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Abstract - The marriage of emerging information
technologies with control technologies is a major driving force
that, in the context of the factory-floor, is creating an
enormous eagerness for extending the capabilities of currently
available fieldbus networks to cover functionalities not
considered up to a recent past. Providing wireless capabilities
to such type of communication networks is a big share of that
effort. The RFieldbus European project [6,7,10] is just one
example, where PROFIBUS was provided with suitable
extensions for implementing hybrid wired/wireless
communication systems. In RFieldbus, interoperability
between wired and wireless components is achieved by the use
specific intermediate networking systems operating as
repeaters, thus creating a single logical ring (SLR) network.
The main advantage of the SLR approach is that the effort for
protocol extensions is not significant. However, a multiple
logical ring (MLR) approach provides traffic and error
isolation between different network segments. This concept
was introduced in [8], where an approach for a bridge-based
architecture was briefly outlined. This paper will focus on the
details of the Inter-Domain Protocol (IDP), which is
responsible for handling transactions between different
network domains (wired or wireless) running the PROFIBUS
protocol.

I. INTRODUCTION1

PROFIBUS [1] is one of the most popular fieldbuses,
with several hundreds of thousands of installations
currently in operation worldwide. It was standardised in
1996, as EN 50170 [2] and more recently, in 2000, by IEC
as IEC61158 [1].

The research works on the timing behaviour of
PROFIBUS networks [3-5] have proved the capabilities of
this protocol to support distributed computer-controlled
systems with stringent real-time requirements. More
recently, there has been an eagerness for extending the
capabilities of PROFIBUS to cover new functionalities
like: industrial wireless communications [6, 7] and the
ability to support industrial multimedia traffic [9].
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The RFieldbus European project [6,7,10] is just one
example of that effort, where PROFIBUS was extended to
implement hybrid wired/wireless communication systems.
In RFieldbus, repeaters are used to interconnect wired and
wireless domains, resulting in just one token rotating
between masters. The main advantage of such a single
logical ring (SLR) approach is that the effort for protocol
extensions is not significant.

However, there are a number of advantages in using a
multiple logical ring (MLR) approach to support such type
of hybrid systems. This concept was introduced and
discussed in [8], where a bridge-based approach (thus,
layer 2 interoperability) was briefly outlined. The paper
included references to how some complex functionalities
(such as the handoff between adjacent wireless cells) could
be supported with minimum protocol extensions and still
maintaining the compatibility with legacy PROFIBUS
technologies.

The main advantage of a bridge-based solution is that it
provides traffic segmentation, thus improved
responsiveness for transactions between stations belonging
to the same logical ring, and error containment within each
logical ring. In such a system, transactions between stations
in different logical rings are handled by an Inter-Domain
Protocol (IDP). This protocol defines the format of the
frames that are exchanged between bridges and the
functionalities that must be supported by the bridges. The
main contribution of this paper is the definition of the IDP.

The reminder of this paper is organised as follows. In
Section II, some aspects of the PROFIBUS protocol that
are relevant for the understanding and reasoning of the
solutions and mechanisms outlined in Sections IV and V
are presented. In Section III, we introduce the context and
describe the main concepts related to bridge-based hybrid
wired/wireless PROFIBUS networks. Then, in Section IV,
we describe the main characteristics of the Inter-Domain
Protocol (IDP), and in Section V, we describe how this
protocol can be implemented. In Section VI, we compare
the approach proposed in this paper with the single-logical
ring approach and discuss the compatibility of the protocol
with the PROFIBUS-DP application layer. Finally, in
Section VII, we draw some conclusions.



II. RELEVANT ASPECTS OF PROFIBUS

This section addresses some features of PROFIBUS that
are relevant within the context of this paper.

A. Message Cycle

The PROFIBUS Medium Access Control (MAC)
protocol uses a token passing procedure to grant bus access
between masters, and a master-slave procedure used by
masters to communicate with slaves.

A master station that sends an Action Frame (the first
frame transmitted in a transaction) is said to be the initiator
of the transaction, whereas the addressed one is the
responder (a master or a slave). A transaction (or message
cycle) consists on the request or a send/request frame from
the initiator and of the associated acknowledgement or
response frame of the responder.

Generally, all the stations except the initiator monitor all
the requests and acknowledge/respond only if they are
addressed. Moreover, the acknowledgement (or the
response) must arrive before the expiration of the Slot Time
(TSL), otherwise the initiator repeats the request the number
of times defined by the max_retry_limit, DLL variable.

A PROFIBUS master is capable of dispatching
transactions during its token holding time (TTH), which is
given the value corresponding to the difference, if positive,
between the target token rotation time (TTR) parameter and
the real token rotation time (TRR). For further details, the
reader is referred to [1, 2, 4].

B. Ring Maintenance Mechanisms

In order to maintain the logical ring, PROFIBUS
provides a decentralised ring maintenance mechanism.
Each PROFIBUS master maintains two tables – the Gap
List (GAPL) and the List of Active Stations (LAS), and may
optionally maintain a Live List (LL).

The Gap List consists of the address range from TS
(‘This Station’ address) until NS (‘Next Station’ address,
i.e., the next master in the logical ring). Each master station
in the logical ring starts checking the addresses in its GAPL
every time its Gap Update Timer (TGUD) expires. This
mechanism allows masters to track changes in the logical
ring: addition (joining) and removal (leaving) of stations.
This is accomplished by examining (at most) one Gap
address per token visit, using the FDL_Request_Status
frame.

The LAS comprises all the masters in the logical ring
and is generated in each master station when it is in the
Listen Token state, after power on. It is also dynamically
updated during operation, upon receipt of token frames.

The Live List mechanism requires an explicit request
from the PROFIBUS DLL user (via a management
FMA1/2 request). This service returns the list of all active
stations (masters and slaves).

C. Frame Formats

PROFIBUS defines 3 types of request/response frames:
fixed length with no data field, fixed length with data field

and variable data field length (Fig. 1.a), 1.c) and 1.d),
respectively).

Each of these three types includes the following fields:
Destination Address (DA), Source Address (SA), Frame
Control (FC) and Start Delimiter (SDx). These frames also
include the Frame Check Sequence (FCS) and the End
Delimiter (ED).

Variable data field length frames additionally contain
the field Data Length (LE and LEr) and they can optionally
include the Destination Address Extension (DAE) and
Source Address Extension (SAE) [2], in the Data field.

SD1 DA SA FC FCS ED

SD3 DA SA FC FCS EDData (8 Bytes)

SD2 DA SA FC FCS EDData (max 246 Bytes)LErLE SD2

SD4 DA SA

SC

a) Fixed length frame w/ no data field b) Short acknowledge frame

d) Variable data field length frame

e) Token frame

c) Fixed length frame w/ data field

Fig. 1 PROFIBUS frame formats

PROFIBUS also defines the Short aCknowledge frame
(SC) and the Token Frame (Fig. 1.b) and 1.e)). The first
consists of a single byte frame, and it is used as negative or
positive acknowledge to a request. The second is passed
between masters to grant medium access.

III. BASICS ON HYBRID WIRED/WIRELESS
PROFIBUS NETWORKS

A hybrid wired/wireless fieldbus network is composed
by stations with a wireless interface (usually radio) that are
able to communicate with wired (legacy) stations.

The wireless part of the fieldbus network is supposed to
include at least one radio cell. Basically, a radio cell can be
described as a 3D-space where all associated wireless
stations are able to communicate with each other. Our
architecture considers two types of domains. A Wired
Domain is a set of (wired) stations intercommunicating via
a wired physical medium. A Wireless Domain is a set of
(wireless) stations intercommunicating via a wireless
physical medium. In the example of Fig. 2 the following set
of wired PROFIBUS master (M) and slave (S) stations are
considered: M1, M2, S1, S2, S3, S4 and S5. Additionally,
the following set of wireless stations is considered: M3, S6
and S7. Within this set, only M3 and S6 are mobile. All
wireless stations are assumed to be PROFIBUS stations
with a wireless physical interface, capable of supporting
radio communications and the mobility functionalities, like
in RFieldbus [10]. Three bridge devices are considered: B1,
B2 and B3.

In such a system, all communications are relayed
through base stations: BS1 and BS2. Each base station uses
two radio channels, one to transmit frames to wireless
stations (the downlink channel), and another to receive
frames from the wireless stations (the uplink channel). We
will assume, in the remainder of the paper, that M5 and M7
include the base station functionalities in their wireless



front-end, thus, structuring radio cells (wireless domains) 1
and 2, respectively.
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Fig. 2 Wireless PROFIBUS example network

Network operation is based on the Domain-Driven
Multiple Logical Ring (MLR) approach, described in [8].
Therefore, each wired/wireless domain has its own logical
ring. In Fig. 2, and in the remainder of this paper we are
only representing bridges with two ports, but it should be
noted that this approach could be generalised to bridges
interconnecting n domains.

In this example, four different logical rings exist: {(M3
→ M5), (M1 → M4 → M6),  (M7 → M9), (M8 → M2)}.

We are also assuming that the network has a tree-like
topology and that bridges perform routing based on MAC
addresses.

IV. INTER-DOMAIN PROTOCOL

The communication between stations in different
domains (Inter-Domain Transactions) is to be supported by
the Inter-Domain Protocol (IDP). The IDP not only defines
the format of frames exchanged between bridges, but also
the functionalities that bridge devices must support.

A. Inter-Domain Transactions (IDT)

An Inter-Domain Transaction (IDT) is a transaction
between an initiator and a responder belonging to different
domains, i.e. with one or more bridges in the
communication path.

When an initiator makes a request addressed to a station
in another domain (an Inter-Domain Request), all stations
belonging to the initiator’s domain discard the frame,
except the bridge masters belonging to that domain. The
inter-domain request frame is relayed by only one of the
bridge masters belonging to the domain (according to the
routing mechanism). We denote this bridge master (the first
bridge master in the path from the initiator to the
responder) as BMi, where i denotes the initiator. The
relayed frame, denoted as an Inter-Domain Frame (IDF), is
coded using the Inter-Domain Protocol (IDP). Bridges
perform routing based on the MAC addresses contained in
the DLL (frames). Frames are forwarded from one bridge

master to the other if the destination address is included in
the routing table of the incoming side. Obviously, every
bridge must include two tables (one for each masters). This
approach imposes the use of a single address space, where
every station in the overall network has a unique MAC
address.

The IDF embeds the original request or response and
additional information that allows the decoding (of the
embedded original frame) and the matching between the
request and the respective response, as it will be detailed
later on.

The IDF embedding the request is relayed by bridges
until reaching the last bridge master in the path, bridge
master BMr (r denotes the responder). Then, this bridge
decodes the original request frame and transmits it to the
responder, which is a standard PROFIBUS station (for
example a PROFIBUS-DP slave).

When BMr receives the response to that request, it
encodes the frame using the IDP and forwards it. The other
bridges will relay this IDF until reaching bridge master
BMi, where it will be decoded and stored.

As the actual response to the original request takes more
time than if the responder belongs to the same domain as
the initiator, the initiator must periodically repeat the same
request until receiving the related response. This means, in
practice, that the request is not immediately responded.
After BMi having received (and stored) the correspondent
response frame, then it is ready to respond to a new
(repeated) request from the initiator. One of the objectives
of this mechanism is to provide complete transparency
from the point of view of both the initiator and the
responder (to cope with PROFIBUS compatibility
requirements). This is achieved by BMi emulating the
responder in a way that the initiator station considers the
responder station as belonging to its domain, and by BMr
emulating the initiator in a way that the responder
considers the initiator as belonging to its domain.
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Fig. 3 Example for an Inter-Domain Transaction (IDT)

Considering the network scenario illustrated in Fig. 2,
Fig. 3 represents a simplified timeline regarding a
transaction between master M3 and slave S6.

Regarding Fig. 3 and the operation of the IDP, we
assume that slaves read their inputs periodically, placing
their image in the Data Link Layer (DLL), using the
Service_upd.req primitive. The image of the input values is
placed in a buffer, which is used by the DLL to build a



response to a specific request. An indication is returned to
the higher layers every time a slave receives a request. This
behaviour is implemented by the PROFIBUS-DP protocol.
On the initiator side, it is also necessary that the user of the
DLL periodically repeats the same request. For every
request, the DLL returns a confirmation, which can include
“no data” if the response data is not available yet.

The mechanisms that must be implemented in the
bridges are described in detail in the following section.

B. Bridge Inter-Domain Functionalities

A bridge must include one bridge master for each of its
network accesses, which we assume to be one wired and
one wireless (Fig. 4). In order to support the required
functionalities, there must be a set of mechanisms related to
the IDP, and two data structures: the Routing Table (RT)
and the List of Open Transactions (LOT), associated to
each bridge master.

When an initiator sends a request frame addressed to a
station in another domain, the associated bridge masters in
the path must be capable of relaying the IDF. This is
possible only if the bridge masters are capable of receiving
all request frames, notwithstanding the destination address
(this is a functionality commonly found in bridges).

Each bridge must also support two routing tables (RT),
one for each bridge master. The routing tables allow the
receiving master of the bridge to know whether the
received frame should be relayed to the other bridge master
or not.

The bridge master belonging to the domain of the
initiator (BMi) must also be capable of matching a response
to the related pending request. This is achieved using the
information contained in the IDF embedding the response,
and by using the List of Open Transactions (LOT).

Master

Inter-Domain

Bridge Master 1

LOTRT

Common Functionalities

Master

Inter-Domain LOTRT

Bridge Master 2

Base Station

Radio Front-End with
Base Station (optional)

Fig. 4 Bridge components

The LOT contains information about the request frame,
such as the Destination and Source Addresses. It also
contains a transaction identification tag, the Transaction
Identifier (TI), which must be included in both the IDF
related to the request and also in the respective IDF
response.The LOT is also used to manage the repetitions of
the same request. Thus, for every arriving request, a BMi
consults its LOT and if that request is already listed, then it
is discarded.

When an IDF embedding a response arrives at the BMi,
the respective request is searched in the LOT, and the
response is associated and stored. This response is returned
to the initiator when it repeats the original request. Refer to
Section C for further details on the IDF format.

To comply with this, each bridge master must know
which stations belong to its domain. This is possible by the
use of the ring maintenance mechanisms defined in the
PROFIBUS protocol - the List of Active Stations (LAS) and
the Live List (LL).

Fig. 4 also depicts the “common functionalities” box.
These functionalities are shared by both bridge masters,
implement the interfacing between them and some features
related to the support of inter-domain mobility [11]. This
last feature will not be addressed in this paper.

C. Inter-Domain Frame Formats

Inter-Domain Frames (IDF) are used by the IDP for the
proper transmission of frames between bridges. The
operation of the protocol requires that these frames contain
information that enables decoding the embedded original
request/response and the matching between the information
stored in the BMi LOT and the respective response.

The PROFIBUS protocol defines that requests using
variable data field length frames can be replied with a short
acknowledge (SC) frame. Obviously, if no special IDF
format was used, the bridges would be unable to route the
SC frame back to the initiator station, since that type of
frame does not have a Destination Address (DA) field.
Also, the PROFIBUS protocol allows a request using a
variable data field length frame with Destination Address
Extension (DAE), to be answered by a response using fixed
length frames without data field (thus not supporting
DAE). So, BMi would not be capable of matching two
different requests from the same initiator, addressed to the
same responder, but with different DAE. Therefore, to
solve the first problem, it is required that every IDF must
have a destination address field, while the second problem
can be solved by using a Transaction Identifier (TI), which
enables the matching of the request and the respective
response.

It is also required that the IDF includes the Embedded
frame Function Code (EFC) and the Original Frame Type
(OFT), in order to allow decoding the embedded frame.

The TI is a sequence number, assigned by the BMi,
which should be included in the response frame (similar to
a TCP/IP sequence number). This field is used by BMi to
distinguish between response frames related to different
pending transactions.

Table 1 illustrates the proposed mapping between
standard PROFIBUS frames and the IDFs. The EFC
contains the Function Code (FC) of the embedded frame
and finally the OFT field identifies the type of frame thus
enabling its reconstruction. In the table, a grey rectangle
means that the field is not used in the IDF because it is not
present in the original frame. A dash indicates that the field
is not available on that type of IDF. The equal symbol
means that the field must the equal to the original
embedded frame field.



In the conversion, the IDFs preserve the same DA and
SA, except in the case of the short acknowledge frame,
which does not have DA or SA. In this case, the IDF
carries the DA and SA obtained from the request. To
distinguish IDFs from other frame types, the Function code
of the FC field must be equal to 0x0A, and its remaining
sub-fields should be filled with the appropriate values (for
a PROFIBUS frame). Finally, SDN frames do not need any
conversion, so they can be relayed by the bridges as
received (without being coded). Note that response frames
are transformed into request frames by the IDP.
In this approach, the maximum size of the data unit is
reduced by 3 bytes, i.e. to 241 bytes in frames using
address extension, and to 243 bytes in frames without
address extension. Nevertheless, this overhead of the
protocol has a minor impact on network performance.

D. Illustration of the IDP

This section describes an example of one Inter-Domain
Transaction (IDT), considering the network scenario of
Fig. 2.

We assume that the only traffic in the network is related
to the token passing and one IDT between master M3 and
slave S6, respectively in wireless domain 1 and wireless
domain 2. Fig. 6 illustrates all the frames exchanged,
related to the transaction between M3 and S6.
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Fig. 5 Inter-Domain Protocol illustration

We denote a message related to a station as
Station_ID.n, where Station_ID is the station or the bridge
reference (e.g. M3) and n is a number identifying that
message. In Fig. 5, the temporal order of the frames is the
following: M3.1, B1.1, B2.1, S6.1, B2.2, M3.1 and B1.2.
According to the IDP, request M3.1 must be repeated
several times. Also note that frames B2.1 and B1.2 are
equal to frames M3.1 and S6.1, respectively.

The request issued by M3 (M3.1) is addressed to S6,
thus it is converted using the IDP and relayed to wired
domain 1, without sending any reply to M3. Since M3
belongs to the same domain as bridge master M5, the latter
adds a pending IDT to its LOT.

Frame B1.1, transmitted by M4, preserves the
destination and source addresses of the original request. So,
bridge master M6 receives the frame and forwards it to
bridge master M7.

Since S6 belongs to the same domain as M7, M7 must
decode the original request frame (M3.1) and send it. S6
receives the frame B2.1, decodes it and responds. Note that
bridge master M7 will not create another entry on its LOT,
since M3 does not belong to wired domain 1.

After receiving the response from S6 (S6.1), B2 codes it
again using the IDP and relays to wired domain 1, with
destination address M3 (B2.2). Meanwhile, M3 continues
repeating request M3.1. When bridge master M5 receives
that request, it consults its LOT and detects that a
transaction with the same data is already going on, so it
takes no action.

The response to request M3.1 is received by bridge B1
embedded in the IDF frame B2.2. Since the destination
station belongs to the same domain as M5 and there is a
related entry in the LOT, then M5 stores the response to
M3.1 in a format equal to response S6.1.

When M3 repeats request M3.1, B1 replies using frame
S6.1 and closes that particular pending transaction.

Fig. 6 shows a timeline that details the description
above. Note the influence of the independent token
rotations for the overall latencies of this particular
transaction and the delay that exists in the bridges before a
request is decoded and converted to an IDF (in this
particular case the delays represented in the figure are
exaggerated; in a real situation they should be much
smaller).

As it can be seen from the figure, when bridge B1
receives the first request (M3.1), bridge master M5

Table 1 Mapping between standard PROFIBUS frames and IDFs

Frame Header Frame Data
Type of Frame LE SD DA SA FC DAE SAE TI OFT EFC Data

Unit
Req

  - SD3 = = FC TI 1 EFC

Ack
  - SD3 = = FC TI 2 EFC

Fixed
length
no
data Short

ack   - SD3 Req.
SA

Req.
DA FC TI 3 EFC

Req Data
len SD2 = = FC = = TI 4 EFC =Fixed

length
w/
data Res Data

len SD2 = = FC = = TI 5 EFC =

Var.
length Req Data

len SD2 = = FC = = TI 6 EFC =

Res Data
len SD2 = = FC = = TI 7 EFC =



initialises a pending transaction in its LOT. This
transaction will only be deleted from the LOT when the
respective response is received, and after another M3.1
request.
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Fig. 6 Timeline example for an Inter-Domain Transaction

V. IMPLEMENTATION APPROACH

This section addresses how the bridge functionalities
related to the IDP can be implemented. We assume that
when a bridge master receives a request, it calls the
Indication_Handler function. This function is responsible
for replying to the initiator station or for forwarding the
original request coded using the IDP to the other bridge
master. We also assume that the reception of a response
will be handled by a Confirmation_Handler function,
which codes the response using the IDP and forwards it to
the other bridge master.

A. Indication Handler

The Indication_Handler (Fig. 7) starts by checking the
received req_frame, in order to determine the operation
that will follow (line 5). For that propose, it uses the
req_frame destination address, source address and FC code
together with the information contained in the bridge
master (RT, LL and LAS).

If the req_frame is addressed to the bridge, then it is
processed according to its content. Requests can be
addressed to the bridge during the mobility management
procedure [11] or in case the bridge also integrates the
functionalities of a common PROFIBUS master (e.g. a
PLC).

If the bridge receives an IDF, then this frame is
forwarded to the other bridge master, using the
Fwrd_ID_Request function (described in Fig. 8). In case
the initiator station belongs to the domain of the bridge
master and the req_frame is addressed to a station in
another domain, then the bridge master must try to initialise
the LOT with another pending IDT, using function –
Init_ID_Request (described in Fig. 9).

Broadcast frames must also be relayed to other domains
and, at the same time, be processed by the bridge. In the
other cases (e.g. when the frame is addressed to a station
belonging to the same domain as the bridge master), the
bridge master will not process the req_frame.

1. Indication_Handler(req_frame)
2. {
3. // Checks the req_frame to determine
4. // the operation that will follow
5.  res = check_addr(req_frame);
6.  Switch (res)
7.  {
8. // When the req_frame is addressed
9. // to the bridge
10.    case BRIDGE_ADDRESS:
11. // Process the message according
12. // to its contents
13.       process(req_frame);
14.    end;
15. // When the req_frame is an IDF that must
16. // be forwarded by the other bridge master
17.    case FWRD_ID_REQUEST:
18.       Fwrd_ID_Request(req_frame);
19.    end;
20. // When the initiator is on the bridge
21. // master domain
22.    case ID_REQUEST:
23.       Init_ID_Request(req_frame);
24.    end;
25. // req_frame sent in broadcast
26.    case BROADCAST:
27.      process(req_frame);
28.      Fwrd_ID_Request(req_frame);
29.    end;
30.    default:
31. // Do nothing
32.    end;
33.    …
34.  }
35. }

Fig. 7 Indication Handler, pseudo-code algorithm

The function Fwrd_ID_Request (Fig. 8) is called by the
Indication_Handler function and it operates with the
resources of the other bridge master (of the bridge). It starts
by determining if the destination station is on its domain
(line 3). If not, then the frame is queued on the output
queue of the bridge master (line 33). Otherwise, the
function determines the type of Inter-Domain Request (line
7).

If the ID_req_frame embeds a response frame that
matches one entry in the LOT, then the ID_req_frame is
decoded and a response (using the standard PROFIBUS
format) is stored (lines 10 to 18). If the ID_req_frame
embeds a request frame, then this frame is decoded. The
information concerning this request is stored in order to
enable the identification of the related response.
Additionally, the frame is put in the output queue (using
the standard PROFIBUS format) (lines 23 to 30).

1. Fwrd_ID_Request(ID_req_frame)
2. {
3.  res = is_station_on_domain(ID_req_frame);
4.  if res == 1 then // on the domain
5.  {
6. // Det. type of frame
7.    type = type_of_ID_req(ID_req_frame);
8.    if type == RESP then
9.    {
10. // Accesses the LOT to find match
11.       res = LOT_match_resp(ID_req_frame);
12. // if yes, stores the corresponding reply
13.       if res == 1 then
14.      {
15. // Decodes the ID_req_frame



16.          std_resp_frame =
17.          prepare_std_resp(ID_req_frame);
18.          store_reply(std_resp_frame);
19.       }
20.    }
21.    else // type = REQ
22.    {
23. // Decodes the request embedded in
24. // the ID_req_frame
25.       std_req_frame =
26.       prepare_std_req(ID_req_frame);
27. // Stores the information necessary to
28. // identify the respective conf.
29.       Store_info(std_req_frame);
30.       queue(std_req_frame);
31.    }
32.  }
33.  else // station in another domain
34.  {
35.    queue(ID_req_frame);
36.  }
37. }

Fig. 8 Fwrd_ID_Request, pseudo-code algorithm

The function Init_ID_Request (Fig. 9) is also called by
the Indication_Handler when it needs to initialise a
pending IDT in the LOT.

1. Init_ID_Request(req_frame)
2. {
3.  // Test if there is a match with any
4.  // other pending transaction on the LOT
5.  res = check_LOT(req_frame);
6.  if res != 1 then // No entry on the LOT
7.  {
8.  // Updates the LOT
9.    handler = updt_LOT(req_frame);
10.    start_error_handling_timer(handler);
11.  // Codes an IDF
12.    ID_req_frame = prepare_IDF(req_frame)
13.    Fwrd_ID_Request(ID_req_frame);
14.  }
15.  else // There is a match on the LOT
16.  {
17.  // Do nothing
18.  }
19. }

Fig. 9 Init_ID_Request, pseudo-code algorithm

The Init_ID_Request function starts by checking (in the
LOT) if there is another entry with the same data (line 4).
In the affirmative case, the bridge will not do any
additional processing on this frame. Otherwise, it stores
data relative to this pending IDT in the LOT, and starts a
count down timer that will clean the pending transaction
from the LOT, upon expiration. This timer guarantees that
if a transaction is not completed, the bridge will remove
that transaction from the LOT. The value for the timer can
be calculated based on the worst-case response time
analysis of the network. Finally, this function codes the
frame using the IDP and relays it to the other bridge
master.

B. Confirmation Handler

The Confirmation_Handler function is called when a
bridge receives a response to a request. In Fig. 10, we are
only detailing the part relative to the response to an Inter-
Domain Request.

1. Confirmation_Handler(resp_frame)
2. {
3.  res = type_of(resp_frame)
4.  Switch (res)
5.  {
6.    case INTER_DOMAIN_RESP:
7.     ID_req_frame =
8.   prepare_ID_req(res_frame, req_data1);
9. Fwrd_ID_Request(ID_req_frame);
10.    end;
11. …
12.  }
13. }

Fig. 10 Confirmation handler, pseudo-code algorithm

This function starts by determining the message type,
using the Destination Address of the resp_frame and the
information stored by the Forward_ID_Request function.

If the received frame is a response to an Inter-Domain
Request, then the bridge prepares a new frame (an IDF)
using the IDP and forwards it through the other bridge
master. The other cases handle standard PROFIBUS
functionalities, e.g. any request addressed to the bridge.

VI. DISCUSSION AND ONGOING WORK

The use of bridges to interconnect wired and wireless
domains of a PROFIBUS-based network has several
advantages over the use of repeaters.

In a repeater-based approach, it is necessary to increase
the value of several network timing parameters in order to
encompass the latencies of the repeaters, different data
rates and different frame formats in order to guarantee a
predictable behaviour for the network [12]. In a bridge-
based network architecture, these issues do not impact on
important PROFIBUS parameters (e.g. the Slot Time).
Thus, in a bridge-based network we can set network
parameters in the same way as in a common PROFIBUS
network (at least on its wired parts). Consequently, the
same degree of responsiveness to failures can be achieved,
far superior to a repeater-based approach.

Wireless networks are usually more error-prone than
their wired counterparts. Thus another advantage of the
bridge-based approach is that when an error occurs its
consequences will be confined to a single network domain
(error containment). Another consequence of network
segmentation is that transactions between stations in the
same domain will have their response times reduced.
However, transactions involving stations in different
domains may, in some cases, have increased response
times.

These characteristics allow bridge-based networks to be
more scalable than repeater-based networks. Nevertheless,
the proposed bridge-based network requires more complex
Intermediate Systems (the bridges), due to the need for
supporting the extra functionalities of the Inter-Domain
Protocol.

One of the main objectives of the proposed protocol is to
maintain the compatibility with existing solutions. The
most used upper layer for PROFIBUS is the Decentralised
Peripherals (DP) application layer. This protocol is
specially suited for the exchange of data between PLCs,



PCs or process control systems with field devices like I/O,
drives or valves. The PROFIBUS-DP application layer
provides the functionalities to configure and diagnose
devices as also for the cyclic exchange of data.

A PROFIBUS-DP slave is controlled and configured by
a single master. Before being operational (able to exchange
data), a slave has to pass through several configuration and
parameterisation phases. During normal operation, a master
periodically sends requests to the slave, which replies using
the data previously stored. During this phase, if a
PROFIBUS-DP master does not receive a response to its
request, the DLL will return a confirmation without data to
the DP layer. This behaviour does not generate errors in the
master; it simply requires to continue the periodical inquiry
of the slave, until receiving a response. This characteristic
allows a PROFIBUS-DP master to transparently use the
IDP.

However, the configuration and parameterisation of a
slave station involve the exchange of messages between the
master and the slave. During these phases, a master station
expects an immediate answer from the slave, and if no
answer is received the process is restarted. This leads to
problems when a master tries to initialise a slave located in
another domain. A solution to this problem can be based on
bridges acting as proxies (for the slaves). In this way, a
bridge could emulate the behaviour of a slave during the
initialisation phase. These issues are currently being
addressed.

A key factor to characterise the proposed protocol is to
carry out a timing analysis. An analytical worst-case model
can be adapted from the analysis proposed in [8]. The
authors are also developing a tool for simulating the
protocol, which will further help on its temporal
characterisation. Simulations will also enable to test the
different functionalities that are required for the operation
during the configuration and parameterisation phases. This
timing analysis will also take into consideration the support
of inter-domain mobility [11], which is under assessment.

VII. CONCLUSIONS

In this paper, we have proposed an architecture and the
mechanisms which extend the capabilities of the
PROFIBUS protocol to support a hybrid wired/wireless
network interconnected by intermediate systems acting as
bridges.

In such an architecture, the communication between
different domains is supported by an Inter-Domain
Protocol (IDP), which allows the use of standard
PROFIBUS stations, since the required functionalities are
implemented by the bridges. The bridges emulate the
behaviour of the initiator and the responder stations and are
able to relay frames coded using the Inter-Domain
Protocol.

The proposed architecture has several advantages in
relation to the repeater-based Single Logical Ring
architecture proposed in [6]. Namely, it provides traffic and
error containment between different domains and better
responsiveness to errors. Also, the response times for

transactions between nodes in the same domain will be
reduced. However, transactions involving stations in
different domains may, in same cases, have increased
response times. Finally, the proposed architecture is more
scalable than the Single Logical Ring architecture.
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