

Dynamic Adaptation of Stability Periods for
Service Level Agreements

Luis Nogueira
Luis Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-060801

Version: 1.0

Date: August 2006

Dynamic Adaptation of Stability Periods for Service Level Agreements
Luis NOGUEIRA, Luis Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {luis, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
A QoS adaptation to dynamically changing system conditions that takes into consideration the user’s
constraints on the stability of service provisioning is presented. The goal is to allow the system to make QoS
adaptation decisions in response to fluctuations in task traffic flow, under the control of the user. We pay
special attention to the case where monitoring the stability period and resource load variation of Service
Level Agreements for different types of services is used to dynamically adapt future stability periods,
according to a feedback control scheme. System’s adaptation behaviour can be configured according to a
desired confidence level on future resource usage. The viability of the proposed approach is validated by
preliminary experiments.

Dynamic Adaptation of Stability Periods for Service Level Agreements

Luı́s Nogueira, Lúıs Miguel Pinho
IPP Hurray Research Group

Polythecnic Institute of Porto, Portugal
{luis,lpinho}@dei.isep.ipp.pt

Abstract

A QoS adaptation to dynamically changing system con-
ditions that takes into consideration the user’s constraints
on the stability of service provisioning is presented. The
goal is to allow the system to make QoS adaptation deci-
sions in response to fluctuations in task traffic flow, under
the control of the user. We pay special attention to the case
where monitoring the stability period and resource load
variation of Service Level Agreements for different types of
services is used to dynamically adapt future stability pe-
riods, according to a feedback control scheme. System’s
adaptation behaviour can be configured according to a de-
sired confidence level on future resource usage. The via-
bility of the proposed approach is validated by preliminary
experiments.

1 Introduction

Most real-time applications have a certain degree of flex-
ibility in terms of resource requirements. Video applica-
tions, for example, can adapt to bandwidth limitations with
image compression and frame rate reduction. This adap-
tation process can be seen as the allocation and dynamic
re-allocation of a finite amount of resources during applica-
tions’ execution.

Furthermore, users can differ enormously in their ser-
vice requirements as well as applications in the resources
which need to be available. In [3] the authors point out
that the user’s QoS requirements may even change through-
out a session and propose that the user should be given the
opportunity to make informed decisions about application’s
adaptation. Therefore, there is an increasing need for cus-
tomisable services that can be tailored to each user’s specific
requirements [9].

Our work focuses on optimising a dynamic set of tasks
that can be executed at varying levels of QoS to achieve
efficient resource usage that constantly adapts to devices’
specific constraints, nature of executing tasks (hard real-

time, soft real-time, non real-time) and dynamically chang-
ing system conditions.

We base our approach on a general form of QoS con-
tract between service providers and users, achieved by
negotiation and dictated by users’ preferences [6]. Ser-
vice providers allocate resources to each new set of tasks,
achieving the best possible instantaneous QoS, establishing
an initial Service Level Agreement (SLA) for the new task.
A SLA contains a service description whose parameters are
within the range of the user’s desired QoS levelLdesired and
the maximum tolerable service degradation, specified by a
minimum acceptable QoS levelLminimum. Once a SLA is
admitted, it may be downgraded to a lower QoS level (until
Lminimum is reached) in order to accommodate new ser-
vice requests or upgraded (untilLdesired is reached) on an
underutilisation of the service provider.

However, frequent QoS reconfigurations may be undesir-
able for some users or applications. For example, in some
video applications a constant frame rate may be better than
a frequent variation whose average is higher than the ini-
tial contracted level of service. It is important to choose
resource (re)allocation policies that beside trying to max-
imise the provided QoS also maximise user’s influence on
the variation of an initial SLA, increasing user-defined sta-
bility in service provisioning.

This paper explores these ideas and proposes a QoS
adaptation mechanism that extends users’ influence also
to applications’ adaptation during execution. Service
providers propose future stability periods in response to dy-
namic fluctuations in task traffic flow. Proposed stability
periods are compared with users’ constraints for a service
upgrade. As these constraints are harder to achieve it is in-
creasingly difficult to change and stay in a better quality
level.

2 Expressing desired quality and stability

There may be in the system several instances of an ap-
plication used by many different users. Each of the users
will have their own QoS preferences, described through a

1

scheme that defines dimensions, attributes and values, as
well as relations that maps dimensions to attributes and
attributes to values [5]. A service request expresses the
spectrum of acceptable QoS levels, ranging from a de-
sired QoS levelLdesired and the maximum tolerable service
degradation, specified by a minimum acceptable QoS level
Lminimum. The relative decreasing order of importance im-
posed in dimensions, attributes and values expresses user’s
preferences in a qualitative way (elements identified by
lower indexes are more important than elements identified
by higher indexes), eliminating the need to specify an utility
value for every quality choice.

Along with his QoS preferences, the user may wish to
specify aQoS stabilitypersonal choice influencing not only
an initial QoS provisioning but also the QoS adaptation dur-
ing application’s execution. Possible attributes for this sta-
bility dimension are a minimum stability period∆min and
a minimum increment in service’s achieved utilityUmin

when upgrading to a better QoS level. As such, when up-
grading to a better QoS level, system’s adaptation behaviour
is based around a set of user defined parameters that govern
the rate of state changes. These measures can be interpreted
as “do not change to a better quality state unless this gives
me at least an increment in utility ofUmin over a∆min

period”.
The degree of acceptability of proposed level of service

and stability period is determined by measuring the distance
between user’s preferred values and the values proposed by
a service provider [6].

3 Supporting QoS adaptation and stability

Any service provider’s resource allocation policy is sub-
ject to environmental uncertainties, and for that reason, the
promised SLA can never be more than an expectation of
an average service quality [1]. Making an effective use of
system’s resources in a dynamic system is a complex and
difficult task [2].

The traditional approach was that the adaptation be-
haviour should be integrated within applications. Although
minimum system changes were required to implement QoS
delivery, there are some disadvantages in that approach.
Different applications running on the same system may
have a different adaptive behaviour when a fluctuation of
task traffic flow occurs. Some of them may require a con-
siderable amount of resources to perform their desired adap-
tation, while others may not be able to perform any adap-
tations at all. Furthermore, the adaptation component inte-
grated into an application is not generic and reusable.

It is therefore desirable to propose a generic mecha-
nism that adapts application’s execution to the dynamically
changing system’s conditions. Given the spectrum of user’s
acceptable QoS levels a service provider formulates the best

instantaneous SLA it can offer. The local QoS optimisation
(re)computes the set of QoS levels for all local tasks, includ-
ing the new requested one, finding a feasible set of service
configurations that maximise users’ satisfaction [6].

During services’ execution the task set on each node is
not fixed, since tasks are continuously arriving and depart-
ing the system. The promise of service includes a stability
period∆t, indicating that during a specific interval of time
the promised level of service will be assured, either by the
service proposal formulation algorithm [6] that may imply
service degradation of existing tasks in order to accommo-
date a new service and by the QoS reconfiguration algo-
rithm proposed in Section 4 that tries to upgrade the current
SLA of previously degraded tasks.

Service stability could be achieved by using a fixed, large
enough value for∆t, but this would then result in lack of
responsiveness in adaptability. Furthermore, fixed values
only make sense when there is some knowledge on the task
traffic model. Promised stability periods should be deter-
mined taking into consideration the observed variations in
task traffic flow and correspondent resource usage, adapting
the system to environmental changes.

Although application specific mechanisms exist to allow
some automatic adaptation (for example, elastic buffering in
audio tools), we would like to offer a more general model
to allow service providers to dynamically adjust their ser-
vice provisioning to task traffic flow fluctuations. However,
QoS management will not only be subject to system’s spe-
cific behaviour but also to users’ preferences. Our goal is to
allow each service provider to make adaptation decisions in
response to fluctuations in task traffic flow, but the adapta-
tion process should be under the control of the user.

3.1 Promised stability periods

The periodic adaptation of promised stability periods re-
lates observations of past and present system conditions to
determine a future stability period∆t.

Let St = {St1, St2, . . . , Stn} be the set of different
types of services in the system. EachSti may use differ-
ent combinations (and amounts) of available resourcesR.
Let Ri = {r1, r2, . . . , rn} be the set of resources used by a
task of a service of typeSti.

The periodic adaptation of promised stability periods
for a task of a particular type of service is based on sam-
pling the minimum period without QoS degradation of each
resourceri ∈ Ri, during a period of observation. Let
Ss = {∆r1 , ∆r2 , . . . , ∆rn} denote those minimum stabil-
ity periods of each resource of serviceSti.

Any use of an arithmetic summarisation function that
combines the values (such as a mean), will provide an incor-
rect stability period due to relative scaling. Relative scaling
of n stability periods may lead to distortion when some val-

2

ues are particularly high or low. We need to process each
value individually and offer a coherent summary to achieve
a correct system behaviour.

Combination of several dynamical variables using AND
(multiplication) and OR (addition) have already been dis-
cussed to provide more expressive policies for SLAs [8].
We propose to determine promised stability periods by ag-
gregating the measured values for each resource used by a
particular service type.

∆t = ∆r1 AND ∆r2 AND . . . AND ∆rn
(1)

Fuzzy logical reasoning provides a suitable interpreta-
tion of the stability periods of each resource in order to de-
termine the promised stability period for a particular type
of service. The use of the fuzzy AND operator (the min
function) leads to a correct system behaviour and it is also
computationally simple to evaluate. The promised stability
period is thus given by

∆t = min(∆ri
) ∈ Ss (2)

3.2 Analysing traffic fluctuations

Effects of fluctuations in task traffic flow mean that
there is anuncertaintyassociated with our estimation of
the promised stability period for the next period of com-
putation. If the flow is in a steady state we have a stronger
degree of confidence to define needed resource usage for
the next period than if the task traffic flow is showing larger
fluctuations. An indication of the variability of the task traf-
fic flow must be determined in order to obtain a confidence
level0 ≤ c(Sti)k+1 ≤ 1 of resource usage for each service
typeSti in the next observation period.

With services continuously arriving and departing the
system it only makes sense to analyse short-term fluctua-
tions in task traffic flow to try to predict the resource re-
quirements in the next period of service execution. How-
ever, using only the current observation period seems to be
too restrictive and very sensitive to strong variations in traf-
fic flow. Using the previous and the current observation pe-
riods has the advantage of not punishing occasional strong
variations as bad as systematic strong variations.

Let lk−1 = {lmin
k−1 , lmax

k−1 } be a tuple with the minimum
resource usagelmin

k−1 and maximum resource usagelmax
k−1

during the previous adaptation intervalk − 1.
Let lk = {lmin

k , lmax
k } be a tuple with the minimum re-

source usagelmin
k and maximum resource usagelmax

k dur-
ing the current adaptation intervalk.

Short-term fluctuations in task traffic flow are analysed
by an intersection between the resource load variation of
the current period of observationk with the load variation
of the previous periodk − 1

I = min(lmax
k−1 , lmax

k)−max(lmin
k−1 , lmin

k) (3)

By assigning a meaningful value to this intersection it is
possible to offer a confidence degree to the expected stabil-
ity period in the intervalk + 1 for each resourceri ∈ Ri.
This confidence level is given by

cri = max(0,
I

Lk
) (4)

whereLk = lmax
k − lmin

k is the length of variation in the
current intervalk.

When there is no intersection,I is negative and the con-
fidence level is set to zero, indicating “no confidence” in
the determined stability period, while a steady state in task
traffic flow is rewarded with a confidence level of 1. This
normalised value is a uniform and consistent way of repre-
senting confidence levels. Also, it is computationally sim-
ple.

The simplicity of computation of this intersection allows
a quick evaluation of confidence levels on resource usage in
the next period of computation.

c(Sti)k+1 = min(cri) ∈ Ri (5)

4 Dynamic QoS reconfiguration

An undesirable high reconfiguration rate may be
achieved by reconfiguring the offered SLAs on every task
departure. Dynamic QoS reconfiguration should be based
on a specific threshold of desired system utilisation. The
goal is to reallocate needed resources to supply the initial
SLA of each task that has suffered QoS degradation in or-
der to accommodate new service requests.

Let Lt be the desired threshold to activate the dynamic
QoS reconfiguration of previously degraded tasks whose
stability period has already expired. LetL be the current
level of system’s load originated by then currently existing
SLAs. Intuitively,L < Lt indicates an underutilisation of
the service provider, which we want to avoid. When an un-
derutilisation is detected the dynamic QoS reconfiguration
will take place. The QoS optimisation problem involving
multiple resources and multiple QoS dimensions is NP-hard
[4]. Algorithm 1 implements a gradient descendent heuris-
tic that starts with the initial contracted level for the previ-
ously downgraded tasks whose granted stability period has
already expired and terminates when it finds a set of feasible
QoS levels, if any.

A state change to a “better quality” is controlled by user’s
stability requirements specified in his request and a system’s
minimum confidence level of resource usage in the next pe-
riod c(Sti)k+1 for a particular type of serviceSti.

3

Algorithm 1 Dynamic QoS reconfiguration
Goal: Minimise difference to initial SLA
Let Sd be the set of previously degraded tasks whose∆t

has expired
Let So be the set of all other tasks
Let Qkj [i] be the current provided level for attributej of
QoS dimensionk for taskTi ∈ Sd

Let q[i]u be the actual utility of each taskTi ∈ Sd

Select the initial SLA for all tasks inSd, resulting inS′d
while the new set of tasksS = S′d∪So is notfeasibledo

for each taskTi ∈ S′d receiving service atQkj [m] >
Qkj [i] do

Determine the utility decrease by degrading attribute
j to m + 1
Find taskTmin whose reward decrease is minimum
and degrade attributex to them + 1’s level

end for
end while
Let q[i]′u be the utility of each task inS′d
for each task inTi ∈ S′d do

Let Sti be the type of service of taskTi

if q[i]u − q[i]′u < Umin OR∆t(Sti) < ∆min(Ti) OR
c(Sti) < c(Sti)min then

Maintain the SLA for taskTi

else
Update the SLA of taskTi to Sd[i]′

end if
end for

Fluctuations in task traffic flow impose an uncertainty
about needed resource usage for the next period of sys-
tem’s adaptation. Although the system always ensures that
promised stability periods for each type of service are re-
spected in the next period of adaptation, a confidence level
on resource usage must be taken into consideration, associ-
ated with our estimation of the proposed stability period.

From Section 3.2, we know that a steady state of the task
traffic flow has a stronger degree of confidence than large
fluctuations in the flow. It is possible to define a more re-
active or conservative system with respect to fluctuations in
the task traffic flow by imposing a specific threshold of con-
fidence on future resource usage that must be achieved in
order to upgrade the quality of provided service of existing
tasks. As the value of this confidence level approaches 1.0,
it is harder to move to better quality states and stay in at
least during the proposed stability period. This minimum
confidence level for each service typec(Sti)min can also
be dynamically adaptable (an issue for further study).

The new SLA proposal is evaluated according to user’s
preferences [5]. If the increment on service’s utility
achieved by this new SLA is greater than the user’s im-

posed minimum incrementUmin, the promised stability pe-
riod for the next period is greater than the user’s imposed
minimum stability period∆min, and the system’s minimum
confidence level on resource usage for the next periodSti
is achieved, then a service upgrade to the new SLA occurs.

5 Evaluation

A set of extensive experiments has been performed to
verify the effectiveness of the proposed system’s QoS adap-
tation decisions in response to fluctuations in task traffic
flow. The following results were observed from multiple
and independent simulation runs, with initial conditions and
parameters, but different seeds for the random values used
to drive the simulation [7]. The mean values of all generated
samples were used to produce the charts.

At randomly generated times, one or more clients elab-
orated new service requests with random QoS constraints,
for execution of one of the four different types of available
services. Each type of service used a subset of the seven
different system resources, with randomly generated capac-
ities. These service requests originated the fluctuations in
task traffic flow represented in Figure 1.

Figure 1. Fluctuations in task traffic flow

The observed average confidence level of resource usage
for the next adaptation period was plotted in Figure 2. No-
tice that occasional strong variations on task traffic flow are
effectively not punished as bad as systematic strong varia-
tions.

Figure 2. Average confidence levels

4

These confidence values were used to analyse the im-
pact of setting different values for the system’s minimum
acceptable confidence level for an upgrade on the rate of
QoS reconfigurations for a particular service type. Three
service requests were generated for the execution of a task
that has never left the system with the same spectrum of ac-
ceptable QoS values, in the same decreasing order of pref-
erence. The requests only differed on the QoS stability con-
straints for minimum utility increase and stability period,
U1 = {0, 0s}, U2 = {0.2, 10s}, U3 = {0.5, 30s}, respec-
tively. The experience measured the reconfiguration rate
experienced by each task, given by the number of changes
to a better state divided by the period of observation. The
results are presented in Figure 3.

Two important conclusions can be taken. First, analysing
the reconfiguration rate of each individual user request, one
can conclude that as the value of the minimum confidence
level necessary to upgrade approaches 1.0, it is harder to
move to a better quality state, which will only happen on a
very stable task traffic flow. On the opposite side, a value
close to 0.0 creates a more reactive system to fluctuations
on task traffic flow that free enough resources to upgrade
the SLA provided to existing tasks.

Figure 3. Impact of confidence levels

Second, the influence of personal constraints on the sys-
tem’s adaptation behaviour is clearly observable when com-
paring the three requests against each other. As the user’s
constraints for a service upgrade are harder to achieve there
is less probability to change and stay in a better quality
level.

6 Conclusions

Service providers promise users a specific level of ser-
vice during a time interval∆t. Those periods are deter-
mined in response to fluctuations in task traffic flow, relat-
ing observations of past and present system conditions to
promise a stability period for the future. We consider dif-
ferent stability periods for different types of services, since
they may use different combinations (and amounts) of re-
sources.

We believe that users should have some influence on how
the system adapts its Service Level Agreements during ap-
plications’ execution. Simulation results prove that such an
influence can be achieved.

Furthermore, system’s adaptation behaviour can be con-
figured according to a desired confidence level on future re-
source usage, ranging from a very reactive system to fluctu-
ations in task traffic flow to a more conservative system that
only upgrades current SLAs in a steady flow.

Acknowledgements

This work was supported by FCT, through the CIS-
TER Research Unit (FCT UI 608) and the Reflect project
(POSI/EIA/60797/2004).

References

[1] M. Burgess. On the theory of system administration.Science
of Computer Programming, 49:1, 2003.

[2] J. P. Hansen, J. Lehoczky, and R. Rajkumar. Optimization
of quality of service in dynamic systems. InProceedings of
the 9th International Workshop on Parallel and Distributed
Real-Time Systems, April 2001.

[3] B. Landfeldt, A. Seneviratne, and C. Diot. ”user services as-
sistant: An end-to-end reactive qos architecture. InProceed-
ings of the 6th International Workshop on Quality of Service,
California, USA, 1998.

[4] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource qos prob-
lem. In20th IEEE Real-Time Systems Symposium, pages 315–
326, 1999.

[5] L. Nogueira and L. M. Pinho. Dynamic qos-aware coalition
formation. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, Denver, Col-
orado, April 2005.

[6] L. Nogueira and L. M. Pinho. Iterative refinement approach
for qos-aware service configuration. InProceedings of the 5th
IFIP Working Conference on Distributed and Parallel Em-
bedded Systems (DIPES 2006) (to appear), Braga,Portugal,
October 2006.

[7] N. Pereira, E. Tovar, B. Batista, L. M. Pinho, and I. Broster.
A few what-ifs on using statistical analysis of stochastic sim-
ulation runs to extract timeliness properties. InProceedings
of the PARTES’04 Workshop, Piza, Italy, 2004.

[8] G. Rodosek. Quality aspects in it service management. In
Proceedings of the 13th IFIP/IEEE Internation Workshop on
Distributed Systems: Operations and Management, pages 82–
93, Montereal, Canada, October 2002.

[9] S. Schmidt, T. Legler, D. Schaller, and W. Lehner. Real-time
scheduling for data stream management systems. In17th
Euromicro Conference on Real-Time Systems (ECRTS’05),
pages 167–176, 2005.

5

