

Dynamic cluster scheduling for cluster-tree
WSNs

Technical Report

CISTER-TR-140906

Version:

Date: 8/31/2014

Ricardo Severino

Nuno Pereira

Eduardo Tovar

Technical Report CISTER-TR-140906 Dynamic cluster scheduling for cluster-tree WSNs

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Dynamic cluster scheduling for cluster-tree WSNs
Ricardo Severino, Nuno Pereira, Eduardo Tovar

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rar@isep.ipp.pt, nap@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency
requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments
that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such
as in traffic flows.This paper presents a solution to enable these networks with the ability to self-adapt their
clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our
approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-
association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-
tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our
methodology through a comprehensive simulation and experimental validation using commercially available
technology on a Structural Health Monitoring application scenario.

a SpringerOpen Journal

Severino et al. SpringerPlus 2014, 3:493
http://www.springerplus.com/content/3/1/493

RESEARCH Open Access

Dynamic cluster scheduling for cluster-tree
WSNs
Ricardo Severino*, Nuno Pereira and Eduardo Tovar

Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency
requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that
hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in
traffic flows.
This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and
scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a
network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the
nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without
significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a
comprehensive simulation and experimental validation using commercially available technology on a Structural
Health Monitoring application scenario.

Keywords: Cluster-tree networks; Message scheduling; Quality-of-service in WSN

Introduction
The increasing tendency for the integration of computa-
tions with physical processes at large scale has been push-
ing research on new paradigms for networked embedded
systems design (Stankovic et al. 2005). In this line, Wire-
less Sensor Networks (WSNs) have naturally emerged as
enabling infrastructures for these cyber-physical applica-
tions due to their potential to closely interact with external
stimulus. Applications such as homeland security, health
care, building or factory automation are just a few elu-
cidative examples of how these emerging technologies will
impact our daily life and society at large.
Given the large number of these WSN applications,

each with an individual set of requirements (Raman and
Chebrolu 2008), it is important that some of these WSN
resources (e.g. bandwidth and buffer size), are predicted in
advance, in order to support the prospective applications
with a pre-defined Quality-of-Service (QoS). To achieve
this, it is mandatory to rely on structured logical topolo-
gies such as cluster-trees (e.g. (Abdelzaher et al. 2004,
Gibson et al. 2007, Prabh and Abdelzaher 2007)), which

*Correspondence: rar@isep.ipp.pt
CISTER Research Centre, ISEP/IPP, Rua Antonio Bernardino de Almeida 431,
4200-072 Porto, Portugal

provide deterministic behaviour instead of flat mesh-like
topologies, where QoS guarantees are difficult to provide,
if not impossible.
Nevertheless, although these network topologies look

promising for the above mentioned WSN applications,
there is a lack of flexibility in adapting to changes in
the traffic or bandwidth requirements at run-time, mak-
ing them not capable of allocating more bandwidth to a
set of nodes sensing a particular phenomena, or reduc-
ing the latency of a data stream. In fact, although there is
already some literature on how to compute these network
resources (Jurcik et al. 2010, Hanzalek and Jurcik 2010), it
is not clear how they could be re-allocated without greatly
interfering with the network functionality, and specially
without imposing high inaccessibility times.
This paper presents a solution to this problem, enabling

networks to change at run-time a given initial schedule,
based on a time-division strategy, to provide increased
quality of service to multiple traffic flows. Computing
this would normally result in a complex integer program-
ming problem which would be infeasible to be computed
by WSN nodes which typically have scarce computing
power. Our re-scheduling algorithm relies on a heuris-
tic that can be easily computed in these platforms. We

© 2014 Severino et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

Severino et al. SpringerPlus 2014, 3:493 Page 2 of 17
http://www.springerplus.com/content/3/1/493

show how to apply our methodology to the particular case
of IEEE 802.15.4/ZigBee, good candidates to enable this
kind of networks. Finally, we analyze and demonstrate
the validity of our methodology through a comprehen-
sive simulation study and experimental validation using
WSN platforms in a real-world Structural Health Moni-
toring scenario. Our proposal can reduce the end-to-end
latency by 93% and the overall data stream transmit period
by 49%, although higher values can be achieved under
different network settings.

Related work
In general, synchronized Cluster-Tree topologies tend to
suffer from four technical issues that usually prevent
their use: (1) how to schedule the transmissions of differ-
ent neighbouring clusters avoiding interference; (2) how
to predict the performance limits to correctly allocate
resources; (3) how to change the resource allocation of
the Cluster-tree (CT) on-the-fly; and (4) the lack of avail-
able and functional implementations over standard WSN
technologies, such as the IEEE 802.15.4/ZigBee set of
protocols.
There is already an interesting body of work concern-

ing the scheduling of general tree-based WSNs. Most of
the work addresses the case of minimizing the length of
TDMA-based schedules for improved convergecast (Choi
et al. 2009, Lai et al. 2008). In (Gandham et al. 2008), a dis-
tributed algorithm is proposed in contrast with previous
more centralized solutions. Recently, in (Incel et al. 2012) a
scheduling strategy is combined with transmission power
control to minimize collision between nodes, and a strat-
egy to schedule transmissions in different frequencies is
also proposed.
Although these strategies might work for a pure

TDMA-based tree, cluster-based trees impose a different
approach since each slot of the TDMA cycle is usually
not allocated to one single node, but to a cluster with
many nodes, and often nodes which are contending for
medium access, thus rendering most delay bound results
not significant. This greatly reduces the number of appli-
cation scenarios for such proposals, considering current
standardization trends.
This is especially true for the particular case of the

IEEE 802.15.4/ZigBee set of protocols, in which although
the Cluster-Tree network topology is supported, no clear
description on how to implement it is given, namely in
what concerns the beacon collision problem. In (Std. IEEE
802.15.4 2006), theTaskGroup 15.4b proposed some basic
approaches to solve this: the beacon-only period approach
and the time division approach, only to be removed in the
2006 revision.
In this line, a few proposals were made targeting the

scheduling of ZigBee cluster-tree networks. The work in
(Pan and Tseng 2008) introduced the Minimum Delay

Beacon Scheduling problem, however this proposal only
addressed the latency problem and not the bandwidth
problem, since it assumed the use of GTS slots for con-
vergecast. The work in (Jurcik et al. 2010), addresses the
problem of predicting resource needs by modelling the
performance limits of a ZigBee CT network using GTS
flows. In another proposal (Hanzalek and Jurcik 2010),
the authors extend the previous work by computing the
optimal schedule for several GTS data flows. Recently,
(Di Francesco et al. 2012) followed a similar approach to
(Pan and Tseng 2008), proposing two heuristics to reduce
the complexity of the otherwise NP-complete problem.
Although the usage of GTS guarantees real-time per-
formance within the IEEE802.15.4/ZigBee standards, the
number of available GTS slots is quite limited as well as
their bandwidth. In this line, in (Huang et al. 2012) the
authors try to overcome this by borrowing bandwidth
from neighbouring nodes.
All of the above proposals work by computing a static

schedule, based on periodic traffic assumptions, which
will remain active throughout the network lifetime. More-
over, they follow a purely theoretical approach, lacking a
clear description on how to implement such mechanisms
on ZigBee. In fact, in some cases it is arguable if it is even
possible.
For instance, the work in (Huang et al. 2012) pro-

poses the concept of adoptive-parents, something which
is clearly not compliant with the ZigBee protocol. Sim-
ilarly, two other proposals (Yeh et al. 2008) and (Dan
et al. 2010), try to improve routing efficiency and decrease
latency by proposing important changes to the basis of
these standards. The first by proposing a change to the
superframe structure to encompass two active periods
per Cluster-Head, the second, by proposing a completely
new tree-routing protocol for ZigBee. In (Kim et al. 2007)
the authors propose yet another non-compliant way of
reducing the schedule latency by passing frames to neigh-
bouring clusters, changing a cluster-tree topology into a
mesh by supporting multiple paths. Moreover, allowing
inter-cluster messaging leads to interference and eventu-
ally beacon collision problems, since nodes do not know
the neighbouring cluster’s active periods. In (Toscano and
Lo Bello 2009) the authors use different radio channels to
avoid tackling the problem.
It is clear that standard communication technologies

able to support tree-based topologies, could benefit from
full-compliant scheduling mechanisms. To make this a
reality, proposals should as much as possible, present
clear implementation details, showing how to enable their
usage within current communication standards. In these
authors’ opinion, in addition to simulation, carrying out
experimental validations of such mechanisms over real-
world platforms is mandatory when addressing these
protocols.

Severino et al. SpringerPlus 2014, 3:493 Page 3 of 17
http://www.springerplus.com/content/3/1/493

In this line, in (Koubaa et al. 2007), the Time Division
Cluster Schedule (TDCS) algorithm was proposed and
implemented in the Open-ZB stack (Cunha et al. 2007)
enabling for the first time the use of this topology over
IEEE 802.15.4/ZigBee based networks, guaranteeing no
beacon collisions. This technique used a time-division
approach and worked by assigning a different time off-
set to each cluster. Fully implemented over commer-
cial WSN platforms, available to the TinyOS community
(TinyOS 2014), and with a set of network planning tools
available to the general WSN community via Open-ZB
(Open-ZB 2014), we believe this work to be a proven
reference concerning beacon scheduling for CT ZigBee
networks. Other proposals followed a similar approach
such as (Burda and Wietfeld 2007) for mesh networks, or
(Muthukumaran et al. 2010).
Although some literature on solving the first two afore-

mentioned problems in this section is already available,
none of the proposals so far, in the general case of syn-
chronized Cluster-Trees, addresses the third one, at least
in a satisfactory way, and guaranteeing standard com-
pliance. This greatly limits the flexibility of the network
which must keep the same cluster schedule and band-
width reservation, independently of the flow of data in
the network and of its particular requirements, which
depending on the application may certainly change. In
this paper, we propose a set of techniques in which the
base schedule is temporary changed to encompass tran-
sient networking necessities such as end-to-end delay and
bandwidth allocation. This work, already presented in
(Severino et al. 2013a), is now extended with new experi-
mental results obtained over a real-world structural health
monitoring application and significantmore detail is given
to the proposal and its implementation over the IEEE
802.15.4/ZigBee standards.

Systemmodel
Consider a synchronized cluster-tree WSNs featuring a
tree-based logical topology where nodes are organized in
different groups, called clusters. Each node is connected
to a maximum of one node at the lower depth, called
parent node, and can be connected to multiple nodes at
the upper depth, called child nodes (by convention, trees
grow down). Each node only interacts with its pre-defined
parent and child nodes.
A cluster-tree topology contains two main types of

nodes: routers and end-nodes (refer to Figure 1). The
nodes that can associate to previously associated nodes
and can participate in multi-hop routing are referred to
as routers. The leaf nodes that do not allow association of
other nodes and do not participate in routing are referred
to as end-nodes. The router that has no parent is called
root and it might hold special functions such as identifi-
cation, formation and control of the entire network. Note

that the root is at depth zero. Both routers and end-nodes
can have sensing capabilities, therefore they are generally
referred to as sensor nodes. Each router forms its cluster
and is referred to as cluster-head of this cluster (e.g. router
C11 is the cluster-head of cluster 11). Each cluster-head
is also responsible for synchronization in its cluster and
periodically sends synchronization frames. All child nodes
(i.e. end-nodes and routers) of a cluster-head are associ-
ated to its cluster, and the cluster-head handles all their
data transmissions. It results that each router (except the
root) belongs to two clusters, once as a child and once as
a parent (i.e., a cluster-head). A schedule of the clusters to
minimize or eliminate inter-cluster interference, follow-
ing a time-division strategy is assumed to be already in
place.
In general, the radio channel is a shared communica-

tion medium where more than one node can transmit at
the same time. In cluster-tree WSNs, messages are for-
warded from cluster to cluster until reaching the sink.
The time window of each cluster is periodically divided
into an active portion (AP), during which the cluster-head
enables data transmissions inside its cluster, and a sub-
sequent inactive portion, during which all cluster nodes
may enter low-powermode to save energy resources.Note
that each router must be awake during its active portion
and the active portion of its parent router. To avoid col-
lisions between clusters, it is mandatory to schedule the
clusters’ active portions in an ordered sequence, that we
call TDCS so that no inter-cluster collision occurs. In
case of single collision domain, the TDCS must be non-
overlapping, i.e. only one cluster can be active at any time.
Hence, the duration of the TDCS’s cycle is given by the
number of clusters and the length of their active por-
tions. On the contrary, in a network with multiple colli-
sion domains, the clusters from different non-overlapping
collision domains may be active at the same time. How-
ever, finding a TDCS that avoids clusters’ collisions in
a large-scale WSN with multiple collision domains is a
quite complex problem, hence in this paper, for sim-
plification, we always assume a single collision domain.
For more information concerning TDCS, please refer to
(Koubaa et al. 2007).
Several data transmissions in an upstream direction

(e.g. streams S1, S2, S3 in Figure 1) can be present in
the network simultaneously. Each stream is noted as a
tuple Sk =< Rk , Pk ,Tk ,Dk >, where, Rk represents the
ordered set of clusters which the stream k must cross to
reach the sink, Pk represents the priority for that stream
(an integer from 0 to 5), Tk represents the number of
TDCS cycles for which stream k will remain active and
Dk the depth of the stream’s source. This stream nota-
tion will be used in the next section to support the
computation of a better TDCS schedule to apply to the
network.

Severino et al. SpringerPlus 2014, 3:493 Page 4 of 17
http://www.springerplus.com/content/3/1/493

Figure 1 Systemmodel.

Dynamic cluster scheduling
With TDCS (Koubaa et al. 2007), it is possible to find
the best schedule for the routers active periods in order
to avoid interference, and to support most of the net-
work bandwidth requirements. However, the schedule is
done at network setup time and assumes a static net-
work that will remain unchanged. The choice of the TDCS
schedule has a strong impact on the end-to-end delays.
In fact, it is easy to observe that in a single collision
domain, where there are no overlapping clusters, a TDCS
schedule optimized for downstream communication will
result in the worst-case for upstream communication,
and consequently in higher end-to-end delays. More-
over, routers are assigned with a fixed bandwidth they
might not always need, while other clusters might be lack-
ing. We aim at reacting to different data flow changes
on-the-fly, while simultaneously minimizing the network
inaccessibility time. Our proposal achieves this via two
techniques: (1) re-ordering the clusters’ active periods to
favour one set of streams, reducing the end-to-end delays,
which we call DCR (Dynamic Cluster Re-ordering); and
(2) tuning the size of the clusters’ duration, increasing the
bandwidth of the clusters serving a specific stream, an
eventually decreasing others’ bandwidth, whichwe named
DBR (Dynamic Bandwidth Re-allocation). The first tech-
nique consists of a rescheduling of the clusters order in
the TDCS cycle, aiming at minimizing end-to-end delays,

while the second technique consists on rearranging the
bandwidth allocation for the clusters involved in a stream,
to increase its bandwidths and decrease the overall time
for a data stream transmission. Both techniques can be
used together, or separately. Importantly, the mechanism
presents a complexity of O(N), where N represents the
number of Cluster-Heads in the network, making it suit-
able to be run overWSN platforms with scarce processing
power. This low complexity also avoids a much larger
energy depletion of the central node in charge of running
DCS.

Dynamic cluster re-ordering
Consider the cluster-tree presented in Figure 1, with 10
clusters and a TDCS schedule as presented in Figure 2
Schedule A, where all CHs have the same allocated
bandwidth. Notice that this schedule is set to minimize
downstream traffic latency (parents’ appear earlier in the
schedule than the child nodes), which is common in appli-
cations that require tight actuation. In this way, to act
on Cluster C21 for instance, one could do it in only one
TDCS cycle, since those Cluster’s are active immediately
one after the other. However, to receive data from C21,
assuming that all data could be transmitted from one CH
to the next in one TDCS cycle, it would take two cycles,
one from C21 to C11, and another from C11 to C01. This is
depicted in Figure 2, where (a) represents the data coming

Severino et al. SpringerPlus 2014, 3:493 Page 5 of 17
http://www.springerplus.com/content/3/1/493

Figure 2 Cluster schedule.

from the sensing node and being received by C21, (b) rep-
resents the transmission from C21 to C11, and finally, (c)
from C11 to C01. This delay will increase as the network
size and the clusters’ duration increases and as the depth
of the source increases. In this scenario, the best sched-
ule to minimize upstream latency, considering a stream
from Cluster C21 to the Sink (S1 in Figure 1), should be as
depicted in Figure 2 Schedule A’, where the next cluster
to receive the packet appears next, reducing the amount
of time a packet needs to be left in the queue and conse-
quently the application end-to-end delays. Thus, networks
should carry out an on-line re-scheduling of the clusters to
favour a known set of upstream data streams, minimizing
the latency.
This kind of rescheduling involves a re-ordering of

the Clusters according to the streams the network must
serve. This can easily grow into a complex problem if
one wishes to achieve an optimum solution, due to the
clusters’ precedence in the tree, usually solved in the liter-
ature using integer programming as seen in the proposal
in Section “Related work”. However, in order to react to
the network specific needs in a reasonable amount of time,
one needs to guarantee that the algorithm to compute this
new schedule is light and fast enough to be run in WSN
platforms with scarce processing power. In this line, inte-
ger programming models might not be the best choice for
this case, where we just need a better and not necessar-
ily the optimum solution. Our approach to the problem is
explained next.
As already presented in Section “System model”, each

stream is noted as a tuple Sk =< Rk , Pk ,Tk ,Dk >. Given
the set of streams S, and the set N which contains all
the cluster-heads in the tree, we must compute A which
denotes the set of cluster-heads that need rescheduling,
where A = N ∩ S. Then, Cr, which denotes the priority
of the rth cluster-head in N , can be computed through the
following algorithm:

Algorithm 1 Computing cluster’s priorities
for all cluster head r in A do

for all stream k in S do
if Ar ∈ Rk then

Cr ← Cr + Pk
end if

end for
Cr ← Cr + h(Ar)

end for

In other words, being Mr the set of streams from m to
Nm which contain CH r in R, and Pm the stream’s priority,
we can compute Cr as:

Cr =
Nm∑

m
Pm + h(Ar) (1)

Function h(Ar) computes the height of Cluster-Head Ar
in the tree, according to the position each Cluster holds in
array Rk being the first CH in the array position 0. Thus,

h(Ar) = pos(Rk) (2)

This value will add to the already computed cluster’s
priority to enable precedence in the schedule. The result-
ing schedule will be achieved by ordering the set of all
cluster-heads N according to the computed Cr for each
cluster-head Ar , starting from the lower priorities to the
highest. As a result, the highest priority will always be
assigned to the sink, since all the streams are directed
to that cluster-head. Cluster-heads that are not part of
the set A keep their schedule not to interfere with the
initial schedule of those, and are placed after the sink.
As an example, if we consider the network presented in
Figure 1 and assume the following set of streams: S1 =<

{C21,C11,C01}, 3, 3, 2 > and S2 =< {C12,C01}, 1, 4, 1 >, A
would be A = {C01,C11,C12,C21}.

Severino et al. SpringerPlus 2014, 3:493 Page 6 of 17
http://www.springerplus.com/content/3/1/493

The first stream, originates at cluster C21 and has prior-
ity 3, while the second, originates at cluster C12 and has
priority 1. If no reschedule was done, and assuming ideal
communication without errors and delays imposed by the
MAC layers, we would expect that one packet of S1 would
take approximately 18 times the duration of one active
portion of a CH to reach the sink (Figure 2 Schedule A),
and from S2 three active portions. If we use the presented
algorithm it will result in the following: C01 = P1 + P2 +
h(A01) = 3 + 1 + 2 = 6; C11 = P1 + h(A11) = 3 + 1 = 4;
C12 = P2 + h(A12) = 1 + 1 = 2; C21 = P1 + h(A21) =
3 + 0 = 3; Ordering from the lowest to the highest pri-
ority, the CHs in A should be ordered as C12,C21,C11 and
finally C01.
Considering the remaining nodes, which maintain their

initial order in the schedule and lowest priority, the final
schedule, would be as described in Figure 3.
It would now be possible a full data transaction from

the origin cluster to the sink in one TDCS cycle, reducing
the delay of each packet, greatly benefiting applications
which demand low latencies. If we wanted to decrease
the latency for S2 we could increase the priority of the
stream to the same of S1 or higher. This would result in
C12 = P1 + h(A12) = 3 + 1 = 4, and now, C12 would
have a higher priority than C21 thus appearing later in the
schedule, decreasing the latency.
Comparing this schedule with the original in Figure 2

Schedule A, we observe that the other CHs also changed
place in the schedule. Changing the position of all nodes
must be done because there is no free room that will let
us only change the streaming CHs’ position and accom-
modate their initial positions unoccupied. However, this
does not mean that all of the CHs changed the offset
to their parents. For instance, in this particular case C41
does not change the offset. This is obvious, since the dis-
tance between C41 and its parent C31 did not change. As
a rule of thumb, a new offset will have to be computed
for every children one depth bellow a re-scheduled CH.
For their grand-children, this does not happen since the
distance remains the same as in the original schedule.
This principle will be used later in STEP 4 (Section "The
DCS communication protocol"), to compute the network’s
inaccessibility time.
Although this approach solves the latency problem, it

does not reduce the overall time it will take for a stream
to be transmitted since there is no change to the avail-
able bandwidth per cycle. Hence our second proposal,
DBR, which will increase the bandwidth for the clusters
involved in the stream.

Dynamic bandwidth re-allocation
For this technique, bandwidth must be re-allocated by
increasing the bandwidth for the clusters involved in the
stream. The first step is to look for free space in the
schedule that has not been reserved by a cluster’s active
portion. If there is such free space, we can distribute in an
equal fashion the available space by the Clusters involved
in the stream. For the particular case of Figure 2 Sched-
ule A there is no space available. This means we must
try to reduce the amount of bandwidth the clusters not
related to the stream are using. Here, it is important to
previously define the minimum bandwidth a Cluster can
support. This is implementation specific in many cases,
since it is highly dependent on the limitations of the hard-
ware platforms. If the SO (Superframe Order - refer to
Section "Instantiating DCS in IEEE 802.15.4/ZigBee") is
reduced beyond a threshold, there can be timing issues.
This has been reported previously and is discussed in
(Cunha et al. 2008) concerning the TelosB platforms. The
minimum bandwidth that will be available to the other
clusters after the use of this technique is thus set at net-
work setup time. If we consider stream S3 (Figure 1)
originating a C41, in which the routers involved are R41 =
{C41,C31,C21,C11,C01}, the one we wish to increase the
bandwidth of every cluster, and a network which is capa-
ble of handling a reduction of the available bandwidth
by half, this technique will cut all the remaining 5 CH’s
duration, and redistribute this duration by the other CH’s
in R41. This results in an increased bandwidth for that
stream (Figure 4), thus reducing the transmission time.
The size of the TDCS cycle is kept nonetheless, since the
bandwidth was simply redistributed.
As depicted in Figure 4, all the relative offsets have

changed. Nevertheless, a great plus of this technique
is that the network inaccessibility time is minimum
if compared to the previous technique, since in only
one TDCS cycle, it is possible to reschedule all the
network with the new offsets, if the original sched-
ule was setup to facilitate downstream communications.
This technique is, however, greatly dependent of the
protocol in use since, some protocols only allow dis-
crete steps in the duration of the CH’s active portion,
like the IEEE802.15.4/ZigBee set of protocols. Refer to
Section 5 concerning IEEE802.15.4/ZigBee protocols for
more detail.

The DCS communication protocol
Our proposed on-line re-scheduling technique comprises
six steps, which can easily be adapted to different network

Figure 3 Re-ordered DCR schedule.

Severino et al. SpringerPlus 2014, 3:493 Page 7 of 17
http://www.springerplus.com/content/3/1/493

Figure 4 DBR Schedule.

protocols. The protocol is depicted in Figure 5 in a time
diagram and is described next.
STEP 1 - At network setup time, all Cluster-Heads are

assigned with a TDCS time offset in relation to their par-
ents according to the approach proposed in (Koubaa et al.
2007). Different priorities are also assigned to different
sensing actions by the nodes. Synchronization frames are
sent periodically and several actuation actions on the leaf
nodes can be carried out.
STEP 2 - DCS Request; If a leaf node wishes to trans-

mit a stream of data to the Sink, its Cluster-Head must
be informed. The CH will decide, according to the

application which originates the request, if the most ade-
quate strategy is a rescheduling to minimize end-to-end
delays, a reorganization of the bandwidth, or both. The
option of which technique to use must be defined at
network setup time, since different applications impose
different requirements (reduced latency or transmission
time). This request is then forwarded to the parent until
it reaches the Root. On the way, each CH will add its
own address to the message, to inform the Root of the
clusters involved in the stream. This way, we avoid using
heavy lookup tables that would have to be loaded into the
Root at network setup time describing all parent child

Figure 5 DCS Communication diagram.

Severino et al. SpringerPlus 2014, 3:493 Page 8 of 17
http://www.springerplus.com/content/3/1/493

relationships. The DCS Request is shown in Figure 6.
The first field transports the DCS Request message code
identifier. Next, the estimated amount of data to be
transmitted in the stream, and the application which is
requesting the DCS.
The next fields identify the stream priority, for comput-

ing the new schedule, number of clusters which belong
to the set, and their identification. These two last fields
are updated as the DCS Request is transmitted upstream.
Upon reception, the Root will wait for a finite period of
time for more requests. It will then evaluate the Stream
Requests and compute a new TDCS schedule.
STEP 3 - Evaluation and Rescheduling; The evalua-

tion process consists in checking whether or not it is
worth rescheduling the network, considering the amount
of data to be transmitted and the inaccessibility time
resulting from the reschedule. Although different tech-
niques could be used to compute this, we are interested
in speed and low complexity, due to the scarce process-
ing power of common WSN platforms. The objective is
to roughly compute the benefit from scheduling, and to
do it fast enough not to delay the process too much. To
compute this, we start by defining a base unit to simplify
the computation. The base unit represents the duration of
the active portion of the CH where a stream originates.
Hence, if we say that a stream has size n = 1, this repre-
sents a stream which duration is equal to the duration of
its CH active portion. All the others CH durations can be
represented asmultiples of this base unit, because streams
move upstream, thus the Bandwidth of the parent CHs,
must be equal or higher than their child’s. This is imposed
by the TDCS algorithm 2007. We also introduce the con-
cept of µcycle andmacrocycle. Here, the µcycle represents
the amount of n units it takes for a stream of size n = 1
to reach its destination and macrocycle, represents the
size of the network TDCS schedule in multiples of n. The
amount of time to transmit an amount of data represented
in multiples of n can be computed using the follow-
ing expression, where Ti represents the overhead of the
rescheduling which we show how to compute in Step 5.

t = µcycle + (n− 1)macrocycle + Ti (3)

For the particular case of the network depicted in Figure 1,
with schedule A, and considering a stream originating at
C41 (S3), we can compute it’sµcycle as the number of base
units between the different CHs in the path. The result is
shown in Table 1.

Table 1 Computation ofµcycle length for each schedule

Schedule A Schedule B

C41 → C31 10 2

C31 → C21 9 1

C21 → C11 9 1

C11 → C01 9 1

µcycle 37 5

If we use for instance a re-ordering technique (DCR),
this will result in the schedule B depicted in Figure 7,
favorable to stream S3, showing a full transaction from
source to destination in one TDCS cycle.
Its macrocycle is the size of the schedule, which is of

10 base units. Ti is computed according to the method-
ology presented in Step 5 and is equal to 3. Hence, for
n = 1, considering Schedule A, tA = 37 + 0 + 0 = 37.
For schedule B, with a DCR, tB = 5 + 0 + 3 = 8.
The macrocycle is equal to 10 for both cases. With our
technique it is possible to compute the delay, assuming
a collision free environment and maximum theoretical
bitrate, an obvious simplification which will always out-
put the shortest time it takes for a flow of data to reach
the destination. This method, however, suffices to com-
pute if a re-scheduling is better or not. The root node will
then compute all the offsets that result from the new clus-
ter schedule that will serve that stream and reply to the
request.
STEP 4 - Reschedule Response; After the computation

of the new offsets (time offset between the beginning of
the active portions of the parent and child CHs), accord-
ing to the new schedule, a response is sent in the payload
of the periodic synchronization frame. By using the syn-
chronization frame to deliver this information we make
sure that all CHs receive the information in a bounded
amount of time, since they are not susceptible to con-
tention. The first part (Figure 8) specifies themessage type
and the response, (request accepted or request denied).
The next portion of the frame contains the expiration for
that schedule, which is the amount of TDCS cycles the
schedule will remain active before returning to the orig-
inal network schedule. The next portion contains a list
with the new offsets expressed in a relative offset con-
cerning the original one and the cluster-head addresses to
which these are to be applied.
Only the CHs which received a new offset are part of

the content of the response frame. If the node which

Figure 6 DCS Request message format.

Severino et al. SpringerPlus 2014, 3:493 Page 9 of 17
http://www.springerplus.com/content/3/1/493

Figure 7 Resulting schedule B.

requested the rescheduling does not find its address
among the ones in the response, or if no response
is received for more than DCS_maxWait cycles, it
should hold the data and retry later up to a maxi-
mum of DCS_maxRescheduleRetry times. The size of
DCS_CH_Address is implementation specific as well as
the DCS_Offset, since these variables depend of the
protocol.
STEP 5 - Propagation; Each cluster-head, upon recep-

tion of the Reschedule Response payload, retrieves its
newly assigned offset to their parent and propagates the
remaining offset information along the network by placing
it in their own synchronization frames, thus propagating
the information downstream. The new offset information
is then used by the CHs to compute the time for the
next synchronization frame. At the next depth, the child
router of that cluster-head must wait for the next syn-
chronization frame (with the new offset) from the parent,
and synchronize to it. This propagation procedure how-
ever can introduce a period over which the network is not
fully accessible, with the exception of the branches that
remained independent of the CHs which were resched-
uled. This holds true for the Cluster Re-ordering tech-
nique only (DCR). This is because each CH must wait
for the synchronization frame of their parent so that they
can align with it and also synchronize their cluster, prop-
agate information and become active, since the offsets
are always relative to the parents. However, this delay is
bounded and can be easily computed as a function of the
TDCS schedule cycles as follows:

TDCR
i = (dAr − 1)× tTDCScycle (4)

The inaccessibility time is equal to the depth of the deep-
est rescheduledCH (dAr) in the tree minus one, multiplied
by the respective duration of one TDCS cycle. This is
the amount of time the scheduled branches of the net-
work should be inaccessible. If instead of a DCR technique
we use a Bandwidth Redistribution technique, this inac-
cessibility time is zero. Because the hierarchical order of
the schedule is kept, the routers will always receive the

synchronization frame of their parent immediately before
(assuming a schedule favoring downstream transmission),
and within the same TDCS cycle. A failure at the reception
of the synchronization frame must place the cluster and
its respective children in an idle state to avoid inter-cluster
collision. Upon the correct reception of the following
synchronization frame the cluster shall resume.
STEP 6 - Returning to original schedule; The schedule’s

change is not permanent, and the network must roll back
to its initial schedule after a defined period of time which
we define as the Schedule’s Expiration Period. Because
of the inaccessibility period in the DCR technique, each
depth will be assigned with a different Expiration so that
all depths can change the schedule back to the original
in the same cycle. For this reason, Expiration in Step 5
is computed as Expiration = ED + Ti + 1, where ED
is the schedule’s expiration deadline that is application
defined (DCS_Exp_Deadline) and can be computed from
the amount of data to be received, Ti the inaccessibility
time. Each CH will later compute its own Expiration by
subtracting their depth in the tree. By following this rule,
every CH can easily compute when the current schedule
expires, just by counting the number of TDCS cycles since
their first synchronization frame after the reschedule. For
the case of a DBR technique, expiration will be always
equal to the ED, since the inaccessibility time remains
equal to zero. The CHs should activate a counter at the
first synchronization frame sent with the new schedule.
From this point on, each CH keeps track of the cur-
rent number of synchronization frames sent by it. When
this number is equal to the assigned Expiration value the
CH automatically sets its offset to the original and waits
for a synchronization frame from its parent to return to
the original schedule. Figure 9 describes how this pro-
cess should work for the example of S3, after a successful
reschedule response. The delay of three cycles due to inac-
cessibility is depicted as well as the schedule expiration.
The first TDCS cycle transmits the new offsets within
the DCS Response. Each router resets their internal clock
references and waits for a synchronization frame from
their parent. C12 and C11 are the first to receive this and

Figure 8 DCS Reply message format.

Severino et al. SpringerPlus 2014, 3:493 Page 10 of 17
http://www.springerplus.com/content/3/1/493

Figure 9 Example of the DCS.

they transmit their synchronization frames with the new
schedule, followed by their child, (C22,C23,C24,C21).
Next, the CHs at depth three do the same until the last

CH at depth four (C41) is also rescheduled. The sched-
ule is kept for three more TDCS cycles and it expires.
All the offsets return to the original schedule in only
one TDCS cycle. As observed, the network inaccessibil-
ity time is bounded and return to the original schedule is
done without much complexity.
Considering energy-efficiency, only the node which

makes the DCS Request, and eventually the CHs routing
that message, spend an extra quantity of energy, which is
equivalent to the transmission of one short data frame,
eventually retransmitted in the case of a failure. The setup
of the network with the new offsets uses the payload of the
synchronization frames that must be transmitted inde-
pendently of DCS. Thus, it is clear that communications
generated by our mechanism, will never lead to energy
depletion among the nodes.

Instantiating DCS in IEEE 802.15.4/ZigBee
IEEE 802.15.4/ZigBee overview
IEEE 802.15.4 and ZigBee 2005, particularly the synchro-
nized cluster-tree network model, emerge as potential
solutions for industrial WSNs, since they enable to ful-
fill QoS requirements such as energy-efficiency (dynam-
ically adjustable duty-cycle in a per-cluster basis) and
timeliness (best effort/guaranteed traffic differentiation

and deterministic tree-routing). The IEEE 802.15.4 MAC
protocol supports two operational modes that may be
selected by the ZigBee Coordinator (ZC), which identifies
and manages the whole WSN: i) the non beacon-enabled
mode, in which the MAC is simply ruled by nonslot-
ted carrier sense multiple access with collision avoidance
(CSMA/CA); and ii) the beacon-enabled mode, in which
beacons are periodically sent by the ZC for synchroniza-
tion and network management purposes. In the beacon-
enabled mode, the ZC defines a superframe structure,
which is constructed based on the Beacon Interval, which
defines the time between two consecutive beacon frames,
and on the Superframe Duration (SD), which defines the
active portion in the BI, and is divided into 16 equally-
sized time slots, during which frame transmissions are
allowed. Optionally, an inactive period is defined if BI >

SD. During the inactive period (if it exists), all nodes may
enter in asleep mode (to save energy). BI and SD are deter-
mined by two parameters, the Beacon Order (BO) and the
Superframe Order (SO), respectively, as follows:

BI = aBaseSuperframeDuration × 2BO

SD = aBaseSuperframeDuration
× 2SO for 0 ≤ SO ≤ BO ≤ 14,

where aBaseSuperframeDuration = 15.36 ms, (assum-
ing 250 kb/s in the 2.4 GHz frequency band) denotes
the minimum superframe duration, corresponding to

Severino et al. SpringerPlus 2014, 3:493 Page 11 of 17
http://www.springerplus.com/content/3/1/493

SO = 0. During the SD, nodes compete for medium access
using slotted CSMA/CA in the CAP. For time-sensitive
applications, IEEE 802.15.4 enables the definition of a
contention-free period (CFP) within the SD, by the alloca-
tion of guaranteed time slots (GTSs). Low duty-cycles are
achieved by setting small values of the superframe order
(SO) as compared to the beacon order (BO), leading to
longer sleeping (inactive) periods.
ZigBee defines network and application layer services

on top of the IEEE 802.15.4 protocol. In the cluster-tree
model, all nodes are organized in a parent-child rela-
tionship, network synchronization is achieved through a
distributed beacon transmission mechanism and a deter-
ministic tree routing mechanism is used. A ZigBee net-
work is composed of three device types: (i) the ZigBee
Coordinator (ZC), which identifies the network and pro-
vides synchronization services through the transmission
of beacon frames containing the identification of the PAN
and other relevant information; ii) the ZigBee Router
(ZR), which has the same functionalities as the ZC with
the exception that it does not create its own PAN-a ZR
must be associated to the ZC or to another ZR, provid-
ing local synchronization to its cluster (child) nodes via
beacon frame transmissions; and (iii) the ZigBee End-
Device (ZED), which neither has coordination nor routing
functionalities and is associated to the ZC or to a ZR.

Integrating DCS in a ZigBee network
The PAN-Coordinator is responsible for receiving the
new schedule request from the other cluster-heads and
computing the new schedule as described before. A new
module was devised to be integrated above the network
layer of ZigBee (Figure 10), at the Application Support
Layer. This newmodule, DCS, is responsible formanaging
theDCSmechanism, in regards to the beacon payload cre-
ation (for propagating offset information), computing and
changing the offset information for the lower layers, and
computing the schedules and corresponding expiration.
At network setup time, the TDCS algorithm is applied

to the tree, setting up the base schedule. As the nodes
gather data, they can direct streaming requests at the
PAN Coordinator. The PAN-Coordinator will evaluate
these requests according to what is described in Step 3 of
Section “The DCS communication protocol”. If the result
is positive, it will compute the new schedule and setup the
Rescheduling Response to be placed in the IEEE 802.15.4
Beacon Payload. The next Beacon frame will carry this
information. As Beacons are transmitted between the
several clusters, the new schedule information is propa-
gated among the tree and all the nodes will know a DCS
Rescheduling is occurring just by parsing the received
Beacon. This is important since in the next BI, many nodes
will fail to receive a Beacon from their parent, due to
the inaccessibility time described in Step 4 of the DCS

Communication Protocol. This will be specially visible in
the deepest nodes of the rescheduled branch. If no infor-
mation concerning the status of the process was propa-
gated, the nodes could assume they had lost their parent,
receiving a SYNC-LOSS.indication from the respective
MAC layer, and would try an Association procedure to
another potential parent. By knowing this in advance, they
can disable this process for (Depth − 1) ∗ BI amount of
time, which is the maximum time the rescheduling should
take per Depth, after which, the Device will re-enable the
re-association procedure after the SYNC-LOSS.
Upon reception of their parent’s Beacon, the ZigBee

Cluster-Heads, will search for their address among the
Rescheduling information at the Beacon Payload to learn
the new offset. Then, they will trigger the DCS Module
generating a DCS-NEW-SCHEDULE.indication, and set
their own Beacon Payload with the remaining information
of the Rescheduling Response to propagate the informa-
tion to the children down the tree. Having done this, the
DCS Module, will issue a SYNC.request to the Network
Layer to resynchronize with the corresponding parent,
and after a synchronization anMLME-START.request.
The MLME-START.request primitive, depends of the

rescheduling technique to be used. If a Re-ordering
technique is to be used, then the CH will used a
DCS-RESTART-ROUTER.request, with the new offset
information. This new interface is similar the standard
NLME-RESTART-ROUTER.request, except no change is
done to the other parameters of the stack. The objective
is to simply turn the routing functionality on. If a Band-
width reallocation is to be done, then the request will also
change the Superframe Order parameter of the stack to
reflect the bandwidth change. The system timers at the
MAC layer, upon reception of this request are automati-
cally updated with the new Superframe Order. Upon the
reception of a Beacon from the parent, the ZigBee Router
will automatically resynchronize and resume its work.
When the DCS Module is triggered, the Schedule Expi-

ration is also computed according to what is described
in Step 6 of Section “The DCS communication protocol”,
and a counter (DCS-Expiration-timer) is triggered with
that value. When this counter expires, the DCS Mod-
ule automatically repeats theDCS-RESTART processwith
the old offset values, returning to the initial values. These
are stored in a database, DCS-Initdb, which contains the
initial offset and Superframe Order values. As described,
the implementation of the DCS mechanism does not
involve major changes to the protocol. In fact, only a
couple of new interfaces are to be added to the ZigBee
NWK implementation to enable the DCS functionali-
ties. One is triggered upon reception of a new schedule
(DCS-RESTART-ROUTER.request) after the regular pars-
ing of a beacon frame, and another (NLME-RESTART-
ROUTER.request) which is a replication of the standard

Severino et al. SpringerPlus 2014, 3:493 Page 12 of 17
http://www.springerplus.com/content/3/1/493

Figure 10 DCS Architecture.

NLME-START-ROUTER.request. All of the DCS mecha-
nism implementation is taken as an independent module
to the Application Support Layer to avoid imposing sub-
stantial changes to the NWK layer.

Performance evaluation
Application scenario
Structural Health Monitoring (SHM) and damage identi-
fication at the earliest possible stage have been receiving
increasing attention from the scientific community and
public authorities (Superstructures 2010). Service loads,
accidental actions and material deterioration may cause
damage to the structural systems, resulting in high admin-
istrative costs for governments and private owners and, in
some situations, loss of human lives. As such, there is an
enormous eagerness to add sensing/actuating capabilities
to physical infrastructures like bridges, tunnels and build-
ings, turning them into “smart structures” able to detect
and respond to abnormal situations. However, there is still
a lack of ready-to-use and off-the-shelfWSN technologies
able to fulfil the most demanding requirements of SHM
applications, such as stringent time synchronization of all
sensors’ measurements, highly reliable timely measure-
ments and data communications. In this line, we designed
a prototype system for SHM ((Severino et al. 2010) and
(Aguilar et al. 2011)), capable of coping with these SHM
requirements while supporting network scalability.
This application presents interesting dynamics that

could be improved by the use of the DCS mechanism.

Besides its requirement of tight node synchronization and
low latency downstream control, the application generates
a large amount of sensing data that must be handled by
the network in an upstream direction. These two modes
of operation can be supported and see their performance
improved by the use of the DCS mechanism by mini-
mizing both end-to-end delays and overall transmission
time.
Its system architecture was designed to sample in a

synchronized fashion multiple accelerometers placed at
different locations in a physical structure and forward
this data to a central station (PAN-Coordinator) for later
processing using a IEEE 802.15.4/ZigBee Cluster-Tree
network topology. Each Sensing Node is composed by a
TelosB node (MEMSIC 2014) with a signal acquisition
board, with a 24 bits DAC, attached to a MEMS 3-axis
acceleration sensor (Figure 11).
The Coordinator Node (Figure 11) supervises the net-

work and nodes’ activities and guarantees a tight syn-
chronization between all nodes. It also forwards the
configuration parameters and dispatches the acquired
data to the Command & Configuration Application (C&C
App), which provides the system user with a human-
machine interface (HMI) to configure the system and also
an application programming interface (API) to integrate
the WSN system with the data processing/analysis appli-
cations. When the data acquisition finishes, the Sensing
Nodes are pooled in turn for the sensing data. Depending
on the sampling rate, a large volume of data is transmitted

Severino et al. SpringerPlus 2014, 3:493 Page 13 of 17
http://www.springerplus.com/content/3/1/493

Figure 11 SHM System architecture.

to the Coordinator Node, which will forward it to a PC
for processing. With reduced latency, it could be possi-
ble to carry out data processing simultaneously. Never-
theless, engineers can rely on data post processing, as
long as data arrives within the minimum possible period,
since they need several acquisition runs to be carried
out.
The network is setup according to Figure 1 network

topology and the Sensing Nodes are spread into differ-
ent clusters. In Figure 1, the addresses next to the nodes
represent the Cluster-Heads’ ZigBeeNWK addresses. The
initial schedule favors downstream communications. This
is made so that the PAN-Coordinator, after setting up all
the nodes in the network, is able to start and stop the
data acquisition on all the nodes simultaneously, in one
TDCS cycle. This is mandatory for the application so that
the results are coherent. If the initial schedule was kept to
poll the date from the sensors, the assessment could last
minutes up to several hours, depending on the cluster the
stream originated from.
We aim at changing the network’s TDCS schedule to

improve on this behaviour, by (1) reducing end-to-end
latency, eventually allowing for simultaneously data anal-
ysis, using the DCR technique and (2) by accelerating
the data transfer from the Sensing Nodes to the PAN-
Coordinator using DBR technique.

Experimental setup
The DCS mechanism was evaluated through simulation
and experimentally using our SHM system. For carry-
ing out the simulation analysis, the DCS mechanism was
implemented over the Open-ZB Zigbee Model (ZigBee-
Alliance 2005), and simulated with the OPNET Modeler
simulation software. A network topology like the one

shown in Figure 1 with nwkMaxChildren (Cm) = 3, nwk-
MaxDepth (Dm) = 5, and nwkMaxRouters (Rm) = 2, was
setup and the application layer of the node was set to gen-
erate traffic at a rate correspondent to a sampling rate of
100 Hz which is recommended for fine-grained structural
health monitoring (Severino et al. 2010). For maintaining
uniformity along this paper, in the analysis we always con-
sider stream S3, which originates at router C41 in Figure 1
and constitutes the worst-case for the initial TCDS sched-
ule. Several analysis to evaluate the performance of the
two techniques were carried out, with a special atten-
tion to two metrics: end-to-end delays and overall stream
transmit duration.
To carry out the experimental validation over the

SHM application, the DCS module was implemented in
TinyOS over the Open-ZB IEEE 802.15.4/ZigBee stack
(Cunha et al. 2007). A ZigBee network with 12 TelosB
motes was setup in a configuration replicating the one
depicted in Figure 1, using BO=8 and SO=4, with one
PAN-Coordinator connected to a PC through a USB
connection, and nine Routers each forming their own
cluster. Two Sensing Nodes (End Devices) were associ-
ated to the Router at Depth 4 (address 0x0004) to gen-
erate sensing data for later retrieval. To reduce costs,
the Sensing Nodes were used without the accelerom-
eter modules. Instead, timers at the application layer
were used to emulate real SHM traffic at different sam-
pling rates. Both DCS techniques were implemented and
tested to validate our work, although the most impor-
tant technique for this specific SHM application is the
DBR, which as shownbefore can greatly reduce the overall
stream transmission time. A base scenario, without any
schedule improvement, was also setup to measure the
improvement.

Severino et al. SpringerPlus 2014, 3:493 Page 14 of 17
http://www.springerplus.com/content/3/1/493

Performance results
End-to-endDelay Analysis
To understand the impact of the first techniquewe did one
hundred simulation runs, 10 minutes each, of the network
with different BO settings (from BO = 8 up to BO = 12),
simulating a larger network, with the initial scheduling
and using the cluster re-ordering technique. The maxi-
mum end-to-end delays were measured for packets trans-
mitted from a Sensing Node associated to Router 0x0004,
at Depth 4, (S3 in Figure 1), to the PAN-Coordinator, with
no extra traffic on the network. This transmission is the
worst-case for the initial TDCS schedule. In the simula-
tion platform, frame size was set to 800 bits, and Packet
Inter-arrival Time was set to 0,06 seconds to emulate the
arrival of Sensing Data at the Sensing Node’s serial port
(this was verified experimentally).
Figure 12, shows the simulation maximum end-to-end

delay results for the different BO using the DCR tech-
nique. Superframe order is fixed to SO = 4 for the case
of the results in the left. Notice the decrease on the
delay achieved by simply re-ordering the schedule. We
can achieve a reduction in the end-to-end delays in the
order of 13 seconds for BO = 8 and even several minutes
as the BO increases with the size of the network, reach-
ing 4 minutes for the case of BO = 12, to approximately
one second. The end-to-end delays withDCR remain con-
stant despite the different BO settings. This is expected
since although the network increases, the transmission of
a packet is completed in only one BO cycle. Since the
Bandwidth of the routers is also the same, the end-to-end
delay should remain constant and thus independent of the
network size.
To understand the impact of the Bandwidth Realloca-

tion technique (DBR), on the end-to-end delay, the initial
schedule’s ordering was maintained, and BO increased
to 10. As the available bandwidth of the Superframe
increased, it was distributed using DBR among the
Routers involved on the stream, changing from SO=4 up

to SO=7. Figure 12 on the right, presents the results for S3
in Figure 1 concerning end-to-end delay.
There is a slight but not significant decrease of the end-

to-end delay as the SO are increased. Since the Routers
increase their SO, the unused part of the Superframe
was reduced and thus there is a better use of the Super-
frame bandwidth. This reduces the time the packet must
remain in the queue at each router, waiting for the next
Superframe to be transmitted to the parent, thus slightly
reducing the overall end-to-end delay. This is visible in the
figure in the right showing how the average queuing delay
decreases as the SO increases. In comparison, the DCR
technique presents a much higher impact on the end-to-
end delay as expected, decreasing for the case of BO/SO
= 10/5, the delay from 60,95 to 1,97 seconds, a decrease
of 96,7%. In fact, for its worst case of BO/SO = 10/7, it
still represents a decrease of 82,14% concerning the DBR
technique.
There is however, a slight increase in the end-to-

end delay when using the DBR+DCR techniques as
the SO increases. Although, there is a re-ordering of
the schedule according favouring upstream traffic, and
a redistribution of the unused bandwidth, the increase
in SO implies a larger time a packet must wait in
queue at each router, waiting to be transmitted to the
parent, in comparison to the cases with lower SO. Using
the DBR technique is thus not recommended when one
wishes to significantly reduce the end-to-end delay in the
application.
Figure 13 shows the comparison between simulation

and experimental results. As observed, the behaviour pre-
viously observed in simulation is replicated in the exper-
imental evaluation with minor differences. However for
the base schedule, experimental delay was slightly dif-
ferent. This has to do with the different duration of the
Beacon Order on the experimental platforms, which is of
3,75 seconds instead of the theoretical 3,932 seconds, due
to the lower timer granularity.

Figure 12 Stream end-to-end delays - simulation.

Severino et al. SpringerPlus 2014, 3:493 Page 15 of 17
http://www.springerplus.com/content/3/1/493

Figure 13 Stream end-to-end delays - experimental and simulation.

A Daintree Networks 2400E Sensor Network Analyzer
(Daintree Networks 2014) was used to log all the
communications during the experimental evaluation.
Figure 14, shows its log after a successful reschedule
response. Part of the output related to the network setup
and DCS communication was omitted to save space, but
can be seen in (Severino et al. 2013b). The beacons from

the PANCoordinator are signaled with a red arrow.When
all the Routers receive their new offset information in
the DCS Reschedule Response message, they immediately
stop sending beacons and wait for their parent’s beacon to
synchronize to it. The first beacon comes from the PAN
Coordinator which maintains its period. Next, Routers at
Depth one are the firsts to synchronize to it using the new

Figure 14 Output from the packet analyzer showing the DCR technique.

Severino et al. SpringerPlus 2014, 3:493 Page 16 of 17
http://www.springerplus.com/content/3/1/493

offsets. Notice the Packet Analyzer time stamp, showing
the new relative offsets. Now that the Depth one Routers
transmitted their beacons, the next level ones (Depth two)
can also synchronize. The process continues until the all
the Routers are synchronized. At this point, the Sensing
Nodes (0x0007 in the example) start transmitting data
which will be forwarded until it reaches the sink.

Streamoverall transmission time
Like previously mentioned, minimizing the overall trans-
mission time is quite important, in this SHM application,
where large amounts of data must be transmitted in the
less amount of time possible. To analyze this metric, in
the simulation platform we generated scenarios with dif-
ferent volumes of sensing data, corresponding to short 10
and 30 seconds runs and runs with 1, 5, 10 and 30 min-
utes, in the SHM system. Those values were also tested
in the experimental platform. During this time there was
no more traffic in the network, so that collisions were not
possible, not to interfere with the experiment.
Figure 15 shows the simulation and experimental results

of the transmission time for sampling durations of 30, 60
seconds and 5 minutes using the DCR and DBR tech-
niques for SO=4 and SO=5 in regard to the base schedule.
As shown, the DBR technique presents the best result
in decreasing the overall transmission time, representing
a decrease close to 50%, as expected when the available
bandwidth is doubled on the Routers, to SO = 5. For
the case of 1 minute of sampling time, using the DBR
technique alone reduced the overall transmission time
from nine minutes to 4 and a half minutes, a decrease
of 49%.
Interestingly, the DCR technique also decreases the

overall transmission time, but not in a significant way. It
decreases it about 14 seconds for this particular case of
BO=8, and it is constant for every SO setting, indepen-
dently of the amount of data to be transmitted. This small
difference, however should not be neglected. For larger
BO, the impact of this increases as shown in Figure 15
in the right, reaching 8 minutes for BO=13. This happens
because of the impact of the reduced end-to-end delay at

the beginning of the transmission, due to the re-ordering
of the clusters’ schedule. Because of this, the transmis-
sion will end sooner. As the BO increases, the impact of
this is higher since the duration of the TDCS cycle also
increases.
Experimentally, concerning the DBR technique, results

show a reduction on the overall transmission time in the
order of 49%, again quite close to simulation results, while
further reductions can be achieved by increasing the SO
per cluster. Concerning the network inaccessibility time,
as predicted, it was bounded to three TDCS cycles, which
is the time it takes for the whole network to resynchro-
nize with the new schedule. This can be confirmed in the
Packet Analyzer output files available in (Severino et al.
2013b).

Conclusions
Changing the resource allocation of a Cluster-basedWSN
on-the-fly, without imposing long inaccessibility times,
represented a major challenge, hindering the deployment
of many WSN applications. In this paper we presented
a solution to this problem, enabling networks to self-
adapt to changing traffic flows, improving the QoS by
redistributing the available bandwidth and minimizing
latency, assuming a given schedule based on a time-
division strategy.
We presented two techniques achieving a reduction of

the end-to-end delay from a leaf node to the sink of 93%,
and a decrease of the overall data transmit period of 50%
although a higher impact can be achieved with other net-
work settings. Importantly, our methodology was applied
to a real-worldWSN-based Structural Health Monitoring
system, showing that it can be easily implemented under
the IEEE802.15.4/ZigBee set of protocols with minor add-
ons and can run in general purpose WSN platforms such
as the TelosB motes.
In the near future, we aim at deploying the SHM sys-

tem fitted withDCS in the field, supporting civil engineers
that must carry out professional structural health moni-
toring work. We are also aiming at providing support for
conflicting traffic flows in the network.

Figure 15 Stream transmit duration.

Severino et al. SpringerPlus 2014, 3:493 Page 17 of 17
http://www.springerplus.com/content/3/1/493

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RS proposed, designed and carried out the evaluation of the DCS mechanism.
Dr. NP and Dr. ET participated in the design of the proposed mechanism and
drafting of the manuscript. All authors read and approved the final version of
the manuscript.

Acknowledgements
This work was supported by PT Funds through FCT (Portuguese Foundation
for Science and Technology), by ESF (European Social Fund) through POPH
(Portuguese Human Potential Operational Program), under grant
SFRH/BD/71573/2010. It was also supported by ERDF (European Regional
Development Fund) through COMPETE (Operational Programme ’Thematic
Factors of Competitiveness’), within projects FCOMP-01-0124-FEDER-014922
(MASQOTS), FCOMP-01-0124-FEDER-012988 (SENODS),
FCOMP-01-0124-FEDER-020312 (SMARTSKIN).

Received: 04 July 2014 Accepted: 12 August 2014
Published: 31 August 2014

References
Abdelzaher TF, Prabh S, Kiran R (2004) On real-time capacity limits of multihop

wireless sensor networks. In: Proceedings of the 25th Real-Time Systems
Symposium, (RTSS 2004). IEEE Computer Society, Washington, DC, USA,
pp 359–370

Aguilar R, Ramos L, Lourenço P, Severino R, Gomes R, Gandra P, Alves M,
Tovar E (2011) Prototype wsn platform for performing dynamic monitoring
of civil engineering structures. In: Sensors, Instrumentation and Special
Topics, Conference Proceedings of the Society for Experimental Mechanics
Series 2011, vol 6. Springer, New York, NY, USA, pp 81–89

Burda R, Wietfeld C (2007) A distributed and autonomous beacon scheduling
algorithm for ieee 802.15.4/zigbee networks. In: Proceedings of IEEE
Internatonal Conference On Mobile Adhoc and Sensor Systems
(MASS 2007). IEEE Computer Society, Washington, DC, USA, pp 1–6

Choi H, Wang J, Hughes E (2009) Scheduling for information gathering on
sensor network. Wireless Netw 15(1):127–140

Cunha A, Koubaa A, Severino R, Alves M (2007) Open-zb: an open-source
implementation of the ieee 802.15.4/zigbee protocol stack on tinyos. In:
Proceedings of the 4th IEEE International Conference in Mobile Adhoc and
Sensor Systems (MASS 2007). IEEE Computer Society, Washington, DC,
USA, pp 1–12

Cunha A, Severino R, Pereira N, Koubâa A, Alves M (2008) Zigbee over tinyos:
implementation and experimental challenges. In: Proceedings of the 8th
Portuguese Conference on Automatic Control (CONTROLO’2008), Vila Real,
Portugal, pp 21–23

Dan L, Zhihong Q, Xu Z, Yue L (2010) Research on tree routing improvement
algorithm in zigbee network. In: Proceedings of the 2nd International
Conference in Multimedia and Information Technology (MMIT 2010), vol.
1. IEEE Computer Society, Washington, DC, USA, pp 89–92

Di Francesco M, Pinotti CM, Das SK (2012) Interference-free scheduling with
bounded delay in cluster-tree wireless sensor networks. In: Proceedings of
the 15th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’12). ACM, New York,
NY, USA, pp 99–106

Gandham S, Zhang Y, Huang Q (2008) Distributed time-optimal scheduling for
convergecast in wireless sensor networks. Comput Netw 52(3):610–629

Gibson J, Xie GG, Xiao Y (2007) Performance limits of fair-access in sensor
networks with linear and selected grid topologies. In: Proceedings of
Global Telecommunications Conference (GLOBECOM ’07). IEEE Computer
Society, Washington, DC, USA, pp 688–693

Hanzalek Z, Jurcik P (2010) Energy efficient scheduling for cluster-tree wireless
sensor networks with time-bounded data flows: Application to ieee
802.15.4/zigbee. IEEE Trans Ind Inform 6(3):438–450

Huang Y-K, Pang A-C, Hsiu P-C, Zhuang W, Liu P (2012) Distributed throughput
optimization for zigbee cluster-tree networks. IEEE Trans Parallel
Distributed Syst 23(3):513–520

Incel OD, Ghosh A, Krishnamachari B, Chintalapudi K (2012) Fast data
collection in tree-based wireless sensor networks. IEEE Trans Mobile
Comput 11(1):86–99

IEEE Standard for Information technology (2006) Local and metropolitan area
networks– Specific requirements– Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs):1–320

Jurcik P, Koubâa A, Severino R, Alves M, Tovar E (2010) Dimensioning and
worst-case analysis of cluster-tree sensor networks. ACM Trans Sensor
Netw 7(2):Article:14

Kim T, Kim D, Park N, Yoo S-E, Lopez TS (2007) Shortcut tree routing in zigbee
networks. In: Proceedings of the 2nd International Symposium on Wireless
Pervasive Computing, (ISWPC’07). IEEE Computer Society, Washington, DC,
USA, pp 5–7

Koubaa A, Cunha A, Alves M (2007) A time division beacon scheduling
mechanism for ieee 802.15.4/zigbee cluster-tree wireless sensor networks.
In: Proceedings of the 19th Euromicro Conference on Real-Time Systems,
2007. (ECRTS ’07). IEEE Computer Society, Washington, DC, USA,
pp 125–135

Lai N-L, King C-T, Lin C-H (2008) On maximizing the throughput of
convergecast in wireless sensor networks. In: Advances in Grid and
Pervasive Computing, vol. 5036. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg, pp 396–408

Muthukumaran P, de Paz R, Spinar R, Pesch D (2010) Meshmac: Enabling mesh
networking over ieee 802.15. 4 through distributed beacon scheduling. In:
Ad Hoc Networks, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. vol. 28. Springer,
Berlin, Heidelberg, pp 561–575

MEMSIC WSN Products, TelosB, Online (2014). http://www.memsic.com/
wireless-sensor-networks/

Open-ZB Website, Online (2014). http://www.open-zb.net
Pan M-S, Tseng Y-C (2008) Quick convergecast in zigbee beacon-enabled

tree-based wireless sensor networks. Comput Commun 31(5):999–1011
Prabh KS, Abdelzaher TF (2007) On scheduling and real-time capacity of

hexagonal wireless sensor networks. In: Proceedings of the 19th Euromicro
Conference on Real-Time Systems. ECRTS ’07. IEEE Computer Society,
Washington, DC, USA, pp 136–145

Raman B, Chebrolu K (2008) Censor networks: a critique of “sensor networks”
from a systems perspective. SIGCOMM Comput Commun Rev 38(3):75–78

Severino R, Gomes R, Alves M, Sousa P, Tovar E, Ramos LF, Aguilar R, Lourenço
PB (2010) A wireless sensor network platform for structural health
monitoring: enabling accurate and synchronized measurements through
cots+custom-based design. In: Proceedings of the 5th Conference on
Management and Control of Production Logistics (2010). IFAC,
International Federation of Automation and Control, Coimbra, Portugal,
pp 375–382

Severino R, Pereira N, Tovar E (2013a) Dynamic cluster scheduling for
cluster-tree WSNs. In: Proceedings of the 9th workshop on software
technologies for future embedded and ubiquitous systems (SEUS 2013).
IEEE Computer Society, Washington, DC, USA

Severino R, Pereira N, Tovar E (2013b) Dynamic cluster scheduling for
cluster-tree wsns. Technical report, CISTER-TR-130205. http://www.cister.
isep.ipp.pt/docs/

Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for
physical computing systems. Computer 38(11):23–31

Sensor Network Analyzer(SNA), Online (2014). http://www.daintree.net
The Economist (2010) In: Technology Quarterly: Q4, Inside Story:

Superstructures. Online: http://www.economist.com/node/17647603
TinyOS Operating System Website, Online (2014). http://www.tinyos.net
Toscano E, Lo Bello L (2009) A multichannel approach to avoid beacon

collisions in ieee 802.15.4 cluster-tree industrial networks. In: Proceedings
of the 14th IEEE Conference on Emerging Technologies Factory
Automation (ETFA 2009). IEEE Press, Piscataway, NJ, USA, pp 1242–1250

Yeh L-W, Pan M-S, Tseng Y-C (2008) Two-way beacon scheduling in zigbee
tree-based wireless sensor networks. In: Proceedings of the 8th IEEE
International Conference on Sensor Networks, Ubiquitous and Trustworthy
Computing, (SUTC 2008). IEEE Computer Society, Washington, DC, USA,
pp 130–137

Zigbee-Alliance (2005) ZigBee specification: Technical Report Document
053474r06, Version 1.0. ZigBee Alliance. San Ramon, CA, USA

doi:10.1186/2193-1801-3-493
Cite this article as: Severino et al.: Dynamic cluster scheduling for
cluster-tree WSNs. SpringerPlus 2014 3:493.

