

Efficient Computation of MIN and MAX
Sensor Values in Multihop Networks
by exploiting a prioritized MAC protocol
Preliminary results of this work were included in "Exploiting a Prioritized MAC Protocol to Efficiently Compute Min and Max in
Multihop Networks", presented at the 5th Workshop on Intelligent Solutions in Embedded Systems, June 2007

Nuno Pereira
Björn Andersson
Eduardo Tovar
Paulo Carvalho

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-080901

Version: 0

Date: 09-03-2008

Technical Report HURRAY-TR-080901 Efficient Computation of MIN and MAX in Multihop Networks
 by exploiting a prioritized MAC protocol

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Efficient Computation of MIN and MAX Sensor Values in Multihop Networks
by exploiting a prioritized MAC protocol
1Nuno Pereira, 1Björn Andersson, 1Eduardo Tovar, 2Paulo Carvalho
1IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: nap@isep.ipp.pt, bandersson@dei.isep.ipp.pt, emt@isep.ipp.pt

http://www.hurray.isep.ipp.pt
2 Computer Communications Group, Department of Informatics

School of Engineering of the University of Minho

Gualtar, 4710-057 Braga

Portugal

Tel.: +351 253 604 432/6, Fax: +351 253 604 471

E-mail: pmc@di.uminho.pt

http://marco.uminho.pt/CCG/

Abstract
Consider a wireless sensor network (WSN) where a broadcast from a sensornode does not reach all sensor nodes in the
network; such networks are oftencalled multihop networks. Sensor nodes take sensor readings but individualsensor
readings are not very important. It is important however to computeaggregated quantities of these sensor readings. The
minimum and maximum ofall sensor readings at an instant are often interesting because they indicateabnormal
behavior, for example if the maximum temperature is very high thenit may be that a fire has broken out. We propose an
algorithm for computingthe min or max of sensor reading in a multihop network. This algorithm hasthe particularly
interesting property of having a time complexity that does notdepend on the number of sensor nodes; only the network
diameter and therange of the value domain of sensor readings matter.

Chapter 4

EFFICIENT COMPUTATION OF MIN AND MAX
SENSOR VALUES IN MULTIHOP NETWORKS
by exploiting a prioritized MAC protocol

Nuno Pereira1, Björn Andersson1, Eduardo Tovar1 and Paulo Carvalho2
1IPP-HURRAY Research Group, CISTER/ISEP, Polytechnic Institute of Porto, Portugal
2Department of Informatics, University of Minho, Braga, Portugal

Abstract: Consider a wireless sensor network (WSN) where a broadcast from a sensor
node does not reach all sensor nodes in the network; such networks are often
called multihop networks. Sensor nodes take sensor readings but individual
sensor readings are not very important. It is important however to compute
aggregated quantities of these sensor readings. The minimum and maximum of
all sensor readings at an instant are often interesting because they indicate
abnormal behavior, for example if the maximum temperature is very high then
it may be that a fire has broken out. We propose an algorithm for computing
the min or max of sensor readings in a multihop network. This algorithm has
the particularly interesting property of having a time complexity that does not
depend on the number of sensor nodes; only the network diameter and the
range of the value domain of sensor readings matter.

Key words: Transducers, Data Processing, Large-Scale Sensor Networks, MAC protocol.

1. INTRODUCTION

Wireless sensor networks (WSN) often take many sensor readings of the
same type (for example, temperature readings), and instead of knowing each
individual reading it is important to know aggregated quantities of these
sensor readings. For example, each sensor node senses the temperature at its
location, and the goal is to know the maximum temperature among all nodes
at a given moment.

Several solutions for data aggregation have been proposed for multihop
networks. Typically, nodes self-organize into a convergecast tree with a base
station at the root [1, 2]. Leaf nodes broadcast their data. All other nodes

2 Chapter 4

wait until they have received a broadcast from all of their children; a node
aggregates the data from its children and makes a single broadcast.
Techniques have been proposed for computing useful aggregated quantities
such as minimum and maximum values, the number of nodes and the median
among a set of sensor nodes. They offer good performance because they
exploit the opportunities for parallel transmission, and the processing
enroute makes the transmitted packet typically smaller than the sum of the
size of the incoming packets.

Despite these optimizations, the performance is still inhibited by the fact
that in a single broadcast domain, at most one packet can be sent and hence
the time-complexity still depends on the number of sensor nodes. This is
particularly problematic for dense networks, where even a small broadcast
domain (covering an area <10m2) may contain a several tens to a few
hundred sensor nodes. In order to improve performance to another level, it is
necessary to design distributed algorithms that circumvent this limitation.

In this paper, we propose an algorithm for computing the min or max of
sensor readings in a multihop network. This algorithm has the particularly
interesting property of having a time complexity that does not depend on the
number of sensor nodes; only the network diameter and the range of the
value domain of sensor readings matter.

We consider this result to be significant because: (i) a significant number
of sensor networks are designed for large scale, dense networks and it is
exactly for such scenarios that our algorithms excel and (ii) the techniques
that we use depend on the availability of a prioritized MAC protocol that
supports a very large range of priority levels and is collision-free assuming
that priorities are unique, and such a protocol has recently been proposed,
implemented and tested on a sensor network platform [3].

The remainder of this paper is structured as follows. Section 2 starts by
providing an introduction on wireless bit dominance and an application
background introducing the main idea of how a prioritized MAC protocol
can be used, focusing in a single broadcast domain. The final subsection of
Section 2 discusses some related work. Section 3 presents the new algorithm
which offers a time-complexity that is independent of the number of sensor
nodes. Finally, Section 4 draws conclusions.

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

3

2. PRELIMINARIES AND MOTIVATION

2.1 Wireless Bit Dominance

The basic premise for this work is the use of a prioritized MAC protocol
for wireless medium. This implies that the MAC protocol assures that of all
nodes contending for the medium at a given moment, the ones with the
highest priority gain access to it. As a result of the contention for the
medium, all participating nodes will have knowledge of the winner's priority.
This is inspired by Dominance/Binary-Countdown protocols [4],
implemented for wired networks in the widely used CAN bus [5].

In our prioritized MAC protocol for wireless medium, lower priority
values mean higher priority, which is also similar to Dominance/Binary-
Countdown protocols. However, such protocols assume that priorities are
unique. We do not make that assumption.

The protocol in [3] offers this behavior for wireless channels. In this
prioritized MAC protocol [3] (inspired by Dominance/Binary-Countdown
protocols), the nodes start by agreeing on an instant when the contention
resolution phase, named tournament, starts. Then nodes transmit the priority
bits starting with the most significant bit. A bit is assigned a time interval. A
node contends with a dominant bit (“0”), then a carrier wave is transmitted
in this time interval; if the node contends with a recessive bit (“1”), it
transmits nothing but listens. At the beginning of the tournament, all nodes
have the potential to win, but if a node contends with a recessive bit and
perceives a dominant bit then it withdraws from the tournament and cannot
win. If a node has lost the tournament then it continues to listen in order to
know the priority of the winner. When a node finishes sending all priority
bits without hearing a dominant bit when it transmitted a recessive bit, then
it has won the tournament and clearly knows the priority of the winner.
Hence, lower numbers represent higher priorities. The work developed in [3]
includes the precise definition of the protocol timing parameters and
accounts for real-world non-idealities such as clock inaccuracies, time of
flight, time for detection of carrier pulses or processing delays, and also
presents an implementation of the protocol in real-world platforms. While
the proof-off-concept implementation of this prioritized MAC protocol for
wireless networks introduces a significant amount of overhead, this overhead
is, to a large extent, due to the transition time between transmission and
reception, which is essentially a technological parameter, as witnessed by the
fact that the Hiperlan standard [6] required a switching time of 2μs.

4 Chapter 4

2.2 Motivating Scenario

The focus of this paper will be on exploiting a prioritized MAC protocol
as described in the previous subsection. We show that the availability of
such a protocol enables efficient distributed computations of aggregated
quantities in WSN.

The problem of computing aggregated quantities in a single broadcast
domain can be solved with a naïve algorithm: every node broadcasts its
sensor reading. Hence all nodes know all sensor readings and then they can
compute the aggregated quantity. This has the drawback that in a broadcast
domain with m nodes, at least m broadcasts are required to be performed. We
address the case of WSN designed for large scale, dense networks [7, 8].
Under such premise, the naïve approach can be inefficient, causing a large
delay and energy waste.

Let us consider the simple application scenario depicted in Figure 4-1(a),
where a node (node N1) needs to know the minimum temperature reading
among its neighbors. Let us assume that no other node attempts to access the
medium before this node. A naïve approach would imply that N1 broadcasts
a request to all its neighbors and then waits for the corresponding replies
from them. As a simplification, assume that nodes have set up a scheme to
orderly access the medium in a time division multiple access (TDMA)
fashion, and that the initiator node knows the number of neighbor nodes.
Then N1 can compute a waiting timeout for replies based on this knowledge.
Clearly, with this approach, the execution time depends on the number of
neighbor nodes (m).

Figure 4-2. Computing min and max in a single broadcast domain.

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

5

Consider now that a prioritized MAC protocol such as the one described

in the beginning of this section is available. This alternative would allow an
approach as depicted in Figure 4-1(b). Assume that the range of the analog
to digital converters (ADC) on the sensor nodes is known, and that the MAC
protocol can, at least, represent as many priority levels. Now, to compute the
minimum temperature among its neighbors, node N1 needs to perform a
broadcast request that will trigger all its neighbors to contend for the
medium using the prioritized MAC protocol. If neighbors access the medium
using the value of their temperature reading as the priority, the priority
winning the contention for the medium will be the minimum temperature
reading. (The different lengths of the gray bars inside the boxes depicting the
contention in Figure 4-1(b) represent the amount of time that the node
actively participated in the medium contention).With this scheme, more than
one node can win the contention for the medium. But considering that as a
result of the contention, nodes will know the priority of the winner, no more
information needs to be transmitted by the winning node.

In this scenario, the time to compute the minimum only depends on the
time to perform the contention for the medium, not on m.

A similar approach can be used to compute the maximum temperature
reading. Instead of directly coding the priority with the temperature reading,
nodes will use the bitwise negation (change every bit of the temperature
reading to its opposite value) of the temperature reading as the priority.
Upon completion of the medium access contention, given the winning
priority, nodes perform bitwise negation to know the maximum temperature.

2.3 Previous work

A prioritized MAC protocol is useful to schedule real-time traffic [3] and
it can support data dissemination when topology is unknown [9]. In this
paper we have discussed how to efficiently compute aggregated quantities
using a prioritized MAC protocol. Distributed calculations have been
performed in previous research. It has been observed [10, 11] that nodes
often detect an event and then need to spread the knowledge of this event to
their neighbors [10]. This is called one-to-k communication [10] because
only k neighbors need to receive the message. After that, the neighbor nodes
perform local computations and report back to the node that made the
request for 1-to-k communication. This reporting back is called k-to-1
communication. Algorithms for both 1-to-k and k-to-1 communication are
shown to be faster than a naïve algorithm but, unfortunately, the time-
complexity increases as k increases. On a single broadcast domain, our
algorithms compute a function f and take parameters from different nodes,

6 Chapter 4

making the result available to all nodes. In this respect, it is similar to the
average calculations in [12]. However, our algorithms are different from [10-
12]; our algorithms have a time-complexity independent of the number of
nodes.

One way to use these algorithms is to encapsulate them in a query
processor for database queries. Query processors for sensor networks have
been studied in previous work [2, 13] but they are different in that they do
not compute aggregated quantities as efficiently as we do. They assume one
single sink node and that the other nodes should report an aggregated
quantity to this sink node. The sink node floods its interest in the data it
wants into the network and this also causes nodes to discover the topology.
When a node has new data, it broadcasts this data; other nodes hear it, then it
is routed and combined so that the sink node receives the aggregated. These
works exploit the broadcast characteristics of the wireless medium (like we
do) but they do not make any assumption on the MAC protocol (and hence
they do not take advantage of the MAC protocol). One important aspect of
these protocols is to create a spanning tree. It is known that computing an
optimal spanning tree for the case when only a subset of nodes can generate
data is equivalent to finding a Steiner-tree, a problem known to be NP-hard
(the decision problem is NP-complete, see page 208 in [14]). For this reason,
approximation algorithms have been proposed [15, 16]. However, in the
average case, very simple randomized algorithms perform well [17]. Since a
node will forward its data to the sink using a path which is not necessarily
the shortest path to the sink, these protocols cause an extra delay. Hence,
there is a trade-off between delay and energy-efficiency. To make this trade-
off, a framework based on feedback was developed [18] for computing
aggregated quantities. Techniques to aggregate data in the network such that
the user at the base station can detect whether one node gives faked data has
been addressed as well [19].

Common to these previous works is that the time-complexity increases
with the number of sensor nodes.

3. THE NEW ALGORITHM

It should be clear that the algorithms for computing min and max in a
single broadcast domain (presented in Section 2) do not work in a multihop
network. In this section, we will extend it.

We assume that nodes are statically placed in a physical location, and
that the communication range (Rco) is the maximum range at which two
nodes Ni and Nj can communicate reliably and the interference range (Rit) is
the maximum range between nodes Nj and Nk such that simultaneous

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

7

transmissions to Nj will collide with Nk. We assume that Rit ≤ 2Rco. We also
assume that time is slotted such that all nodes know the time when a timeslot
begins and they also know the identifier of the timeslot. One way to
implement that is to use a sensor node platform that is equipped with an
Amplitude Modulation (AM) receiver that detects signals from an atomic
clock. Such AM receivers are used in the FireFly sensor platform [20] and it
receives time-sync signals with a continental wide coverage. Two of them
are located in Europe; one of them [21] is located in USA. It is assumed that
the duration of the timeslot is equal to the time it takes to run a tournament
in the MAC protocol. In order to simplify the discussion, we focus on the
computation of min of sensor readings; the max of sensor readings can be
designed analogously.

It is also assumed that all sensor nodes know when the computation
should start. We think the most natural way of doing this is to do it
periodically (for example, let all nodes start this computation at the
beginning of a timeslot such that the identifier of the timeslot is divisible by
100). This is sensible for applications that continuously detect fire. But in a
multi-tiered architecture, where some nodes have a longer communication
range, it is possible to let the more high-powered sensor nodes initiate a
computation as well; this assumes that those high powered sensor nodes
have a communication range that covers the entire network.

The algorithm is composed of two main steps. At setup time, a topology
discovery algorithm is executed to partition the network such that all nodes
in each partition are in the same broadcast domain. Then, during runtime,

b) Virtual Ranges of Partition Leadersa) Network Example and Partitions Formed

Figure 4-3. Illustration of the MVDS construction algorithm.

8 Chapter 4

nodes find the minimum sensor reading in all partitions and communicate
these values to the leader.

3.1 Setup

The setup procedure must partition the network such that (i) each
partition forms a single broadcast domain, (ii) a partition leader for each
partition is selected, (iii) the partition leaders form a connected distributed
set and (iv) to each partition is given a timeslot ensuring that no interfering
partitions are active at the same time.

We start this procedure by selecting the partition leaders. To do this we
select a Minimum Virtual Dominating Set (MVDS) as introduced in [22]. A
Dominating Set (DS) is a subset of nodes where each node (of the entire
graph) is either in the dominating set or is a neighbor to a node in the
dominating set. If the set has the minimum cardinality, then it is said to be a
Minimum Set. To guarantee that all nodes in a partition are in the same
broadcast domain, we use a virtual range, and thus we construct a MVDS
that is the minimum set of nodes required to perform the data aggregation,
observing the restrictions (i) to (iii) above.

The details of the algorithm to construct the MVDS can be found in [22].
It is a distributed algorithm with a propagation phase that forms the
partitions and colors the nodes according to their functionality (black if the
node is a partition leader or red if it is a slave member of a partition), and a
response phase, where the topology information is delivered to the leader
node. In the beginning of the algorithm, all nodes are white. The node
starting the algorithm (the leader) colors itself black and broadcasts a
message with its color. Nodes within the virtual range of the black node
become red and nodes that receive the broadcast but are outside the virtual
range become blue1. After a time interval that is inversely proportional to the
distance from the black node, both red and blue nodes forward the message,
if they have not done so. Upon being colored, all blue nodes start a timer to
become black. This algorithm approximates the solution for a MVDS(r)
composed of the nodes colored black, where r is the virtual range used. It is
important to note that, in this work, we select r as a function of the
communication range such that all nodes in each partition are in the same
broadcast domain. Based on our assumptions about the communication
range, we can define r = Rco/2.

A possible selection made by the algorithm is illustrated in Figure 4-2.
Figure 4-2(a) presents the positions and connectivity of the network. The
different partitions formed are also depicted in Figure 4-2(a) by representing

1 We assume that distances can be approximated; this can be done, for example, using the

signal strength in the received packets.

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

9

the nodes in the same partition similarly. Figure 4-2(b) depicts the partition
leaders selected by the algorithm and their respective virtual ranges.

After running the propagation phase of the MVDS construction
algorithm, the nodes selected as partition leaders report back to the leader the
information about the topology of the network. This topology information is
used by the leader to assign a timeslot to each partition such that the timeslot
is unique from any 1 or 2-hop neighbors.

3.2 Runtime

At runtime, nodes have to find the minimum value within each partition,
and then the partition leaders deliver these minimum values to the leader.

Algorithm 1 Computing MIN

1. Each sensor nodes Ni takes a sensor reading. Let vi denote this sensor
reading.

2. Each node Ni in PARTj waits until the time slot SLOT(PARTj) and
then it sends an empty packet with the priority given by vi. After the
tournament, the partition leader knows the minimum vi. Let winnerprioi
denote this value.

3. Communicate the results winnerprioi from partition leaders to the leader.
4. The leader takes the min of all winnerprioi that it receives. This minimum

is the minimum of all sensor readings.

0

0

15
15

0

15

15

18

18

15

15

150

18

39

15

39

0

18

29

15
21

1515

29

51

29

29

39
29

39 29

33

33

15

29

29

33

15

39

39

29

29

43

0

15
39

39

48

6029

51

15

67

39

51

39

91

15 59

60

0

67

74

67

43

51

67

15

39

59

71

29

51

74

97

97

97

29

39

67

97

67

97

29

93

15

67

29

74

29

91

97

93

29 60

91

9797

60

Figure 4-3. Partitioning and Partition Leaders for an Example Network.

10 Chapter 4

Algorithm 1 provides the sequence of steps nodes take during runtime.
While the minimum values are routed to the leader, partition leaders can

perform simple processing and avoid forwarding min or max values that are
higher or lower than values previously transmitted.

3.3 A Running Example

We will illustrate the algorithm with a simple example. Figure 4-3 shows
a sensor network consisting of 100 nodes.

Let us consider the algorithm that is run when the sensor network is
deployed (as described in Section 3.1). The algorithm partitions the network

1

1

2
2

1

2

2

3

3

2

2

21

3

7

2

7

1

3

5

2
4

22

5

9

5

5

7
5

7 5

6

6

2

5

5

6

2

7

7

5

5

1

1

2
7

7

8

105

9

2

3

7

9

7

1

2 7

10

1

3

9

3

1

9

3

2

7

7

2

5

9

9

11

11

11

5

7

3

11

3

11

5

1

2

3

5

9

5

1

11

1

5 10

1

1111

10

Figure 4-4. Timeslots Assigned to Partitions.

13

13

15
17

14

17

13

17

11

14

14

1011

9

18

5

19

9

10

12

16
17

1212

13

10

18

17

6
10

6 14

5

10

17

19

16

7

18

18

19

12

16

17

11

12
16

15

6

1514

13

7

13

19

16

12

6

11 12

8

7

16

16

11

8

13

7

5

9

14

7

14

8

14

10

19

18

15

11

10

14

11

18

15

6

5

19

15

14

15

7

8

10

6 16

9

1410

9

Figure 4-5. Each Sensor Node and the Original Sensor Reading.

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

11

and selects the corresponding partition leaders. Figure 4-3 depicts the
partition leaders with a solid grey circle, the numbers in each node are the
partition-ids to which the node belongs (partition-ids are assigned according
to the partition leader address).

Then timeslots are assigned to each partition such that if two sensor
nodes, in different partitions but in the same timeslot, broadcast
simultaneously, then there is no collision. Figure 4-4 shows the timeslot
assigned to each node. One can see that there are 11 different timeslots.

Let us consider the algorithm that is executed at runtime. Figure 4-5
shows the temperature readings in all nodes. Nodes compete for the channel
using their temperature readings as the priority and nodes do this in their

7

7

15
17

7

17

13

17

11

14

14

107

9

18

5

19

7

10

12

16
17

1212

13

10

18

17

6
10

6 14

5

10

17

19

16

7

18

18

19

12

16

8

7

12
16

15

6

1514

13

7

13

19

16

12

6

11 12

8

7

16

16

11

8

13

7

5

9

14

7

14

8

14

10

19

18

15

11

10

14

11

18

15

6

5

19

15

14

15

6

8

6

6 16

6

1410

9

Figure 4-6. Result After Timeslot 1.

7

7

5
5

7

5

5

9

9

5

5

57

9

6

5

6

7

9

6

5
17

55

6

8

6

6

6
6

6 6

5

5

5

6

6

5

5

6

6

6

6

8

7

5
6

6

6

86

8

5

7

6

8

6

6

5 12

8

7

7

14

7

8

8

7

5

6

12

7

6

8

14

8

8

8

6

6

7

8

7

8

6

6

5

7

6

14

6

6

8

6

6 8

6

88

8

Figure 4-7. Result After Timeslot 11.

12 Chapter 4

assigned timeslot. After this competition, all nodes know the minimum of
temperature in the partition. Figure 4-6 shows the result after the first
timeslot. Observe that the nodes depicted in solid grey circles have all the
same value within the corresponding partitions. This is because these nodes
were assigned timeslot 1 and the values depicted are the minimum values in
each partition, spread to all sensor nodes in the same partition. After 11
timeslots, all nodes have broadcasted their temperature reading. Figure 4-7
shows the result after the 11:th timeslot. Now, every leader of a partition
knows the minimum temperature in the partition. Finally, nodes perform
convergecast to the leader of the entire network. Observe that, due to the
setup phase, nodes are organized in partitions where member nodes know
their partition leaders and partition leaders known the other parent partition
leaders who can forward message towards the leader node. Thus performing
convergecast is trivial. After the convergecast, the leader knows that the
minimum temperature in the entire network is 5.

To further illustrate why the algorithm is fast, a randomly generated
network with 1000 nodes is depicted in Figure 4-8. In this figure, the 77
partition leaders are depicted with solid circles, slightly bigger than the other
nodes. In this network 17 unique timeslots are needed. By this example, we
can observe that our scheme scales well.

So far we have assumed that all transceivers can only transmit in a pre-
specified channel. But many wireless standards, such as 802.11, allow a
transceiver to transmit on any channel. This feature can be used

Figure 4-8. Large-scale Network Example.

4. EFFICIENT COMPUTATION OF MIN AND MAX Sensor Values
IN MULTIHOP NETWORKS

13

advantageously by assigning each partition its own channel (instead of
assigning a timeslot to a partition) and this reduces the time required to
perform step 2 in Algorithm 1.

4. CONCLUSIONS

We have shown how to use a prioritized MAC protocol to compute
aggregated quantities efficiently. The algorithms designed to exploit such
MAC protocol have a time-complexity that is independent of the number of
sensor nodes. This is clearly important for WSN applications that operate
under real-time constraints. But, since the high speed makes it possible for
nodes to stay awake for only a short time and they can then sleep, it is also
very useful for reducing energy-consumption; and this gives nodes a longer
life-time.

We left three important questions open: (i) Can other methods for
partitioning the network make this technique perform better? (ii) Can a
similar technique be used to compute more complex aggregated quantities
(such as COUNT, MEDIAN and interpolation)? (iii) Is the technique
sufficiently reliable for large-scale systems?

ACKNOWLEDGEMENT

This work was partially funded by CONET, the Cooperating Objects
Network of Excellence, funded by the European Commission under FP7
with contract number FP7-2007-2-224053, the ARTIST2 Network of
Excellence on Embedded Systems Design and by the Portuguese Science
and Technology Foundation (Fundação para Ciência e Tecnologia - FCT).

REFERENCES

[1] J. Gehrke and S. Madden, "Query Processing for Sensor Networks," IEEE Pervasive
Computing, vol. 3, pp. 46-55, January-March 2004.

[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "TAG: a Tiny AGgregation
service for ad-hoc sensor networks," in 5th symposium on Operating systems design and
implementation (OSDI '02), 2002, pp. 131 - 146

[3] N. Pereira, B. Andersson, and E. Tovar, "WiDom: A Dominance Protocol for Wireless
Medium Access," IEEE Transactions on Industrial Informatics, vol. 3, May 2007.

[4] A. K. Mok and S. Ward, "Distributed Broadcast Channel Access," Computer Networks, vol.
3, pp. 327-335, 1979.

[5] Bosch, "CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart," 1991.

14 Chapter 4

[6] ETSI, " TS 101 475 V1.3.1:," Broadband Radio Access Networks (BRAN);HIPERLAN Type

2; Physical (PHY) layer.
[7] A. Arora, "ExScal: Elements of an Extreme Scale Wireless Sensor Network," in Proceedings

of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA'05), Washington, DC, USA, 2005, pp. 102-108.

[8] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-Efficient
Communication Protocol for Wireless Microsensor Networks," in Proceedings of the 33rd
Hawaii International Conference on System Sciences (HICSS'00), Maui, U.S.A., 2000, pp.
3005-3014.

[9] B. Andersson, N. Pereira, and E. Tovar, "Disseminating Data Using Broadcast when
Topology is Unknown," in 26th IEEE Real-Time Systems Symposium (RTSS'05), Work-in-
Progress Session, 2005, pp. 61-64.

[10] R. Zheng and L. Sha, "MAC Layer Support for Group Communication in Wireless Sensor
Networks," Department of Computer Science, University of Houston UH-CS-05-14, July 21
2005.

[11] K. Jamieson, H. Balakrishnan, and Y. C. Tay, "Sift: a MAC Protocol for Event-Driven
Wireless Sensor Networks," in Third European Workshop on Wireless Sensor Networks
(EWSN), Zurich, Switzerland, 2006.

[12] D. S. Scherber and H. C. Papadopoulos, "Distributed computation of averages over ad hoc
networks," IEEE Journal on Selected Areas in Communications, vol. 23, pp. 776- 787, April
2005.

[13] Y. Yao and J. Gehrke, "Query processing in sensor networks," in Proceedings of the 1st
Biennial Conference on Innovative Data Systems Research (CIDR'03), 2003.

[14] W. Jianping, M. McDonald, M. Brackstone, L. Yangying, and G. Jingjun, "Vehicle to vehicle
communication based convoy driving and potential applications of GPS," in Proceedings of
the 2nd International Workshop on Autonomous Decentralized Systems, 2002, pp. 212- 217.

[15] B. Krishnamachari, D. Estrin, and S. B. Wicker, "The Impact of Data Aggregation in Wireless
Sensor Networks," in Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS'02), 2002, pp. 575 - 578.

[16] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, in Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS'02), Washington, DC,
USA, 2002, p. 457.

[17] E. M., G. A., G. R., and M. R., "Scale-free Aggregation in Sensor Networks," Theoretical
Computer Science, vol. 344, pp. 15-29, 2005.

[18] T. Abdelzaher, T. He, and J. A. Stankovic, "Feedback Control of Data Aggregation in Sensor
Networks," in Proceedings of the 43rd IEEE Conference on Decision and Control (CDC'04),
2004, pp. 1490-1495 Vol.2.

[19] B. Przydatek, D. Song, and A. Perrig, "{SIA}: Secure information aggregation in sensor
networks," in Proceedings of the 1st ACM International Conference on Embedded Networked
Sensor Systems (SenSys'03), 2003, pp. 255-265.

[20] R. Mangharam, A. Rowe, and R. Rajkumar, "FireFly: A Cross-Layer Platform for Wireless
Sensor Networks," Real Time Systems Journal, Special Issue on Real-Time Wireless Sensor
Networks, vol. 37, pp. 183-231, 2007.

[21] "NIST Radio Station WWVB," http://tf.nist.gov/stations/wwvb.htm.
[22] B. Deb, S. Bhatnagar, and B. Nath, "Multi-resolution state retrieval in sensor networks," in

Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on, 2003, pp. 19-29.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00167
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00167
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

