, a delay in the online transaction system will not cause the whole system to crash
but can be extremely expensive. The degradation in the usefulness of the results can be
demonstrated with the stock price quotation system [Liu0O]. It is desirable to update the
price of each stock as soon as its price changes. The delay in the price change reduces the
usefulness of the results with time. Additionally, SRT systems in which the results are no
more valuable after the deadline miss but such a situation does not have any catastrophic
consequences (as in HRT systems deadline miss) are said to have firm deadlines. A delay
in the video conferencing application causes a drop of frames after their deadline miss and
people experience some glitches. Similarly, the quality of the voice in phone calls is another
example. The validation of a SRT system is not as rigorous as it is performed in a HRT

system and it allows system designers to focus on other performance metrics as well.

Many embedded devices are nomadic and have limited energy supply. Such energy constraints
are induced by e.g., battery powered mobile devices or those with limited or intermittent power
supply such as solar cells. Apart from limited power supply, some embedded systems also have
thermal issues. Satellites are the prominent example of such systems. Reasons to reduce the

energy consumption of an embedded system include the following.

1. The high requirement of the energy can lead to an increase in the size of an embedded system
which is not desirable in many cases such as consumer electronics, avionics, automotive

industry and military equipments.

2. A longer lasting battery is a market differentiator. Consumer always opts for a system that
offers extra battery life with same functionality to avoid the hassle of recharging and increase
its mobility. A system optimised for energy consumption is especially useful in scenarios
where frequent battery replacements are very costly such as sensor networks deployed in

remote areas.

3. High energy requirement causes thermal issues which in turn increase the packaging cost of
an embedded system and/or demands efficient cooling systems. Thermal issues also affect

the speed, power and reliability of the semiconductor chips [WA11].

4. Energy savings have positive impact on the environment. Batteries used in embedded sys-
tems are usually made from harmful chemical such as cadmium, lead and mercury [BETO04].
These chemical can effect the living beings as batteries are usually dumped in fields. The

lack of recycling and disposal sites is currently a major issue.
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1.2 Basic Components of Real-Time Systems

A RT system may be viewed as three main components called applications, real-time operating
system (RTOS) and hardware platform. The interaction between these components is demon-
strated in Figure 1.1. Applications correspond to the dedicated functionality that a RT system is
desired to perform on a given hardware platform. A real-time operating system sits in between a
hardware platform and a given applications to provide hardware abstraction, perform scheduling
and facilitate communication. It provides application programming interfaces (API) to allow the
interaction of the application with the given hardware platform and the given application can ac-
cess the different components of the hardware platform through available API’s. Please note that a
small scale RT system may not have an RTOS. The source code of the application is compiled and
stored in a read only memory (ROM) to access the hardware platform. For example, a simple RT
system that monitors the temperature of a room does not require a complex RTOS. Nevertheless,
an RTOS is assumed to be a part of a RT system in the context of this dissertation. The hardware
platform provides the physical layer that executes the given application. These basic components
involved in the design of RT systems are discussed here providing us a base to explore the main

topic of this dissertation, i.e., energy and thermal management.

' “

Applications

N

b

Real-Time Operating System

!

Hardware Platform

\. J

Figure 1.1: Different components of a RT system

1.2.1 Applications

Real-Time applications are usually represented by an abstract workload model that specifies the
relevant characteristics of the workload generated by such applications when analysing a system.
The functionality of a RT application can be modelled as a finite collections of simple, highly
repetitive or abstract entities called real-time tasks [BG03]. These tasks are recurrent in nature.
Each instance of a task is a basic unit of work that executes on the physical hardware platform and
is called a RT job or in short a job [Liu00]. All jobs related to a particular task are semantically
related. From now onwards, the functionality of a RT application is represented as a set of tasks
called task-set. A frequency with which a task releases its jobs can be categorised into three
types [IFOO].
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e Periodic Tasks: A task that releases its jobs periodically after a fixed time interval is defined
as a periodic task. The fixed duration between the two consecutive jobs releases is called a

period of a task.

e Sporadic Tasks: A task that releases its jobs at some arbitrary time instant but the two
consecutive jobs of a task are always separated by at least a predefined time interval called

minimum inter-arrival time.

e Aperiodic Tasks: Jobs of an aperiodic task is not constrained by a minimum inter-arrival

time or a period, it can release jobs at any instant.

Within this work the focus is on sporadic tasks. I

RT tasks are always constrained with a timing requirement. A task should complete its ex-

ecution within a predefined time interval called the relative deadline of a task. A task failing to
generate desired results within its relative deadline can jeopardise the whole system, environment
or user’s safety. A relative deadline of a task depends on the nature of an application. For exam-
ple, the air-bag application installed in a car has a relative deadline of 60-80 milliseconds, while a
room temperature monitoring application can have a relative deadline of a few seconds. A relative

deadline of a periodic or a sporadic task can be categorised into three main classes.

o Implicit Deadline Task: An implicit deadline task has a relative deadline equal to its period

or minimum inter-arrival time.

e Constrained Deadline Task: A constrained deadline task may have a relative deadline less

than or equal to its period or minimum inter-arrival time.

e Arbitrary Deadline Task: As the name implies, an arbitrary deadline task has no relation
with the period or minimum inter-arrival time of a task. It means that multiple jobs of the
same task may be released with a difference of minimum inter-arrival time and coexist in

the ready queue.

This work focuses on constrained deadline tasks. '

The execution time of a task is another parameter that must be specified to characterise its

temporal behaviour. Different jobs of a task exhibit variation in their execution time depending on
the hardware characteristics, structure of the software, input data and different behaviour of the
environment with which such job is interacting. In order to guarantee the temporal correctness,
the upper bound on the execution time of a task is specified called worst-case execution time
(WCET). The WCET of a task is the safe upper bound beyond or equal to the longest execution
of any job released by such task. However, there is an assumption that execution times of the jobs
are measured without any interruption. Any miscalculation in this parameter may cause a system

failure. The term WCET is introduced formally in Definition 4. There are numerous methods and
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techniques to compute the WCET of a task and the interested reader is directed to the following
surveys of such techniques for further reference [PB00, WEE08]. RT system designers consider
the WCET of tasks while designing a system to guarantee the timing properties, however, different
jobs of a task may execute for less than their WCET leaving behind unused computing resource.

This bound must be pessimistic to be safe.

Definition 4 (WCET). Assume processor is in any legal state at the beginning of an execution of
a task then the worst-case execution time of a task on a given hardware platform is the maximum
length of its execution time, under worst-case input conditions without considering interference

from other tasks.

The nature of the application sometimes demands precedence constraints and data dependen-
cies among tasks. For example, the inflate task in the air-bag system is dependent on the data from
the sensor that provides information about the intensity of an impact in case of an accident. Simi-
larly, the authentication task is performed before the access tasks in most of the banking systems.
The type of tasks that needs to perform their execution in some order are said to have a precedence
constraint. The tasks that can perform their execution without any order are called independent
tasks. Such a task does not depended on the outcome of any other task or tasks to initiate their
execution. For example, toast a slice of bread with the given temperature. Similarly, displaying
the sensor reading of different parameters in the system on the monitor. The collection and display
of data from a specific sensor can be performed independent of each other. Please note that the
term task and job are used interchangeably in this dissertation. An execution of a task implicitly

corresponds to the execution of its job.

This work focuses on independent tasks. I

1.2.2 Real-Time Operating System

A real-time operating system is tailored for RT applications and designed to provide predictability
and reliability in the system. The term predictability means the ability of the system to guar-
antee the timing properties at design time. The term reliability means “the ability of a system
or component to perform its required functions under stated conditions for a specified period of
time”[Dec98]. One of the main objectives of an RTOS is to provide an interface between RT tasks
and resources available on the hardware platform. Furthermore, it provides an abstraction of the
underlying hardware platform, and facilitates scheduling and communication. As the resources
are usually limited in such platforms, therefore, it also coordinates and arbitrates their allocation
among different tasks. Examples of an RTOS include VxWorks, RTEMS and PikeOS. The Mars
reconnaissance orbiter and curiosity rover sent to the Mars used VxWorks as the operating system.
RTEMS is commonly used in space applications, while PikeOS targets safety and security critical
embedded systems. Similar to any other general purpose operating system, API’s of an RTOS
relieves the programmer of a RT application to worry about the hardware details. These API’s
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are optimised for different types of hardware platforms. Typically an RTOS performs many activ-
ities such as task management (scheduling), interrupt handling, memory management, inter-task
communication and resource sharing. Nevertheless, the discussion in this section is limited to task
management or scheduling.

A scheduler is a mechanism by which the RTOS allocates resources (such as processor) to
tasks to perform their execution. It decides the time instant and the duration of execution for
each task. Scheduling in RT systems has been widely studied in the literature. There exist nu-
merous scheduling techniques for a vast variety of systems and task-models. Initially, scheduling
techniques for a single processor were studied and later extended to the multiple processors case.
Scheduling algorithms can be classified based on many factors. For example, scheduling algo-
rithms can be divided into online and offline algorithms. In an online algorithm, the scheduling
decisions are made based on the current state of a system, while in an offline scheduling algorithm,
a precomputed schedule is determined offline. However, this section adopts the classification pro-

posed by Jane Liu [Liu00]. She divides scheduling algorithms into following three main classes.

1) Clock Driven Scheduling: Clock driven scheduling approaches are also commonly known
as time driven scheduling algorithms. In this category of algorithms, the scheduling decisions
— which job executes at what time instant — are made at predefined time instances. Such
decisions are made offline and stored in a memory to access online. The task parameters are
usually fixed in this type of scheduling algorithms and a designer has complete knowledge
available a-priori to derive a static schedule. Usually, the complete static schedule is divided
into frames. The scheduling decisions are made at the boundaries of each frame. The size
of a frame is selected consciously such that it minimises the scheduling overhead. The static
schedule is repeated in a cyclic manner. A clock driven scheduling is a very simple approach.
Its online complexity is very low as the schedule is precomputed. In this approach, scheduling
tables can be easily replaced in different operating modes. The context switching overhead
can be reduced by optimising the frame size. Many traditional RT systems are scheduled
through this technique such as a traditional flight control systems or health care systems. These
schedules are easy to validate, test and certify. The disadvantage of such a system includes its
fixed nature. Any alteration in the task-set needs a redesign of a static schedule. Hence, it is

suited for a fixed small embedded controller that rarely requires any changes.

2) Round Robin Scheduling: Round robin scheduling algorithms are suitable for time shared
applications. Jobs in this strategy are placed in a first-in-first-out (FIFO) queue. Each job
on the head of FIFO queue gets a same share of time. A job not completing in this share
is pre-empted and added at the end of the FIFO queue. The time sharing slowly progresses
the execution of all jobs. This algorithm is sometimes called a processor-sharing algorithm.
One of the variation of such algorithm is a weighted round robin scheduling algorithm. Each
job is allocated a specific share in FIFO order. The complete round of such algorithm is a
summation of such weights allocated to different jobs in the FIFO queue. Weighed round robin

is commonly used for RT traffic in high-speed switched networks [Liu00].
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3) Priority Driven Scheduling: In a priority driven scheduling algorithm, tasks or jobs are allo-

cated a priority and scheduled accordingly. The priorities can be allocated based on different

criterion such as earliest deadline first, least laxity first, arrival rate of a task, shortest execution

time first, shortest deadline first etc. The priorities of jobs or tasks can be allocated statically at

design time or dynamically at run time. Most of the research effort is dedicated in this category

of scheduling algorithm in a RT context. The pioneer work of Liu and Layland [LL73] on dy-

namic priority scheduling algorithm called earliest deadline first (EDF) scheduling algorithm

and fixed priority scheduling algorithm, and the work of Mok [Mok83a] on least laxity first

(LLF) are some examples of this class of scheduling algorithm. The priority driven scheduling

approach can be further divided into three main categories.

(a)

(b)

(©

Fixed Task Priority (FTP): In a fixed task priority scheduling algorithm, priorities are
assigned to tasks. All the instances of a task (i.e., all its jobs) inherit the same priority. The
priority of a job remains static through out the execution time. There are various prior-
ity assignment algorithms such as rate-monotonic (RM) [LL73] and deadline-monotonic
(DM) [LW8?2]. Usually, the priority is assigned based on certain property of a task. In
case of the DM priority assignment algorithm, a task with the shortest deadline is as-
signed the highest priority. Similarly, in the RM priority assignment algorithm, a task

with smallest period is assigned the highest priority.

Fixed Job Priority (FJP): In this category of priority scheduling algorithm, priorities are
assigned to jobs rather than their tasks. It means that different jobs of the same task may
execute on a processor with different priorities. The priority of the certain job remains the
same between its release time and deadline. There are many scheduling algorithms that
falls in this category such as optimal EDF algorithm [LL73], earliest deadline Deferrable
Portion (EDDP) [KYO08] and EDF with C = D [BDWZ12]. The priority of a job in this
class of algorithms is usually assigned based on the fixed property of a job. For example,
in case of EDF, the absolute deadline of a job is the fixed property that does not change

throughout its active time.

Dynamic Job Priority (DJP): This is the most general form of a priority driven schedul-
ing scheme. The priority of a job may change at any instant during its execution. One
of the examples in this category is the LLF scheduling algorithm [Mok83a]. The priority
of a job in LLF depends on the job’s laxity (its deadline minus its remaining execution
time). A job with the minimum laxity is allocated the highest priority and vice versa.
The priority of a job varies with its execution on a processor. Such systems are difficult
to design and may suffer from high number of pre-emptions. Other examples of such al-
gorithms include proportionate progress (PF) [BCPV93], local remaining execution TL-
Plane (LRE-TL) [Fun10] and largest local remaining execution first (LLREF) [CRJ06].

This work focuses on a rate-based scheduling approach with EDF and in

particular considers fixed job priority schedulers at its core.
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Most scheduling algorithms that belong to the priority scheduling class are work conserving

in nature. A work conserving scheduling algorithm is defined as follows.

Definition 5 (Work conserving scheduler). A work conserving scheduler always executes a job
if available in the ready queue and consequently does not allow a processor to get idle in the

presence of ready jobs.

A scheduler grants access of a processor to a job to perform its execution. The execution time
of jobs may be interleaved and the scheduler can suspend a low priority job to execute a high
priority job. If the execution of a job is interrupted in the middle by another job, this phenomenon

is called a pre-emption (see Definition 6 for formal definition).

Definition 6 (Pre-emption). A pre-emption occurs when the execution of a job on a processor is

suspended in order to execute another higher priority job.

Some schedulers allow pre-emptions and are called pre-emptive schedulers. On the contrary,
a class of schedulers that allows a job to complete its execution once started without any inter-
ruption are known as non-preemptive scheduling algorithms [Bar06]. The majority of scheduling
algorithms belongs to the class of pre-emptive schedulers. Each pre-emption has an overhead
associated to it as the pre-empted job has to save its status to resume its execution later in time.
There has been some research [JCR0O7, LHS 98] in which the overhead of such pre-emptions is

considered in the scheduling analysis.

This work focuses on pre-emptive schedulers. I

A class of scheduling algorithms designed for the hardware platform having more than one

processing element (processors) are usually divided into three main categories, 1) global sched-
ulers, ii) partitioned schedulers and iii) semi-partitioned schedulers. Before going into the details

of such classification, the concept of migration is defined as follows.

Definition 7 (Migration). A migration occurs when the execution of a job is suspended from one

processor and later resumed on another processor.

1. Global Scheduling Algorithms: In global scheduling algorithms, all tasks are maintained
in a single global ready queue and n high priority tasks in the ready queue are allocated
to the n available processors. Tasks are not statically allocated to individual processors. A
task may start it execution on one processor, can be pre-empted by a high priority task and
later may resume its execution on another processor, i.e., migrations are allowed. Global-
EDF [DL78] is a well known example of such a scheduling algorithm. Other examples
include the work of Andersson et al. [ABJO1], Srinivasan and Baruah [SB02], Goossens et
al. [GFBO03] and Baker’s [Bak05].

2. Partitioned Scheduling Algorithms: In contrast to a global scheduling, in partitioned

scheduling algorithms, a given task-set is initially distributed among the processors based
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on some criterion such as best-fit, first-fit, worst-fit, next-fit etc. The initial assignment is
performed at design time. Such an assignment is static and tasks are not allowed to migrate
from one processor to another at run time. After the task assignment phase, any uniproces-
sor scheduling algorithm can be applied over an individual processor to schedule the tasks
allocated to it. The most important phase of such scheduling algorithm is the task to proces-
sor mapping. The research of Dhall and Liu [DL78], Oh and Son [OS95], and Burchard et

al. [BLOS95] are pioneer works in partitioned schedulers.

3. Semi-Partitioned Scheduling Algorithms: Semi-partitioned scheduling algorithms are a
mix of global and partitioned scheduling algorithms. A subset of tasks are initially allo-
cated to specific processors and are migration-less at run time, while the rest of the tasks are
allowed to migrate from one processor to another processor. Examples of such algorithms
include EDF with task splitting and k processors in a group (EKG) [AT06], EDDP [KYO08],
deadline monotonic with priority migration (DM-PM) [KY09] and partitioned deadline
monotonic scheduling with highest priority task split (PDMS_HPTS) [LRL09].

1.2.3 Hardware Platform

A hardware platform provides the physical components to execute the desired functionality of the
given RT application. In a RT system, a typical hardware platform is composed of three main
components, i) processor(s), ii) memory and iii) input/output (I/O) devices. These components are
interconnected through buses. The structure of the buses depends on the architecture of the plat-
form. Intuitively, all these components have an impact on the performance and the behaviour of
the system. Figure 1.2 presents a block diagram of MPC8544E PowerQUICC III Processor (figure
taken from [Frel4]). It is a typical example of an embedded hardware platform that includes pro-
cessing elements, I/O devices and memory units. This platform is commonly used in multimedia
and communication applications. A hardware platform is an active topic of research in academia
and industry. Only the essential components of a hardware platform are briefly discussed in this

dissertation to develop the basic understanding of the topic required for the main contents.

1.2.3.1 Embedded Processors

The terms central processing unit (CPU), processor or core represent the processing elements of
a hardware platform. Note that these terms (CPU, core or processor) are used interchangeably
throughout this document. Many embedded processors are cheap and less complex when com-
pared to their counterparts general purpose processors. According to Barr Group’s embedded
systems glossary [Bar14] out of 10 billions processors produced last years, 9.8 billions proces-
sors were used in embedded systems ranging from toys, factories, weapon systems, nuclear power
plants etc. These embedded processors span from 4-bit micro-controllers to 128-bit high end pro-
cessors. Over the years, hardware vendors have increased the performance of these embedded
processors borrowing the concepts from general purpose processors. One of the side effect of

performance increasing tweaks such as pipelining, onchip memory, instruction prefetching etc, is
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Figure 1.2: Block diagram of MPC8544E PowerQUICC III processor (source [Frel4])

the increase of unpredictability in the execution time of an application which needs to be analysed

carefully in the RT context. The process of WCET estimation is challenging on these modern

embedded processors resulting in pessimistic bounds. On top of this, there is a paradigm shift

towards multicores in the design process of embedded processors. A multicore or multiprocessor

hardware platform has more than one core or processor. These cores can resemble in properties

or may be completely unrelated in design. Consequently, multicore platforms can be categorised

into two main types based on the correlation between the available cores on a given platform.

1. Homogeneous Multicores Platform: Homogeneous multicore platforms are also com-

monly known as identical multicore platforms. All cores on identical multicore platforms

have exactly the same properties in terms of computation and the cores are interchangeable.

The execution time and the energy consumption of a task remains the same on all cores on

such a platform. These multicore platforms are also sometimes called symmetric multipro-

cessor platforms (SMPs). Many multicore platforms manufactured and deployed today in
embedded systems falls under this category. For example, Cortex-A17 [ARMb] from ARM

(used in smart phones, tablets, smart TV’s etc) has four identical cores on a same die.

2. Heterogeneous Multicores Platform: Heterogeneous multicore platforms can be further

divided into two main classes.

(a) Uniform multicore platforms: In a uniform multicore platform all the available cores

have similar characteristics — same functional blocks, instruction set architecture etc
— but the speed of the cores may differ from each other. The WCET and the en-

ergy consumption of a task may differ on different cores depending on the operating

frequency of the cores. Such difference in frequency are either imposed intentional

depending on the design requirement or can be caused due to the variation in the chip

manufacturing process. big.LITTLE processing [ARMa] is the main example of such

a platform used to optimise the energy consumption of the hardware platform. In
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big.LITTLE processing, there are two processor types big and LITTLE processors.
big processors provide high performance, while LITTLE processors have high energy
efficiency. Both types of processors are architecturally compatible, i.e., they run the
same instruction set. Depending on the online requirements, the workload can trans-
parently switch its execution from big processors with high performance to energy
efficient LITTLE processors and vice versa. Apart from its online adaptability, this
architecture (big.LITTLE) also allows to run all the processors types simultaneously

to fully utilise its computing potential.

(b) Unrelated multicore platforms: Processors or cores on an unrelated multicore plat-
form have no relation among each other. They have the highest degree of heterogene-
ity. Usually, different cores have different instruction set architecture. The energy
consumption and the WCET of a task vary substantially on these different cores. For
example, a task-A may have a WCET of 2 and 5 on core-I and core-J respectively.
It is equally possible that another task-B may have WCET of 10 and 1 on core-I and
core-J respectively. Normally, unrelated multicore platforms are designed and tailored
for the given application to execute its tasks efficiently. OMAP-5 from Texas Instru-
ments [Tex], Tegra K1 from nvidia [nvi] and Aurix TC27xT from Infineon [Inf] are

the common examples of such multicore platforms.

1.2.3.2 Memories

Memory is an essential components of an embedded system. Different types of memories exists
in embedded systems, for example, on-chip cache/scratchpad memory and off-chip random access
memories (RAM) or non-volatile read only memory (ROM). In order to reduce the latency in ac-
cess time, the architecture of memories is an important design parameter. Most of the processors
have an on-chip cache or scratchpad memory for fast access to data and instructions. In multicore
platforms, these on-chip memories may be placed in a distributed or shared manner. In a dis-
tributed architecture all the processors have their private on-chip memory to store the instructions
and their data, while in shared architecture, processors share on-chip memories among each other.
In practice, a hierarchical memory architecture is common in multicore platforms. All processors
have a layer of private memories followed by a layer of shared memories. One of the major is-
sues in the memory architecture design is the coherency of the data in the private memories. This

problem is out of scope of this dissertation and hence not discussed here.

1.2.3.3 1/0 Devices

An embedded device usually communicates with the outside world and hence, require I/O devices.
These I/0 devices are used in different scenarios with different objectives. For example, in fac-
tory automation applications, different sensors provide the means to observe and manipulate the
environment (temperature, pressure etc). Network devices (such as ethernet, WiFi, modem etc)

allow to connect and provide communication among embedded devices. Human interface with
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embedded devices is also performed via I/O devices (e.g., keypads, displays). I/O devices can
trigger the mechanical components or completely electrical in nature. The number of I/O devices
on modern embedded systems is increasing and results in a major portion of energy consumption.
An operating system access the devices through device drivers. The operating frequency of an I/O

device is usually very small when compared to a processor’s frequency.

1.2.3.4 Integrated Circuits

Complementary metal-oxide-semiconductor (CMOS) is the most widely used device technology
in fabricating integrated circuits such as microprocessor, memories and many other digital/analog
devices. CMOS technology was developed by Frank Wanlass in 1963 but the first CMOS circuit
was developed in 1968. The low power dissipation due to the low input currents is the major advan-
tage of CMOS over the previously used technologies such as transistor-transistor logic (TTL). An-
other, advantage is its high noise immunity. It uses p-type and n-type metal-oxide-semiconductor
field-effect transistors (MOSFETs) to implement logic gates, which in turn are used to develop
digital integrated circuits (ICs). In CMOS logic gates, n-type MOSFETsS (also called nMOS) are
arranged in the pull-down network between the output and the low-voltage supply rail (commonly
called ground). Similarly, the collection of p-type MOSFETs (also called pMOS) are arranged
in the pull-up network between the high-voltage supply rail and the output. Connecting points of
pull-up and pull-down networks provide the output that has an internal capacitance (capacitance
is the ability of the component to store electric charge). The internal capacitance of the output
is charged when the pathway between the high-voltage supply and the output (drain) in the pull-
up network offers a low resistance. A circuit is said to be in the pull-up state. Similarly, it can
be discharged by allowing a low resistance between the output and the low-voltage supply rail
in the pull-down network. This state is called the pull-down state of a circuit. A p-type MOS-
FET has a low resistance between source and drain when a low gate voltage is applied and has
a high resistance when a high gate voltage is applied. In case of a n-type MOSFET, a high gate
voltage provides a low resistance between source and drain, and a low gate voltage offers a high
resistance. A CMOS circuit has an important property of a duality in which the p-type MOSFET
network (pull-up) is complementary to the n-type MOSFET network (pull-down) to enforce the
activation of only one network (either pull-up or pull-down) at a time.

In order to demonstrate the aforementioned concepts, consider an example of a simple NOT
logic gate (input-inverter). Other logic gates such as NOR, OR, AND, XOR, XNOR etc works on
the similar principles. The diagram of a NOT logic gate is presented in Figure 1.3. When a low
gate-level voltage is applied, a NOT gate transitions into a pull-up state and a pMOS transistor
acts a low resistance between V,; and drain, while a nMOS transistor behaves as a high resistance
between Vi, and a drain. As a result, the internal capacitance of the output/drain is charged. A
high gate-level voltage causes a pMOS transistor to act as a high resistance and a nMOS transistor
to behave as a low resistance. The circuit in this situation is in pull-down state and it discharges
the internal capacitance of the output/drain. Summarising its operation, a low gate-level voltage

charges the internal capacitance of the output and a high gate-level voltage discharges it.
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Figure 1.3: CMOS NOT logic gate (input-inverter)

1.2.3.5 Power Dissipation in CMOS Technology

In the early age of CMOS technology, the major focus of research was to increase its speed, reli-
ability and cost [Che04]. The power dissipation was considered as a secondary issue. Hardware
vendors over the years have followed Moore’s law to integrate extra functionality on a single
die. The need for extra computing capabilities, high speed, low cost and increased mobility has
made the power dissipation a critical design metric. This section explores the basic sources of
the power dissipation in CMOS technology that provides the basis to further explore this impor-
tant design metric. The power dissipation in a digital CMOS circuit can be divided into three
main types [Che04, RCNO3]. The parametric equations and the contents in this section mostly
summarises the work of Wai-Kai Chen[Che04] and Rabaey et al. [RCNO3].

i) Dynamic Power Dissipation: The dynamic power dissipation (Fyy,) is the power component
utilised to charge and discharge parasitic capacitance of all the nodes in CMOS circuits. This
power is dissipated due to the switching current that flows when the circuit node switches
from one logic state to another [Ins97]. For example, in case of a NOT logic gate presented
in Figure 1.3, when a low gate-level voltage is applied, the pMOS transistor opens the path
between V,; and the output to charge the internal capacitance of the output load. Similarly,
when a high gate-level logic is applied, a NOT gate discharges the stored energy at the out-
put load through the nMOS transistor. The power dissipated in charging and discharging
the output load in this process corresponds to the dynamic power dissipation. Assume Cp
is the parasitic capacitance of the output load charged per cycle, f is the frequency of op-
eration,  is the switching activity of the capacitive node Cr on each clock cycle, then the
dynamic power dissipation for a single node (in this case input-inverter) can be defined as
Equation 1.1 [Che04]. The same analysis can be easily extended to more than one node as
presented in Equation 1.2 [Che04], where x is the number of nodes and o ; is the switching

activity of a node i with a capacitance C;. Assume, C,rs represents the average switching
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capacitance per cycle, then the average dynamic power dissipation can be defined as given
in Equation 1.3 [Che04, RCNO3]. The dynamic power dissipation can be reduced through
the techniques gate sizing, control synthesis, clock gating and voltage/frequency scaling (see
[PSSG10] for the details of the aforementioned techniques).

def
Poyn = CLVjaf oy (1.1)
X
Pl & y2 1Y (04,C) (1.2)
i=1
def
Pps = V3 fCopy (1.3)

Short Circuit Power Dissipation: The short circuit power dissipation is due to the current
that flows from Vj; to ground, when the voltage level at the input of a logic gate is chang-
ing from one state (high/low voltage) to another state. This current is sometimes called the
through current. In the analysis, it is assumed the transition time of pMOS and nMOS net-
works is zero and both networks are on simultaneously. In other words, it is assumed both
networks acts as a high or a low resistance instantly when the gate-level voltage is changed
from one state to another. In reality, both nMOS and pMOS devices are simultaneously con-
ducting for a very short period of time in their transition phase causing the short circuit power
dissipation. This kind of power dissipation depends on the switching rate and decreases with
an increase in the switching rate. It is directly proportional to the rise time and the fall time
of a gate [PSSG10]. The quantity of the through current is negligible when compared to the
switching current that causes the dynamic power dissipation. Assume, I, is the through cur-
rent that flows from V,;; and Vi, of a NOT logic gate, then its short power dissipation can be
shown with Equation 1.4 [Che04].

def
Pshort = Ichdd (14)

Static Power Dissipation: The static power dissipation is caused by the leakage current that
flows through a transistor even in the absence of a switching activity. This type of power dis-
sipation is also terms as the leakage-power dissipation. The common sources of the leakage-
power dissipation are given as follows [JNW10, RMMMO3].

e Reversed biased pn junctions leakage current

e Subthreshold leakage current or weak inversion current
e Drain-induced barrier lowering (DIBL)

e Gate-induced drain leakage (GIDL)

o Channel punch-through leakage current

e Oxide leakage tunnelling

e Gate current due to hot carrier injection



1.2 Basic Components of Real-Time Systems 17

The subthreshold leakage current (or weak inversion current), drain-induced barrier lowering
and oxide leakage tunnelling are the major sources of the leakage-power dissipation [JNW10].
The interested reader is referred to the following books [Che04, RCNO3, INW10] for further
in depth discussion on the different sources of leakage current. In the previous generation
of CMOS technology, the leakage current is not considered as a considerable portion of the
power dissipation. Technology scaling has increased the leakage-power dissipation to an
extent that it has become a considerable portion of the overall power dissipation. Assume, Ij,
is the summation of the leakage current in a NOT gate, then its static power dissipation can
be represented by Equation 1.5 [Che04]. There are various techniques proposed to reduce the
leakage current that include multiple supply voltage, multiple threshold voltage, active body
biasing, transistor stacking and power gating. The interested reader is referred to the work of
Panda et al. [PSSG10] for further details of these techniques.

def
Pirg = LikgViaa (1.5)
Combining all the components of the power dissipation of a NOT logic gate, Equation 1.7
gives its total power dissipation [Che04]. The same equation can easily be extended to compute
the power dissipation of a complete CMOS circuit. All the parameters of Equation 1.7 play an
important role in the design of low power digital CMOS circuits. These parameters are exploited

in the power saving approaches at different abstraction levels.

Bota = den + Pspors + Plkg (1 6)
Poa = Vaa (CLVaaf ot + L + Iig) (1.7

1.2.3.6 Power Dissipation Vs Energy Consumption

The terms power dissipation, power consumption and energy consumption are often used inter-
changeably. Similarly, low-power and energy-efficiency are also perceived as a similar goals. The

energy consumed by a circuit or a hardware platform is the amount of power dissipated for a cer-

tain period of time, i.e., E def tP(t) dt. In other words, if the power dissipation is shown on y-axis
and the computation time of aofunction is presented on x-axis, then the energy consumption is the
area under the curve. The energy consumption to perform a specific function decreases, if the time
to compute the function decreases and/or the power dissipation decreases. On the other hand, the
power dissipation is the amount of energy consumed per unit of time. A decrease in the power
dissipation not necessary means a decrease in energy consumption. For example, a decrease in
the frequency or the voltage of a CMOS circuit reduces the power dissipation but at the same time
also increases the computation time of the function as well. A power saving approach can either
target to minimise the instantaneous power dissipation that impacts the power grid and the power
supply design, or reduce the average power dissipation that increases the battery life and reduces

the packaging cost of an embedded system.
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1.3 Power Saving Techniques

After discussing the basic components involved in the design of RT systems, the power saving fea-
tures available in embedded systems are discussed below. The power saving techniques in modern
embedded systems are employed at different stages in the design process including application-
level [LZ10, LSCO08], system-level [SLSPHO09, DAOS8a], architectural-level [STD94, MSV9§],
circuit-level [JKC10, VBO08] and physical-level [YAY 07, JCST10]. The system-level is the high-
est level of abstraction while the physical-level considers the processes involved in a transistor
fabrication. The following list highlights several approaches to reduce the power dissipation cor-
responding to the different stages in the design process [Che04] of an embedded system. Two
comprehensive surveys of different approaches on each stage of a system design are given by Luca
et al. [BDMMO1] and Chen [Che04]. These approaches consider different factors of Equation 1.7

in their optimisation process.

1. Application-level
2. System-level

e Dynamic power management (DPM)

e Dynamic voltage and frequency scaling (DVES)
e Instruction-level optimisation

e Hardware-software codesign

e Memory design techniques
3. Architectural-level

e Parallelism and pipelining exploitation
e Block-disabling techniques and clock gating

e Intercommunication and interconnect optimisation
4. Logic gate-level

e Path equalisation (lower V4, resizing)

e Glitch avoidance and local transformations (re-factoring, remapping, phase assign-

ment and ping swapping)
5. Circuit-level

e Library cell design
e Transistor sizing

o Circuit design style

6. Physical-level
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In the context of this thesis, only two system-level power saving techniques including dynamic
power management and dynamic voltage and frequency scaling are discussed here. The major
portion of the work in this thesis considers the dynamic power management and partially addresses

frequency scaling.

1.3.1 Dynamic Power Management

Dynamic power management techniques allow a system or some functional blocks of a system to
transition into a low-power sleep state (or low-power sleep mode) when a system is idle (inactive
state). A sleep state achieves a low-power state by disabling certain part of the system. Modern
hardware platforms offer several sleep states of different type. Different sleep states vary from
just disabling a small part of the chip to shutting down the voltage supply of a circuit. Each
sleep state has an overhead associated to each transition, i.e., a system has to pay the time and the
energy penalty while disabling and enabling the functional block again, e.g., saving and restoring
state. These sleep states are categorised based on their associated overheads (time/energy). The
variation in their overheads depends on the technique used to initiate a sleep state and the area of
a chip disabled. There are different techniques to disable a hardware or parts of a hardware such
as clock gating and power gating. These techniques help to considerably reduce the dynamic and
the static power dissipation of a system. Clock gating and power gating techniques are discussed
in details here to understand the basics of different sleep states.

A major portion of modern hardware platforms is composed of synchronous CMOS circuits.
It is a type of digital circuits in which all parts of a circuit are updated simultaneously and syn-
chronised by the clock signal. The clock gating is commonly used mechanism in synchronous
CMOS circuits to reduce the dynamic power dissipation. The clock signal is an input to the ma-
jority of circuit blocks and it switches the block activity on each cycle. The clock gating disables
the clock input to these blocks and stops their switching activity on each clock. The clock gating
mechanism identifies the group of flip-flops (basic storage element in a sequential logic) sharing
a common enable signal. The common enable signal allows the new input to be fetched into the
flip-flops on a clock cycle. This enable signal and the clock are combined using AND-gate to
generate a gated clock. The clock gating can save up to 5 — 10% of the dynamic power in syn-
chronous circuits [PSSG10]. The granularity of the clock gating is an important parameter for
designers. At coarse-grain level, the clock gating is usually managed by system-level software
through a sleep state and it disables the whole functional block(s). For example, in modern mobile
devices many functional blocks (such as display, radios, memory, processor) can be systematically
disabled through clock gating to fit the mode of operation. The time overhead associated to clock
gating is very small and usually in an order of few clock cycles. Therefore, sleep states based on
this technique are well suited for short idle intervals.

Power gating is another technique commonly used in sleep states to shut-down hardware com-
ponents. It is an effective approach against static power dissipation. It reduces the leakage current
by cutting the power supply to the functional blocks. This techniques is implemented by adding a
pMOS transistor between V,; and the logic block, and the nMOS transistor between ground and
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the logic block. These newly added pMOS and nMOS transistors are called power gate transistors.
The size of these transistors is a major design challenge. The transition overheads (time/energy)
to shut-down the logic blocks and bring it back to an active state through power gating is relatively
high when compared to the clock gating. The transition overheads also depend on the granularity
of the power gating. A fine-grained approach (adding switching transistor to each logic cell) in-
creases the area overhead of power gate transistors but at the same time can decreases the static
power dissipation up to 10 times [PSSG10]. On the other hand, a coarse-grained approach imple-
ments the power gating in the power distribution network rather than in the standard cells. This
approach is less sensitive to process variation and has low area overhead.

Apart from the aforementioned techniques to implement the sleep state, the area of the chip
disabled to reach a sleep state also plays an important role in the overhead of a sleep state. For
example, a sleep state can disable a CPU, cache and other parts of a processor by turning it off
completely. This process at the system-level is usually managed by an operating system. It is the
responsibility of an operating system to save the processor’s context (if allowed by the particular
sleep state) including the saving of the cache contents and processor registers etc. These contents
are brought back on transition-out phase of the sleep state. Such sleep states are useful if initiated
for a longer time duration to compensate for the extra energy consumed in saving and loading the
processor’s context. There are some deeper sleep states that not only cut the power supply from
the logic but also reduce the voltage of the supply as well to further decrease the leakage current.

As an example, consider Freescale PowerQUICC III Integrated Communications Processor
MPC8536 [Sem] which has four sleep states named as doze, nap, sleep and deep sleep. In the
doze mode, the instruction execution on the core is suspended but the snooping on the level-1
data-cache is still supported and its coherency is maintained. The nap mode turns-off all the clocks
internal to the core except its timer facilities clock and the level-1 cache is also flushed. In the sleep
mode all the internal clocks to the core including the clock to the timer are turned off. The clock
that allows to turn-on the core itself is kept active. The deep sleep mode is more aggressive in
power saving. It turns off the core, level-1 cache and level-2 cache by removing the power supply.
The low-power sleep states of a system are usually managed by operating system calls. Most of
the power saving algorithms in a non-RT setting are time based. A system transitions into a sleep
state after a certain inactivity period. However, such techniques cannot be used in RT context as it

might risk the temporal constraint due to the transition overhead associated to each sleep state.

1.3.2 Voltage and Frequency Scaling

It is evident from Equation 1.1 that the dynamic power dissipation has a quadratic relation with
the supply voltage. The reduction in a supply voltage can help to save a considerable portion of
the dynamic power dissipation. The frequency of a system is directly proportional to its supply
voltage. Hence, a decrease in a supply voltage also allows to reduce the frequency of a system
as well. Combining these two factors, the dynamic power dissipation has a cubic relation with
frequency and voltage together. Though a voltage and frequency scaling can reduce the overall

dynamic power dissipation but as a side effect, the performance of a system is also effected with
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their scaling. The degradation in the performance increases the execution time of an application.
Therefore, a trade-off exists between voltage and frequency scaling, and performance of the sys-
tem. In most of the systems, the voltage and frequency is reduced such that it meets the system’s
temporal constraints. There exists a lower bound on the voltage and frequency scaling, where the
energy saving in the dynamic power dissipation is smaller than the energy consumed by the static
power dissipation due to an increase in the execution time. One method to recover the degradation
in the performance at scaled voltages is to scale down the threshold voltage of a transistor (the
minimum voltage applied on the gate of a transistor that turns it on) [PSSG10]. However, this
approach increases the leakage-power dissipation and decreases noise margins.

Embedded systems exploiting frequency and voltage scaling are mostly designed with pre-
defined voltage and frequency levels. System designers have the choice to select statically the
voltage and frequency level for the given application based on a design time analysis or switch
among different voltage and frequency levels at run time. The former approach is called the static
voltage and frequency scaling and it is effective against an application having less dynamic be-
haviour at run time. The later is know as the dynamic voltage and frequency scaling (DVFS) and
is suitable for more dynamic applications. The overhead of the switching among different voltage
and frequency levels also plays an important role in the selection of a scaling strategy. While,
DVES saves more energy when compared to a static frequency and voltage allocation, it has an
extra overhead of dealing with execution and energy models online. A hardware may have the
ability to apply the voltage and frequency scaling on its some parts. The approach of having mul-
tiple voltage islands is very common in multicore platforms. In such a multicore platform, a group
of cores have the flexibility to scale their voltage and frequency level (either statically or dynami-
cally at run time). An independent supply voltage is required for each power domain that adds an
additional challenge in the design of such platforms. The advantages of the voltage and frequency
scaling is twofold, it reduces the dynamic power dissipation and also decreases the temperature of

a system. The latter has an exponential impact on the leakage-power dissipation.

This work mainly focuses on the dynamic power management and also considers

partially static voltage and frequency scaling.

1.4 Current Trends in Embedded Systems and their Impact on En-

ergy Consumption

1.4.1 Non-negligible leakage-power Dissipation

CMOS technology is widely used in current hardware platforms and replaced the previous IC
technologies because of its low power dissipation. In the beginning of this technology, the ma-
jor source of power dissipation was switching activity and the leakage current was negligible.
Therefore, DVFS was the major focus of research and the static power dissipation received little

attention. CMOS technology miniaturisation following Moore’s law reduced the transistor size
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on every new technology generation. The scaling of CMOS transistors not just allowed to re-
duce the transistor size but also other parameters such as the power supply of a transistor [Hul0].
Each technology node reduces the capacitance due to the smaller size of a transistor and shorter
interconnects. The reduction of capacitance and power supply are an effective means to reduce
the dynamic power dissipation. However, on the other end, technology scaling has increased the
leakage power proportion substantially. The increase is exponential as the process moves to finer
technologies [ITR11]. In the early age of CMOS technology, CMOS circuits were operated at
a high supply voltage when compared to the threshold voltage of the transistor. As mentioned
previously, the reduction in the supply voltage of a circuit reduces the dynamic power dissipation
but at the same time degrades the performance. The degradation in performance enhances as the
supply voltage reaches closer to the threshold voltage of the transistor. The effect of degradation
on the performance with voltage scaling can be compensated by reducing the threshold voltage of
a transistor [Che04]. Unfortunately, a reduction in the threshold voltage exponentially increases
the subthreshold leakage current [WRDOO] as a transistor cannot be properly switched off at a
low threshold voltage. Leakage-power dissipation and its variability has been identified as a major
concern in the International Technology RoadMap For Semiconductors 2010 Update under special
topics [ITR10]. A need to reduce the leakage current motivated hardware vendors to put in extra
effort to equip modern embedded processors with several sleep states allowing a trade-off between
the transition overhead and power dissipation in a sleep state. Moreover, the transition overhead

of these sleep states is also reduced by several orders of magnitude.

1.4.2 Increased Number of I/O Devices

RT systems interact with their environment through the use of I/O devices. The technology minia-
turisation has allowed to integrate additional functionality on a single chip. The currently ob-
served trend in the increased number of on chip I/O devices can be attributed to the integration
of previously isolated functionalities on to a single chip. Consider for an example a smart phone
which includes several I/O devices such as global positioning system (GPS), gyroscope, cameras,
high definition displays, high definition multimedia interface (HDMI), universal serial bus (USB),
router etc. Energy consumption of CPUs has decreased considerably in modern embedded sys-
tems, while on the other hand, I/O devices are more power hungry relative to CPUs and consume
a large portion of the system’s energy [CH10]. Therefore, energy consumption of I/O devices are
of particular concern in mobile systems and provide opportunities to reduce the overall energy
consumption of a system. Nowadays, I/O devices are often equipped with power saving states to
minimise their energy consumption. Similar to CPUs, energy saving is achieved by turning-off
certain parts of the device. For example, a hard-disk in an idle mode can be spun-down to reduce
its energy consumption. A device can only operate in an active mode, and its transition into and
out of a low-power sleep state incurs both time and energy overheads. For instance, a hard-disk
can only read/write in an active mode and it requires extra energy/time to spin-up from its power

saving state.
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1.4.3 Rising Thermal Issues

The increase in the power density of modern processors is another trend which demands efficient
thermal management solutions to keep the temperature within given limits avoiding physical dam-
age and also to increase the reliability of a chip. As mentioned previously, the leakage-power
dissipation also increases exponentially with an increase in the temperature of a chip. Thermal
management can be done at design time through sophisticated packaging and heat dissipation
techniques, and at run time through dynamic thermal management (DTM). The techniques ap-
plied at design time through packaging and active heat dissipation are very expensive [TSR*98].
It has been predicted in the International Technology Roadmap for Semiconductor (ITRS2005)
that the packaging solutions will become challenging in the near future due to an increase in the
peak power dissipation and the high power density in an emerging system-in-package solutions.
This trend motivates to explore DTM techniques for the wide variety of systems. The energy

minimisation under thermal power constraint adds extra challenges to resolve.

1.4.4 Towards Multicore

Another observation is that Moore’s law is no longer sustained by increasing clock frequencies, but
rather by an addition of extra cores in multiprocessors. This is driven for example, by the perfor-
mance per watt ratio, as higher clock ratios demand also higher supply voltages. Multicores have
several tightly coupled processing cores to enhance the performance and the computation capac-
ity by allowing parallel processing. The increase of computing capability of the processors takes
place at a dramatic pace and is leading to a change towards multi-functional and multi-criticality
embedded system. Besides symmetric multicore processors, homogeneous and heterogeneous
multicores gain in popularity. The move beyond symmetric multicores is driven by the aim to use

cores geared to perform specific tasks well and cheap.

1.4.5 Mixed Criticality

The increase in computing power also leads to a progressive integration of functionality into a sin-
gle device. For example, a current mobile phone combines applications of soft real-time character
(e.g., base station communication) with such of best-effort character (e.g., SMS). Additionally
the different system components and software modules are potentially provided by different third
party suppliers. Consequently such mixed criticality systems require temporal and functional iso-
lation not only to protect critical applications from less critical ones, but also as a means to identify

the offending application in the case of a misbehaving system and avoiding fault propagation.

1.5 Thesis Statement

Energy consumption of RT systems can be efficiently reduced with low online complexity using a
system-level power-saving feature called sleep states. This applies to a large variety of modern

hardware platforms while allowing temporal isolation between RT and BE type applications.
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1.6 Focus of this Dissertation

The objective of this dissertation is to explore power saving strategies at system-level that mainly
target the leakage-power dissipation in modern embedded systems while satisfying temporal con-
straints of RT applications. Modern embedded systems use various processor types (single core,
homogeneous multicore, heterogeneous multicore etc) and have besides many components (I/O
devices, memories etc) contributing to the power dissipation. The leakage-power dissipation of
modern hardware platforms is increasing with the technology miniaturisation as discussed in Sec-
tion 1.4.1 and has become one of the major challenges in CMOS technology scaling. In the context
of battery powered mobile devices — where battery life is of utmost importance — it has become
very challenging to continue to prolong the battery life with the current trend of increasing the
leakage current. To overcome this issues, many efforts have been undertaken, spanning from the

physical design of a transistor to operating system level optimisations.
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Figure 1.4: Highlighting the focus of this dissertation

This dissertation proposes system-level power saving strategies to prolong the battery life of
embedded systems. In particular it considers the power dissipation of processors, I/O devices and
also analyses the effect of temperature on the power dissipation. The proposed power saving ap-
proaches consider hardware platforms ranging from unicore to multicore architectures. Figure 1.4
highlights the different blocks of this domain considered in this work. From an RT perspective,
this thesis considers an independent sporadic task-model scheduled with a variety of scheduling al-
gorithms on different hardware platforms. Though there exist some approaches on leakage-aware
power saving mechanisms in the literature, most consider simplistic assumptions that limit their
practical relevance. One of the objectives of this dissertation is to relax the simplistic assumptions
made in the state-of-the-art, and bridge the gap between theoretical research carried out in the

domain of energy management and practice.
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1.7 Thesis Organisation

This thesis is organised into eight chapters. After introduction, the related work and the model
of computation are presented in Chapter 2 and Chapter 3 respectively. The power saving ap-
proaches for unicore platform, I/O devices, homogeneous platform and heterogeneous platform
are discussed in Chapter 4, Chapter 5, Chapter 6 and Chapter 7 respectively. Chapter 8 concludes
the work performed in this thesis and enlists future directions. The contents of these chapters are

briefly outlined below.

o Chapter 2: The state-of-the-art presented in Chapter 2, elaborates on the shortcoming of the
existing approaches. The literature survey is categorised into two main sections, i) unicore
power management and ii) multicore power management. The former section addresses
power management on a single processor platform, I/O device power management, ther-
mally constrained energy management techniques, while the latter discusses homogeneous

and heterogeneous multicore power management techniques.

e Chapter 3: The model of computation in this chapter is divided into two sections. The
first section addresses the system model and the common terminologies used throughout
the thesis. In particular, it considers the application model, temporal isolation, hardware
model, slack sources and slack reclamation algorithms used in power saving algorithms.
The latter section summarises the simulation framework used to evaluate different proposed

techniques in later chapters.

o Chapter 4: This chapter discusses the optimality of the procrastination interval and pro-
poses the optimal leakage-aware procrastination algorithm. The limitation of the external
hardware of the existing leakage-aware procrastination algorithm is relaxed through pro-
posed race-to-halt (RTH) algorithms. Afterwards, the effect of power saving algorithm on
the number of pre-emptions is presented. Finally, it is shown that the thermally constrained
dynamic power management is equivalent to the DVES problem. It means, DVES algo-
rithms can be easily transformed to solve the thermally constrained dynamic power man-

agement problem.

o Chapter 5: In the new paradigm of intra-task device scheduling introduced in this chapter,
a device is requested on demand without violating the timing guarantees rather than keeping
it on through-out the execution time of a task. The proposed intra-task device scheduling is
initially presented for devices with a single sleep state. Different techniques to collate the
slack are also proposed to enhance the efficiency of the proposed algorithm. Later on, the
assumption of a single sleep state per device is relaxed and three heuristics are proposed

providing trade-off between energy efficiency and algorithm complexity.

o Chapter 6: The leakage-aware power saving algorithm is presented for the global schedul-
ing algorithms on homogeneous multicore platforms. This is the first effort to reduce the
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static power dissipation in the context of global scheduling algorithms. The proposed algo-
rithm exploits the spare capacity of the schedule and can donate it among cores to prolong

sleep states of the cores already in sleep mode.

Chapter 7: Task-to-core mapping in partitioned scheduling is a NP-hard problem on a
heterogeneous multicore platform. This chapter presents different heuristics to perform
task-to-core mapping such that it reduces the dynamic and the static power dissipation. The
proposed algorithm is divided into two phases. The first phase reduces the dynamic power
dissipation, while the second phase trades the increased dynamic power dissipation with
the reduced leakage-power dissipation in sleep states. Initially, algorithms are presented
for hardware platforms without DVFS capabilities. Finally, this assumption is relaxed and

DVFEFS enabled hardware platforms are integrated into the proposed heuristics.

Chapter 8: Finally, the work presented in this dissertation is concluded, the results are
summarised, author’s perspective is highlighted and future directions are identified to extend

the presented work to more general models.

1.8 Published Research in the Context of this Dissertation

This section presents the research papers generated as result of the research performed in the

context of this dissertation. A brief description of each paper is presented here for the quick

reference.

1.8.1 Conference Publications

1. M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware energy man-

agement approach for dynamic priority systems”, in Proceedings of the 23’¢ Euromicro
Conference on Real-Time Systems (ECRTS), pp. 92-101, July 2011.

Abstract: This paper presented a race-to-halt algorithm (an alternative to leakage-aware
procrastination scheduling) to reduce the total power dissipation of a unicore platform. It
relaxes the need of an external hardware required in procrastination scheduling and has low

complexity when compared to the state-of-the-art approaches.

. M. A. Awan and S. M. Petters, “Online intra-task device scheduling for hard real-time sys-

tems”, in Proceedings of the 7" International Symposium on Industrial Embedded Systems
(SIES), pp. 48-56, June 2012.

Abstract: In this paper, a new paradigm of intra-task device scheduling is explored, in
which a device is requested on demand. The spare capacity of the schedule is exploited to
prolong the sleep state of a device and compensate for its transitional delays. Simulation
results show a considerable energy saving especially in a system where a device is used for

a very short period of time.
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3. M. A. Awan and S. M. Petters, “Energy-aware partitioning of tasks onto a heterogeneous
multi-core platform”, in Proceedings of the 19" IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 205-214, April 2013.

Abstract: Task-to-core mapping on a heterogeneous multicore platform is a NP-hard prob-
lem. This paper presents different allocation heuristics to reduce the dynamic and the static
power dissipation. This algorithm divides the allocation process into two phases. In the first
phase, allocation is performed such that it reduces the dynamic power dissipation of a sys-
tem. The second phase corrects the allocations performed in the first phase to use efficient

sleep in each core, which in turn helps to reduce the static power dissipation of a system.

4. M. A. Awan and S. M. Petters, “On the Equivalence of Idealised DVFS and Thermally
Constrained DPM in Real-Time Systems”, in Proceedings of the 19" IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pp. 346-351, August 2013.

Abstract: In this paper, it is argued that from RT systems perspective, thermally constrained
dynamic power management approaches behave very similar to idealised DVFS. Hence,
existing DVFS solutions proposed for RT systems in the literature for periodic and sporadic
task models can be applied to thermally constrained dynamic power management systems
with moderate effort. This work presents the similarities along with the distinctive elements

between two approaches and demonstrate the equivalence with the help of a case study.

5. M. A. Awan, P. M. Yomsi and S. M. Petters, “Optimal procrastination interval for con-

strained deadline sporadic tasks upon uniprocessors”, in Proceedings of the 21* International

Conference on Real-Time Networks and Systems (RTNS), pp. 129-138, October 2013.

Abstract: To deal with the leakage current, several procrastination approaches have been
proposed in the past in order to reduce the energy consumption. These approaches ap-
proximate the procrastination interval for the ease of analysis and sub-optimally utilise the
potential to reduce the energy consumption. This paper presents an optimal method to de-
termine the procrastination interval of each task and generalise the task-model to cover the
constrained deadline tasks. Analytical and experimental results show the superiority of the

proposed technique.

6. B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for power aware and
real-time systems”, in Proceedings of the 8" IEEE International Conference on Embedded
Software and Systems (TrustCom), pp. 999-1004, November 2011.

Abstract: Over the years, we are witnessing an ever increasing demand for functional-
ity enhancements in RT systems. Along with the functionalities, the design itself grows
more complex. Posed constraints, such as energy consumption, time, and space bounds,
also require attention and proper handling. Additionally, efficient scheduling algorithms, as
proven through analyses and simulations, often impose requirements that have significant

run-time cost, specially in the context of multi-core systems. In order to further investigate
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the behaviour of such systems to quantify and compare these overheads involved, SPARTS,
a simulator of a generic RT system, has been developed. While the current implementation
is primarily focused on our immediate needs in the area of power-aware scheduling, it is
designed to be extensible to accommodate different task properties, scheduling algorithms
and/or hardware models for the application in wide variety of simulations. The source code
of SPARTS is available for download at [NAP11a].

. D. Dasari, B. Akesson, V. Nelis, M. A. Awan and S. M. Petters, “Identifying the sources

of unpredictability in COTS-based multicore systems”, in Proceedings of the 19" IEEE

International Symposium on Industrial Embedded Systems (SIES), pp. 19-21, June 2013.

Abstract: The underlying architecture of commercially available multicores is extremely
complex and non-amenable to straight-forward timing analysis. In this paper, the architec-
tural features are highlighted that lead to the temporal unpredictability, which mainly involve
shared hardware resources, such as buses, caches, and memories. This paper discusses the
existing work in timing analysis with respect to these features, identify their limitations, and
present some un-addressed issues that must be dealt with to ensure safe deployment of RT

systems.

1.8.2 Journals

1. M. A. Awan and S. M. Petters, “Intra-task device scheduling for real-time embedded sys-

tems”, (under submission) in Journal of Systems Architecture, 2013.

Abstract: This is an extension of a paper published in SIES 2011 titled “Online Intra-Task
Device Scheduling for Hard Real-Time Systems”. An Intra-Task Device Scheduling algo-
rithm in original paper is complemented by an online device budget reclamation algorithm
which recovers unused time allocations of devices in a system. Furthermore, an energy den-
sity function is developed to analyse the effect of the different sleep states of a device on the
overall device energy consumption of a system. Using this energy density function, a single
sleep state assumption is relaxed and three different algorithms for a generic power model,
in which each device assumes more than one sleep states are proposed. The proposed algo-
rithms are scalable with increasing I/O devices and have less complexity when compare to

the state-of-the-art algorithms.

. M. A. Awan and S. M. Petters, “Real-time race-to-halt energy saving strategies and their im-

pact on the number of pre-emptions”, (under submission) in Journal of Systems Architect-
ure, 2014.

Abstract: This work is an extended version of a paper published in ECRTS 2011 titled
“Enhanced race-to-halt: A leakage-aware energy management approach for dynamic pri-
ority systems”. It decreases the pessimism of the enhanced race-to-halt algorithm (ERTH)

with an improved race-to-halt algorithm (IRTH) at the cost of extra complexity to predict
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the future release information. Furthermore, a complexity-wise light-weight race-to-halt al-
gorithm (LWRTH) is also proposed. The relation of sleep states with the pre-emption count
is also studied that shows on average sleep states have positive impact on the number of

pre-emptions.

3. M. A. Awan, G. Nelisson, P. M. Yomsi and S. M. Petters, “Energy-aware Task Mapping onto
Heterogeneous Platforms Using DVFES and Sleep States”, (under submission) in Journal of
Real-Time Systems, 2014.

Abstract: One of the challenges in heterogeneous multicore platforms is to optimise the
energy consumption in the presence of temporal constraints. This paper addresses the prob-
lem of task-to-core allocation onto a heterogeneous multicore platform such that the overall
energy consumption of a system is minimised. This article is an extension of the paper
published in RTAS 2013 titled “Energy-aware partitioning of tasks onto a heterogeneous
multi-core platform”. The extension includes a task-to-mapping algorithms for DVFS en-
abled heterogeneous multicore platforms. Similar to the original publication, the approach
for this general platform is also divided into two phases. In the first phase, tasks are allo-
cated such that the dynamic energy dissipation is reduced. The second phase refines the
allocation performed in the first phase to improve on the possible sleep states by trading off
the dynamic power dissipation with reduction in the leakage-power dissipation. This hybrid
approach considers core frequency set-points, tasks energy consumption and sleep states
of the cores when performing allocation to reduce the energy consumption. Major value
has been placed on a realistic power model which increases the practical relevance of the

proposed approach.

4. M. A. Awan, G. Nelisson, P. M. Yomsi and S. M. Petters, “Online Slack Consolidation in
global-EDF for Energy Consumption Minimisation”, (available as a technical report and
under submission) in Journal of Systems Architecture, 2014.

Abstract: With the current body of knowledge, an efficient selection of sleep states is a non-trivial
problem for system designers assuming a global scheduling algorithm. In this work, a leakage-
aware energy management algorithm is proposed for homogeneous multicore platforms using a
global-EDF scheduler. Global-EDF is one of the most prominent scheduling policy upon homo-
geneous multicore platforms. The proposed algorithm: (i) exploits the spare capacity available in
the schedule on each core to either initiate a sleep state on this core or prolong the sleep state of

the cores already in a sleep state; and (ii) has a low complexity, thus making it practically feasible.

1.8.3 Workshops, Posters and Work-in-Progress

1. S. M. Petters and M. A. Awan, “Slow down or race to halt: Towards managing complexity
of real-time energy management decisions”, in Proceedings of the 12" Brazilian Workshop
on Real-Time and Embedded Systems, (Gramado/RS, Brazil), May 2010. Work-in-Progress

Session.
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2. M. A. Awan and S. M. Petters, “The roman conquered by delay: Reducing the number
of pre-emptions using sleep states”, in Proceedings of the Work-in-Progress session of the
17"* IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
(Chicago, IL, USA), April 2011.

3. M. A. Awan, B. Nikolic, and S. M. Petters, “Comparing the schedulers and power sav-
ing strategies with SPARTS”, in the RTSS@Work, Open Demo Session of Real-Time
Techniques and Technologies, Proceedings of the 32" IEEE Real-Time Systems Symposium
(RTSS), (Vienna, Austria), November 2011.

4. M. A. Awan and S. M. Petters, “Device power management for real-time embedded sys-

tems”, in the Proceedings 1* PhD. Students Conference in Electrical and Computer Enginee-

ring (StudECE), (Porto, Portugal), June 2012.



Chapter 2

State of the art

There exists an extensive amount of work on power management that considers different aspects
of embedded systems. The research effort in this domain ranges from the transistor level de-
sign [VZG*10] to the application level optimisation [LSC05]. The subject of this research is
system level power management approaches in the context of RT embedded systems. The power
management in embedded systems has been exhaustively explored at system level through well
known tools of DVFS and sleep states. The RT community has explored these two major types
of power saving features of the modern embedded systems and developed interesting results. Dy-
namic power dissipation was the main source of energy consumption in traditional hardware plat-
forms. Therefore, DVFS was the major focus of research in the beginning of last decade and a
large amount of work exists in the literature. Chen and Kuo [CK07a] presented a comprehensive
survey of energy management techniques on DVES enabled hardware platforms. In this chapter,
the main focus of the literature review will emphasise on the power saving strategies based on
sleep states to tackle the leakage-power dissipation in the context of RT systems. This chapter
summarises the work consistent with the current industry trends and highlights the unexplored
issues. The state-of-the-art in the power management domain can be categorised into two main

categories of unicore and multicore systems.

2.1 Unicore Power Management

The unicore power management can be further divided into three parts, CPU power management,

1/0 device power management and temperature aware energy minimisation.

2.1.1 CPU Power management

To deal with an increase in leakage-power dissipation, Lee et al. [LRK03] addressed leakage-aware
scheduling for periodic hard real-time systems. They proposed leakage control EDF (LC-EDF)
and Leakage Control Dual Priority (LC-DP) algorithms for dynamic and static priority schemes
respectively. The LC-EDF algorithm is an online algorithm that maximises the idle interval by

delaying the busy period to increase the duration of the sleep state. Such mechanism is commonly
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called procrastination scheduling. They assumed an external specialised hardware such as appli-
cation specific integrated circuit (ASIC) or field programmable gate array (FPGA) to implement
their algorithm. Baptiste [Bap06] did a theoretical study of a non-DVFES system with unit sized RT
aperiodic tasks. He developed a polynomial time algorithm to minimise the energy consumption

of static power and the sleep transition overhead of the system.

A combination of leakage-aware and dynamic voltage scheduling appears to be a promising
way to reduce overall energy consumption. Irani et al. [ISGO7] proposed a 3-competitive offline
and constant competitive ratio online algorithms for power saving while considering shut-down
in combination with DVFS. The competitive analysis is used to measure the performance of the
proposed algorithm when compared to the clairvoyant optimal offline algorithm. The algorithm is
termed as competitive if its competitive ratio, i.e., ratio between the performance of the algorithm
and the optimal offline algorithm, is bounded by a constant number. It means their 3-competitive
offline algorithm consumes energy within three times the energy consumption of optimal algo-
rithm. Similarly, the energy consumption of their online algorithm is bounded by a constant com-
petitive ratio. Although the combination of shut-down and DVFS has its merits fundamentally,
their approach requires further work to relax the assumptions in terms of the used DVFS power
model. Besides requiring external hardware to implement their shut-down algorithm, they assume
a continuous spectrum of available frequencies and an inverse linear relation of frequency with
execution time. Niu and Quan’s [NQO4] scheduling technique also addressed the dynamic and
leakage-power dissipation simultaneously on a DVFS enabled processor for hard-real time sys-
tems. They integrated DVFS and shut-down to minimise the overall energy consumption based on
the latest arrival time of jobs, which is estimated by expanding the schedule to the hyper-period
(least common multiple of the tasks minimum inter-arrival time). However, this algorithm cannot
be used online due to the extensive analysis overhead. Previously, Jejurikar et al. [JPGO4] inte-
grated DVFS with the procrastination algorithm, to minimised the total power dissipation. The
presented critical speed (a lower bound on frequency scaling and its formal definition is presented
in Definition 11) determines the lower bound on the processor frequency to minimise the energy
consumption per cycle. Moreover, they showed the procrastination interval determined by their
algorithm is always greater than or equal to the procrastination interval estimated by LC-EDF.
Nevertheless, they did not relax on the requirement of additional hardware to support their shut-

down approach.

Soon after, Jejurikar et al. [JG04] showed that procrastination under LC-DP originally pro-
posed by Lee et al. [LRKO3] may cause some of the tasks to miss their deadlines. They pro-
posed improvements in the original algorithm and also integrated their DVFS approach. How-
ever, they adopted the same assumptions of the previous work [LRKO03, JPG04]. Later on, Chen
and Kuo [CKO06] showed that the procrastination approach proposed by Jejurikar et al. [JG04]
still might lead to some tasks missing their deadlines. They proposed a two phase algorithm
that estimates the execution speed and procrastination interval offline, and predicts turn off/on
instances online but also rely on extra hardware. Further work of Jejurikar and Gupta [JG05] re-

claims the execution slack generated due to the difference between WCET and actual execution
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time (see Definition 13). They used procrastination scheduling and DVFES to minimise the overall
energy consumption, and called their approach slack reclamation algorithm (SRA). The dynam-
ically reclaimed slack is either used entirely for slowdown or distributed between slowdown and
procrastination using slack distribution policy. This algorithm follows the same assumptions made
by previous works [LRKO3, JPG04, JGO4].

Chen and Kuo [CKO07b] developed a novel algorithm distinct to greedy procrastination algo-
rithms [LRKO3, ISG07, NQO4, JGOS5, JG04, CK06, JPG04] for procrastination interval determina-
tion. They showed that their algorithm can decrease the energy consumption by executing jobs at
lower speeds than the previously mentioned critical speed, when the processor is decided not to be
turned off in the procrastination interval. Chen and Thiele [CT08b] proposed leakage-aware DVFS
scheduling, where tasks execute initially with decelerating frequencies to accumulate the slack
(unused time) to initiate a sleep state. Towards the end the tasks execute with accelerating frequen-
cies to reduce the dynamic power dissipation. However, the work of Chen et al. [CK07b, CTO8b]
still relies on continuous spectrum of available frequencies and external hardware. Considering
previous history of events, predicting the future events using RT calculus [TCNOO] and doing the
scheduling analysis with RT interfaces [TWS06], Huang et al. [HSC"09, HSC*11] estimated the
procrastination interval of a device to activate the shut-down.

Santinelli et al. [SMP*10] proposed energy-aware packet and task co-scheduling algorithm
EAS for the distributed RT embedded system consisting of a set of wireless nodes. EAS generates
the schedule till the next idle time in the schedule, and determines the frequency of the processor
and the sleep interval such that the total energy consumption is minimised while efficiently util-
ising the reserved communication bandwidth. The online complexity of this algorithm is high as
system has to compute the demand bound function [RGRO8] online to determine the frequency
and the switch off time. Wang et al. [WLL ™ 11] determined the static schedule for the given set of
dependent periodic tasks for homogeneous multiprocessors. In the first step they relax the depen-
dencies of the tasks using coarse-grained task parallelisation algorithm RDAG. The second phase
determines the static schedule using a genetic algorithm (gene evolution) to minimise the energy
consumption assigning frequencies to the tasks and enforcing sleep intervals in the schedule. How-
ever, the work of Santinelli et al. [SMP"10] and Wang et al. [WLL"11] is proposed for different
system models and hardware platforms compared to the one discussed in this dissertation.

One of the assumptions commonly made throughout the state-of-the-art is a requirement of
the external specialised hardware to implement procrastination scheduling. A part of Chapter 4
addresses this issue and propose algorithms to optimise energy minimisation while relaxing these

assumptions with a more general power model.

2.1.2 1/O Device Power Management

The demand for extra functionality has increased the number of I/O devices on modern platforms.
These 1/O devices consume a considerable amount of energy and provide a large potential to
reduce the energy consumption of the platform. Hence, it has become an active research area in

the embedded computing domain. Initially the device power management was extensively studied
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in a non-RT setting. These techniques can be divided into three main categories, 1) time-out
based, 2) predictive and 3) stochastic. Time-out based algorithms shut-down the devices when
they are idle for the specified threshold. The device wake-up calls are made when it is requested
again. Predictive techniques adapt themselves with the varying system’s workload. Stochastic
methods model the requests behaviour with different probabilistic distributions. The device shut-
down times are estimated by solving the stochastic models such as Markov chains. For a detailed
survey of device power management algorithms in a best-effort environment (non-RT systems),
the reader is directed to the work of Benini et al. [BBDMOO].

Swaminathan et al. [SCIO1] explored the device scheduling in the context of RT systems. They
proposed an offline method for dynamic I/O power management with hard RT constraints. Their
low energy device scheduler (LEDES) is based on look-ahead information about the tasks future
arrival-pattern to decide on the shut-down of devices. Later on, multi-state constrained low-energy
scheduler (MUSCLEYS), an extension of LEDES for the multiple sleep state devices was proposed
by Swaminathan and Chakrabarty [SC03]. MUSCLES generates the sequence of power states for
every device given the precomputed task schedule with a per task device usage list. The LEDES
and MUSCLES algorithms assume fixed offset strictly periodic tasks releases, which limits its
applicability/extension to a sporadic task model and/or to a task model that allows variable task’s
execution time. The algorithms proposed in this thesis relax these assumptions.

The same authors also developed energy optimal device scheduler (EDS) [SC05]. EDS com-
putes a schedule tree for all possible scheduled combination, and prune it based on the temporal
and energy constraints. Due to high spatial requirement and temporal complexity of EDS, they
provide a heuristic which clusters the requests of the same device to prolong the idle intervals. It
is based on the work of Lu et al. [LBDMOO] that was initially proposed for best-effort systems.
Both heuristic and EDS are based on an inter-task scheduling mechanism. A device scheduling
algorithm is called inter-task scheduling mechanism, if all the devices used by a task are kept
active throughout its active time (i.e., between task’s arrival and completion time). They are com-
putationally expensive and are of limited utility for sporadic task models as they assume a-priori

information of a task’s release pattern.

A procrastination based I/O device scheduling algorithm is proposed by Cheng and God-
dard [CGO6]. The basic idea is to prolong the device’s sleep interval by procrastination of the
task’s execution that requires this device. This method assumes inter-task device scheduling and
has high online overhead. However, it can be applied to a sporadic task model with tasks hav-
ing varying execution times. Later on, Devadas and Aydin [DAOS8b] proposed a device power
management algorithm for static priority systems through device forbidden regions. The device
forbidden regions enforces idle intervals in the schedule to prolong the sleep interval of devices.
To preserve the schedulability, the bounds on the explicit idle intervals are computed using time
bound analysis [LSD89]. Their algorithm is also based on inter-task device scheduling.

Chu et al. [CHT09] proposed a composite low-power scheduling framework called COL-
ORS, which is a Dynamic Voltage Scaling (DVS) assisted I/O device scheduling algorithm for

periodic hard RT systems. They assume devices access intervals and their usage times are known
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a-priori. The execution of the task is divided into computation and peripheral intervals. It uses
both static and dynamic slack to extend the computation interval of a task by running it at low fre-
quency to prolong the device shut-down time. A simplistic power-model and a-priori device usage
information restrict is applicability to the majority of systems, where such information cannot be
predicted a-priori. A similar slot-base algorithm was proposed by Kim and Ha [KHO1]. The exe-
cution time of the task is split into CPU execution and peripheral usage time-slots. The frequency
of CPU and the device shut-down period is adjusted such that the overall energy consumption is
reduced. They assumed transition overhead of the device’s sleep state is negligible. A genetic
algorithm customised for the device power management is proposed by Tian and Arslan [TAO3]
for periodic RT systems. This algorithm assumes jobs execute for their WCET and try to find the

near-optimal solution with the provided set of jobs and devices.

The low-power quasi-dynamic scheduling (LQS) proposed by Hsiung and Kao [HKO05] deter-
mines the feasible schedule to reduce the device power dissipation. The system is modelled with
power-aware real-time petri-nets (PARTPN). LQS uses the reachability tree constructed statically
from the given PARTPNs models and finds the schedule that has the minimum total power dissi-
pation. Their system model also assumes tasks execute for their WCET and other device usage

information is known a-priori.

Isolation of device power management from CPU power management gives system-wise sub-
optimal solutions. Cheng and Goddard [CGO5] integrated device scheduling, and DVFES. Their
approach predicts the device usage times based on future release patterns and accordingly sets
timers to initiate the wake-up procedure of the respective device. DVES runs the tasks at low fre-
quency to reduce the dynamic power dissipation. Consequently, it increases the execution time of
tasks and also prolongs the active time of the devices. The approach aimed to select the proces-
sor’s frequency that reduces the overall energy consumption. The proposed solution is based on
an inter-task device scheduling and unnecessary prolongs the device’s active time. The system-
level power management algorithm developed by Devadas and Aydin [DAO8a] for the frame-based
systems (same period tasks) similarly addresses the interplay of DVFS and the device power man-
agement. Their work finds the optimal frequency set-point for the processor that minimises the
energy consumption. While their approach is promising in principle, the restriction of frame-based

(same period) tasks requires further work relaxing these assumptions.

Augustine et al. [AISO8] addressed the problem of selecting a sleep state of a device in a non-
RT setting and, proposed offline and online power down strategies. Their proposed approaches
for a single device have competitive ratio arbitrarily close to optimal. Huang et al. [HSC"11]
proposed a device power management algorithm for hard RT system. The arrival curves used in
their approach can model periodic, periodic with jitter (jitter is a delay in the release time of a
task) and sporadic task models (event streams). However, such an approach cannot be extended
to multiple devices in the system. Later on, Lampka et al. [LHC11] reduced the complexity of
their algorithm through dynamic counters. Neukirchner et al. [NMA™*12] addressed the arbitrary
activation patters in RT systems that can also be used with the work of Huang et al. [HSC'11]
to reduce the leakage energy consumption of the devices. While some work in device power
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management in RT systems has been performed in a DVFES setting, this dissertation focuses on a
sleep states and explores the different paradigm of intra-task device scheduling that addresses the

shortcoming of the existing work by relaxing some of their assumptions.

2.1.3 Temperature-Aware Energy Minimisation

The state-of-the-art has mostly focused on the objective to reduce the peak temperature under
performance constraints [BKP0O7, CHK07, CQ11, CHQ10, CWT09]. For instance, to reduce the
peak temperature under performance constraint, Bansal et al. [BKPO7] proposed speed scaling
algorithms, Chen et al. [CHKO7] presented approximation algorithm, while Chaturvedi and Quan
[CQ11] used leakage conscious DVS scheduling. Chaturvedi et al. [CHQ10] developed a leakage-
aware scheduling algorithm called m-oscillating for frame-based periodic hard RT systems to
minimise the peak temperature. Given a 2-speed schedule, their m-oscillating algorithm divides
the high speed interval and low speed interval into m sections, and run these sections alternatively.
The maximum temperature decreases with an increase in m.

To explore temporal aspects and schedulability, Wang and Bettati [WBOS8] performed a delay
analysis of the proposed reactive speed scheduling algorithm for the thermally-constrained RT
system with identical-periodic tasks. The algorithm performs execution at maximum speed at low
temperature and scales to the lower speed when it crosses some threshold to respect the temper-
ature constraint. Later on, this work was extended for a more generic RT task model with FIFO
and static-priority scheduling [WAB10]. Their thermal model does not consider the temperature-
aware leakage current and does not perform energy minimisation. Quan and Chaturvedi [QC10]
have done the feasibility analysis of the leakage-aware thermally-constrained periodic RT system.
Chen et al. [CWT09] proposed two proactive speed scheduling algorithms under a thermal con-
straint for frame-based RT systems. In the first approach, the speed of the processor is estimated
with an objective to minimise the response time of tasks (a time between its release and comple-
tion) under a given peak temperature constraint, while in the second approach, a speed schedule is
determined to minimise the temperature at the beginning of the period under a given thermal and
time constraints.

Another area of RT research in this domain is the energy minimisation under thermal con-
straint. For example, Wang et al. [WCSTO09] proposed a thermally constrained, energy efficient
optimal proactive speed scheduling algorithm for frame-based RT tasks. They adopted an opti-
mal control framework and executed tasks at higher speed in the beginning of the period and then
gradually slow down the speed without violating the thermal constraint. Huang and Quan [HQ11]
extended the m-oscillating algorithm [CHQ10] to reduce the energy consumption of the frame-
based RT system. They derived the energy function in the form of m and obtained its optimal
value with an exhaustive search under the given temperature constraint.

Recently, it has been shown that leakage-power dissipation is temperature dependent and in-
creases rapidly with a rise in temperature [LHLO5]. Yuan et al. [YLQO6] proposed the online
temperature-aware leakage minimisation technique TALK for frame-based RT systems. The basic
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idea is to execute workload when the processor is cool and postpone the workload at high temper-
ature. A pattern based approach [YCTKI10] reduces the energy consumption of the frame-based
RT systems with a temperature dependent leakage-power dissipation. This approach divides the
given frame (time horizon) into several equally-sized time-segments. The execution of the task is
performed in the beginning of each time-segment and then the processor is cooled by using a low
power sleep state. The required execution of the system and the idle time is equally divided among
the time-segments. They developed a procedure to determine the optimal pattern that minimises
the energy consumption.

The state-of-the-art corresponding to temperature aware energy minimisation though addresses
the various aspects of RT systems under thermal constraints but make one or more of these assump-
tions: i) frame-based RT system, ii) leakage-power dissipation is independent of temperature,
iii) do not consider energy consumption. The objective is to proposed leakage-aware thermally
constrained energy minimisation approach for sporadic RT task model based on thermally con-
strained dynamic power management (TCDPM). This dissertation presents a detailed study on the
equivalence of idealised DVFS with TCDPM. It shows that conventional idealised DVFS algo-
rithms can be applied with minimal modifications to TCDPM to reduce the energy consumption

of the system while relaxing the assumptions made in the literature.

2.2 Multicore Power Management

The multicores hardware platforms can be divided into two type, homogeneous and heteroge-
neous platforms. These two types of hardware platforms have been widely explored in the RT

community. The work performed in these two type of platforms are summarised as follows.

2.2.1 Power Management in Homogeneous Platforms

In the context of homogeneous multicore RT systems, Chen and Kuo [CK07a] provided a com-
prehensive state-of-the-art survey regarding energy minimisation. Most of the achievements have
been done in the context of partitioned schedulers, including DVFS and non-DVFS solutions. For
instance, Alenawy and Aydin [AA05] compared the energy efficiency of the popular bin-packing
heuristics (first-fit, best-fit, worst-fit and next-fit) for periodic real-time tasks assuming the rate-
monotonic scheduler on each core. They considered different DVES approaches and spotted that
worst-fit is the winner in offline partitioning. Aydin and Yang [AY03] showed that worst-fit de-
creasing is a better choice in terms of energy consumption, but assuming EDF scheduler on each
core. Kandhalu et al. [KKL.R11] related the task period relationship in the allocation heuristics and
proposed an energy efficient partitioned fixed-priority scheduling algorithm for the DVFS enabled
chip multicores. Their work assumes a single voltage and clock frequency domain.

Chen et al. [CKYKO7] studied energy-efficient task scheduling with task rejection on a plat-
form with DVFS capability assuming a continuous spectrum of available frequencies. In this case,

each rejected task was associated a penalty. They proposed an algorithm which aims at reducing
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both the rejection penalty and the energy consumption. Chen et al. [CYLKO8] derived approxima-
tion algorithms to partition an independent periodic task-set on a platform with DVFS capability
to reduce the expected energy consumption. They considered a probabilistic distribution on the
execution time requirement on the tasks and assumed that the leakage-power dissipation is a con-
stant factor. Moreover, a number of sound algorithmic techniques have been developed in the
literature to reclaim the unused resources upon multicore platforms. Using these techniques, a
number of important theoretical results on the slack produced by the schedule of a task-set upon a
target platform have been derived. For systems composed of both periodic and aperiodic tasks, a
framework to accommodate the execution of aperiodic tasks in the slack left after the execution of
the periodic tasks is available (see for example [PC08, CC89, Che08]).

Practical aspects (discrete speed, idle power, critical speed and task specific power characteris-
tics) of DVFES for periodic task-model has been discussed by Zeng et al. [ZYTTO09]. Their energy
efficient scheduler assigns tasks with a first-fit strategy starting with the lowest frequency on each
core and then gradually increases it to accommodate all the workload. Fu and Wang [FW11]
proposed an online mechanism to reduce the energy consumption, but only for soft real-time sys-
tems. Their solutions monitors the utilisation of the cores to either consolidate the workload to
shut-down or slow-down the frequency of the core.

Regarding semi-partitioned scheduling, Lu and Guo [LG11] integrated DVFS capabilities to
existing semi-partitioned algorithms. The comparison of the energy saving is performed among
different semi-partitioned algorithms, yet assuming a simplistic task scaling model where fre-

quency and execution have a linear relation.

The class of global schedulers allows tasks to be dynamically assigned to the available pro-
cessing cores at runtime and inherently provides support for load balancing among cores. The
state-of-the-art of energy efficient systems assuming global schedulers is very limited and only
few results exist. Anderson and Baruah [AB0O8] explored the trade-off between the energy con-
sumption of RT tasks and the required number of cores on the multicore platform with an assump-
tion that all the tasks run at the same frequency. Nelis et al. [NGDNOS8] proposed an energy saving
algorithm for the well known global-EDF scheduler, assuming the sporadic constrained-deadline
task-model. The offline core speed is computed while ensuring temporal constraints. The unused
idle slots in the schedule are reclaimed by their online algorithm, called MOTE, to further reduce
the core speed. Later, they proposed another slack reclamation algorithm, called MORA [NGO09],
which also exploits execution slack to reduce the frequency of the core.

Although this entire body of knowledge provides good insights on how to evaluate slack in a
given schedule for the design of energy efficient systems, there appears to be little interest in the
context of global scheduling and static power dissipation optimisation while executing sporadic
tasks. The sporadic task model is a super-set of the classical periodic task model. For such a
model, it is not possible to extend the existing techniques as neither the location nor the duration
of the slack can be determined at system design-time, unfortunately. The major reasons for such
a limited literature on energy-aware global scheduling in homogeneous multicores is inherent to

the difficulty of predicting the impact of a decision taken on one core, to the scheduling on the
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other cores. Since the scheduling decisions are globally taken, reducing the frequency of a specific
core or sending it in a sleep state does not only affect that core but changes the overall platform
schedule.

To the best of our knowledge, non-DVFS based power saving strategies tackling the leakage-
power dissipation do not exist in global-EDF scheduling yet, and the proposed work in this thesis
is the first effort to solve this issue. As a major difference with those previous works, the proposed
framework does not change the frequency of the cores, which only reduces the dynamic power
dissipation of the system, but instead allows us to send some cores to the sleep state, thus reducing

the overall energy — static and dynamic — consumed by the system.

2.2.2 Power Management in Heterogeneous Platforms

The global and semi-partitioned schedulers are difficult to implement on heterogeneous multicore
platforms, as different core types have different instruction set and migration becomes very expen-
sive. Therefore, the focus of research in heterogeneous multicore platform is partitioned schedul-
ing. Similar to the homogeneous multicore power management techniques, the state-of-the-art
for partitioned heterogeneous multicores is limited in the non-DVES setting. Yu and Prasanna
[YPO2] proposed the static allocation of the tasks in a RT system for the heterogeneous processing
units under DVS. They formulated the problem as an Integer Linear Programming (ILP) and pro-
vided a linearisation heuristics. A pseudo polynomial time greedy algorithm [HTCO7] is proposed
by Huang et al. for the frame-based RT task model and heterogeneous systems. Furthermore, a
greedy heuristics is provided to migrate the tasks from the overloaded processor to reduce energy
consumption.

Given a library of heterogeneous processing unit and periodic task-set, Chen and Thiele [CT(09]
studied the selection of processing units to synthesis the energy efficient heterogeneous multicore
platform while respecting the RT constraints. Saha et al. [SLD12] proposed the hybrid worst-fit
genetic algorithm (HyWGA) to reduce the energy consumption of the heterogeneous multicore
platform under given thermal constraint. The HyWGA algorithm integrates the worst-fit parti-
tioning heuristics with a genetic algorithm. Watanabe et al. [WKI"07] presented a pipelined task
scheduling method for the dependent task model to reduce the energy consumption of GALS MP-
SoC under latency and throughput constraints. The problem is formulated as an Mixed-ILP and
proposed a scheduling algorithm based on simulated annealing.

Luo and Jha addressed the tasks model with precedence constraints and proposed the list-
scheduling strategy [LJ0O2] for the heterogeneous distributed systems. Chen and Thiele [CT08a]
considered a case of 2 type heterogeneous processors and proposed a polynomial time approxi-
mation scheme based on the ratio of task execution times on the different processor types. Hsu et
al. [HCKO6a] addressed the synthesis problem of heterogeneous platform to schedule a set of RT
tasks with a given energy constraint. They proposed approximation algorithm based on a rounding
technique by applying a parametric relaxation on an ILP to minimise the processor cost under the
given timing and energy cost. Hung et al. [HCKO6b] considered a heterogeneous platform with

2 processing elements, one with DVS enabled core and second without DVS capability, with an
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objective to reduce the overall energy consumption and maximise the energy saving in migration
from DVS enabled core to non-DVS core. While DVS has its advantages, the state-of-the-art
[YPO2, HTCO07, LJ02, CT08a, HCKO06a, HCKO06b] ignores the static power dissipation.

Yang et al. [YCKTO09] proposed an approximation algorithm based on dynamic programming
and provides polynomial-time solution when the number of processor types is a small constant.
However, in the general case when the restriction over the number of processor types is relaxed,
this scheme has exponential time/space complexity. They also assume static power dissipation of
the system as a constant factor. The work of Chen et al. [CST09] presented a task assignment
algorithm for periodic real-time tasks on heterogeneous platforms. The problem is formulated as
an ILP problem. They relax some of the assumptions to adapt it into linear programming (LP) and
solve it through extreme point theory [DT97]. The tasks assigned fractionally in the previous steps
are reassigned through known heuristics such first-fit, best-fit, worst-fit or last-fit. They assume
the static power dissipation of the system to be a constant factor and it cannot be reduced due to
the significant overhead of sleep transitions [YCKT(09, CST09]. This assumption does not hold
for modern processors which contains several sleep states to reduce the static power dissipation
of a system. Moreover, the static power dissipation has become a considerable part of the overall
energy consumption. Therefore, the effect of the task allocation on the power dissipation in the
sleep states should be considered to avoid suboptimal assignments.

In the context of heterogeneous multicores, the state-of-the-art assumes only dynamic power
dissipation, ignores static power dissipation or considers it a constant factor while doing task
allocation on such platforms. The objective of the research performed in this thesis is to relax
the assumption of constant static power dissipation, and propose algorithms for heterogeneous

platforms, while assuming a general power model and generic heterogeneous multicore platform.



Chapter 3

Model of Computation and Simulation
Framework

A fundamental prerequisite of the work is the definition of the model of computation, as well as
it’s implementation for evaluation purposes, which are both introduced in this chapter. It includes
the detailed description of the application model and different hardware aspects of the underlying
platform. Later chapters of the thesis document require modifications and extensions of this model,

which will be described in detail in the respective chapters.

3.1 Application Model

3.1.1 Task Model

This work assumes a traditional sporadic task model [Mok83b]. A task-set 7 is composed of £
independent tasks T def {71, 72, ,T¢}. A task 7; is described by a tuple 7; def (Ci,D;,T;), where D;
is the relative deadline, 7; > D; the minimum inter-arrival time between two consecutive jobs of
7; and C; the worst-case execution time. A sporadic task is allocated a budget of A; and it releases
an infinite sequence of jobs j; ; at run time separated by an interval of time greater than or equal
to 7;. Figure 3.1 shows the specification of the tasks. The task’s budget size and its allocation is

discussed Section 3.1.2.

| WCET | . Minimum
| i Deadline  yp¢er-arrivalTime

Figure 3.1: Task specifications
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The k' job Jij of 7; is defined as ji def {rik,cik d;i i}, where r; is arelease time, ¢;x < C; the
actual execution time and d;  the absolute deadline. The absolute deadline of a job d; ; cannot be
determined before its release time and d; def rik+D;. Job j; must complete before its absolute
deadline d; x def ri x +Dj. Each job is associated a budget of a; ; and it decrements with the execution
of the job. All the parameters mentioned above are real-valued. Job j;  is said to be active at any
time 7 if and only if r;; <t and it is not completed yet. More precisely, an active job is said to be
running at time ¢ if it is allocated to a processor and is being executed. Otherwise, the active job is
in the ready queue of the operating system and it is said to be ready. The subsets of active, running
and ready jobs of 7 at time ¢ are denoted as active(7,7), run(7,7) and ready(7,¢), respectively. It
holds that active(7,7) = run(7,) Uready(7,?).

As the tasks are considered independent, they do not share any resource except processor, holds
no precedence and there is no communication or precedence constraint among them. The worst-
case execution time of a task C; is computed on the full speed of the processor (i.e., maximum
frequency). Please note that this is only relevant for later parts of the thesis document dealing
with DVFS. The hyper-period H of task-set 7 is defined as the least common multiple of the tasks’
minimum inter-arrival time T}, i.e., H def LCM{Ti,T5,...,T;}. The notion of LCM is extended to

real numbers as presented in Equation 3.1 (see [Bin09] for further details).

LCM(a,b) définf{)ceRJr :3dp,q € Ny, x = pa = gb} (3.1)

Definition 8 (Task’s Utilisation). The individual utilisation of a task 7; is the ratio between its

worst-case execution C; and the minimum inter-arrival time T;.

def C;
U =— 32
=T (3.2)
Definition 9 (Total System Utilisation). The total system utilisation U of the task-set T is the

summation of the individual utilisation of the tasks U; in the system.
vy U (3.3)

3.1.2 Temporal Isolation

A Constant Bandwidth Server [AB98] like algorithm is used in this work, and terminologies and
concepts are borrowed from the rate-based earliest deadline first (RBED) framework [BBLBO3],
which provides temporal isolation by associating each task 7; with an enforced budget A;. At
runtime the default value a;; for a budget when releasing a job j;x is A;. However, the value for
a; x may be subject to manipulations including spare capacity assignment, borrowing from future
releases of the same task or consumption of budget during execution.

The temporal isolation of the RBED framework allows for mixed-criticality workloads (hard,
soft and best-effort type applications). The allocation of budget for SRT and best-effort (BE) tasks
in the original work is less than or equal to WCET (A; < C;). For HRT tasks the budget is equal to
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the WCET (A; = (), to ensure the timely completion of all jobs. The scheduler pre-empts every
job when it has used up its allocated budget a; . Thus a job exceeding its budget cannot affect
the overall schedulability of other tasks. In this work, HRT and SRT tasks are assumed to have a
budget equal to their WCET and treated as RT tasks onwards, while a BE task may have budget
less than or equal to its WCET time.

3.1.3 Hardware Model

3.1.3.1 Processor Model

A processor of a particular type m is defined as 7™ &ef {Py",P", §n, f_;"} It is characterised by

unique power dissipation and execution capabilities, and consists of an active state, an idle state, a
set of sleep states and in some cases a number of frequency set-points. A processor is said to have
an idle state, if it is neither executing any task nor transitioning into a sleep state. The parameters
of ™ are given with the following interpretation. P} is the average-case power dissipation in the
active state at maximum frequency set-point, P;" is the average-case power dissipation in the idle

= def . . . .
state, §" = (§’1", L .,§%), with N € NT, is the vector of different sleep states (ranging from

. . . = def .
clock gating to shut-down of several chip sections) and f™ = (fI o fim), with V™ € Nt
is the vector of frequency set-points available on processor ©™. The top speed or the maximum

frequency of the processor is represented with f7"

, while the £y, corresponds to the slowest speed
or lowest frequency of the processor.

A processor ™ has N sleep states in a vector §” and each sleep state §/ in §™ is characterised
by a quadruple § & (P esi twit Es), where P)" is the power dissipation in a sleep state, 75/
the transition delay of switching from active state to a sleep state, tw!; the wake up time from
sleep state to an active state and Es) the energy overhead of the complete sleep transition. The
complete sleep transition overhead includes transition time from active to sleep state and wake up
time from sleep state to active mode. It is denoted as tsw!' = s +tw!'. For brevity of notation, it
is assumed that transition delay of going into and out of a sleep state are equal and represented as
tr! (ie., tr) =tsi =tw)'). Note that none of the proposed methods rely on this equality and can
be easily adapted to work with different values for #s)" and rw!"". The transition overhead of the idle
mode is considered negligible [LBCT03], i.e., a processor can instantly transition between active
and idle mode.

The energy overhead Es)' associated to each sleep transition is caused by tuning of phase lock
loop (PLL) and, loading and saving the system state or the contents of the registers, caches etc.
In case the energy overhead Es! of the sleep state is not given, a constant power dissipation is
assumed during the transition phase which will be denoted as Ptr]'. A state transition is only
initiated in a stable state, i.e., active or sleep state, in other words the system has to complete a
transition once it is initiated. Each sleep state §' has a break-even-time (BET) bet, associated to it.
Depending on the hardware characteristics, the sleep state parameters can be used to determine the
break-even-time through any known techniques [ANP11, DA0O8a, CGO05], however, for simplicity
sake within this research the one set in Definition 10 is used.
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Definition 10 (Break-even-time). The break-even-time bet))' of the sleep state §!' is the minimum
time interval for which entering a sleep state is more efficient (energy-wise) when compared to any

shallower sleep state, despite an extra overhead (time/energy) associated to this sleep transition.

Where DVES is used in the thesis document, we assume that all frequency points are always

n

larger than or equal to a critical speed [, of a processor described in Definition 11. The leakage

energy consumption always dominates the dynamic energy consumption below critical speed f. .
It is the lower bound on processor speed as the execution below this speed increases execution time
along with energy consumption [JPG04]. This bound can be computed for a processor considering

its total energy consumption (dynamic+static).

Definition 11 (Critical Speed). The critical speed [ is the lower bound on processor speed
(frequency reduction in DVFS) that minimises the total energy per processor cycle considering

both dynamic and static (leakage) energy consumption.

In the context of uniprocessor scheduling, the superscript that indicates the processor type is
dropped in all the parameters of processor model. In case the DVFS is not considered as a power
saving strategy, the vector of different frequencies in the system fm is removed from the processor

characteristics.

3.1.3.2 Device Model

Assume, W denotes the number of devices in the system. A set that collects these devices is
defined as 2 & {A1,A2,...,Aw}. Each device A; & {Pji, §_;1i} is characterised by it active power
dissipation Pf" and a vector of sleep states §_ii. It is assumed, a device has no idle state, so it
either stays in active mode or transition into a sleep state. Similar to a processor power model,
a device A; may have N sleep states, i.e., §_if &f {§f”",§%", ey §]7\L;} Any sleep state of a device

§ﬁf is characterised by a quadruple §ﬁ' def

(P tsh 1wk Esh), where P% is the sleep state power
dissipation, ts,’}" the transition delay of switching from active to sleep mode, twff the wake up time
needed to transition out of a sleep sleep state and Es%i the extra overhead of energy consumption
Ai

during the complete sleep transition phase. Similar to the processor model, it is assumed ts,’}" =tw)

and represented as trf}f. A complete sleep transition-phase delay of §ﬁi (i.e., from active to sleep
state and sleep state to back in an active mode) is denoted as rsw’ = 2tk = tsh 4 rwh. A state
transition may occur only from active to sleep mode or vice versa. Similar to a processor, in a
devices, a state transition can only be initiated in a stable state, i.e., active or sleep state. The
break-even-time of a device’s sleep state is denoted as ber’ and follows the same definition as
given in Definition 10. The above mentioned parameters of the device’s sleep state §%f can be used
to estimate its BET. The measurement technique used for ber follows from the work of Cheng
and Goddard [CG06, CGO05]. The selected device power model is generic in a sense that each
device can have multiple sleep states with different parameters.
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3.1.4 Slack Sources

The processing time not used in a system is called slack. System slack can be categorised in two
types, static and dynamic slack. The static slack exists due to spare capacity available in the system
schedule. This spare capacity occurs as the system is loaded less than what can be guaranteed by
the schedulability tests.

Definition 12 (Static Slack). The static slack is the spare capacity available in the schedule even
if the tasks execute using the maximum processing resource specified (minimum inter arrival, and
WCET).

The dynamic slack occurs due to difference between worst-case assumptions made in the of-
fline analysis and the actual online behaviour of the system. It is further divided into two compo-
nents based on two different worst-case assumptions. The first assumption is that each job of a task
will execute for its WCET C;. Due to the inherent pessimism in all WCET approaches [WEE108],
most if not all of the jobs in a real scenario finish their execution earlier than their C; and by the
chosen budget A;, and thus generate slack. This kind of slack is termed as execution slack S,, and
it is quantified by the difference in C; and actual execution time. The execution slack S, available
in the system at time instant 7 is represented by the duple S, = (552, 5%), where S%* corresponds to

effective slack size and S corresponds to the absolute deadline of the slack.

Definition 13 (Execution Slack). Dynamic slack generated by the difference of WCET C; and

actual execution time of tasks is called execution slack.

Similarly, the system is analysed with the second worst-case assumption that each job of a
sporadic task will be released as soon as possible i.e., released periodically with the minimum
inter-arrival time. However, for truly sporadic tasks this rarely occurs in HRT systems. Jobs of a
sporadic tasks are released with a variable delay bounded by the minimum inter-arrival time. Such
sporadic delay can potentially generate a slack in the system termed as sporadic slack. However,
it is not necessary a sporadic delay will always generate a sporadic slack as demonstrated with the

following example.

1

Figure 3.2: Sporadic slack example

Example 1. Consider a task-set composed of two tasks 11 = (1,4,4) and 7, = (1,4,4). Assume
the second instance of T, is delayed by 1 time unit and arrives at time instant t = 5 as shown in
Figure 3.2. Afterwards, all the other instances of T, arrive exactly after T,. In this example, it is
evident that a sporadic slack is not generated. Hence, sporadic delay can potentially generate a

slack but it is not a necessary condition.



46

Model of Computation and Simulation Framework

Definition 14 (Sporadic Slack). Dynamic slack generated by the delays in the task arrival after

their minimum inter-arrival time is called sporadic slack.

Naturally, the dynamic slack is generated online and can only be identified at run-time.

3.1.5 Slack Management Algorithm

There are number of execution slack reclamation algorithms exists in the literature [AMMMO1,

ZC02, JGO5]. These approaches are efficient and exhaustively collate the execution slack. To

further reduce the complexity of these approaches, a new execution slack reclamation algorithms

is presented here. The proposed approach is based on the basic principles of [LBO5]. The basic

idea is to keep S, received from previously completed jobs at time instant ¢ in a central container.
In contrast to traditional execution slack management algorithms [JG05, ZC02, AMMMOL1], this

approach uses a single slack container and reduces the extra overhead of keeping multiple slack

containers at different priority levels. In idle mode the system consumes available execution slack
[PLHEO09].

Algorithm 1 Slack Management

o]

. if (Ready Queue Empty) then

Consume execution slack S,

. end if

: Slack Collection Phase
: Slack Update On Job j;; Completion

Siz—}— =aj\

o 84 = max{S¥, d; }

. Slack Preservation Phase

9: Method 1 [Adding Slack in the Jobs Budget]

10:
11:
12:
13:
14:
15:
16:
: On Every Scheduling Event
18:
19:
20:

On Every Scheduling Event
if (S9! < d;;) then

aj+ =S5

S =0

$F=0
end if

Method 2 [Extending Slack Deadline on Job Arrival]

if (S5 > 0) then
Sg” = max{SZ”,d,-,k}
end if

The pseudo-code of the execution slack management algorithm is given in Algorithm 1. It has

two phases, slack collection and slack preservation. These two phases are explained as follows.

1) Slack Collection: This phase is invoked when any job generates execution slack. Assume

a job j;x executes for less than its WCET and generates the execution slack S, of size X.
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The size S;° of execution slack is incremented by X (i.e., S;°*+ = X). If the deadline of the
job jix that generated the execution slack of size X is greater than Sgl (i.e., S;” < d, ), then
the deadline of S, is extended to the deadline of j;, i.e., S;” = d; 1, otherwise its previous
deadline is maintained. In general, the deadline of S, is updated by the expression S¢/ =
max{S%, d;} [LBOS5].

ii) Slack Preservation: One of the objective of the proposed algorithm is to preserve the avail-
able slack in the system without violating the temporal constraints. In order to maintain the
schedulability of the system with EDF, the highest priority workload (workload with earliest
deadline) should be executed first. Assume at time instant ¢, a slack container has an execution
slack of size S5° with a deadline S¢/. A job ji starts its execution at time ¢ and has an abso-
lute deadline greater than the deadline of the execution slack, i.e., (Si,” <d;). In this case,
maintaining the execution slack with the same deadline during the execution of j;; means
we are changing the schedule and it may miss a deadline (higher priority workload should

execute/consume first). In order to solve this issues, two different methods are proposed.

e Method 1 [Adding Slack in the Jobs Budget]: On every scheduling event, the priority
of the execution slack is compared against the priority of the current job j;;. If the
priority of the execution slack S, is greater than or equal to the priority the current job
Jik to be executed, the actual budget a;; of the current job j;; is incremented by S3°;
i.e., aj;+ = S°. When a slack S, is allocated to a job j;, the slack container is reset
to zero. This method is presented in Algorithm 1. Moreover, if the slack has a lower
priority compared to the job j;, then the slack cannot be passed or added to the job’s

budget and it can only be maintained in the slack container.

e Method 2 [Extending Slack Deadline on Job Arrival]: The another way to solve the
same issue presented above is to extend the deadline of the execution slack instead of
adding it to the budget of the job. The deadline of the execution slack is updated when
the job j; x resumes/starts its execution in the presence of execution slack (S3° > 0). In
this case, the deadline of the slack is updated to S¢/ = max{S%,d;}. This is method is
also equivalent to the donation of the execution slack S, to the job j; x that will complete

its execution S° early upon donation.

Theorem 15. Algorithm 1 does not affect the correctness of the schedule produced by the EDF

scheduler.

Proof. 1t can be proved through the rational mentioned in the original RBED work [BBLBO03].
Algorithm 1 effectively extends the deadline of jobs completing earlier than their worst-case exe-
cution time. The sustainability property of the EDF scheduler [BB06] states that a task-set schedu-
lable with the EDF scheduling policy on a unicore platform will preserve its schedulability when
jobs extend their deadline and/or execute for less than their worst-case execution time. Hence, the

theorem follows directly from the sustainability property of EDF. O
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The advantage of this approach is that slack generated at different priority levels are eventually
accumulated implicitly with a very simplistic and transparent approach using just one container to
hold the slack. The disadvantage of such an approach is the temporary unavailability of the slack
in the presence of long period tasks. The slack generated with long deadline will decrease the

priority of the already available slack and restrict the high priority jobs to use it.

3.2 Simulation Framework

A simulator for power aware and real-time systems (SPARTS) [NAP11b] is developed to evaluate
the effectiveness of the proposed algorithms in this thesis. SPARTS is an open source simulator
of a generic real-time device and its source code is available at the following link [NAP11a]. It is
built as a slot-based execution environment and provides extensive flexibility in task-set generation
for different objectives and scenarios. The modular structure of SPARTS allows easy development
and integration of new scheduling algorithms for both, single and multi-core systems. It performs
the simulation in event-driven manner. Rather than doing cycle-step execution, SPARTS works
by looking backward into the interval between two consecutive job releases and calculates the
execution without unnecessary cycle-level granularity. This approach allows to save computation
and yet provide correct execution modelling. This allows to perform the simulations of large
task-sets for long periods of time with high temporal efficiency.

SPARTS allows to generate task-sets from a large number of fine grained small tasks to a small
number of coarse grained tasks to cover a wide range of different systems. The share distributions
&; provides the percentage share of RT and BE tasks in the overall system utilisation and the num-
ber of tasks. For example, a share distribution §; = (RT,BE) = (40%,60%) divides the task-set
such that it has 40% RT and 60% BE tasks. Similarly, 40% of the system utilisation is distributed
among RT tasks and 60% among BE Tasks. The utilisation allocated to a specific task class (RT or
BE) is distributed randomly among the tasks of this class. The actual individual utilisation per task
is generated such that the target share for each scheduling class is achieved. The minimum and
the maximum limits are provided for the task classes (RT and BE) to chose their 7; time. Starting
from the utilisation U; and T;, the WCET of each task is deemed to be C; = U; x T;. It has to be
noted that due to numerical rounding in the parameters used in the SPARTS simulator to generate
the task-set with a target utilisation of x has a resulting utilisation of x — €, where € is a very small
number indicating the rounding error. It remains within 0.6% of the total utilisation for most of
the experiments conduced in this dissertation.

Beyond those initial settings a two level approach is used to generate a wide variety of different
tasks and subsequently varying jobs. Tasks are further annotated with a limit on the sporadic
delay T in the interval [0, x T;] and on BCET C? in the interval [C® x C;,C;]. The varying
behaviour of different jobs of the same task depends on the system’s state and input parameters.
It is modelled by assigning each j;; an actual sporadic delay in [0,I';] interval and an actual
execution time in [C?,C;] interval. All random numbers are taken from a uniform distribution and

unless explicit values are given, random numbers are used for all assignments. For each task-set
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of a particular configuration the seed value of the random number generator is varied from one to
hundred. The results of these hundred values are averaged to get one set point presented in graphs

of all experiments.
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Chapter 4

Unicore Power Management

In this era of multicore platforms, a single processor is still the most commonly used designed
choice in RT systems to avoid the complexity involved while ensuring the temporal correctness.
Researchers have been studying the RT uniprocessor embedded systems that consists of a finite
number of recurring tasks for more than forty years now. Over this period of time, they have come
up with a number of very important results, developed some useful algorithmic techniques and
built up an entire body of intuitions. Taken together, these results, techniques and intuitions have
allowed system designers to come up with a very good understanding of the manner in which RT

embedded uniprocessor systems behave.

The emerging application requirements in the embedded systems arena have increased dra-
matically over the past years in terms of computing demands. Following Moore’s law [M0098],
CMOS chip manufacturers have successfully minimised the size, decreased power and increased
performance of transistors. The transistor-technology miniaturisation has allowed the semicon-
ductor industry to place more functionality on the same chip area. One of the side effect of the
technology scaling is an increase in leakage current — especially in deep submicron technology
nodes (65nm and below) — contributes to 30-50% of the total power dissipation. The expo-
nential increase in leakage current requires more attention when it comes to power management
approaches. On the other side, tremendous amount of work exists in DVFS ranging from theoret-
ical results to practical approaches. Therefore, this chapter assuming sporadic task model initially
extends the existing CPU power management approaches to yield the optimal energy savings and
then propose new approaches to reduce the practical limitations of the existing work in leakage-
power dissipation. Finally, the effect of temperature on the leakage-power dissipation is explored
in the RT context.

The sleep states available at system level can be used in different ways to reduce the leakage
current. Some approaches extend the sleep interval of the processor already in sleep state online,
while other approaches execute the workload as soon as possible and initiate sleep state for the
pre-determined sleep interval avoiding any online processing in it. In both cases, the objective is
to minimise the transition overhead associated to each sleep transition and maximise the energy

savings. This is a non-trivial issue assuming multiple sleep states in the sporadic task-model. A
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Figure 4.1: Schedule with 7, = (5,10,10), 7, = (5,16,16) and tr,, = 1

shallower sleep state has lower transition overhead but consumes more energy when compared
to a deeper sleep state and vice versa. Irrespective of the strategy used to initiate a sleep state, a
sleep interval is computed based on the minimum inter-arrival time and WCET of the jobs due
to their dynamic behaviour — in arrival sequence and execution time — to ensure the temporal

correctness of a schedule.

4.1 Procrastination Scheduling

4.1.1 Basics

Procrastination scheduling is commonly used at system level to reduce the leakage-power dissipa-
tion. In this technique the execution of the processor already in sleep state is delayed as much as
possible while ensuring the timing constraints of all tasks are met. This is demonstrated with the

help of an example given below.

Example 2. Consider a system with two tasks 11 = (5,10,10) and 1, = (5,16,16) as given in
Figure 4.1. Assume the processor is idle at time instant O and transitions into a sleep state with a
transition delay of tr, = 1. A processor will stay in the sleep state unless there is a job arrival. In
this example the first job arrives at time instant t = 5. At this moment the scheduler computes how
much further it can delay the current transition out of the sleep state such that all jobs meet their
deadlines. The longest duration of such an interval is desired to reduce the energy consumption,
“both by using deeper sleep states and making less transitions into sleep states (less overhead)”.

In the optimal case, it can be delayed for 5 time units.

As the scheduler has to compute the procrastination interval during the sleep state, it re-
quires extra hardware to perform such computation. The need for external hardware is one of
the limitation of procrastination scheduling approaches. This external hardware increases the de-
sign/integration effort, communication complexity, energy consumption and cost of chip. For-

mally, the procrastination interval is defined as follows.

Definition 16 (Procrastination Interval). The procrastination interval is the maximum time interval

allowed to delay the execution of ready tasks without violating any timing constraints of the system.
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Figure 4.2: “Accumulated delays under EDF scheduling [LRK03]”

There exists different algorithms [LRKO03, JPG04, JGO4] to compute the procrastination in-
terval used for power saving. These algorithms which are based on procrastination scheduling
approximate the procrastination interval of tasks leading to sub-optimal energy savings. The pro-
crastination algorithm proposed in this section computes the optimal procrastination interval and
fills the gap in the related work. Before going into the details of the proposed procrastination
algorithm, let us identify the pessimism involved in the state-of-the-art when computing the pro-
crastination interval. Initially, implicit deadline task model is assumed, i.e., D; = T;, V7; € T, to
compare against the state-of-the-art which assumes this model. Later in Section 4.1.5, this restric-
tion is relaxed to a more general case, i.e., the constrained deadline task model, where tasks may
have deadlines less than their periods (D; < T;).

Lee et al. [LRKO3] initially proposed the online leakage-aware procrastination scheduling
mechanism called LC-EDF. To understand the basic principle behind this algorithm, consider an
example given in Figure 4.2 (this figure is taken from the work of Lee et al. [LRKO03] and each
arrival represents an instance of a task). Assume an instance of a task 7; is the first arrival in

a sleep state. The procrastination interval Q; of this instance of a task 7; is computed with the
.y G C+

condition 4+ kiQk
V1,ET:i#k Ti Ty

t + Oy —tr, to wake-up the system, where tr, is the transition-out delay of the sleep state. After

= 1. Suppose ¢ is the current time then the timer is initialised with

the timer initialisation, a procrastination interval is only recomputed when a new arrival has the
absolute deadline smaller than the previous arrivals in the ready queue. For instance, after J; <
Oy — tr, time units, instance of a task 7, arrives with an absolute deadline less than the absolute

deadline of 7;’s instance; a new procrastination interval Q; is determined with Equation 4.1.

vreti¢{kb} I; T Ty

C; Cp.+6 C
P K+ k b+Qb:1 @.1)

The wake-up timer is reset to ¢ + Qp, — tr,,. Similarly, if an instance of any other task 7; with
the highest priority arrives, the procrastination interval Q; in the sleep state of a processor is
determined by using Equation 4.2, where [p(j) is the set of indices of arrivals before 7;’s instance
and with a deadlines longer than the deadline of 7;’s instance. In this equation, J; is the interval
between an arrival of task 7;’s instance (having highest priority at that instant) and any next arrival
having priority higher than the job of 7; in the system’s sleep state. The limitations of LC-EDF are

the increased online complexity to maintain a track of §; and considering the utilisation of the low
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priority tasks while computing the procrastination interval.

Z 9+ Z Ci+5i+Cj+Qj:

viewidp()iti U icply) L T

1 4.2)

Jejurikar et al. [JPGO4] proposed an offline method based on Theorem 17 to compute the pro-
crastination interval of each task, where X is the normalised frequency of the processor while
executing a task 7;. For the ease of presentation, the value of X; is set to 1, i.e., maximum fre-
quency. Their algorithm is represented as PROC hereafter. PROC reduces the online complexity
of LC-EDF as the procrastination interval of each task is computed offline. Similar to LC-EDF
(Figure 4.2), in the online phase of PROC, the tasks are scheduled with EDF scheduling. The
system transitions into a sleep state when idle. The selection of the sleep state is based on the

minimum procrastination interval in the task-set i.e., vrnin (Z;). A sleep state that has a break-even-
TET

time bet, greater than &%lenr (Z;) and consume minimum energy for this interval is selected for the
system. The first task that arrives in sleep mode initialises the wake-up timer @ with its procras-
tination interval minus the transition-out delay. If another task (say 7,) arrives before the timer
expires, the timer value is adjusted as follows: @ <— min(@,t + Z, — tr,), where ¢ is the current
time and Z, is the procrastination interval of 7,. It is proved that their derived technique is superior

to LC-EDF to compute the procrastination intervals.

Theorem 17. [JPG04] Given tasks in T are ordered in non-decreasing order of their periods, the
procrastination algorithm guarantees all task deadlines if the procrastination interval Z; of each

task 7; satisfies the following two conditions:

Z: 1C
vier, o+ Y < 4.3)
i V‘:ke‘::kgiXk Ty
and  Yk<i, Zi<Z (4.4)

While computing the procrastination interval of a task 7;, PROC [JPGO04] only considers the
utilisation of the tasks having priority greater than or equal to 7; including the utilisation of 7;
(assuming a synchronous release of all tasks also known as critical instant in literature). More-
over, if any of the low priority task produce a low procrastination interval when compared to the
high priority tasks, the procrastination interval of all the high priority tasks are readjusted by con-
sidering Equation 4.4. This latter equation is driven by the online phase of PROC (see [JPG04]
for details). The proposed method has its merits as it reduces the set of tasks considered for the
procrastination of each task and requires simple hardware to implement the algorithm. However,
it has two main limitations. Firstly, it approximates the procrastination intervals by considering
tasks utilisations and secondly, it cannot be effectively extended to the constrained deadline model.

The first shortcoming is demonstrated with the help of the following example.

Example 3. Assume a task-set consists of three tasks t) = (2,4,4), 7, = (3,7,7) and 13 = (0.25, 14, 14).

Rearranging Equation 4.3, Z; can be computed with Equation 4.5 as given below.
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Figure 4.3: Schedule with 7; = (2,4,4), 7, = (3,7,7) and 73 = (0.25,14,14)

z = (1- )Y %) (4.5)
voerk<i Tk
k >

2

z = (1-7)4=2
2 3
Z, = (1-=-2)7=0.
= (1-5-3)7=05
2 3 025

Final values after applying Equation 4.4 are Z, = 0.5, Z, = 0.5 and Z3 = 0.75. Figure 4.3
shows the schedule for the aforementioned example. With a careful observation it can be seen that
the procrastination interval of T1, T, and T3 can be extended to 1,1 and 1.5 time units respectively

without causing any deadline miss, which represents 50% gain over PROC.

This example illustrates that substantial energy gains can be achieved by improving the method
to compute the procrastination interval of each task. The algorithm presented in Section 4.1.2
shows that the demand bound function used to estimate the procrastination interval of each task
not only eliminates the sub-optimally in the related work but can effectively be extended to the

constrained deadline model.

4.1.2 Demand Bound Function Based Procrastination (DBFP)

The demand bound function (DBF) [BRH90, PL05] is an abstraction of the computation require-
ments of tasks which has been observed to correlate very closely with schedulability property of

the task-set. It is defined as follows.

Definition 18 (Demand Bound Function [BRH90]). The demand for any constrained deadline task
T; and positive time t, denoted by DBF(1;,t), is the maximum cumulative execution requirement of

jobs of task t; in any interval of length t. Formally, DBF(7;,t) is presented in Equation 4.6.

_Di
Vi >0, DBFCQJ)§f<{t7, J+1>-q (4.6)

i
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Figure 4.4: Demand bound function with tasks 7; = (2,4,4), 1, = (3,7,7) and 173 = (0.25,14,14)

Equation 4.6 shows that DBF(7;,7) is a step-case function in ¢ with first step occurring at time
t = D; and subsequent steps separated by exactly T; time units. In case of implicit deadline task
model (i.e., D; = T;), the DBF(1;,7) of task 7; presented in Equation 4.6 can be rewritten as shown
in Equation 4.7.

DBF[(T,‘,I) = \‘;J G as t>0 4.7)

i
The demand of the whole task-set DBF(7,7) at time instant ¢ is the summation of the demands

from the individual tasks as defined in Equation 4.8.

DBF(7,1) € Y DBF(1,1) (4.8)

TET
The demand bound function can be used to compute the procrastination interval of each task
in the context of uniprocessor scheduling. The proposed algorithm DBFP uses the same logic as
the one given in Theorem 17 but computes the procrastination interval of a task with DBF instead
of considering tasks utilisations. The proposed algorithm has four steps and is demonstrated with

the help of a running example given in Figure 4.3.

1. The tasks are sorted in a non-decreasing order with respect to their relative deadlines.
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2. For each task 7;, a function sums up the demand of a task 7; along with the tasks having
relative deadlines less than the relative deadline of 7;. In the given example, three stair
case functions DBF(7;,H), DBF(7; + 72, H) and DBF(7; + 72 + 73, H) are computed for the
corresponding tasks 7, 7, and 73 respectively. These functions are presented in Figure 4.4

for the given task-set.

3. In the third step, the corresponding function of 7; obtained in step 2 is subtracted from the
supply bound function SBF. SBF is the supply provided by the processor and in uniproces-
sor case it is a straight line with a slope of 1 passing through origin as presented in Figure 4.4.
Due to the stair-case property of the DBF, it is sufficient to compute the difference at the
deadlines. It has to be noted that this difference is computed at all deadlines between the first
deadline of a task 7 till the end of the hyper-period (the reason is explained in Theorem 19).
The minimum of these differences gives the maximum procrastination interval of a task 7;.
Let y; represent the minimum difference then for the given example, y; =2, y» = 1 and

X3 = 1.5.

4. In the last step, a condition Vk < i, x; < x; is applied on the procrastination intervals of all
tasks. In the given example, the procrastination interval of 7; is greater than the procrastina-
tion interval of 7,. Therefore, the value of y; is scaled down to 1 and the final procrastination

values are y; =1, yp =1 and 3 = 1.5.

The DBF based procrastination (DBFP) scheme achieves extended sleep intervals for the given
task-set. Indeed when D; < T; the utilisation is no longer a good metric for the computation re-
quirement of the tasks and may cause deadline violations, whereas the DBFP approach is easily
extensible. Similar to PROC, DBFP computes the procrastination interval for each task. There-
fore, the online phase of PROC can be applied to DBFP. Another online algorithm [JGO05] that
incorporates the slack management in the work of Jejurikar et al. [JPG04] can also be used with
DBFP. However, the work presented in this section emphasises on the computation of the procras-
tination interval rather than online methods to utilise it. Theorem 19 shows the proof of correctness

of the schedulability concerns of DBFP with the implicit deadline task model.

Theorem 19. Given tasks in T are ordered in a non-decreasing order of their relative deadlines,
the DBFP algorithm preserves all task deadlines with EDF, if the maximum procrastination inter-
val of a task t;, denoted by ¥, is computed with Equation 4.9 while respecting the condition given
in Equation 4.10.

P min { t— Y DBF,(Tk,t)} (4.9)

B Vtiet:j<i,vt>0 VhETk<i
. 1
= min r— Z \‘J Ck
Vriet:j<iVieM(i,j) | vaemkei LTk

h MG, )= dn: | Tl << | B
where i,j)=1n;T;: T, <n; < T,

Vk <i, x < Xi (4.10)



58 Unicore Power Management

Proof Sketch. Suppose a task 7; arrives while the processor is in a sleep state. The timer is set to
the procrastination interval computed with Equation 4.9 respecting the condition given in Equa-
tion 4.10. The time interval to wake up the system can only be decreased with an arrival of new
task. This procrastination interval can be seen as an additional task 7,,,. with a priority equal to
the highest priority task, execution time equal to the wake-up sleep interval and it executes before
the next busy period. Equation 4.10 ensures that all the tasks with deadlines greater than or equal
to 7; will have procrastination interval greater than or equal to ;. Therefore, T, Will not increase
the system demand beyond the SBF in the presence of low priority tasks. Furthermore, the higher
priority tasks can only shorten the execution time of 7, (i.e., procrastination interval) on their
arrival to respect their deadlines and the deadlines of the other tasks. Thus the sleep interval is
bounded by the procrastination interval of the first task and it only decreases with the new arrivals,
therefore, based on the previous logic it will not affect the schedulability of any high priority task.
Moreover, it is sufficient to consider the deadlines in the interval [D;,H] as the procrastination in-
terval of a task is only considered when it has the highest priority on its arrival in the ready queue.

As none of the tasks miss their deadline, therefore, the theorem holds. O]

4.1.3 Analytical Analysis of Procrastination Interval of each Task

The best known maximum procrastination interval is the one derived with PROC method for each
task in the state-of-the-art. This is obtained by considering the worst-case scenario i.e., critical
instant. This section shows that the procrastination interval computed for any task through DBFP

will always be greater than or equal to Z; (see Lemma 20).

Lemma 20. Given tasks in T are ordered in a non-decreasing order of their relative deadlines,
the procrastination interval ); for any task t; computed with DBFP scheme is always greater than

or equal to the procrastination interval Z; computed PROC, i.e.,

. ! G
min r— Y {Jck >1- Y)Y =5 (4.11)
VT,-ET:j<i,Vt€M(i,j){ vnerksi L1k } ( vnerk<i Lk

where M(i,j)={n;T;: T <n; < T
J J

Proof. The inequality given in Equation 4.11 can be proven by showing the procrastination in-
terval computed with DBFP is greater than or equal to Z; at all the deadlines between the first
deadline of a task 7; and the hyper-period H. PROC computes Z; on the deadline of the task under
consideration. To compare these two approaches, their functions are interpolated for all points
in the demand bound function. To further illustrate this, consider the task-set of an example de-

picted in Figure 4.3. The interpolation is achieved through a straight line between two points

C C
AT, ) —*) and B(H,H Y —*) as shown in Figure 4.5. This figure illustrates the
VoeTk<i 1k VreTk<i Tk

approximation by the straight line while the actual demand with the staircase function. Note that
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Figure 4.5: Procrastination interval for 7,

Figure 4.5 only shows it for y» and Z,. The slope of this line is equal to

Z Ui. To demon-

Vo etk<i

strate that y; > Z;, it is sufficient to prove this inequality in [7;,H] (see Theorem 19). This interval

is divided into two cases.

a) At time instances 7; and H, i.e., the deadline of 7; and the hyper-period respectively.

b) An interval between time instant 7; and H, i.e., (A, B).

Case a) At the first time instant 7;, Equation 4.12 compares the two approaches.

7';._

=

Vo eT:k<i

V1 etk<i

Vret:k<i

|

C
a>(1- Y Zr (4.12)
V. eTk<i Ty
k >
C
G > — =1
YV eTk<i Ty
T;
< — K
v E'L‘:kﬁiz}‘
T; T;
J < () (4.13)
Tk T

Equation 4.13 shows that at time instant 7;, Equation 4.11 holds. The same reasoning can be

applied at time instant H (i.e., by replacing the 7; with H in Equation 4.12).
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Case b: As already mentioned in the beginning of this proof, the demand of PROC in an

interval (A, B) is computed with a straight line of slope Z Uy and is compared against DBF
Vo etk<i
at all deadlines. The equation of the line is y = mx + ¢, where m is a slope and c is a y-intercept.

The y-intercept is zero (i.e., ¢ = 0) as the line passes through the origin. Hence, the demand

determined through the PROC is given in Equation 4.14.

y=x ) C (4.14)

VT eTk<i Ty

Now consider any deadline that lies in between 7; and H and then compare its y-coordinate

to show that the demand of such deadlines lies below or on the line as the one given in Equa-
T; H

tion 4.14. Assume t € M(i, j) = {n;T;: [Tl—‘ <nj< {TJ }. M(i, j) describes the set of all the
J J

deadlines between 7; and H. As such n;7; will be a deadline in an interval (A, B) and its demand is

T
Z VJJJ Ci (Equation 4.7). The deadline n;T; is put in the x-coordinate of Equation 4.14
VT ETk<i T;

T
to get the resulting demand of PROC and compared against Z V%jJ Cy, as given in Equa-
V. etk<i

tion 4.15.

G T;
y=n;T; Y > V’ ’J Cy (4.15)
Vetk<i Tk Vo eT:k<i Tk
VT ETk<i Ty VT ETk<i Ty
= it Rl (4.16)
T; Ti

Equation 4.16 is always true as x > | x|, Vx. Thus, the curve of DBF is always below or on the
line for all the deadlines in any interval (A, B).

As the demand of PROC for all deadlines in the interval [A, B] (case a and b) are greater than
or equal to DBF, the lemma follows. O

4.1.4 Improvements in Minimum Idle interval (Static Sleep Interval)

Definition 21 (Minimum Idle Interval or Static Sleep Interval'). The minimum idle interval or

static sleep interval is the bound on the length of the shortest possible idle interval in the schedule.

All the idle intervals in the schedule are greater than or equal to this bound. The minimum
bound on the idle period in the schedule is an important metric in procrastination scheduling to
select the most efficient sleep state S, offline. To reduce the online complexity, a processor can
choose its sleep state based on this interval that minimises the energy consumption in the sleep

state while respecting the temporal constraint. The system increase the chance to use better sleep

IThe minimum idle interval and static sleep interval are used interchangeably throughout this thesis.
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Figure 4.6: Static sleep interval with tasks 7; = (0.5,3,3), 7o = (3,5,5) and 73 = (1,15, 15)

states (multiple sleep states [AP11]) by maximising the minimum bound on the idle period, which
in turn reduces the energy consumption. Therefore, it is also important to maximise this bound.

The state-of-the-art algorithms compute the minimum idle interval in slightly different ways.
The minimum idle interval Q,,;, computed by LC-EDF [LRKO03] is given by Theorem 22. Sim-
ilarly, Jejurikar et al. [JPGO4] also identified a static sleep interval Z,,;, given in Theorem 23.
They proved in their work that Z,,;, > Qpin. To compare ¥min, Zmin and Qin, consider a task-
set composed of three tasks with the following parameters: 7, = (0.5,3,3), ©» = (3,5,5) and
73 = (1,15,15). The DBF of the given task-set is illustrated in Figure 4.6. For this example,
Xmin = 1.5 time units, Z,,;, = 1.167 and Qi = 0.5, consequently, Xuin > Zmin = Omin-

Theorem 22 ([LRKO3]). Any idle period in the LC-EDF algorithm [LRKO03] is greater than or
equal t0 Quin = 1]}1:81111 {Qk =(1- é %)Tk}
Theorem 23 ([JPG04]). The minimum idle period (Z,;,) identified by PROC algorithm [JPG04]
is given as Zyi, = Iln:ﬁ{l{Z, =(1 —kZ:’l ;]:)T,}

The objective of this section is to show that the static sleep interval determined through DBFP

is greater than or equal to Z,;,. Lemma 24 proves that X,in > Zyin-
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Lemma 24. Given tasks in T are ordered in a non-decreasing order of their relative deadlines,
the minimum idle period guaranteed by the DBFP scheme is always greater than or equal to the

minimum idle period guaranteed by PROC.

Proof. Assume all the tasks are sorted in a non-decreasing order of their periods/deadlines. The
minimum idle interval Z,,;, determined through PROC algorithm is equal to Z,,;, = vrnin Z;. Sim-
TET

ilarly, the minimum idle interval guaranteed by the DBFP scheme Y, = énin xi.- Formally,
TET

Lemma 24 can be represented with the inequality given in Equation 4.17.

. t . Ci
min t— — | Cyp>min [ 1— — | T; “4.17)
Vt; € T,V € M(i, ) { vfkezf;kgi \‘TkJ } VheT ( V‘L'k;kéi Tk> l

where  M(i,j) = n;T;:

In order to prove this inequality, we have to show that at any time # < H the demand of the

given task-set will remain below or will be equal to the demand computed by the PROC method,
H
where t € M(i, j) = {anj 1<n; < {TJ } In other words, all the deadlines are checked for

the difference. To interpolate the demané computed by PROC, the demand on the neighbouring
deadlines of a task are connected with a straight line. Finally, the demand beyond the last period
is extended with a line having a slope equal to the system utilisation. To illustrate this consider
the example given in Figure 4.4. Figure 4.7 shows the demand of this task-set with both DBF
and PROC. The demand of the tasks in PROC is computed on their first deadline are represented
with A, B and C points. Points A and B are connected with a straight line to compare against all
the deadlines in the DBF happening in between these two points. Similarly, B and C points are
connected, and the demand beyond C for procrastination algorithm is extended with a line having
a slope equal to the utilisation of the task-set.

Since the DBF needs to be checked at more instances than A, B and C in the procrastination
algorithm, we need to consider constraints. The objective is to find the minimal distance between
the supply bound function SBF and the demand. For all intervals between successive points A, B
and C, it is true that the smallest gap between the SBF and the demand within these intervals can
be found either of the two delimiting points (for example, for interval [A, B], the smallest gap can
either occur at A or B). Since U < 1, it is evident that beyond the largest period, the largest gap
can be found at the largest period point. In order to demonstrate that the gap computed with the
DBF based value is always greater than or equal to that of PROC it is sufficient to show that the
DBF test dominates in the following cases.

a) First deadline of every task

b) The demand computed by the DBF is always smaller than the connecting lines of the first
deadline of all tasks.



4.1 Procrastination Scheduling 63

20 5
18 T
T = 5 13 1)\ hd
v e ;/
15 = (3,5,5 \
1 15 \
@ 43 1 5 \
=12 P
= ,*
) .
£ 10 e
z
2 B
6 +
5 3T
"’ N
3 \ . = ™~
\ DBF
\!
0 >
0 3 56 910 12 15 18 20
7| 17 2Ty 3Ty 4T, 5T 6Ty
T 17, 2T, 37, 4T,
T3 175

Time (time units)

Figure 4.7: DBF vs SRA

Case a) To get the first deadline of every task, we set t = T; in Equation 4.17,

min {Ti— Z {EJ Ck} > min{ P— Z (ﬁ) Ck}
vaeTt=T; voer LIk VheT vrerk<i \ Tk
T; T;
T; T, T;
T; T;

T;
as {—’J =0,YT; < Ty
T;

n|_ (T
. 7= (3) 41
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Equation 4.18 shows that Equation 4.17 holds for the first case.

Case b) Suppose that 7;_; is the task preceding 7;. This case checks Equation 4.17 for all the

deadlines that exist between 7;_ and T;, i.e.,

T T;
teM@,j)=nT;: | =L <nj< || VreTy.
T; T
Equation 4.19 is the general form of the equation of a line between two points (xj,y;) and
(x2,y2). In the representation of the DBF, the x-axis and y-axis represent the time and the de-
mand, respectively. Let us assume the coordinates at the deadlines of 7;_; and 7; are (x,y;) =
C C
(Til, Z (Tk)T11> and (xp,y2) = <T, Z (k)E> , respectively. To find the equa-

Vretk<i—1 'k vhetk<i 'k
tion between these two points, substitute their coordinates into Equation 4.19 correspondingly as

shown in Equation 4.20.

2— )1
y=22" ) 4y (4.19)
X2 — X1
Ci Cy
( Y 7T X Tkm) c
_ V. etk<i - V;:er:kngl (x _ Tifl) + Z TkTiA (4.20)
i—1i1 vrerk<i—1 1k
C. G Ck
Z T + ?l Tz - Z TTi—l
vreTk<i—1 Tk i vrerk<i—1 1k Cy
= T_T (x—Ti1)+ Z TTifl
i—1i-1 vreTk<i—1 1k
C G C
= Y Fh—L—)a-T)+ Y LT,
YV eTk<i—1 i Ti—Ti Vi EeTk<i—1 Ty
C C; CT._
— ) D S S P —AL (4.21)
Ve Tk<i—1 Ty Ti—Tiy Ti =T

Now consider any deadline that lies in between the deadlines of 7;_; and 7; (i.e., between
(x1,y1) and (x,y2)). It is shown that the demand (y-coordinate) of such deadlines will be below

or on the line given in Equation 4.21. To this end, let us say that any deadline between (x1,y;) and

(x2,y2) is specified by (X, Ym) L T, Z V’JJ C; |. Substitute the x-coordinate of
VTkET,t:anj Tk

this selected point (x,,,y;,) into Equation 4.21 and compare the resulting value of the y-coordinate
with its y,,. If it is greater than or equal to y,, then the DBF is below or on the line. The resulting

expression is shown in Equation 4.22.

A G, G ) Gl Y Vf'TfJ Ce (4.22)
it = .
VT eTk<i—1 Tk T; - ’1}71 T; - T}71 VTkET,t:n_,'T,' Tk
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n;T;
Point (x,,,yn) is in between T;_; and T;, therefore the factor Z {"J C; can be
VTkGT,I:anj Tk
. n;T; )
rewritten as Z —— | Cy. Hence, it follows that
Vo etk<i—1 Tk
k RS
C C; CT_ n;T;
n;T; Y S ) L (4.23)
VT eTk<i—1 T  Ti—Tiw Ti—Ti- vreTk<i—1 L Ty |
— Z anjCk-i- I’lejCl' _ C,'T,;l > anj Ck
Vo eTk<i—1 Tx Ti=Tiv Ti—Ti voetk<i—1 L Ty
n;T; G n;T;
= e+ —— (n;T;—T;-1) > L1 ¢, (4.24)
v eTk<i—1 Ty Ti—Ti vreTk<i—1 L Ty

Obviously, n;T; — T;_ is greater than 0 as n;7; > T;_;. Hence, all the deadlines such that
V1, € T,t EM(i,k) = {T,'_l < T < Tl}

lie below the line represented by Equation 4.21.
As the difference computed between the supply SBF and the demand for all deadlines (case
a and b) are greater than or equal to their corresponding difference computed through the PROC

algorithm, therefore, the lemma follows. OJ

4.1.5 Extending DBFP to the Constrained Deadline Task Model and its Optimality

The state-of-the-art procrastination algorithms [LRKO03, JPG04] cannot be effectively extended to
the constrained deadline task model (D; < T;) in their current form. The use of densities (i.e.,?j)
will degrade their performance substantially. One of the advantages of the DBFP approach is its
straight forward extension to this model. For the constrained deadline task model, Equation 4.9 can
be rewritten in its general form by replacing DBF;(1,7) with DBF(1,7) as given Equation 4.25,
where the set M(i, j) is substituted by

. T; — D; H—D;
M](l,])z l’liji T —i—]San T +1,.
J J

Similarly, the minimum idle interval for constrained deadline task model is given in Equation 4.26,

Ma(i, j) = {n,pj: l<n, < GJ }

where

%= min r— DBF(1,t) (4.25)
VTj cT: j < i,Vt S M](i,j) V1 eTk<i
Amin = min r— DBF(1,1) (4.26)
V’L’j €1Vt e Mz(i,j) Vo ETk<i
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Equation 4.26 aligns with the results provided by Chetto et al. [CC89, Sil99, Che(08] on the
slack time estimation to schedule the aperiodic task in the presence of periodic task-set.

The optimality of the procrastination interval of each task y; and the minimum idle interval
Xmin (1.€., maximal without violating any temporal constraint) can be easily inferred through the
results borrowed from the sensitivity analysis framework [GHO9] or Chetto et al. [Che08]. Nev-
ertheless, short proofs based on the DBF-based analysis are provided here for completeness. The
interested readers are directed to the technical report [AYP13] for a formal proof using the sensi-
tivity analysis or the work of Chetto et al. [CC89, Si199, Che0S].

Theorem 25. The minimum idle interval X, determined by the DBFP approach for a constrained

deadline task-set is optimal.

Proof. Since sleep transitions are taken in idle intervals, only the critical instant has to be con-
sidered. Lemma 24 demonstrates that X, > Z,i, and the chosen sleep interval is safe i.e., no
deadline is missed in the resulting schedule. Hence, )i, is not optimistic. At the same time the
DBF based analysis demonstrates a concrete scheduling scenario. Thus, X, is clearly not pes-
simistic, as the derived value by the DBFP approach can actually occur. Since the derived sleep
interval X, is at the same time neither pessimistic nor optimistic, it is safe and optimal, thus the

theorem follows. O

Theorem 26. The procrastination interval determined by the DBFP approach for individual task

Xi in a constrained deadline task model is optimal.

Proof. In this case, instead of considering the whole task-set 7, only the set of tasks with a priority
greater than or equal the current one are taken into account. Theorem 19 shows that it is sufficient
to consider only the set of deadlines after the first deadline of the task under analysis, including
the first deadline of the task as well. Afterwards, the proof follows the same principle as that
of Theorem 25 where the given procrastination interval has been shown neither optimistic nor

pessimistic. O

4.2 Alternative Real-Time Race-To-Halt Algorithms

The procrastination scheduling in general can achieve long sleep intervals to save energy. The
need for external hardware is the major limitation that restrict its practical value. One of the way
to circumvent this issue is to determine the safe sleep interval such that it avoids any deadline
misses when used online to initiate a sleep state. This bound ensures that no matter how many
tasks arrive during the sleep state, the system will still meet all deadlines. The minimum idle
interval or static sleep interval ), is the optimal safe bound on a sleep state that respects all the
temporal constraints of EDF and can be used for such purpose. The following lemmas demonstrate
that the schedulability of the system is preserved when the processor initiates a sleep state for static

sleep interval Xin.
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Lemma 27 ([RGROS]). A synchronous periodic task-set T is schedulable under EDF if and only if,
VL < L*, DBF(L) < L, where L is an absolute deadline and L* is the first idle time in the schedule.

Lemma 28. Initiating a sleep state for the static sleep interval Y, does not violate the EDF
schedule if and only if

VL<L*, DBF(L) + Ymin < L
Where L is an absolute deadline and L* is the first idle time in the schedule.

Proof. Let t be a time instant when processor transitions into a sleep state. To maximise the
system workload, assume a critical instant at time ¢ where all the tasks release their jobs and arrive
as soon as possible. The static sleep interval ¥,,;, can be modelled as the highest priority job
Jn,p- In an EDF scheduled system it is equivalent to a job with a deadline equal to the shortest
absolute deadline of any job, i.e.,d, =1+ Vr?,leqf D;. The job jj, , is co-scheduled with 7 at time ¢.
Assume, DBF*(L) is the new demand and it is equal to DBF(L) + Y, i.€.,increased over DBF(L)
by Xmin- The definition of ¥, = rvnérrl X can be rewritten as Y, = ern<irLl* (L—DBF(L)). The new
definition of ¥, implies that DBF*(L) = DBF(L) + Vl&i“ (L—DBF(L)) and it will not cross the
supply bound function L, i.e., DBF*(L) < L. It follows from Lemma 27 and DBF*(L) < L that the

schedulability of the system is always preserved. 0

The set of real-time race-to-halt algorithms presented in this section collects the available
resources (slack) and as the size of such resources becomes equal to or greater than the predefined
sleep interval, the processor transitions into a sleep state. Contrary, to procrastination scheduling
algorithm, in this case the sleep state is fixed and will not be extended during the sleep mode. Three
different energy management algorithms (enhanced race-to-halt algorithm, improved race-to-halt
algorithm and light-weight race-to-halt algorithm) are proposed to increase the energy efficiency

of embedded systems using alternative race-to-halt strategy followed by a sleep state.

4.2.1 Enhanced Race-To-Halt Algorithm (ERTH)

It is a server based techniques based on RBED framework [BBLB03]. The RBED framework
allows temporal isolation between different task types (RT and BE tasks). This algorithm consid-
ers both RT and BE tasks. The execution slack and static slack are managed explicitly in ERTH.
Nevertheless, the effect of the sporadic slack is considered implicitly. The slack management
algorithm presented in Section 3.1.5 is used to collate the execution slack. In this slack manage-
ment algorithm, a second method is used in the slack preservation phase, i.e., on every scheduling
event, if the deadline of the execution slack is less than or equal to the deadline of the job to be
scheduled then the available execution slack can be added to the job’s budget. However, all the
energy management algorithms proposed in this section do not depend on our slack management
algorithm presented in Algorithm 1. Any existing slack management algorithm can be integrated
with minimal effort into these algorithms. Nevertheless, the proposed slack management algo-
rithm has low overhead (spatial/temporal) that makes it an attractive alternative. In the proposed

ERTH algorithm, the state of the processor is divided into three types, 1) a processor is idle, 2) a



68

Unicore Power Management

Algorithm 2 Enhanced Race-To-Halt Algorithm (ERTH)

1: Offline
2: Compute Ymin
3: Find most efficient sleep state §, for Xmin,

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:

R A

Y Sleep States N : Ymin > bety,
Minimise {(Xmin X Py) + (tswy, X (Ps — Py))}
Let o be the sleep interval such that ¢ = )i — tw),

Online
if (System is Idle) then
Manage Slack (Xmin)
=0
Mask-record interrupts and initiate Sleep
else if (Get Slack(j; x)> Xmin) then
if (RT Task) then
Manage Slack(Xmnin)
O=0
Mask-record interrupts and initiate Sleep
else if (BE Task) then
Compute ¢
Manage Slack(p)
Set Sleep Time(¢);
end if
else
Race-To-Halt
end if

When Timer Expires
Unmask interrupts
if (Interrupts) then

Service the interrupts (Schedule the tasks arrived during sleep state)

else

W=o0

Mask-record interrupts and initiate a sleep state
end if

processor is executing the RT tasks or 3) a processor is executing the BE tasks. ERTH associates

three different principles corresponding to each state of the processor. These principles consider

the state of the processor (i.e., either the processor is idle or executing RT/BE task) and the capac-

ity of the available slack in the system to transition the processor into a sleep state. This algorithm

does not initiate a sleep state for less than the static sleep interval J,,;, to minimise the transition

overheads. The complete pseudo code of ERTH is presented in Algorithm 2. The commons sub-

routines (such as Manage Slack, Get Slack, Set Sleep Time and Get Next Release Time) shared

with other algorithms (improved race-to-halt algorithm and light-weight race-to-halt algorithm)

are given in Algorithm 3.
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Algorithm 3 Common Routines for ERTH, IRTH and LWRTH

1: Set Sleep Time(n))
2: V Sleep States N:1n > bet,
Minimise {(1 X P,) + (tsw, X (P —B,))}
3: O=n—tw,
Mask-record interrupts and initiate sleep state

B

Get SlaCk(ij)

if (d; ;. > S¢') then
return S$3°

else
return 0

10: end if

R A

11: Manage Slack(n)
12: if (n < S¥) then

13: S—=n
14: else

15: S$5=0
16:  S4=0
17: end if

18: Get Next Release Time(y)
19: V1, €71
20: return min{%;}

4.2.1.1 Principle 1 [Executing RT Tasks]:

The principle one applies on the RT (SRT or HRT) task type. If any job of a RT task is at the head
of the ready queue having deadline greater than or equal to the execution slack and S° > Xin,
a timer @ is initialised with the static sleep interval minus the wake-up transition-overhead time
(i.e., @ = Xmin — twy) and the processor transitions into a sleep state until the timer expires. In
case the available execution slack size Si° is less than Y, it is added to the budget of the job.
The processor executes the job at full speed with an expectation of collecting more slack in future

sufficient enough (i.e., greater than or equal to y,,;,) to initiate a sleep state.

Theorem 29. If the next job j i to execute in the ready queue at time instant t is of type RT (HRT
or SRT), while the execution slack has a size greater than or equal to the static sleep interval
(85 > Xmin) and the slack deadline is less than or equal to the absolute deadline d; of the RT
Jjob jix (Sz” < di7k), then the processor can initiate a sleep state for a static sleep interval of Ymin

without violating EDF schedulability.

Proof. Assume, the available execution slack S, at time 7 is modelled as a fake job jr; with a
budget and deadline equal to J,;, and S¥ respectively. The job j .k 1s co-scheduled with 7. We
need to prove jz is schedulable without causing a deadline miss in the schedule. Therefore, the

potentially affected jobs of 7 are split into two parts which are addressed separately: 1) Jobs not
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released yet, 2) Jobs in the read queue.

Case 1 (Jobs not released yet): This can be proven by contradiction. Assume, jy is scheduled
at time ¢ and there is a synchronous arrival of jobs corresponding to each task not yet released,
and any job misses its deadline. Lemma 28 states that all jobs released at critical instant can be
delayed for an interval of J,,;;, without any deadline miss, which is a contradiction. Therefore, all
the jobs not released yet can meet their respective deadlines.

Case 2 (Jobs in the ready queue): The principle 1 imposes a condition that a job jr, (execution
slack) has an earliest deadline when compared to the jobs in the ready queue at time ¢. Hence, the
job jrx can be scheduled first and will not affect any job in the ready queue.

As tasks in both cases do not violate the schedule, thus the theorem follows. UJ

4.2.1.2 Principle 2 [Executing BE Tasks]:

The principle 2 deals with the case, when the next job to execute at time ¢ is of type BE, then
Equation 4.27 is used to evaluate the length of a sleep interval. This equation (Equation 4.27)
computes the maximum feasible sleep interval between time ¢ and the deadline of the execution
slack. It is the minimum of the available execution slack and the shortest gap p. The latter (p
given in Equation 4.28) is computed as follows. The procrastination interval of a job j; i (or
maximum delay in j;;’s execution) at time ¢ is the difference of its absolute deadline d;; and
t+X, (ie., dix —t —X), where X is the remaining execution time of jobs having priority greater
than or equal to j;; (including the execution time of j; itself). This procrastination interval of
each job in an interval [¢,S%] having deadline 1 < d;; < S¢' is computed and minimum of them
gives a shortest gap p. The shortest gap p computed with Equation 4.28 assumes a synchronous
release of all the jobs not released yet. This equation ensures that a schedule at time ¢ can be
delayed for p time units without violating any deadline in an interval [t,S%]. However, it does not
guarantee about the schedulability of jobs at any time #' > S¢. The shortest gap p may contain
the processing time reserved for low priority jobs having deadlines greater than S¥. The amount
of execution slack available in the system gives us an upper bound on the sleep duration. To avoid
more complex schedulability checks, it is assumed a sleep interval is always less than or equal
to the available execution slack even if the available gap p is greater than the execution slack
Le., p > S§%%. Conversely, if p < S5, a sleep interval is obviously equal to the duration of p to
ensure the schedulability of the higher priority jobs when compare to execution slack. Therefore,
¢ finds the minimum between the available execution slack and the shortest-gap identified by p
ensuring the overall system’s schedulability. Once a gap ¢ in the schedule is identified, the timer

O is set for an interval of ¢ —tw),.

@ =min (8%, p) 4.27)
. 8k,m
Where, p = min 8km — {J x C; (4.28)
emev(st) | 7 jeV%k‘m) Tj '
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8km = djm —1 4.29)

V(x)={i:rig >t Ndiy <x} (4.30)

This approach of computing the sleep interval through Equation 4.28 has the following ad-
vantage. The sleep interval estimated ¢ is always greater than or equal to i, (i-€., © > Xmin) aS
it is assumed that ¢ is computed when S5 > Y. It is especially useful, when ), is very small

(i.e., high system utilisation). Let us demonstrate with the help of an example that ¢ > .

Example 4. Assume a task-set is composed of four tasks 1y = (2,8,8), 72 = (1,9,9), 13 = (5,12, 12)
and t4 = (3,14,14). 14 is a BE task while all others are RT tasks. The utilisation of the task-set
is 0.9921 and Xpin = 1 time unit. Figure 4.8 demonstrate a concrete schedule. Assume, T3 and 14
release their jobs j3 , and j4 4 at time instant 3. j3 , executes in an interval [3,5] and generates an
execution slack of 3 time units at time instant 5. The execution slack of size 3 can be store in the
slack container with its deadline 15. At time instant 5, j4 4 is ready to execute but the execution
slack is sufficient enough to initiate a sleep state as Sy > Xmin and ds g > S4. As the knowl-
edge about the previous release times of tasks is not assumed, therefore, a worst-case situation
is assessed by assuming a synchronous release of all tasks not released yet. The procrastination
interval of all the jobs having deadlines 5 < d; < 15 is computed. In this example, this interval
forajob ji xisequaltod) y— (t+X)=13—(5+2) = 6, similarly, a job j,, has procrastination
interval equal to dry — (t +X) = 14— (5+2+1) = 6. Hence, p = min{6,6} = 6 and the sleep

interval @ = min{3,6} = 3, which is greater than the static sleep interval Y.

Interval
jl,x
A
J2y

B R O I

J3.p S,
B Ly rrrrrryd
sl RN |
3 5 7 8 13 14 15 17

Figure 4.8: Example to illustrate that ¢ > X, with a task-set composed of 7, = (2,8,8), 7, =
(1,9,9), 13 = (5,12,12), 14 = (3,14, 14) and Ynin = 1

Another way to visualise the working of Equation 4.28 is through DBF. Assume a synchronous
arrival of all higher priority tasks at time instant ¢ not released yet and compute the demand bound

function including the demand of the tasks in the ready queue within an interval of [t,Sg” ] . The
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minimum gap p is the shortest distance between the demand and the supply bound function (SBF).
One can also use Equation 4.27 to compute the sleep interval for principle 1. However, it is avoided
due to two reasons. Firstly, to reduce the complexity of the scheduler. Secondly, the extra time
taken in the computation of Equation 4.27 can be borrowed from the BE task’s budget. In this

work, it is assumed that computation time of Equation 4.27 is negligible.

Theorem 30. If the job to execute in the ready queue is of BE type and the execution slack is
greater than or equal to the static sleep interval (S5* > Yin) with a deadline less than or equal to
the absolute deadline of the BE job (Sg” < dl-,k), then the processor can initiate a sleep state for @
without violating any deadlines under EDF.

Proof. In this case the available sleep interval is not defined offline, rather computed online. To
prove that a processor can initiate a sleep state for an interval of ¢ without violating any deadline,

7T is segregated into four parts. The schedulability of each part is proven individually.
1) Vji has not yet been released and d; ; < Sé”

2) Vjix has not been released and d; , > Sg”

3) Vjix is in the ready queue

4) Vji has already completed

Let p define the maximum available interval by which the higher priority jobs can be delayed at
the current instant ¢. p is computed by Equation 4.28 considering each deadline within an interval
of [t, S‘e”]. In principle, it performs a limited demand-bound analysis for the defined interval to
calculate the shortest gap p. Since there is a possibility to get a delay larger than the available S37,
Equation 4.27 guarantees that a processor is not delayed more than available execution slack. Let
us model a sleep interval as a fake job j;; with a deadline equal to S4. Equation 4.28 implies
scheduling jr, for not more than p does not affect the schedule of any job j;, that is not yet
released and has a d; ; < S, Moreover, the execution of j is restricted to S$* with Equation 4.27.
This ensures that any job j; ; not released yet with d; ; > S4 will not be affected. Equation 4.30
excludes all jobs j;x such that d;; <t. Similar to Theorem 29, the schedulability of all jobs in
the ready queue is not affected as well, as they have a deadline later than that of j;. Any jobs
already completed, are obviously unaffected. As none of the task in 7 miss their deadline, hence
the theorem holds. 0

4.2.1.3 Principle 3 [System is Idle]:

In the idle mode, a processor initiates a sleep state for a duration of )i, —twy,. AS Xmin is computed
offline considering the worst-case scenario in the schedule, therefore, initiating a sleep state for
Xmin — twy, during idle mode will not affect the schedulability in any circumstance. The processor is
not allowed to prolong the sleep state beyond the static sleep interval to preserve the schedulability.
While, ¢ can also be used to increase the sleep interval but it will also substantially increase the

complexity of the algorithm.
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Theorem 31. If the system is idle and the available execution slack size S} that may be less than
the static sleep interval Y, is consumed first, then the processor can initiate a sleep state for the

static sleep interval Xy, without violating the EDF schedulability.

Proof. The proof of the Theorem 31 follows the same reasoning of Lemma 28. 0

Practical Issues: Now we discuss about some practical issues relevant to this algorithm. Let
Isieep 18 the time interval selected for the processor to initiate a sleep state through any of the
principles explained above. The timer value is set to @ = fgeep — twy. The sleep state initiated
through any of these principles restricts the processor to wake up until the timer expires. It is
assumed that all interrupts bar the timer interrupt are disabled on initiating a sleep state and re-
enabled on the completion of the sleep. In many CPUs separate interrupt sources can be used for
this. As usual with such disabled interrupts, events occurring during the sleep interval are to be
flagged in the interrupt controller for processing after the interrupts are re-enabled.

Pessimism involved in ERTH: The ERTH algorithm is agnostic to the future release pattern
of the tasks. It assumes a critical instant on each sleep transition. As such, each sleep state interval
is estimated assuming a synchronous release of all higher priority tasks. For instant, in calculation
of ¢, the scheduler assumes synchronous release of all those tasks having deadlines earlier than
the current deadline of the execution slack. Similarly, in principle 3 (idle mode), a synchronous
release of all tasks is assumed at the instant of sleep transition. The critical instant occurs rarely,
if ever, in reality. However, ERTH has to consider this pessimistic condition to guarantee the

schedulability of the HRT tasks. This pessimism results in a sub-optimal sleep interval.

4.2.2 Improved Race-To-Halt Algorithm (IRTH)

All the pessimism in ERTH can be reduced by knowing the future release information of the task-
set. As sporadic task model is assumed, it is not possible to predict exact future releases of all
tasks. In the sporadic task model, a new job of a task can only arrive after 7;. Therefore, the future
release time can be approximated by storing the past release information. While, this method can
partially reduce the pessimism due to the nature of the sporadic task model introduced in ERTH but
cannot eliminate it entirely. The IRTH algorithm maintains an array of future release information
Y with a size equal to the number of tasks ¢ in the task-set. On every job arrival, it updates its
future release time ¥; by adding 7; in its current job release time r;  (i.e., % = rix + T}).

The pseudo code of the IRTH algorithm is presented in Algorithm 4. The three basic principles
corresponding to the different states of the processor (idle, executing RT or BE) stay the same.
However, the sleep interval estimated in principle 2 (executing BE task) and principle 3 (idle
mode) improves over the ERTH algorithm. In idle mode, the scheduler finds the next earliest
release Y.y in the future from its future release information array 7. This information assures that
there is no release in an interval [t, %,y ), hence, a sleep interval can be extended from Y, to

Xmin + Ynext —t Without violating any deadline.
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Algorithm 4 Improved Race-To-Halt Algorithm (IRTH)

1: Offline
2: Compute Ymin
3: Find most efficient sleep state §, for Xnin:
Y Sleep States N : Yin > bety
Minimise {(Xmin X By) + (tswy, X (Pa —P,))}
4: Let o be the sleep interval such that 6 = )i, —twy,

Online
if (System is Idle) then
Manage Slack(¥min)
Ywexr = Get Next Release Time(7)
Set Sleep Time(Vyexr —t + Ximin)
10: else if (GetSlack(jix) > Xmin) then
11: if (RT Task) then

R A

12: Manage Slack(Xmnin)
13: Timer =0

14: Mask-record interrupts and initiate a sleep state
15: else if (BE Task) then
16: Compute ®

17: Manage Slack(w)
18: Set Sleep Time(w)
19: end if

20: else

21: Race-To-Halt

22: end if

23: On release of 7;
24: Update 7;’s next predicted arrival time in the future release array yi.e., ¥, =rix+ T;

25: When Timer Expires

26: Unmask interrupts

27: if (Interrupts) then

28: Service the interrupts (schedule the tasks arrived during sleep state)
29: else

30: Timer =0

31: Mask-record interrupts and initiate a sleep state

32: end if

Theorem 32. If the processor is in idle mode at time instant t and the earliest possible releases
of all tasks vy after t is available, then the processor can initiate a sleep state for a duration of

Xmin + Vnext —t, without violating any deadline under EDF scheduling algorithm.

Proof. Consider ¥,y is the next release of any task in 7. ¥,y is assumed to be the critical instant
that leads to the longest busy interval (assuming synchronous releases) in the schedule (though
that may or may not occur at this point). As there are no releases in the interval between ¢ and

Yeext» the schedulability of the system is not affected, however, scheduler needs to check for the
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schedulability of the task-set T for any time ¢’ > .. The schedulability of the system for ¢’ fol-
lows directly from Lemma 28. Hence the schedulability of the overall schedule will be preserved

under this sleep condition. O

The sleep interval in principle 2 (executing BE task) can also be improved by exploiting the
future release information. Equation 4.28 used in ERTH to compute the sleep interval in principle 2
is equivalent to the limited demand bound function. It assumes a critical instant at time ¢ with a
synchronous release of all jobs not released yet having deadline less than or equal to S¥. The
jobs of the tasks awaiting in the ready queue are not are included in this analysis because by the
definition of principle 2, they have deadlines later than S¢/. The offset of ¥; — ¢ can be safely added
to the first job of all those tasks having future releases and deadlines in an interval [t, S¢/]. The
offset is only added if the 7; corresponding to 7;’s instance is greater than ¢, otherwise, it is assumed
to be 0. The offsets greater than O shifts the jobs deadlines accordingly — which may or may not
shift the last job deadline of some tasks outside the interval [¢, S¢']. If some of the jobs deadlines
move outside the interval, the demand requested by the system in the interval [t, S¥] is decreased.
Which in turn increases the possibility to get larger sleep interval compared to the conservative
approach used in ERTH. The schedulability of the system in principle 2 with this new amendment
is proved in Theorem 33. The IRTH algorithm is promising but it also has an extra online overhead

when compared to ERTH (online/offline overheads are discussed in Section 4.4.1).

Theorem 33. If the task to execute in the ready queue is of BE type and the available execution
slack is greater than or equal to the static sleep interval S3° > Ymin With a deadline less than or
equal to the BE job S < d; x and the earliest estimated future release of all tasks y is known at the
time of initiating a sleep state, then the sleep state can be initiated for a time interval ® without

violating any deadline under the EDF scheduling algorithm.

® = min (8, 9) (4.31)

Where, ~ ®= min {gu— Y {MJ % Cj (4.32)
VT e L T

8km = dgyn —1 (4.33)

V(x)=i:rig>tAdig <x (4.34)

Proof. In order to prove the schedulability, 7 is segragated into following six parts. The schedula-

bility of each part is proved individually.

1) Vjx already completed

2) Vjix released earlier than 7 and has Sg” >dix >t
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3) Vjix released earlier than r and has d; ; > Si”
4) Vj; that will be released after # with an initial offset of y; and has d; ; < Sg”
5) Vjix that will be released after r with an initial offset of y; and has d; ; > Sffl

6) Vjix that will be released after Sffl

The term ¥ given by Equation 4.32 estimates the worst-case response-time of all jobs in an
interval of [¢,5¢/] having release times in an interval of [¢,5¢') and deadlines in an interval of
(t,59]. Moreover, it returns the feasible interval for the sleep state at time instant . Assume,
a sleep state is modelled as a fake job j; with a deadline 89" and budget S%%. The sleep state
cannot be initiated for more than S¥%, as it might jeopardise the schedulability of the low priority
tasks. With this restriction, scheduling the fake job j;; will not affect the jobs of category 1,3,5
and 6 considering the EDF algorithm. Equation 4.34 eliminate all these jobs from the analysis.
The principle 2 is only invoked when the task to execute in the ready queue has d;; > S4. This
restriction is imposed by the slack management algorithm. Hence, jobs with a category of 2 do
not exist and are thus removed with this restriction from the analysis. The schedulability of the
jobs in the category 4 is individually ensured with the Equation 4.32. Equation 4.32 can produce
a sleep interval larger than S;°, but it is assumed that the budget of a fake sleep job j/ is equal to
S5¢. Therefore, its size is restricted to S3° with the use of Equation 4.31. As none of the tasks in T

misses its deadline, the theorem holds. O]

Algorithm 5 Light-Weight Race-To-Halt Algorithm (LWRTH)

1: Online

2: if (System is Idle) then

3: Yew =Get Next Release Time(7)
4: Set Sleep Time(Vyexr —t + Ximin)
5: else

6: Race-To-Halt

7: end if

o]

On release of 7;’s instance
9: Update 7; next predicted arrival time in the future release array yi.e., ¥ = rix +1;

10: When Timer Expires
11: Unmask interrupts
12: if (Interrupts) then

13: Service the interrupts (schedule the tasks arrived during sleep duration)
14: else

15: Set Sleep Time(Xmin)

16: Initiate a sleep state

17: end if
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4.2.3 Light-Weight Race-To-Halt Algorithm (LWRTH)

The light-weight race-to-halt algorithm (LWRTH) proposed in this section only initiates a sleep
state in the idle mode of the processor. A sleep state is initiated using principle 3 of the IRTH al-
gorithm. This algorithm does not require any slack management scheme but still performs slightly
better than ERTH and marginally lower than IRTH. LWRTH has lower online complexity when
compared to IRTH but is inferior (performance-wise) against it at high utilisations. Nevertheless,
LWRTH needs to maintain a list for the predicted future release information of tasks that adds
extra online overhead and does not give us full control over the sleep transition which might not
be helpful in a thermal-aware system design. For instance, if the system crosses the maximum
temperature threshold in the middle of the execution phase, LWRTH has no way to slow down or
stop its execution. Furthermore, LWRTH performs worse compare to ERTH when it comes to the
number of pre-emptions for small task-set sizes (discussed in Section 4.4.4). The pseudo code of
LWRTH is given in Algorithm 5.

4.3 Effect of Sleep-States on the Number of Pre-emptions

A pre-emption is counted when the execution of the job is suspended by a higher priority job.
Assume, a synchronous releases of one higher and one lower priority jobs. In this scenario, the
higher priority job executes first and the pre-emption is not counted as the lower priority job has not
yet started its execution. The number of pre-emptions poses a substantial overhead (time/energy)
on the running system. For instance, on resumption of a job the system has to pay the penalty
to reload the cache content displaced by a pre-emption. Access to off-chip memory is generally
very expensive when compared to on-chip caches or scratch-pad memory. Therefore, the system
designer has to reserve time for pre-emption related delays, which in turn also decreases the useful
system utilisation. A decrease in pre-emption count not only increases the usable system utilisation
but also reduces the energy consumption.

The power management algorithms discussed previously in this chapter affect the release be-
haviour of the system and subsequently the pre-emption relations between jobs. In this section,
the change in the behaviour of the system in terms of number of pre-emptions of jobs at runtime is

investigated. Jobs releases during sleep interval give rise to two conflicting scenarios given below.

1. On one side, the execution of job releases during the sleep-state interval are postponed and
constrained to a smaller window for execution. One could easily perceive that the number
of pre-emptions will rise, as delaying the execution of jobs increase the likelihood of higher
priority job releases. Therefore, in the presence of low priority jobs, the higher priority jobs

cause more pre-emptions.

2. On the other side, the interrupts that occur throughout the sleep state interval are served on
completion of the sleep interval. It is assumed a job release is triggered by an interrupt.

Therefore, job releases during sleep interval are collated and scheduled after the sleep state
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in priority order. Thus delaying new job arrivals and waiting for the higher priority job

releases during the sleep interval decreases the number of pre-emptions.

These two conflicting scenarios indicate positive or negative changes in the number of pre-
emptions. Considering the overhead of pre-emptions on the energy consumption and the system
utilisation, it is indeed an important issue to resolve which approach performs better. If the num-
ber of pre-emptions decreases, the overall energy consumption actually decreases more than just
the energy saved with sleep transition, as the overhead of pre-emptions is also reduced. Through
extensive simulations, it is shown in the results that on average-case, sleep states have a posi-
tive effective on the number of pre-emptions. The number of pre-emptions of different proposed

algorithms are analysed and compared against the state-of-the-art in results section.

4.4 Evaluation of CPU Power Management Algorithms

Initially, the complexity comparison of all the algorithms is presented in this section. An extensive
study is performed to compare the proposed algorithms against the state-of-the-art on different
parameters. This section only summarises and highlights the interesting results to increase the
readability of the thesis. The detailed discussion of the results is presented in Section A.3 for

interested readers to further explore the evaluation of the proposed algorithms.

4.4.1 Overhead Analysis

The complexity of the proposed algorithms is compared with LC-EDF, PROC and SRA, as they
are with their use of dynamic priorities closest to this work. As it has been discussed in Sec-
tion 4.1.1, all these algorithms (LC-EDF, PROC and SRA) initiate a sleep state in the idle mode.
The LC-EDF algorithm has a smaller number of sleep states when compared to EDF as it combines
several small idle intervals to initiate a sleep state for a long period of time. While in the sleep
state, on each higher priority (shorter deadline) task arrival, the LC-EDF algorithm recomputes
the new procrastination interval for that task, unless the schedule does not allow further procras-
tination. The online overhead of the LC-EDF algorithm depends on two main factors, 1) Number
of times a sleep state is initiated, 2) The overhead of each sleep transition. The first factor depends
on the total number of idle intervals in the schedule as LC-EDF initiates a sleep in idle mode.
However, the overhead of each sleep transition depends on the task-set size. The complexity of
each sleep transition in LC-EDF is O(£?).

The PROC method has an offline complexity of O(¢?). The DBFP approach has an offline

H
complexity of O(¢ X x), where x = Z — is the number of jobs in the hyper-period H. The online
vret

complexity of the DBFP approach and the PROC method is the same and equals to O(¢). The SRA
algorithm [JGO5] reclaims the execution slack from the schedule and uses it to further procrastinate
the sleep interval. In a nutshell, on every release of a task during the sleep interval, the scheduler

computes the available execution slack and compares it with the offline computed procrastination
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interval of that task. The maximum of these two values is considered while deciding on the
reinitialisation of the timer. DBFP or PROC can be used in the offline phase of the SRA algorithm
to compute the procrastination interval. The complexity to determine the available execution slack
for atask is O(¥). As both PROC and DBFP has an online complexity of O(¢), therefore, combined
with slack reclamation, the online complexity of the SRA algorithm is same as LC-EDFi.e., O(£2).

The alternative race-to-halt algorithms do not require any external hardware. The ¥, is used
in all alternative race-to-halt algorithms and the offline complexity of its computation is same as
presented for DBFP. The online complexity of ERTH can be divided into three different categories

based on its three different principles.

o Firstly, if the sleep transition is initiated through principle 1, it requires just one comparison

against the offline computed static sleep interval ,;,, i.e., O(1).

e Secondly, a sleep states initiated with principle 2 require the computation of ¢ in order to
obtain the maximum feasible sleep interval. The major overhead lies in the computation of
p that could be obtained either offline or online. Offline Method: The interval for computing
p offline is no more than the longest 7; in the task-set. Therefore, the maximum available
gap can be computed offline for each deadline and sorted in an increasing order by time.
The runtime overhead is to search the sorted array of maximum available gaps for each
given interval, which can be done in O(In(p)), where p is the number of intervals. Online
Method: The online complexity to compute p depends on the number of jobs in an interval.

The former method is used to compute p.

e Thirdly, in idle mode (principle 3), sleep state is initiated for J,,;, interval without any check.

Thus, sleep states initiated in idle mode do not have any online overhead.

Apart from its low complexity, the second advantage of ERTH is the existence of the fixed
sleep-interval at the sleep-state initialisation instant. Once the processor initiates the sleep tran-
sition, no matter how many tasks arrive during the sleep mode, it will wake up after a defined
limit (when the timer expires). The presented schedulability tests ensure that all jobs will meet
their deadlines. This mechanism simplifies the system implementation and eliminates a need for
external hardware to run the algorithm. Which in turn further reduce the complexity of the design,
as external hardware requires extra communication overhead and increases integration issues.

The online overhead of IRTH is similarly divided into three categories. If the sleep state
is initiated by a RT task (principle 1), its overhead is same as in ERTH principle 1, i.e., O(1).
However, in idle mode (principle 3), its complexity increases, as the algorithm has to search for
the earliest possible future release in an array of y. There are two ways to manage it. Firstly, a
sorted array of y can be stored and its first value can be used when the processor initiates a sleep
transition. Thus the complexity of maintaining the array on each job arrival is O(In(¢)). However,
when the processor initiates a sleep the overhead is low i.e., O(1). Secondly, ¥ can be stored with
respect to the task-ID and on each sleep invocation the algorithm traverses 7 to find the minimum

value. In this case complexity to update an array of v on each job invocation is O(1), however, each
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sleep transition has a complexity of O(¢). It is observed that the number of sleep transitions are
fewer when compared to the number of jobs invocations. Therefore, the second approach is used.
Thus the complexity of each sleep transition in IRTH through principle 3 is O(¢). The principle
2 of IRTH exploits the future release information (). Therefore, it is difficult to find the sleep
interval offline, and hence, estimated online on each sleep invocation. To compute the complexity

Tmux

of a sleep transition in principle 2, it is assumed @ = , where T, 1s the maximum and 7,,;,

is the minimum inter-arrival time in the task-set. Then the complexity of each sleep transition in
principle 2 is O(® x /), as in worst-case the scheduler has to check the all possible job releases
within T},

The online complexity LWRTH is low when compared to IRTH. LWRTH only initiates a sleep
state transition in idle mode. It relies on future release information array to maximise the energy
efficiency. Similar to IRTH, tasks are stored with respect to their ID’s and on each sleep invocation
the algorithm traverses Y. Therefore, each sleep transition happening in LWRTH has a complexity
of O(¥). This algorithm does not need any slack management algorithm, and moreover, its online
complexity to initiate a sleep transition is also low when compared to ERTH and IRTH. A system
designer needs to perform a careful evaluation, while selecting among the available algorithms.
IRTH clearly has the highest complexity when compared to ERTH and LWRTH but provides
the best energy efficiency among them. The complexity comparison of ERTH and LWRTH is
difficult. On one side, ERTH does not require to maintain a list of future release information,
while LWRTH requires information which needs to be updated on every task’s release. On the
other hand, LWRTH has lower sleep transition overhead when compared to ERTH and does not

exploit the execution slack generated from the slack management algorithm.

Parameters H Values ‘
Task-set sizes |t| € {10,20,...,50,...,100}

Toin € {30,40,...,100}

PUB € {1.1,1.2,...,1.5,...,5}
BCET limit C” € {0.2,0.25,...,1}

Sporadic delay limit I" € {0,0.05,...,1}

Table 4.1: Overview of simulator parameters used to evaluate demand bound function based pro-
crastination

4.4.2 Simulation Results of the DBFP Algorithm

The discrete event simulator SPARTS (simulator for power aware and real-time systems) [NAP11a,
NAP11b] discussed in Section 3.2 is used to evaluate the effectiveness of the DBFP approach.
SPARTS is used with the parameters mentioned in Table 4.1, where underlined values are the
default values if not mentioned otherwise in the description of the experiment. The parameters
C? and T are used to generate wide variety of different tasks and their subsequent varying jobs.
The periods of both BE and RT tasks are chosen from an interval, 7,,;,[1,PUB], where T,,,;, is the
lower bound and PUB (Period Upper Bound) is the variable used to define the upper bound on the
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interval. Each task-set with different parameters mentioned in Table 4.1 is simulated for 100 times
with different seed values to the random number generator and averaged. The simulation time of
each task-set is 100 seconds. All the tasks are assumed to have implicit deadlines (D; = T;).

The SRA algorithm [JG05] is an energy saving approach that takes procrastination intervals of
the tasks determined through Jejurikar’s method as an input. For a fair comparison, the same al-
gorithm is used by just replacing the input phase with DBFP determined procrastination intervals.
For simplicity sake, it is assumed that all the slack in the schedule (spare capacity) is reserved
for the shut-down of the processor. Both variations of SRA are implemented in SPARTS and
their sleep state is selected offline based on their respective minimum idle interval. It has already
been shown in the state-of-the-art that SRA performs better than LC-EDF, hence, this section only

considers SRA for the comparison.

| No| Power Mode || 1r, (us) | bety (us) | P, Waits) | Es, (uJoules) |
1. | Doze 5 225 3.7 42
2. | Nap 100 450 2.6 950
3. | Sleep 200 800 2.2 1980
4. | Deep Sleep 500 1400 0.6 5750
5. | Typical 0 0 4.7 0
6. | Maximum - - 12.1 -

Table 4.2: Different sleep states parameters

The power model used for simulations is based on the Freescale PowerQUICC III Integrated
Communications Processor MPC8536 [Sem]. The power dissipation values are taken from its data
sheet for different modes (Maximum, Typical, Doze, Nap, Sleep, Deep Sleep). The core frequency
of 1500 MHz and core voltage of 1.1 V is used for all the experiments. The transition overheads
are not mentioned in their data sheet, therefore, assumed values are used for four different sleep
states. The transition overhead of the typical mode that corresponds to the idle state in our system
model is considered negligible. The power values given in Table 4.2 sum up core power and
platform power dissipation. More details are available in the reference manual [Sem].

Figure 4.9 presents the gain of DBFP over SRA with respect to average sleep interval for
different values of U and PUB. The average sleep interval is computed by accumulating the idle
time in the scheduling and dividing it by the number of sleep intervals. The gain of DBFP increases
with an increase in system utilisation and PUB. At low utilisation DBFP and SRA have enough
slack to initiate long sleep intervals. However, an increase in system utilisation decreases the slack
and the procrastination-intervals lengths. Therefore, SRA starts to lose efficient sleep states at high
utilisation, causing its frequent switching. In the best case, increase in the average sleep interval is
approximately 75%. The gain in average sleep interval is also computed by varying the utilisation
against the BCET Limit C® as shown in Figure 4.10. Mostly, the gain occurs due to an increase
in system utilisation, while the variation in C” has a negligible effect as both algorithms use the
same mechanism to manage the slack. Similarly, the change in sporadic delay limit I" has been

investigated against different values of U. The effect of I" is negligible as well.
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Figure 4.11: Variation in | 7| (sleep interval)

The variation in task-set size is demonstrated in Figure 4.11 against different values of U.
The gain in average sleep interval increase with an increase in task-set size. In the best case (i.e.,
|T| = 100), the gain reaches 75%. The procrastination interval of a high priority task is always
bounded by the low priority tasks in the given task-set. The difference between the procrastination
intervals of different tasks between DBFP and SRA has a cascading effect. For instance, a low
priority task 7; having a procrastination interval Z; smaller than that of a high priority task will
have its Z; scaled down due to Equation 4.4. If Z; < x;, then not only the difference exists at level
T; but also V1 : k < i. A large task-set has high probability to get this cascading effect. The gain
in energy consumption of the processor is also analysed in idle mode. All the findings are similar
to the trends presented here (see Section A.2.3 for further details).

4.4.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms

The proposed alternative race-to-halt algorithms (ERTH, IRTH, LWRTH) are implemented in
SPARTS and compared against the state-of-the-art (SRA and LC-EDF). The LC-EDF algorithm
is included in this comparison as it has some interesting properties. The SPARTS simulator is
used with the parameters specified in Table 4.3. Though not a fundamental requirement of the

proposed algorithms, implicit deadlines D; = 7; are assumed for evaluation purposes. It is obvious
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Parameters H Values ‘
Task-set sizes |7] {10,50,200}
Share of RT/BE tasks § = {&;,&} || {(40%,60%),
(60%,40%) }

Inter-arrival time 7; for RT tasks [30ms, 50ms]
Inter-arrival time 7; for BE tasks [50ms, 1sec]
Sporadic delay limit I" € {0.1,0.2}
BCET limit C? 0.2

Sleep threshold W, in {1,2,5,10,20}

Table 4.3: Overview of simulator parameters used to evaluate alternative race-to-halt algorithms

that D; > T; leads to greater saving opportunities, but does not provide greater insights. In total,
1020 different task-sets configurations (CP,T,U;,- - etc) are generated. The same power model
(based on the Freescale PowerQUICC III Integrated Communications Processor MPC8536 [Sem])
specified in Table 4.2 is used in these simulations.

A vast variety of CPUs are available in the market. They have diverse hardware architectures
and consequently different power characteristics. In order to observe the effect of different types of
hardware platforms on the proposed alternative race-to-halt algorithms, different power parameters
of the processor are generated. In the system model, active and idle time of the CPU remain
constant for a specific task-set. As the total energy consumption is normed, the factor among the
power model parameters that affects the energy gain of an algorithm is the overhead of the sleep
transitions. However, the overhead of the sleep transition is modelled by the break-even-time of
the sleep state. Therefore, the power model parameters are altered to generate a distinct BET
such that it is a multiple of the original BET by a factor of x. The different break-even-times are
represented with W, called sleep threshold (Table 4.3). The sleep threshold with a value of x = 1
denotes the BET of the original power model and this is a default value.

The overhead of all the algorithms including procrastination algorithms (LC-EDF and SRA)
is considered negligible. This is obviously a favourable treatment for LC-EDF and SRA, as the
time/energy overhead of the external specialised hardware is substantial. SPARTS takes into ac-
count the effect of the sleep state transition delays and its energy/time overhead is included in the
power model. Each point in the figure present results averaged over 100 runs with different respec-
tive seed values as well as all different free parameters. As baseline, ERTH is simulated without
the use of sleep states (NS) — processor uses typical power in idle mode — and all the results are
normalised to the corresponding results of NS. The RBED framework is used for the integration
of applications with different criticality levels and this framework allows an overrunning job to

borrow from its future invocations [LB05]. Two different scenarios are explored.

4.4.3.1 Scenario 1 (A; =C;,V task types)

In this scenario both task classes (RT and BE task) are assumed to have A; = C;. Moreover, I

is assumed for all experiments as the difference is marginal when compared to I'o;. The total
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Figure 4.12: Normalised total energy con- Figure 4.13: Gain of ERTH and SRA over
sumption (&; and || = 200) LC-EDF for different task-set sizes

energy consumption of ERTH is compared against LC-EDF and SRA for a task-set size of 200
and a task distribution of &; in Figure 4.12. Overall, ERTH outperforms LC-EDF, particularly at
high utilisations as the maximum feasible idle interval (procrastination interval) computed by the
LC-EDF algorithm shrinks restricting the use of efficient sleep state. Both SRA and ERTH exploit
execution slack. SRA performs comparable to ERTH except at high utilisations where the savings
of ERTH are larger when compared to SRA. This is motivated by the following observations.
Firstly, the resulting utilisation is less than the target utilisation by a very small factor of € due
to numerical rounding of the parameters used to generate a task-set. The secondary effect is the
diversity in periods of task-set that rarely aligns and as a result the hyper-period of the given
task-set is very long. Therefore, at high utilisations, the use of the demand bound function yields
an actually usable ¥, due to the disparity of periods and deadlines. The same experiment is
repeated for a distribution of &, and the processor consumes approximately 1% more energy when
compared to &;. In ERTH, it is due to the lesser usage of principle 2, as the system has fewer BE
tasks in &. The LC-EDF and SRA algorithms depend on the period of the tasks. Extra tasks with
long periods result in greater opportunities to save energy, therefore, & consumes slightly more
energy when compared to &;.

An interesting observation may be noticed in the total energy consumption of LC-EDF: fine-
grained large task-sets consume more energy when compared to the coarse-grained small task-sets
at the same utilisation. Each procrastination interval computation shortens the sleep interval in
LC-EDF and the large task-set increases this probability (for detailed analysis see Section A.3.2.2).
Oppose to LC-EDF, the task-set variation does not affect the total energy consumption ERTH,
IRTH, LWRTH and SRA. The overall-gain of ERTH and SRA over LC-EDF for three different
task-set sizes with a distribution of &; is depicted in Figure 4.13. In general, SRA and ERTH
save more energy compared to LC-EDF. There is one exception at U < 0.2 for |t| = 10 in which
the energy saving of LC-EDF negligibly dominates ERTH. SRA saves approximately 1% more
energy when compared to ERTH at low utilisations and its performance degrades towards high
utilisations. If the energy consumption of the external hardware is more than 1% of the saving, then

ERTH is still a better approach in terms of energy saving due to lower complexity when compared
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Figure 4.14: Overall-gain of IRTH and Figure 4.15: Sleep threshold effect on total en-
LWRTH over ERTH (&) ergy of ERTH (|7| = 50 and &)

to SRA. For all three different task-set sizes, the gain of & dominates &; and this difference is
negligibly small. Similarly, the gain in idle interval of these algorithms is also analysed, which

leads to the same conclusions discussed here (see Section A.3.2.4 for detailed discussion).

The improved slack management approach used in SRA is also integrated with ERTH for the
fair comparison. The gain of the ERTH algorithm with improved slack management over ERTH
with simplistic slack management approach proposed in this work in the current experimental set-
up is negligible. The reason behind such a behaviour is the fact that better slack distribution plays
an important role for DVFS based algorithms, where the slack distribution among different tasks
is important. However, when it comes to race-to-halt algorithms, slack accumulation is important
than better slack distribution. The overall-gain of IRTH and LWRTH over ERTH is illustrated in
Figure 4.14 with a &, and I’y ;. In general, the gain of IRTH and LWRTH decreases with in increase
in task-set size and system utilisation as the future release information becomes less effective. The
average sleep-interval ERTH, IRTH and LWRTH is also analysed against SRA and LC-EDF, and

all the results corresponds to the aforementioned findings (see Section A.3.2.7).

To analyse the effect of different types of hardware platforms, the effect of a high sleep thresh-
old W that indicates the scaled value of bet, obtained by altering the power model parameters is
studied for ERTH, IRTH, LWRTH, SRA and LC-EDF for two different distributions of &; and &,.
Figure 4.15 presents the total energy consumption of ERTH for different values of ¥ with || = 50
and &;. Naturally, an increase in bet, is also reflected in higher overall energy consumption as de-
picted in Figure 4.15. IRTH, LWRTH , SRA and LC-EDF have the similar results (with some
scaling) for the different values of ¥. A comprehensive analysis is presented Section A.3.2.8 that
discusses all the details of variation in sleep threshold among different algorithms. Moreover, the
effect of sleep threshold on different task-set sizes is also analysed for all algorithms. High sleep
threshold manages to split the energy consumption of different task-set sizes at same utilisation
(further details are available in Section A.3.2.8). Similarly, the effect of ¥ is also analysed for a
distribution &, with all task-set sizes and it results in an increase in the total energy consumption

due to reduced share of BE tasks.
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Figure 4.16: Normalised total energy con- Figure 4.17: Overall-gain of IRTH and
sumption with || =200 and &, LWRTH over ERTH (§; and Iy )

4.4.3.2 Scenario 2 (RT = (A; =C;),BE = (A; < (;))

In this scenario, BE tasks are allowed to occasionally require more than their allocated budget A;.
The mean of the BE tasks actual-execution-time distribution is set to 85% of A;. All algorithms
(ERTH, IRTH, LWRTH, SRA and LC-EDF) have been extended and allowed to borrow from the
budget of future job releases of the same task. While it was of little consequence in scenario
1, it has to be noted that in scenario 2, ERTH and IRTH do not allocate execution slack to BE
tasks. BE jobs usually overrun their budget and borrow from their future jobs, and hence, they are
likely to consume the slack. However, the execution slack is only retained for energy management
purposes. Thus, if the next job to execute is of BE type, the execution slack is maintained in
the slack container and its deadline is updated as follows: S¢/ = max{SZl,dhk}, where d; i is the

absolute deadline of the BE job under consideration.

The total energy consumption of ERTH, SRA and LC-EDF in this scenario is analysed for two
different sporadic delay limits (I'g.1,I2) and two different distributions (&;,&,) with || = 200.
Figure 4.16 demonstrates the effect of a variation in the sporadic delay limit for a distribution
of &;. For the sake of clear representation, all the values of Figure 4.16 are normalised to the
corresponding results of NS with a distribution of I'g ;. I'g; and Iy, define an interval of 10%
and 20% of T; respectively for the sporadic delay to maneuver for a task 7;. The expansion of
this interval means extra sporadic slack in the system when compared to the nominal utilisation.
The sporadic slack is dealt implicitly in the proposed algorithms. Therefore, energy consumption
is less with I'o, when compared to I'p | as shown in Figure 4.16. Similarly, SRA and LC-EDF
also have more room to initiate a sleep state as well. The same experiment is repeated with &,
where the energy consumption of all algorithms decreases, the reason of which is explained in
conjunction with the next experiment.

The energy consumption of two distributions (&;,&,) is studied with a fixed task-set size of
|T| =200 and I'p ;. The resulting figure (not shown here) has a similar shape when compared to
Figure 4.16 but the different between &; and &, is slightly more pronounced. The energy con-
sumption of SRA, LC-EDF and ERTH is reduced for & when compared to &;. The percentage



4.4 Evaluation of CPU Power Management Algorithms 87

of BE tasks in &, is reduced to 40% that results in less borrowing and consequently, &, consumes
less energy when compared to &;. Nevertheless, ERTH outperforms LC-EDF and comparable to
SRA in both distributions (&, &), even with the borrowing mechanism integrated. The energy
consumption of all algorithms decreases, when the same experiment is performed with Iy, due to
extra sporadic slack in the system. Moreover, it is also observed that the energy consumption of
IRTH and LWRTH is similar to ERTH for the above mentioned two experiments as the borrowing

effect dominates the total energy consumption.

The overall energy consumption gain of ERTH and SRA over LC-EDF is analysed in this sce-
nario for three task-set sizes (|7| € {10,50,200}) with two different distributions (&; and &) and
sporadic delay limits ( I'g;; and I'g»). The graphs are similar to the one presented in Figure 4.13.
The gain with Iy, is greater than I'y | especially at high utilisations. Similarly, the gain with & is
less than &,. In general, the overall-gain of ERTH and SRA over LC-EDF in this scenario is less
than the overall-gain in scenario 1 at higher utilisation but approximately the same at lower utili-
sations. The overall energy gain of IRTH and LWRTH over ERTH is depicted in Figure 4.17 for
&1 and Ty ;. Compared to Figure 4.14, the overall gain has reduced in scenario 2. Moreover, IR-TH
and LWRTH behave identical when borrowing is enabled. Main reason is the extra execution re-
quested by the BE task through borrowing i.e., an increase in effective utilisation. The normalised
sleep state energy consumption of scenario 2 is similar to scenario 1. Moreover, the higher sleep
threshold effect in scenario 2 is also identical to scenario 1 for IRTH, LWRTH, LC-EDF, SRA
and ERTH with just one difference, i.e., energy consumption of the system increases in scenario 2.
To summarise, for different combinations of & and I, an increase in gain occurs in the following
ascending order (£,,102), (&2,T0.1), (§1,T02) and (&1,T0.1).

4.4.4 Pre-emptions Related Results

A side effect of the use of the sleep states is a change in the number of pre-emptions. In order to
find the sleep state relation with the number of pre-emptions, the pre-emptions for all algorithms
(ERTH, IRTH, LWRTH, SRA and LC-EDF) are counted for different parameters. The DBFP is
not included in this evaluation as it is easier to get the trend based on the results of LC-EDF and
SRA. The experimental setup defined for alternative race-to-halt algorithms and the parameters
defined in Table 4.3 remain the same except some alterations in best-case execution-time limit
C" and sporadic delay limit I. The best-case execution-time limit C” is varied from 0.25 to 1
with an increment of 0.25 (i.e., C* € {0.25,0.5, 0.75,1}). Similarly, the sporadic delay limit I" is
varied from 0 to 0.6 with an increment of 0.2 (i.e., I € {0,0.2,0.4,0.6}). For the representation
purposes, only the two corner values for I = (0,0.6) and C® = (0.25, 1) are plotted, as the results
for the other two values lies in between these two curves and scales linearly. All the values in the
following experiments are normalised to the number of pre-emptions with earliest deadline first
algorithm (EDF). The results shows that the pre-emption count for LWRTH is virtually identical
to IRTH, therefore, for presentation purposes only results of IRTH are shown hereafter.



88 Unicore Power Management

3 *ERTH, C°=0.25 Y
OERTH, cP=1

012 “IRTH, C°=0.25 * 0.95-
S ~IRTH, C°=1 5
‘g A ALC-EDF, (°=0.25 ‘g 1
81-1* LC-EDF, =1 3 0.9, - Bl
a KSRA, CP=0.25 IS +ERTH, cb:o.zs
kS] ¥SRA, C=1 5 OERTH, c’=1
5 & 5085 “IRTH, c"=0.25
2K £ -IRTH, C°=1
2 3 ALC-EDF, c°=0.25

0. 08 LC-EDF, =1

1 SRA, C°=0.25
0.8 ‘ w ‘ ‘ 0.75 ‘ ‘ WSRA, CP=1
02 03 04 08 09 1 g2 03 04 08 09 1

05 016” (_)17 05 016” Qi?
System Utilisation System Utilisation

Figure 4.18: Variation in C? for |t| = 10  Figure 4.19: Variation in C” for |7| = 50
To2,61) To2,61)

4.4.4.1 Scenario 1

In this scenario, it is assumed all the tasks have A; = C;. The effect of best-case execution-time
limit variation for task-set sizes of 10 and 50 are presented in Figure 4.18 and Figure 4.19 respec-
tively with Iy » and &;. Overall all scheduling algorithms showed a positive impact of sleep states
on the number of pre-emptions, except for one case in LC-EDF at U = 0.2 and in SRA at U <0.45
for a small task-set size of 10. With a small task-set size, jobs releases are anyway dispersed at low
utilisation. SRA and LC-EDF initiate a sleep state in idle mode, start estimating the delay interval
on the next job release and extend it as much as possible. This behaviour causes widely spread
low priority jobs at low utilisation to come closer to high priority jobs and hence increase the pre-
emption count. Moreover, at low utilisation, in EDF the number of pre-emptions are small and
the use of sleep states cannot help much to reduce them. For |7| = 50, LC-EDF, ERTH and IRTH
have fewer number of pre-emptions with C” = 0.25 when compared to C® = 1 at all utilisations,
while this observation only holds at high utilisations for SRA. Another observation for a small
task-set size of 10 is the positive impact of C” = 0.25 over C” = 1 that holds at all utilisations for
LC-EDF and ERTH, and only at high utilisations for SRA and IRTH. A small value of C” has the
high potential to generate execution slack and increases the chance to initiate sleep states leading

to a reduced number of pre-emptions.

IRTH (in Figure 4.18) and SRA (in Figure 4.18 and Figure 4.19) show an oddity at low utili-
sations, as C® = 1 has fewer pre-emptions compared to C? = 0.25. In IRTH algorithm, sleep states
are increased by utilising predicted future release information. Future release information is very
useful especially to prolong the sleep interval for a small task-set size at low utilisations. It can be
easily motivated by the curve of Figure 4.14 that IRTH saves more energy at low utilisations for a
task-set size of 10 due to extensively long sleep intervals. Similarly, SRA sleep intervals are even
greater than or equal to all the algorithms. As a side effect of long sleep intervals, they assemble a
large amount of work for later execution. This delayed execution later on encounters high priority
tasks and causes additional pre-emptions. However, if the encountered high priority tasks execute

for their C;, the chances are higher that it might accumulate other tasks having priority higher than
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the backlog and less than the encountered high priority tasks. These intermediate priority tasks
will not cause pre-emptions to a backlog. This effect causes the flip of C” = 0.25 over C* = 1 for
low utilisations.

The effect of variation in sporadic delay limit I" is illustrated in Figure 4.20 for a task-set
|T| = 50 and a distribution of &;. All algorithms consume sporadic slack implicitly. An increase
in the sporadic delay limit causes an increase in sporadic slack and that can increase the number
and/or prolong the sleep transitions. Similar to the execution slack, sporadic slack also helps
to decrease the number of pre-emptions for all algorithms at all utilisations except for SRA at
low utilisations. As mentioned previously, the widely spread out jobs in the EDF schedule are
unlikely to preempt each other but SRA brings these jobs close to such a degree that they result
in an increased number of pre-emptions at low utilisation. In general, it has been observed with
our experimental setup that whenever there is a possibility to increase the length of a sleep state
(either through execution slack or sporadic slack) at low utilisations, SRA increases the number
of pre-emptions. The same experiment is repeated for a task-set size of 10 and it leads to the same
findings. The effect of variation in the distribution & is also studied for |t| € {10,50}, 'y, and
C? =0.5. In general, &, saves more pre-emptions when compared to &; for all the algorithms. BE
tasks are more vulnerable to pre-emptions as they have longer periods along with their execution.

Therefore, & having more BE tasks results in more pre-emptions, when compared to &,.

4.4.4.2 Scenario?2

In this scenario, BE jobs occasionally require more than their respective budget and borrow from
their future job releases. The effect of variation in the best-case execution time limit C? is inves-
tigated for |7| € {10,50}, Iy and &;. Figure 4.21 depicts the results only for a || = 50. One of
the interesting observation that holds for all algorithms for all task-set sizes is that with borrowing
Cb =1 offers fewer pre-emptions when compared to C” = 0.25. Because of the borrowing, BE
tasks add a great deal of backlog in addition to a backlog assembled due to sleep transitions. There-

fore, it increases the probability to encounter higher priority tasks. Similar to the case explained
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for IRTH (U < 0.5) in Figure 4.18, if the encountered higher priority tasks execute for their C;,
chances are higher that they will collect some of the tasks having priority in between backlog and
the higher priority executing jobs. Thus C” = 1 offers fewer pre-emptions compared to C* = 0.25.
A further experiment explores a variation in the sporadic delay limit I" for all task-set sizes. The
results show an increase at low utilisations when compared to a system without borrowing. More-
over, SRA with borrowing in the system saves more pre-emptions with an increase in the amount
of sporadic slack. Thus, the number of pre-emptions is higher for I'y when compared to I'g 6. The
variation in the distribution of task-set & also increase the number of pre-emption when the bor-
rowing is allowed in the system. BE tasks that overrun demand extra execution and hence more
pre-emptions compared to the normal system without borrowing.

Finally, it is observed, when it comes to number of pre-emptions, ERTH performs superior to
IRTH, LWRTH and SRA for small task-set sizes. Nevertheless, it equally performs comparable
to IRTH, SRA and LWRTH if not better for large task-set sizes. Though SRA performs better
energy-wise but has the highest number of pre-emptions at low utilisations and sometimes it even
exceeds those by plain EDF scheduler. The overhead associated to the number of pre-emptions
saved through the use of sleep states can help to reduce the worst-case execution time of the tasks.
This effect further extends the slack in the system and consequently provide an extra opportunity

to save energy in the system or increase the system utilisation.

4.5 Thermal-Aware Energy Management

The increase in power density of modern processors demands efficient thermal management so-
Iutions to keep the temperature within given limits in order to avoid physical damage and also
to increase the reliability of the chip. Thermal management can be done at design time through
sophisticated packaging and heat dissipation techniques, and at run time through DTM. How-
ever, the packaging and the active heat dissipation solutions are very expensive [TSR™98]. It has
been predicted in the International Technology Roadmap for Semiconductor (ITRS2005) that the
packaging solutions will become more challenging in the near future due to an increase in peak
power and the high power density in emerging system-in-packages [ITR05]. This trend motivates
to explore DTM techniques for a wide variety of systems. The DTM techniques can be coupled
with energy minimisation objective. Energy efficiency has the objective to reduce the cumulative
power dissipation, while DTM techniques aim to keep the peak temperatures of the processor be-
low the critical limit. The commonly used DTM approaches in RT systems to handle the thermal

constraint along with energy and temporal restrictions are speed scheduling and TCDPM.

1. Speed Scheduling: The frequency of the processor is reduced to decrease the temperature

and the dynamic power dissipation of the system.

2. TCDPM: The processor executes the workload at full speed and switches off when the peak
temperature is reached to cool down the system.
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This research effort only deals with TCDPM approaches. It is demonstrated that the TCDPM
approach behave very similar to idealised dynamic voltage and frequency scaling in the context of
RT systems. Therefore, any existing dynamic voltage and frequency scaling solution proposed for
periodic/sporadic task models can be transformed to develop a new TCDPM approach with mod-
erate effort. A detailed discussion given below identifies the similarities along with the distinctive
elements between two approaches (TCDPM and Idealised DVES).

4.5.1 Extension in the System Model

The system model used in this work is slightly different than the one presented in Chapter 3. The

extensions in the system model are discussed below.

4.5.1.1 Workload Model

This work assumes a HRT system, where a system cannot afford to miss any deadline, therefore,
BE and SRT tasks are treated as HRT tasks. The task-set, tasks and jobs have the similar charac-
teristics as mentioned Section 3.1.1. This work can be extended for constrained deadline model
(D; < T;), however, an implicit deadline model (D; = T;) is assumed for the ease of presentation.
The optimal uniprocessor earliest-deadline-first (EDF) dynamic priority scheduling algorithm is

used to schedule a task-set 7.

4.5.1.2 Power Model

The power and the thermal model used in this work are adopted from the work of Yang et
al. [YCTK10]. The leakage-current is considered to be temperature dependent. The average
leakage current I(Tm,V,4) at temperature Tm and supply voltage Vy, is modelled by Liao et
al. [LHLOS5] as given in Equation 4.35,

I(Tm, V) = I(Tmg, Vp) (ATmze(W> +Be<5”dd+%) (4.35)
where 2, %, %, % ,A and B are empirical constants for different circuit types, technology and
designs. These empirical constants are obtained through curve fitting on the power dissipation of
different circuit types at multiple temperatures using SPICE simulations [LHLO5]. I(Tmy,Vy) is
a reference leakage current on temperature 7'mg with a reference supply voltage of Vp. The unit
of the temperature is in Kelvin (K). It is based on the curve fitting of the power dissipation of the
different circuit types at different temperatures with SPICE simulations. Yang et al. [YCTKI10]
found a good approximation of such modelling in a quadratic form as shown in Equation 4.36,

I(Tm,Vy) = ATm*+B (4.36)
A I(T Vaa) —1(Tmy,V,
A = (Tmy, ddz) ( ;ﬂL, 4d) (4.37)
Tmg —Tmy
B = I_(TmL,Vdd) —ATm% (438)
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where A and B are constants, while Tmy and Tm; define the operating temperature range of
the chip. They showed difference of this approximation is negligible when compared to average
leakage current modelled by Laio et al. [LHLOS] (Equation 4.35).

The processor assumed in this work has two modes: active and sleep state. The execution of
tasks is performed in the active mode and P4 denotes its power dissipation. It has two components:
a) dynamic power dissipation Py, and b) static or leakage-power dissipation Pji,. The dynamic
power dissipation of the processor is considered constant in active mode, while the static power
dissipation is modelled as Py, = .o/ Tm?* + A, where < and B are NgateAVdd and NgméVdd re-
spectively. Nyq is a constant that depends on the circuit characteristics (for more details refer to
[YCTK10, LHLOS]). Only a single sleep state §; is assumed in this work. The system can tran-
sition to a sleep state for two different purposes: 1) to cool down the processor and 2) to reduce
the energy consumption. Each sleep transition has energy and delay cost associated to it. The
transition time of going into and out of sleep state is denoted as ts; and tw respectively. The extra
energy consumed during a transition phase is denoted as Esj. The processor has to complete its
transition into and out of a sleep state once initiated. When the processor is in sleep state, it has
a constant power dissipation of P;. The processor assumed in this model runs at top speed in the

active mode and does not support DVFS.

4.5.1.3 Thermal Model

A widely adopted [YCTK10, YLQO6] thermal RC model is used to characterise the tempera-
ture behaviour of the processor and expressed as a differential equation (Equation 4.39), where
Ciny Rin, Py, Tm and Tmg,,, are the thermal capacitance (Joule/K), thermal resistance (K /Watts),
processor’s power dissipation (Watts), processor’s temperature (K) and the ambient temperature

(K) respectively.

dTm _ LPW
dt Cin RinCin

(Tm — Tmamy) = 6Py — B(Tm — Tmgyp) (4.39)

In the active mode the temperature of the processor increases as the power dissipation of the
. . . . o N 1
processor is converted into heat. This conversion ratio is modelled by a factor & = —. Usually,
th
a processor has a heat sink to remove this heat. The temperature degradation is influenced by the

difference in the processor’s temperature 7m and the ambient temperature 7'mg,;,. The ability of

the hardware to decrease the temperature is modelled with a factor f)’ =R
th“th

Yang et al. [YCTK10] solved this differential equation (Equation 4.39) and derived tempera-
ture as a function of time for both active (Equation 4.40) and sleep state (Equation 4.41) modes.

The same notations are used here for consistency.
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Assume, a processor starts its execution at time instant 7 and remains in an active state for
an interval of (7,7 +1], then T, (f,t) is the temperature at time instant 7 +¢. Similarly, T,.(7,t)
is a temperature at the end of the interval (7,7 4 7] assuming a processor started its sleep state

at time instant 7. Hence, T, (7,0) and Ty, (7,0) are temperatures at time instance 7 and 7 re-
b++Vb?—4ac 6 — b—+/b?—4dac ‘= — (aTy (7,0) + 62)
2 PR 2 T (aTw(7,0)+ 6y)

04 N A N A :
N = Tmyp+ <F),a= 0o, b=—f and ¢ = &(Py + L#) + BTmamp. Let Tm,,; be the maxi-

spectively. The parameters 6, =

mum allowed temperature for the safe operation of the chip. Equation 4.40 and Equation 4.41 can
be rewritten in terms of temperature and their corresponding equations are given in Equation 4.42
and Equation 4.43 respectively. With Equation 4.42 and Equation 4.43, one can compute the
time units system takes to move from one temperature to another both in active and sleep modes

respectively.

1 —(92+Tact(f>t)a)
o | ! 4.42
L 91—92 n(k(91+Tact(t7t)a) ( )
1 n_Td()r(f7t>>
o= (N Tae (@) 4.43
—ﬁ (n_Td()r(t70) ( :

The energy consumption in a sleep state for an interval of [t1,%,] is E; = Py (t2 —1;). The active

energy consumption E, is computed by integrating P4 [YCTK10] as given in Equation 4.44.

153 %)
E, = PAdt:/ (den—f—JZfTaC[(h,l‘z—tl)z-f-e%))dt
t t
1 1 .
(4.44)
51

o _ (61— 6)
- n, |0 _ (61—6s)t _\AA T )
= (den—l—%)t‘tl + 2 [92t+(91 6)1n <ke ! +1) +ke(91—92>’+1]

4.5.2 Preliminaries

The concepts needed to explain the equivalence of TCDPM and idealised DVFS are presented
here.

4.5.2.1 Available Utilisation

The execution of a workload on a processor increases its temperature. A processor triggers a cool-

ing phase, when its temperature reaches the thermal threshold. The fundamental design decision
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in such systems is to define the length of the cooling and active phases. To get the intuition, how

different parameters affect this decision, two conflicting scenarios are discussed below.

1. The exponential nature of the thermal model allows the processor to perform more execution
at high temperatures as the temperature rise in the active phase is slower and the temperature
fall in the cooling phase is faster. The leakage current also increases at high temperature and

results in additional energy consumption.

2. Conversely, when the processor cools down to low temperatures, its temperature rises faster
in the active phase and falls slower in the cooling phase. The leakage current is also rela-

tively smaller at low temperatures.

A trade-off between performance and the energy consumption is evident from these two sce-
narios. Moreover, a shorter cooling cycle also increase the number of sleep transitions, which
is not desirable due to an overhead associated to each sleep state transition. On contrary, a long
cooling phase decreases the energy consumption by reduced sleep transitions. The amount of
execution that a processor can deliver should be related to the thermal constraint. The available

utilisation defines such metric, which is formally presented as follow.

Definition 34 (Available Utilisation). The available utilisation of the system is the maximum
amount of execution per unit time delivered by the processor while respecting the thermal con-

straint.

Let Tmmax : Tmmax < Tme,; be the upper threshold temperature after which the scheduler
initiates the cooling phase. The scheduler allows the processor to execute unless its temperature
reaches Tmpax. Similarly, the cooling phase is terminated when the temperature reaches a lower
threshold temperature Tm, : Tm, < Tmpn,c. The available utilisation U,,,,; of the processor with
such repetitive cycles can be defined as given in Equation 4.45, where ¢, is the time processor takes
in active state to reach from Tm, to Tmpm,x and ¢, is the time it takes to cool down to 7Tm, from

Tmmax.-

def Ig

Uavail = m (445)
a c

The execution is performed during #, time interval, while 7. is the idle time. Using the empir-
ical data given in the work of Yang et al. [YCTK10], Figure 4.22 plots the temperature profile of
the processor versus time. The cooling phase and the execution phase are exponential functions
and the rate of change in temperature is higher in the beginning of their respective phases. This
illustrates the fact that one can execute more by setting T'mp,.x and Tm, at high temperatures to
get more performance. The available utilisation of the processor for different lengths of execution
times in active phase (¢,) are presented in Figure 4.23. The value of Tmpy,x is fixed to 400K. It is
evident that the increase in duration of the active phase of the processor reduces the available utili-

sation (i.e., the amount of work done per unit time) of the processor. In a uniprocessor RT systems,
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the worst-case execution requirements are known a-priori. Given the execution requirements in
terms of U,,,;;, one can vary the values of 7, and ¢., to reduce energy consumption while respecting
the thermal constraint. The transformation from execution time requirement to available utilisation
is discussed in Section 4.5.3.

The available utilisation of the processor given in Equation 4.45 is defined as a function of
time. It can be defined as a function of temperature as well. Assume, a processor transitions
into a sleep state in the cooling phase then the value of Ty,,(f,0) = T, (f,t) and represented as
Tmpmay and similarly, Ty,,(,1) = T, (7,0) and replaced with Tm,. In this case, Equation 4.42
and Equation 4.43 can be used to replace the corresponding values of ¢, and ¢, respectively to
define U,,,; as a function of temperature as given in Equation 4.46. The unknown variables in

Equation 4.46 are Tm, and T nip,x.

def

3 In <291+Tmoa)(92+Tmmaxa) )
Uavail =

0,+Tmya)(0; +T mmaxa)
ﬁln <(9|+Tm,,a)(92+Tmmaxa)) . (91 . 92> In ( n—Tm, )

(4.46)

(62+Tmya)(01+T mmaxa) N —T Mmax

4.5.2.2 Energy Consumption of RT Systems under Thermal Constraint

The energy consumption of the processor with leakage-aware TCDPM can be minimised through

two different factors.

1. Initiating the sleep state for longer intervals to reduce the total cost of sleep transitions and

to maximise the idle period in low power state.

2. Running the system at low operating temperatures to avoid the higher leakage-power dissi-

pation at high temperatures (i.e., setting Tmpyax and Tm, to low temperatures).

In the first case, duration of the sleep intervals is increased, the processor gets more time to
cool down. This effect decreases the available utilisation of the processor as the temperature rises

at faster rate at low temperatures in active mode and on contrary, the rate of cooling is slower at
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low temperatures. In the second case, running a system at high temperature increases the leakage-
power dissipation. However, if the operating temperature range, i.e., both Tmpy.x and Tm,, is
shifted to low temperatures, the available utilisation of the processor also decreases because of
the same aforementioned reason. In both cases the decrease in available utilisation is due to a

reduction in the duty cycle.

An optimal solution should consider both factors mentioned above to minimise the overall
energy consumption. Nevertheless, intuition is clear that the energy consumption in TCDPM is
reduced by running the processor at the lowest possible available utilisation (decreasing the duty
cycle). One can propose different techniques to find the optimal set of Tmp,x and Tm, considering
both factors for different values of U,,,;;. However, the objective of this research effort is not to find
such values, rather to show that idealised DVFS algorithms are equivalent to TCDPM in a sense
that both have the same objective to run the system at low available utilisation U,,,; whenever it

is possible.

The intuitions mentioned above are justified with the help of experimental results presented
as follows. Figure 4.24 shows the energy consumption per unit of time (power) of the processor
for different values of Tm, and Tmpax. It is evident that the energy consumption of the processor
increases with an increase in the values of Tm, and/or Tmp,c. Figure 4.25 presents available
utilisation of the system against different values of Tm, and Tmp,.. Available utilisation of the
system increases with an increase in the operating temperature range. Combining the observations
given in Figure 4.24 and Figure 4.25, it can be deduced that the high execution requirement (high
performance) can only be achieved by operating the processor at high temperatures. Given 7' mpyax
and Tm,, the values of ¢, and 7, can be determined by using Equation 4.42 and Equation 4.43. As
a first approximation it is assumed that the value U, is computed by fixing T mmax to Tme,; and

varying Tm,.
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4.5.3 Equivalence of Idealised DVFS and TCDPM

The available utilisation U,,,; given in Equation 4.45 provides the execution per unit time for
long time intervals (i.e., At > t.), which is virtually equivalent to the normalised speed of the
processor. The reduction in the amount of work per unit time (i.e., available utilisation or virtual
speed of the processor) also decreases the energy consumption of the system. This occurs as the
amount of work per unit time is decreased by reducing the duty cycle in TCDPM which can be
achieved either by allowing the processor to stay longer in the sleep state or by decreasing the
operating temperature range (i.e., Tmp,x and Tmyg) of the system. This virtual reduction of speed
also means prolonging the execution time of the tasks as the temperature rise is exponential and

execution per unit of time does not scale linearly with a decrease in temperature.

The traditional idealised DVFS theory is also based on a convex function of the power dissi-
pation. The decrease in speed/frequency of the processor though saves energy but also prolongs
the execution time of the given workload by running the processor slower. In real DVFS, the exe-
cution time does not scale linearly with the processor speed fi‘ (for example, memory access time
does not scale with the processor frequency) [SPHO7]. However, the above assumption is often

made in the literature.

Under TCDPM, the execution of the workload is performed at full speed and it behaves almost
at 50% speed when given a 50% duty cycle (available utilisation). Similarly, in idealised DVFES, it
is assumed the execution scales by a factor of f% If the frequency is 50%, the execution time scales
by a factor of 2 which is equivalent to 50% duty cycle in TCDPM at full speed. Moreover, another
reason for similarity is that idealised DVFS has a continuously spectrum of available frequencies
and similarly, TCDPM can represent the duty cycle in any ratio. If frequencies are normalised in
idealised DVFS, there is a correlation between idealised DVFS frequencies and normalised speed
(duty cycle) in TCDPM. In both cases the objective is to reduce the amount of work per unit time
to reduce the overall energy consumption. The similarities between these two problems allow us to
apply existing DVFES algorithms on TCDPM to reduce the energy consumption with some minor

modifications in the schedulability analysis and/or speed modifications in TCDPM.

In DVES, the amount of work per unit time is reduced by decreasing the physical frequency of

the processor. The processor runs the instruction at slow but constant rate. The schedulability of

the sporadic task model in DVFS is preserved if S > U, where f, is the processor’s frequency at
any time ¢ and fy,» is its maximum frequency. On ¥I;ne other side, the suspension of the execution in
the cooling phase of TCDPM may cause some of the tasks to miss their deadlines under EDF. Let
us consider one task in isolation to show how it can miss its deadline and then propose a method

to avoid it. Later in this section, this analysis is extended for multiple sporadic tasks.

Case 1) Single Task: Figure 4.26 represents TCDPM processing in an execution vs time graph
commonly known as a service curve. The continuous line step function represents the ideal-case,
where the task starts its execution in the beginning of the active phase. The straight line beneath

it shows the gradient of execution i.e., U,,,;. Assume, a worst-case scenario, i.e., the task arrives
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Figure 4.26: Service curve

in the beginning of the cooling phase and suffers an initial delay of 7., it may miss its deadline

(see dotted step function in Figure 4.26). This delay reduces the effective amount of work that a

processor should deliver per unit time to meet all deadlines in the schedule. Assume ¢, is the initial

time instant and #, is any time instant such that #, > #; && t, > t.. The amount of work done in

ideal-case in the interval Ar =, —t; will be equal to At U,,,;; = C,. While, in worst-case with

an initial delay of 7. it will be equal to Uyyuir At — Ugyair te = Cy. By substituting the value of Cy

and rearranging, Cy — Cy = Uy, tc. This is the maximum delay that a task can have in its 7;. As

both U,,,;; and ¢, are positive entities, the processor has executed in the worst-case Uy, t, time

units less than in the ideal-case. To preserve the schedulability, the scheduler needs to satisfy two

conditions given below.

e Condition 1: The effect of the additional delay of ¢, should be accounted in the requested

utilisation. The effect of this error is quantified by computing the requested utilisation U,
as given Equation 4.47. The length of the cooling phase used in Equation 4.47 corresponds
to the time interval computed in the ideal-case (no blocking in the beginning of execution
phase). The scaling of Ugyui; > Uy €nsures that the extra amount of work done per unit time

. ! e
will be greater than or equal to TC Afterwards, the requested utilisation is used to compute

4
the lengths of new cooling ¢ and active phases 47

Ureq = b + ? (447)

Condition 2: The schedulability of the single task is ensured if its minimum inter-arrival

time satisfies the condition given in Equation 4.48, where mod(a, b) represents the modulus
. . a . .

operator and provides the remainder of —. Equation 4.48 computes the number of active

phases required to execute the task and adds the corresponding cooling phase, and ensures



4.5 Thermal-Aware Energy Management 99

it is greater than the minimum inter-arrival time and relative deadline of the task to preserve

the schedulability of the system.

Ci
T > LdJ (zgd +t;fd) + (mod(c,-,z:;d)) 4 (4.48)

a

Both Equation 4.47 and Equation 4.48 are sufficient conditions.

Case 2) Multiple Tasks Case: This analysis is extended to multiple sporadic tasks to ensure
their schedulability. Similar to the single task case, the schedulers needs to satisfy two conditions.

e Condition 1: First of all, a slight modification is made in U, as given in Equation 4.49.

I . .
The additional factor corresponding to the blocking in the cooling phase T is replaced with
i

. For each period of the highest priority task the amount of extra work will be

equal to Ugyair t.. Similar to a single task case, the value of 7. is obtained by considering
the ideal-case and the original value of U, is raised to Uy, to ensure the schedulability
of all tasks in the given task-set. Again, the lengths of cooling ¢ and active #*/ phases are

determined based on this new value of U,.

Ci I
Ueg = Y o4+ —r (4.49)
Voee i moin (73)

e Condition 2: In the multiple tasks case, all the tasks should satisfy the condition given in
Equation 4.50 to check that they are getting enough active phases in their minimum inter-

arrival time to compete their execution to ensure the schedulability.

C.
vret, T > LdJ (r;“’ +tgd) + (mod(c,-,z:;d)> 4 (4.50)
The quantisation error that occurs in TCDPM due to cooling and active phases is bounded
1
to # This is a pessimistic but safe bound. Similar to single task, Equation 4.49 and
min (7;
VT,ET

Equation 4.50 are sufficient conditions.

Lets consider the other effects (that may affect the schedulability of tasks) such as if a task is
executing with a worst-case scenario and other tasks are released during its execution. The arriving
task may have higher or lower priority when compared to the currently executing task. If there
is an arrival of a lower priority task(s) the normal execution is not interrupted at all as it has to
wait for the currently running task to complete its execution. Now consider the effect of the higher

priority task 7;. The schedulability of the higher priority task 7; is ensured by Equation 4.50. The
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phasing of 7; with respect to the phasing of the cooling is of no concern as the overall execution
requirement is only increased by C;. Similarly, it can be shown that by adding extra tasks, the

schedulability of the system remains unaffected.

4.5.4 Case Study

This section shows that TCDPM problem can be solved with existing DVES algorithms. For
demonstration purpose, two DVFS algorithms for RT systems from the work of Pillai and Shin
[PSO1] are considered in this case study. It is assumed all the frequency set-points of the processor

are normalised with the maximum frequency of the processor.

4.5.4.1 Static Allocation of Frequency

In the first algorithm of Pillai and Shin [PSO1], it is assumed that all the tasks execute for their
worst-case and they find statically the operating frequency of the processor. The operating fre-

quency f, of the processor is set to U f,» and the normalised frequency of the system is equal

o

Fyn

o
mentioned in previous section that the available utilisation U,,,; in TCDPM corresponds to the

1
to = U. The execution time of all the tasks are scaled by a factor of —. As it have been

normalised speed of the processor in DVFES. The duty cycle of the system in TCDPM should be
set greater than or equal to the normalised frequency of the system in DVFS to get an equivalent
system. To do so, the requested utilisation Uy, that is a summation of total utilisation of the given
task-set and an additional error factor to compensate the potential additional delay of the cooling
phase is computed for the given system. After computing the requested utilisation of the system,
the value of available utilisation is set to Ugyqii = Uyeq. This new selected value of Uy, in turn
is used to estimate the active and cooling phase durations. Afterwards, periods of all the tasks are
checked for the condition given in Equation 4.50 to ensure the temporal correctness of the system.
The duty cycle achieved with the estimated active and cooling phases is greater than or equal to
the normalised frequency of the system in DVFS and ensures that the task-set gets enough time to

execute the given workload without missing any deadlines.

4.54.2 Dynamic Allocation of Frequency

Pillai and Shin [PS01] have exploited the execution slack to further reduce the operating frequency.
On the early completion of any task the unused execution time is reclaimed and the utilisation
of the system is recomputed by considering the actual execution time of the current task. The
operating frequency is set accordingly with this newly computed system utilisation. The individual
utilisation of the task considering its actual execution time is used until its next arrival. On any task
arrival, the system utilisation is computed again by replacing the previous individual utilisation of
the currently arrived task with % The operating frequency is changed accordingly. This algorithm

4
does the frequency adjustment on the task arrival and on its completion.



4.5 Thermal-Aware Energy Management 101

Similar to Pillai and Shin’s approach [PS01] , TCDPM should also make decisions about
changing U,,,; at the arrival and the completion of all tasks. For the temporal correctness, U,yqi;
should be greater than or equal to Uyey (i.€., Ugait = Ureq). Uyeq is composed of two components.
The first component computes the current utilisation of the system, while second factor considers
the effect of potential blocking due to the cooling phase. A change in current utilisation of the
system will vary the cooling phase, which in turn will affect the blocking time (i.e., second factor
in Uy.y). To eliminate this issue, it is assumed that 7" is the maximum possible cooling time
in the system. This value can be estimated by setting Tmpnax and Tm, to their feasible extremes
(i.e., Tmmax = Tmey; and Tm, = Thgyp). In theory the value of £'** can reach to infinity if Tm,, is
set equal to T'my,,;,. Therefore, for practical purposes T'm, can be set to a value Tmig, + t;,, Where

t;, 1s a small offset to keep #"**

in a reasonable limit. If vrnin (T;) > "™, then second component
TET
max

in Uy equation can be replaced with ml67

n (7)

VTET
ing greater than #;"®*. The first component of Uy, equation (that estimates the current required

. Any task in a task-set cannot suffer from a block-

utilisation) can be computed in a similar way as computed in Pillai and Shin’s approach [PSO1].
However, there is just one exception, if a task arrives in the cooling phase, then the processor needs

to wait for the completion of the current cooling phase to make decision about the new U, ;.

max

Reducing Pessimism: The blocking factor of ————
i (%)

Ti
The tasks rarely face such a large blocking time. Another less pessimistic approach is also pre-

in Uy, equation is a pessimistic bound.

sented to compute Uy.,. Assume, the previous cooling phase has a length of 194 On every task
completion or new task arrival in the active phase, the individual utilisation U; of the task is up-
dated and the total system utilisation is recomputed. Considering this new value of total system

utilisation, the potential length of the next cooling phase is estimated and denoted as #". The

. e . . . . .
value of Uy, is set to Z U; + —“——. However, if there is a new task 7; arrival in the cooling
Ve min (7;)
i V1,ET

phase of the system, its processing is postponed by the end of this cooling phase. At the end of the
cooling phase, the total system utilisation is computed by considering 7;’s worst-case execution

is determined. If is shorter than the current cooling phase time, than

time and the value of #*"

tnew

c

7; has suffered an extra delay. To compensate for this extra delay, its individual utilisation Uj; is

G +max(t —Tik— tgew’ 0)
T;

time instant at the end of cooling phase. With this new value of U; and ¢7°", the value of U, is
l,new

computed as U,y = Z Ui+ ——
i

viET V‘L’,‘EI}C(Y})

to Uy, and the corresponding values of 7. and ¢, are computed. Note that the effective values for

set to

, where r;y is the absolute release time of 7; and ¢ is the current

U.vqir 18 then set to any feasible value greater than or equal

t. and t, are computed based on this new value of U,,,;; and the intermediate values of #*" used
to estimate Uj; is ignored.

One more concern that scheduler needs to deal with is the idle mode. If a processor has no
workload to execute, it transitions into a sleep mode. It is equivalent to the early start of a cooling

phase. However, the sleep state is terminated on the arrival of a new task. The delay caused due
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to this sleep transition can be included in the individual utilisation of the arrived task and that is

Ci+twy +ts - . . .
U = %]] Such additional overhead can be ignored, if the processor has an idle mode
i
with zero transition delay to and from active mode. Similar to the examples given in this case

study, any other DVFES algorithm can be similarly ported and applied in TCDPM setting.

4.5.5 Implementation Concerns
4.5.5.1 Computation of U,,,;;, Tm, and T ny,x

In order to reduce the online complexity of the algorithm, an offline table for U, is computed
that contains the corresponding values of Tmiax, Ty, t, and f.. Given the values of Tmp,x and
Tm,, the values of 7. and #, can be easily computed for the required table. The values of T'my.x and
Tm, against U,,,; can be computed through various techniques such as exhaustive exploration,
dynamic programming, approximation algorithm in which a value of Tmpy,x is fixed and Tm, is
varied to get different values of U,,,,,;;. The values of this table are platform dependent only and are
estimated once for the given platform. This table reduces the online complexity of the algorithm
to O(loga(x)) to obtain Tmmax, Tmy,t, and t, against Uy, where x is the number of U,,,,; entries
in the table. The length of this table defines the resolution of U,,,;. In case of non-linear relation
of U, and the energy consumption, the efficient distribution is to get high resolution of U,

where the rate of change of energy consumption is high.

4.5.5.2 Transition Overheads of the Sleep State

Equation 4.45 assumes the sleep state has no overhead. However, in reality each sleep transition
has a time and energy overhead. The energy overhead comes from the fact that it has to store the
current status of the system (e.g. cache write-backs). These overheads may have an impact on
the system temperature, which in turn also affect the availa