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Abstract 
Consider a wireless sensor network (WSN) where a broadcast from a sensornode does not reach all sensor nodes in the 
network; such networks are oftencalled multihop networks. Sensor nodes take sensor readings but individualsensor 
readings are not very important. It is important however to computeaggregated quantities of these sensor readings. The 
minimum and maximum ofall sensor readings at an instant are often interesting because they indicateabnormal 
behavior, for example if the maximum temperature is very high thenit may be that a fire has broken out. We propose an 
algorithm for computingthe min or max of sensor reading in a multihop network. This algorithm hasthe particularly 
interesting property of having a time complexity that does notdepend on the number of sensor nodes; only the network 
diameter and therange of the value domain of sensor readings matter. 
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EFFICIENT COMPUTATION OF MIN AND MAX 
SENSOR VALUES IN MULTIHOP NETWORKS 
by exploiting a prioritized MAC protocol 
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Abstract: Consider a wireless sensor network (WSN) where a broadcast from a sensor 
node does not reach all sensor nodes in the network; such networks are often 
called multihop networks. Sensor nodes take sensor readings but individual 
sensor readings are not very important. It is important however to compute 
aggregated quantities of these sensor readings. The minimum and maximum of 
all sensor readings at an instant are often interesting because they indicate 
abnormal behavior, for example if the maximum temperature is very high then 
it may be that a fire has broken out. We propose an algorithm for computing 
the min or max of sensor readings in a multihop network. This algorithm has 
the particularly interesting property of having a time complexity that does not 
depend on the number of sensor nodes; only the network diameter and the 
range of the value domain of sensor readings matter. 

Key words:  Transducers, Data Processing, Large-Scale Sensor Networks, MAC protocol. 

1. INTRODUCTION 

Wireless sensor networks (WSN) often take many sensor readings of the 
same type (for example, temperature readings), and instead of knowing each 
individual reading it is important to know aggregated quantities of these 
sensor readings. For example, each sensor node senses the temperature at its 
location, and the goal is to know the maximum temperature among all nodes 
at a given moment. 

Several solutions for data aggregation have been proposed for multihop 
networks. Typically, nodes self-organize into a convergecast tree with a base 
station at the root [1, 2]. Leaf nodes broadcast their data. All other nodes 
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wait until they have received a broadcast from all of their children; a node 
aggregates the data from its children and makes a single broadcast. 
Techniques have been proposed for computing useful aggregated quantities 
such as minimum and maximum values, the number of nodes and the median 
among a set of sensor nodes. They offer good performance because they 
exploit the opportunities for parallel transmission, and the processing 
enroute makes the transmitted packet typically smaller than the sum of the 
size of the incoming packets.  

Despite these optimizations, the performance is still inhibited by the fact 
that in a single broadcast domain, at most one packet can be sent and hence 
the time-complexity still depends on the number of sensor nodes. This is 
particularly problematic for dense networks, where even a small broadcast 
domain (covering an area <10m2) may contain a several tens to a few 
hundred sensor nodes. In order to improve performance to another level, it is 
necessary to design distributed algorithms that circumvent this limitation. 

In this paper, we propose an algorithm for computing the min or max of 
sensor readings in a multihop network. This algorithm has the particularly 
interesting property of having a time complexity that does not depend on the 
number of sensor nodes; only the network diameter and the range of the 
value domain of sensor readings matter. 

We consider this result to be significant because: (i) a significant number 
of sensor networks are designed for large scale, dense networks and it is 
exactly for such scenarios that our algorithms excel and (ii) the techniques 
that we use depend on the availability of a prioritized MAC protocol that 
supports a very large range of priority levels and is collision-free assuming 
that priorities are unique, and such a protocol has recently been proposed, 
implemented and tested on a sensor network platform [3]. 

The remainder of this paper is structured as follows. Section 2 starts by 
providing an introduction on wireless bit dominance and an application 
background introducing the main idea of how a prioritized MAC protocol 
can be used, focusing in a single broadcast domain. The final subsection of 
Section 2 discusses some related work. Section 3 presents the new algorithm 
which offers a time-complexity that is independent of the number of sensor 
nodes. Finally, Section 4 draws conclusions. 
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2. PRELIMINARIES AND MOTIVATION 

2.1 Wireless Bit Dominance 

The basic premise for this work is the use of a prioritized MAC protocol 
for wireless medium. This implies that the MAC protocol assures that of all 
nodes contending for the medium at a given moment, the ones with the 
highest priority gain access to it. As a result of the contention for the 
medium, all participating nodes will have knowledge of the winner's priority. 
This is inspired by Dominance/Binary-Countdown protocols [4], 
implemented for wired networks in the widely used CAN bus [5].  

In our prioritized MAC protocol for wireless medium, lower priority 
values mean higher priority, which is also similar to Dominance/Binary-
Countdown protocols. However, such protocols assume that priorities are 
unique. We do not make that assumption.  

The protocol in [3] offers this behavior for wireless channels. In this 
prioritized MAC protocol [3] (inspired by Dominance/Binary-Countdown 
protocols), the nodes start by agreeing on an instant when the contention 
resolution phase, named tournament, starts. Then nodes transmit the priority 
bits starting with the most significant bit. A bit is assigned a time interval. A 
node contends with a dominant bit (“0”), then a carrier wave is transmitted 
in this time interval; if the node contends with a recessive bit (“1”), it 
transmits nothing but listens. At the beginning of the tournament, all nodes 
have the potential to win, but if a node contends with a recessive bit and 
perceives a dominant bit then it withdraws from the tournament and cannot 
win. If a node has lost the tournament then it continues to listen in order to 
know the priority of the winner. When a node finishes sending all priority 
bits without hearing a dominant bit when it transmitted a recessive bit, then 
it has won the tournament and clearly knows the priority of the winner. 
Hence, lower numbers represent higher priorities. The work developed in [3] 
includes the precise definition of the protocol timing parameters and 
accounts for real-world non-idealities such as clock inaccuracies, time of 
flight, time for detection of carrier pulses or processing delays, and also 
presents an implementation of the protocol in real-world platforms. While 
the proof-off-concept implementation of this prioritized MAC protocol for 
wireless networks introduces a significant amount of overhead, this overhead 
is, to a large extent, due to the transition time between transmission and 
reception, which is essentially a technological parameter, as witnessed by the 
fact that the Hiperlan standard [6] required a switching time of 2μs. 
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2.2 Motivating Scenario 

The focus of this paper will be on exploiting a prioritized MAC protocol 
as described in the previous subsection. We show that the availability of 
such a protocol enables efficient distributed computations of aggregated 
quantities in WSN. 

The problem of computing aggregated quantities in a single broadcast 
domain can be solved with a naïve algorithm: every node broadcasts its 
sensor reading. Hence all nodes know all sensor readings and then they can 
compute the aggregated quantity. This has the drawback that in a broadcast 
domain with m nodes, at least m broadcasts are required to be performed. We 
address the case of WSN designed for large scale, dense networks [7, 8]. 
Under such premise, the naïve approach can be inefficient, causing a large 
delay and energy waste. 

Let us consider the simple application scenario depicted in Figure 4-1(a), 
where a node (node N1) needs to know the minimum temperature reading 
among its neighbors. Let us assume that no other node attempts to access the 
medium before this node. A naïve approach would imply that N1 broadcasts 
a request to all its neighbors and then waits for the corresponding replies 
from them. As a simplification, assume that nodes have set up a scheme to 
orderly access the medium in a time division multiple access (TDMA) 
fashion, and that the initiator node knows the number of neighbor nodes. 
Then N1 can compute a waiting timeout for replies based on this knowledge. 
Clearly, with this approach, the execution time depends on the number of 
neighbor nodes (m). 

Figure 4-2. Computing min and max in a single broadcast domain.
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Consider now that a prioritized MAC protocol such as the one described 

in the beginning of this section is available. This alternative would allow an 
approach as depicted in Figure 4-1(b). Assume that the range of the analog 
to digital converters (ADC) on the sensor nodes is known, and that the MAC 
protocol can, at least, represent as many priority levels. Now, to compute the 
minimum temperature among its neighbors, node N1 needs to perform a 
broadcast request that will trigger all its neighbors to contend for the 
medium using the prioritized MAC protocol. If neighbors access the medium 
using the value of their temperature reading as the priority, the priority 
winning the contention for the medium will be the minimum temperature 
reading. (The different lengths of the gray bars inside the boxes depicting the 
contention in Figure 4-1(b) represent the amount of time that the node 
actively participated in the medium contention).With this scheme, more than 
one node can win the contention for the medium. But considering that as a 
result of the contention, nodes will know the priority of the winner, no more 
information needs to be transmitted by the winning node. 

In this scenario, the time to compute the minimum only depends on the 
time to perform the contention for the medium, not on m. 

A similar approach can be used to compute the maximum temperature 
reading. Instead of directly coding the priority with the temperature reading, 
nodes will use the bitwise negation (change every bit of the temperature 
reading to its opposite value) of the temperature reading as the priority. 
Upon completion of the medium access contention, given the winning 
priority, nodes perform bitwise negation to know the maximum temperature. 

2.3 Previous work 

A prioritized MAC protocol is useful to schedule real-time traffic [3] and 
it can support data dissemination when topology is unknown [9]. In this 
paper we have discussed how to efficiently compute aggregated quantities 
using a prioritized MAC protocol. Distributed calculations have been 
performed in previous research. It has been observed [10, 11] that nodes 
often detect an event and then need to spread the knowledge of this event to 
their neighbors [10]. This is called one-to-k communication [10] because 
only k neighbors need to receive the message. After that, the neighbor nodes 
perform local computations and report back to the node that made the 
request for 1-to-k communication. This reporting back is called k-to-1 
communication. Algorithms for both 1-to-k and k-to-1 communication are 
shown to be faster than a naïve algorithm but, unfortunately, the time-
complexity increases as k increases. On a single broadcast domain, our 
algorithms compute a function f and take parameters from different nodes, 
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making the result available to all nodes. In this respect, it is similar to the 
average calculations in [12]. However, our algorithms are different from [10-
12]; our algorithms have a time-complexity independent of the number of 
nodes. 

One way to use these algorithms is to encapsulate them in a query 
processor for database queries. Query processors for sensor networks have 
been studied in previous work [2, 13] but they are different in that they do 
not compute aggregated quantities as efficiently as we do. They assume one 
single sink node and that the other nodes should report an aggregated 
quantity to this sink node. The sink node floods its interest in the data it 
wants into the network and this also causes nodes to discover the topology. 
When a node has new data, it broadcasts this data; other nodes hear it, then it 
is routed and combined so that the sink node receives the aggregated. These 
works exploit the broadcast characteristics of the wireless medium (like we 
do) but they do not make any assumption on the MAC protocol (and hence 
they do not take advantage of the MAC protocol). One important aspect of 
these protocols is to create a spanning tree. It is known that computing an 
optimal spanning tree for the case when only a subset of nodes can generate 
data is equivalent to finding a Steiner-tree, a problem known to be NP-hard 
(the decision problem is NP-complete, see page 208 in [14]). For this reason, 
approximation algorithms have been proposed [15, 16]. However, in the 
average case, very simple randomized algorithms perform well [17]. Since a 
node will forward its data to the sink using a path which is not necessarily 
the shortest path to the sink, these protocols cause an extra delay. Hence, 
there is a trade-off between delay and energy-efficiency. To make this trade-
off, a framework based on feedback was developed [18] for computing 
aggregated quantities. Techniques to aggregate data in the network such that 
the user at the base station can detect whether one node gives faked data has 
been addressed as well [19].  

Common to these previous works is that the time-complexity increases 
with the number of sensor nodes. 

3. THE NEW ALGORITHM 

It should be clear that the algorithms for computing min and max in a 
single broadcast domain (presented in Section 2) do not work in a multihop 
network. In this section, we will extend it.  

We assume that nodes are statically placed in a physical location, and 
that the communication range (Rco) is the maximum range at which two 
nodes Ni and Nj can communicate reliably and the interference range (Rit) is 
the maximum range between nodes Nj and Nk such that simultaneous 
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transmissions to Nj will collide with Nk. We assume that Rit ≤ 2Rco. We also 
assume that time is slotted such that all nodes know the time when a timeslot 
begins and they also know the identifier of the timeslot. One way to 
implement that is to use a sensor node platform that is equipped with an 
Amplitude Modulation (AM) receiver that detects signals from an atomic 
clock. Such AM receivers are used in the FireFly sensor platform [20] and it 
receives time-sync signals with a continental wide coverage. Two of them 
are located in Europe; one of them [21] is located in USA. It is assumed that 
the duration of the timeslot is equal to the time it takes to run a tournament 
in the MAC protocol. In order to simplify the discussion, we focus on the 
computation of min of sensor readings; the max of sensor readings can be 
designed analogously. 

It is also assumed that all sensor nodes know when the computation 
should start. We think the most natural way of doing this is to do it 
periodically (for example, let all nodes start this computation at the 
beginning of a timeslot such that the identifier of the timeslot is divisible by 
100). This is sensible for applications that continuously detect fire. But in a 
multi-tiered architecture, where some nodes have a longer communication 
range, it is possible to let the more high-powered sensor nodes initiate a 
computation as well; this assumes that those high powered sensor nodes 
have a communication range that covers the entire network. 

The algorithm is composed of two main steps. At setup time, a topology 
discovery algorithm is executed to partition the network such that all nodes 
in each partition are in the same broadcast domain. Then, during runtime, 

b) Virtual Ranges of Partition Leadersa) Network Example and Partitions Formed

Figure 4-3. Illustration of the MVDS construction algorithm. 
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nodes find the minimum sensor reading in all partitions and communicate 
these values to the leader. 

3.1 Setup 

The setup procedure must partition the network such that (i) each 
partition forms a single broadcast domain, (ii) a partition leader for each 
partition is selected, (iii) the partition leaders form a connected distributed 
set and (iv) to each partition is given a timeslot ensuring that no interfering 
partitions are active at the same time. 

We start this procedure by selecting the partition leaders. To do this we 
select a Minimum Virtual Dominating Set (MVDS) as introduced in [22]. A 
Dominating Set (DS) is a subset of nodes where each node (of the entire 
graph) is either in the dominating set or is a neighbor to a node in the 
dominating set. If the set has the minimum cardinality, then it is said to be a 
Minimum Set. To guarantee that all nodes in a partition are in the same 
broadcast domain, we use a virtual range, and thus we construct a MVDS 
that is the minimum set of nodes required to perform the data aggregation, 
observing the restrictions (i) to (iii) above. 

The details of the algorithm to construct the MVDS can be found in [22]. 
It is a distributed algorithm with a propagation phase that forms the 
partitions and colors the nodes according to their functionality (black if the 
node is a partition leader or red if it is a slave member of a partition), and a 
response phase, where the topology information is delivered to the leader 
node. In the beginning of the algorithm, all nodes are white. The node 
starting the algorithm (the leader) colors itself black and broadcasts a 
message with its color. Nodes within the virtual range of the black node 
become red and nodes that receive the broadcast but are outside the virtual 
range become blue1. After a time interval that is inversely proportional to the 
distance from the black node, both red and blue nodes forward the message, 
if they have not done so. Upon being colored, all blue nodes start a timer to 
become black. This algorithm approximates the solution for a MVDS(r) 
composed of the nodes colored black, where r is the virtual range used. It is 
important to note that, in this work, we select r as a function of the 
communication range such that all nodes in each partition are in the same 
broadcast domain. Based on our assumptions about the communication 
range, we can define r = Rco/2. 

A possible selection made by the algorithm is illustrated in Figure 4-2. 
Figure 4-2(a) presents the positions and connectivity of the network. The 
different partitions formed are also depicted in Figure 4-2(a) by representing 

 
1 We assume that distances can be approximated; this can be done, for example, using the 

signal strength in the received packets. 
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the nodes in the same partition similarly. Figure 4-2(b) depicts the partition 
leaders selected by the algorithm and their respective virtual ranges. 

After running the propagation phase of the MVDS construction 
algorithm, the nodes selected as partition leaders report back to the leader the 
information about the topology of the network. This topology information is 
used by the leader to assign a timeslot to each partition such that the timeslot 
is unique from any 1 or 2-hop neighbors. 

3.2 Runtime 

At runtime, nodes have to find the minimum value within each partition, 
and then the partition leaders deliver these minimum values to the leader.  

Algorithm 1 Computing MIN 

1. Each sensor nodes Ni takes a sensor reading. Let vi denote this sensor 
reading. 

2. Each node Ni in PARTj waits until the time slot SLOT( PARTj ) and 
then it sends an empty packet with the priority given by vi. After the 
tournament, the partition leader knows the minimum vi. Let winnerprioi 
denote this value. 

3. Communicate the results winnerprioi from partition leaders to the leader. 
4. The leader takes the min of all winnerprioi that it receives. This minimum 

is the minimum of all sensor readings. 
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Figure 4-3. Partitioning and Partition Leaders for an Example Network. 
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Algorithm 1 provides the sequence of steps nodes take during runtime. 
While the minimum values are routed to the leader, partition leaders can 

perform simple processing and avoid forwarding min or max values that are 
higher or lower than values previously transmitted. 

3.3 A Running Example 

We will illustrate the algorithm with a simple example. Figure 4-3 shows 
a sensor network consisting of 100 nodes. 

Let us consider the algorithm that is run when the sensor network is 
deployed (as described in Section 3.1). The algorithm partitions the network 
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Figure 4-4. Timeslots Assigned to Partitions. 
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Figure 4-5. Each Sensor Node and the Original Sensor Reading. 
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and selects the corresponding partition leaders. Figure 4-3 depicts the 
partition leaders with a solid grey circle, the numbers in each node are the  
partition-ids to which the node belongs (partition-ids are assigned according 
to the partition leader address). 

Then timeslots are assigned to each partition such that if two sensor 
nodes, in different partitions but in the same timeslot, broadcast 
simultaneously, then there is no collision. Figure 4-4 shows the timeslot 
assigned to each node. One can see that there are 11 different timeslots. 

Let us consider the algorithm that is executed at runtime. Figure 4-5 
shows the temperature readings in all nodes. Nodes compete for the channel 
using their temperature readings as the priority and nodes do this in their 
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Figure 4-6. Result After Timeslot 1. 
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Figure 4-7. Result After Timeslot 11. 
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assigned timeslot. After this competition, all nodes know the minimum of 
temperature in the partition. Figure 4-6 shows the result after the first 
timeslot. Observe that the nodes depicted in solid grey circles have all the 
same value within the corresponding partitions. This is because these nodes 
were assigned timeslot 1 and the values depicted are the minimum values in 
each partition, spread to all sensor nodes in the same partition. After 11 
timeslots, all nodes have broadcasted their temperature reading. Figure 4-7 
shows the result after the 11:th timeslot. Now, every leader of a partition 
knows the minimum temperature in the partition. Finally, nodes perform 
convergecast to the leader of the entire network. Observe that, due to the 
setup phase, nodes are organized in partitions where member nodes know 
their partition leaders and partition leaders known the other parent partition 
leaders who can forward message towards the leader node. Thus performing 
convergecast is trivial. After the convergecast, the leader knows that the 
minimum temperature in the entire network is 5.  

To further illustrate why the algorithm is fast, a randomly generated 
network with 1000 nodes is depicted in Figure 4-8. In this figure, the 77 
partition leaders are depicted with solid circles, slightly bigger than the other 
nodes. In this network 17 unique timeslots are needed. By this example, we 
can observe that our scheme scales well. 

So far we have assumed that all transceivers can only transmit in a pre-
specified channel. But many wireless standards, such as 802.11, allow a 
transceiver to transmit on any channel. This feature can be used 

 
Figure 4-8. Large-scale Network Example. 
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advantageously by assigning each partition its own channel (instead of 
assigning a timeslot to a partition) and this reduces the time required to 
perform step 2 in Algorithm 1. 

4. CONCLUSIONS 

We have shown how to use a prioritized MAC protocol to compute 
aggregated quantities efficiently. The algorithms designed to exploit such 
MAC protocol have a time-complexity that is independent of the number of 
sensor nodes. This is clearly important for WSN applications that operate 
under real-time constraints. But, since the high speed makes it possible for 
nodes to stay awake for only a short time and they can then sleep, it is also 
very useful for reducing energy-consumption; and this gives nodes a longer 
life-time. 

We left three important questions open: (i) Can other methods for 
partitioning the network make this technique perform better? (ii) Can a 
similar technique be used to compute more complex aggregated quantities 
(such as COUNT, MEDIAN and interpolation)? (iii) Is the technique 
sufficiently reliable for large-scale systems? 
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