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Abstract 

Energy-harvesting-powered sensors are increasingly deployed beyond the reach of terrestrial gateways, where 

there is often no persistent power supply. Making use of the internet of drones (IoD) for data aggregation in such 
environments is a promising paradigm to enhance network scalability and connectivity. The flexibility of IoD and 

favorable line-of-sight connections between the drones and ground nodes are exploited to improve data reception 
at the drones. In this article, we discuss the challenges of online flight control of IoD, where data-driven neural 

networks can be tailored to design the trajectories and patrol speeds of the drones and their communication 
schedules, preventing buffer overflows at the ground nodes. In a small-scale IoD, a multi-agent deep 

reinforcement learning can be developed with long short-term memory to train the continuous flight control of IoD 
and data aggregation scheduling, where a joint action is generated for IoD via sharing the flight control decisions 

among the drones. In a large-scale IoD, sharing the flight control decisions in real-time can result in 
communication overheads and interference. In this case, deep reinforcement learning can be trained with the 

second-hand visiting experiences, where the drones learn the actions of each other based on historical scheduling 
records maintained at the ground nodes.  
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Abstract—Energy-harvesting-powered sensors are increas-
ingly deployed beyond the reach of terrestrial gateways, where
there is often no persistent power supply. Making use of the
internet of drones (IoD) for data aggregation in such environ-
ments is a promising paradigm to enhance network scalability
and connectivity. The flexibility of IoD and favorable line-of-
sight connections between the drones and ground nodes are
exploited to improve data reception at the drones. In this
article, we discuss the challenges of online flight control of
IoD, where data-driven neural networks can be tailored to
design the trajectories and patrol speeds of the drones and
their communication schedules, preventing buffer overflows
at the ground nodes. In a small-scale IoD, a multi-agent deep
reinforcement learning can be developed with long short-term
memory to train the continuous flight control of IoD and data
aggregation scheduling, where a joint action is generated for
IoD via sharing the flight control decisions among the drones.
In a large-scale IoD, sharing the flight control decisions in real-
time can result in communication overheads and interference.
In this case, deep reinforcement learning can be trained
with the second-hand visiting experiences, where the drones
learn the actions of each other based on historical scheduling
records maintained at the ground nodes.

Index Terms—Internet of drones, Multi-agent deep rein-
forcement learning, Flight control, Data aggregation, Long
short-term memory

I. APPLICATIONS OF IOD-ASSISTED SENSOR

NETWORKS

Highly mobile and interconnected drones, a.k.a. internet

of drones (IoD), are increasingly employed as aerial data

aggregators in many application scenarios [1], e.g., weather

forecast, package delivery in rural areas, or crop monitoring

on remote farms. The drones’ flight can be coordinated,

which enables new data aggregation paradigms and extends

the use of drones from a stand-alone aerial platform to an

important network component in next-generation wireless

networks.

The IoD is ideal to provide connectivity to the ground

nodes in remote and hostile areas by maneuvering over

the target field [2], where the flight control of a drone

determines next waypoints and patrol speeds. The drone can

physically approach a ground node to collect the buffered

data. A short-distance, line-of-sight (LoS)-dominant, com-

munication link between the drone and a ground node

enables high-speed data transmissions. Employing the IoD

to collect data can improve the network throughput and

extend the coverage range beyond terrestrial gateways.

II. CHALLENGES OF DATA-DRIVEN FLIGHT CONTROL

A. Flight control and data aggregation scheduling

Figure 1 presents the case study of a typical IoD-

assisted sensor network, where agriculture sensors are used

to monitor the crop growth and manage the growing en-

vironment [3]. Ground nodes deployed beyond the reach

of terrestrial gateways, often have no persistent power

supply, and may have to be powered by renewable energy

harvested from ambient environments. The ground nodes

are increasingly equipped with energy harvesting devices,

such as solar panels or wind generators. A ground node can

buffer sensory data awaiting to be transmitted. The sensory

data often has a random packet arrival because the sensors

typically generate data only when sensed values (e.g., tem-

perature and humidity of the environment) change for the

reduction of computation and transmission redundancy [4].

The flight control (i.e., velocities and trajectories) and

the data collection schedule of the drones need to be

appropriately coordinated to reduce the data loss resulting

from the buffer overflows and transmission failures of the

nodes. The reason is that sensory data of a ground node

is often event-driven and generated when the environment

changes, e.g., a change in the temperature and humidity of

the soil. A ground node can undergo dynamic data arrivals

at its buffer. When a drone approaches in an attempt to

collect data from a ground node with an empty data buffer,

the other ground nodes may already have full buffers and

suffer from buffer overflows upon the arrivals of new data.

On the other hand, when a drone is far away from a ground

node scheduled for data aggregation, the poor link quality is

prone to data reception errors [5]. The link quality between

the drone and the ground node can change drastically when

the drone flies at a high speed due to Doppler-induced fast

fading. In contrast, a slow patrol speed of the drone can

give rise to buffer overflows at the ground nodes, as newly

arrived data cannot be promptly delivered.

Despite the communication range, memory and storage

capacity of the ground nodes have been continuously im-

proving, the data buffer can still (and always) overflow

in practice. First, a queue’s size will grow rapidly if the

incoming data rate of the queue is greater than its outgoing

rate counterpart, hence leading to a buffer overflow. This

is likely to take place when there are a large number of

ground nodes or the trajectories of the IoD is inadequately
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Fig. 1: Energy-harvesting-powered agriculture sensors are

deployed in a remote farmland for crops monitoring. IoD

manoeuvres over the target field following their trajectories,

while collecting and/or processing the real-time sensory

data.

designed. Second, emerging sensing platforms, comprising

a notably large number of compact integrated sensors

that are characterized by larger data analytics capability,

generate enormous data volumes. For instance, the size of

a high-definition picture and audio/video clip can be a few

megabytes, while most commercial-off-the-shelf sensors

have small data storage due to considerations of cost and

energy budgets.

B. Data-driven decision-making on flight control

It is important to jointly design the flight control of the

IoD and its data aggregation schedule by taking the battery

levels and propulsion energy consumption of the drones

into account [6]. This is because different patrol velocities

of the drone can incur different energy consumptions of

the flight control, which may deplete the onboard battery.

Since a sensor node cannot perform data transmission when

its battery level is flat, newly arrived data can potentially

result in the buffer overflow of the ground node. The ground

nodes are equipped with rechargeable batteries to harvest

renewable energy from ambient sources, such as solar and

wind, and power their sensing and transmission operations.

With a finite capacity, the batteries can be overcharged.

In this sense, the environmental conditions have a strong

impact on the energy that can be harvested. The battery

levels of the sensor nodes are an indispensable part of the

environment parameters, and can substantially affect the

operation of the drones.

According to [7], each of the drones in the IoD can

independently determine an action for its flight control,

namely, flight trajectories and patrol speeds, and the ground

node selection, to minimize the data loss resulting from

buffer overflows and communication failures. Not only can

an action determine the future network states, but also

have non-negligible influence on the actions of the other

drones. Such a data-driven flight control can be interpreted

as a multi-agent Partially Observable Markov Decision

Process (POMDP) [8], where each drone plays the role

of an agent. The network state can consist of the battery

levels and data queue lengths of the ground nodes, the link

qualities, and the locations and battery levels of the drones.

Dynamic programming algorithms, such as value iteration

or policy iteration, are typically used to solve POMDPs

offline, provided that the a-priori knowledge of the state

transition probabilities of the system is available. The

optimal action-value function of the value/policy iteration

is estimated and updated based on the Bellman optimality

equation. The action-value function can be reinforced once

the value/policy iteration converges.

C. Sharing observations for training the IoD

In practical IoD-assisted sensor networks, state transi-

tions in POMDP are often unknown since the complete

network state information, such as the battery levels and

data backlogs of the ground nodes, is not instantaneously

observable to the drones. This is because the ground

nodes are geo-distributed over a large area (e.g., a remote

farmland or a human-unfriendly rainforest). A drone can

barely maintain real-time wireless connections with all the

ground nodes. Deep reinforcement learning (DRL) [9] can

be adopted to solve the multi-agent POMDP, and learn the

best actions of each drone in the IoD online. Specifically,

each of the drones individually conducts DRL to find its

best strategy, e.g., to minimize the data loss of the ground

nodes, adapting to its local observations of the network

state and the actions of the other drones [10]. Moreover,

the drone can conduct vision-based techniques or utilize

event cameras to adjust the flight attitudes for collision or

obstacle avoidance.

For multi-agent DRL, the actions have to be coopera-

tively trained by sharing the actions with each other in the

IoD, where the action of a drone needs to be determined

by taking into account the other drones’ flight control

and ground node selection. Otherwise, multiple drones

can generate the same flight trajectory while selecting

the same ground node for data aggregation, reducing the

service efficiency of the IoD. In practice, it is formidably

challenging for many drones to share their actions, i.e.,

flight trajectories, patrol velocities, and the ground node

selection, with each other in real-time due to the limited

radio coverage and fast movement of the drone. Given a

large number of drones, online sharing in the IoD can result

in high signaling overhead and strong interference to the

transmission of the ground nodes.

III. DATA-DRIVEN MULTI-AGENT DEEP

REINFORCEMENT LEARNING WITH IOD

A. Data-driven flight control based on LSTM-DDPG

Flight control of the IoD is typically conducted with a

large number of continuous real numbers, e.g., instanta-

neous coordinates and velocities of the drones, link qual-

ities, and battery levels of the ground nodes. This would

immensely extend the state and action space in the multi-

agent DRL. Thus, the multi-agent DRL for learning the

network states and actions in a discrete domain [11], e.g.,
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(a) multi-agent LSTM-DDPG with online sharing. (b) training with the second-hand visiting experiences.

Fig. 2: The architectures of multi-agent LSTM-DDPG in small or large IoD-assisted sensor networks.

deep Q-learning (DQL), is hardly to be used for the flight

control of the IoD. Moreover, it is difficult for an individual

drone to learn the data packet arrival pattern, battery level

fluctuation (due to solar charging), and the link qualities

(due to channel fading randomness) of all the ground nodes.

In other words, the drones cannot train the multi-agent

DRL with a complete observation of all the network states.

Such incomplete network state observation can compromise

the efficiency and accuracy of the flight control and data

aggregation schedule.

In Figure 2(a), we study a new multi-agent DRL based

on deep deterministic policy gradient (DDPG) in small-

scale IoD-assisted sensor networks, which can achieve

the flight control of the IoD with the continuous states

and actions. Specifically, the drones can share with each

other about their real-time decisions of flight control and

communication schedules. The new multi-agent DRL can

be implemented at the drones, which leverages actor-critic

neural networks in DDPG to train a joint action of the

agents, i.e., instantaneous headings and patrol velocities of

the drones, as well as the selection of the ground node.

In particular, the selection of the ground node, which is

given as a positive number in the training of DDPG, can

be discretized to a natural number. With the increase of

the training time, the joint action in the continuous domain

is sufficiently trained, which can reduce the discretization

error regarding the selection of the ground node.

For enhancing the network state observations in the

training environment of the multi-agent DDPG, the new

multi-agent DRL in Figure 2(a) develops a long short-

term memory (LSTM) to predict the time-varying battery

levels, data queue backlogs, and link qualities of the ground

nodes [12]. The LSTM utilizes memory cells in deep neural

networks to process input data sequentially and embrace

the hidden state over time. The memory cell captures long-

term (often unknown) dependency among sequential time-

varying data. The LSTM characterization helps address

the incompleteness of the network state observation at

the drones in the sense that the obscure network state is

approximated for the subsequent joint action training with

DDPG.

Each of the drones can be equipped with a replay

memory to store its training experience at every learning

epoch to facilitate evaluating the joint action in the critic

neural networks. Mini-batches of the learning experiences

can be randomly sampled from the replay memory to train

the action of the drone, along with the shared actions of

the other drones and the network state of the environment.

B. Training with the second-hand knowledge

Another multi-agent DRL architecture of the IoD is that

each of the drones (i.e., agents) can learn independently

based on its own observation (or in other words, the observ-

able network information). This is particularly important in

the situation where the coverage of the IoD is vast and the

drones do not have reliable connectivity with each other.

None of the drones can have the complete, instantaneous

knowledge of the entire network state.

To train the multi-agent LSTM-DDPG in a large-scale

IoD, sharing the cruise control information in real-time

among the drones becomes not possible. To circumvent

this impasse, Figure 2(b) illustrates a potential solution that

allows the drones to train their DRL from second-hand

(typically outdated) network state information. Specifically,

the drones can receive the visitor log from each ground

node along with the sensing data, upon the polling of the

node by the drone. The visitor log of the ground node

records the visits that all drones have made, including

the drones’ IDs, flight control, offloaded data size, and

consumed energy, since the last visit that the currently

polling drone made to the ground node [13].

The multi-agent LSTM-DDPG allows the drone to store

those second-hand visiting experiences of the visitor log

to its onboard replay memory. The local visitor log enables

each of the drones to train its onboard DDPG and LSTM for

the action of flight control and communication schedules

with the consideration of the other drones’ decisions. This

can prevent the same flight trajectory from being generated

by multiple drones and the same ground node from being

repeatedly selected for data aggregation.
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Every time a ground node is scheduled by a drone, the

ground node only needs to update the recent historical

record of visits for the drone. Thus, the local visitor log

typically has a small size. Consider 100 drones and 100

ground nodes, the size of the historical record at a ground

node is just 5 kilobits, where the network state has 30

bits (10 bits for battery levels and data buffer lengths

of the ground nodes, link qualities) and 20 bits for the

action (7 bits for node ID and 13 bits for waypoints and

speeds). Given the data rate of 256 kbits/s, it only takes 0.02

second to transfer the whole local visitor log to the drone.

Moreover, the time that the ground node takes to update

the record is negligible. Therefore, the multi-agent LSTM-

DDPG with the second-hand visiting experiences requires a

small amount of computation and communication overhead

at the ground nodes, which is feasible in the large-scale

IoD-assisted sensor networks.

C. Heads and tails of a coin

In Table I, we compare the pros and cons of several

typical multi-agent learning techniques. The key difference

between the multi-agent LSTM-DDPG with online sharing

(in Figure 2(a)) and the one with the second-hand visiting

experiences (in Figure 2(b)) is that the online sharing can

enable the DDPG to instantly train each drone’s action

according to the instantaneous decisions of all other drones

and the time-varying network state. This can improve

the learning accuracy and also accelerate the learning

convergence. Nevertheless, the multi-agent LSTM-DDPG

with online sharing suffers from large signaling overheads

with the increase of agents. In the large-scale IoD-assisted

sensor networks, the second-hand visiting experiences can

strengthen the experience replay in the DDPG and the state

prediction in LSTM. It is worth noting that the multi-

agent LSTM-DDPG may sacrifice the learning accuracy

and convergence time since the drones train their real-time

flight control based on the historical outdated knowledge in

the local visitor log. It is also worth mentioning that the new

multi-agent LSTM-DDPG can be potentially repurposed to

support different objective functions. For example, it can

be potentially repurposed to improve the energy efficiency,

which is the ratio of network throughput to the energy

consumption.

IV. PERFORMANCE EVALUATION

A. Implementation of the multi-agent LSTM-DDPG

The multi-agent LSTM-DDPG can be implemented in

Python on Google TensorFlow or Pytorch, which are the

two most widely used machine learning platforms. In this

paper, TensorFlow is set up on a 64-bit Ubuntu 18.04

workstation running on an INSYS CorporateWorkstation

(equipped with 4-core Intel i7-6700K 4GHz CPUs and

16G memory). The training and performance evaluation

on the machine learning platforms is critical to further

develop or extend the IoD-assisted sensor networks in real

world. Additionally, the multi-agent LSTM-DDPG model

can account for generic collision or obstacle avoidance via

the offline training and can adapt to the specific real-world

application scenario via online refinement. The drones can

also be equipped with event cameras or utilize vision-based

techniques to avoid collisions and adjust the flight behavior.

Data aggregation of the IoD can consist of a number

of time frames. Each time frame that contains a number

of time slots can be allocated for the drones’ flight and

data collection. Moreover, each of the drones can determine

which ground node to collect data and then fly to the

selected sensor. Next, the drone broadcasts a short beacon

message, which contains the ID of the selected ground

node, to initialize the data aggregation. Upon the receipt

of the beacon message, the selected ground node starts the

data offloading to the drone. In particular, the hardware

information of the ground node, e.g., battery level and data

buffer length, can be involved in the control segment of the

data packet.

The overhead of this control segment is small. For

example, consider battery level of 100 and 100 packets in

the buffer, the overhead is only 12 bits, much smaller than

the size of the data packet. Therefore, the transmission time

and the energy consumption of the control segment can be

negligible. Once the data is correctly received, the drone

can send an acknowledgment to the ground node.

For training the LSTM characterization, the network

state, i.e., battery levels and data buffer lengths of the

ground nodes, and air-ground link qualities, can be mea-

sured offline with the energy-harvesting-powered sen-

sor [14], [15]. By utilizing the offline datasets, the future

network state can be predicted and imported to enrich

the training environment. In addition, The LSTM can be

implemented in Keras (the Python deep learning library)

while DDPG can be configured in TensorFlow to minimize

the training loss.

B. Numerical analysis

100 ground sensors are randomly deployed in a square

area with a size of 1,000 m × 1,000 m. Each of the

ground sensors can buffer 20 packets at most in its queue.

The onboard replay memory of the drone can store 10,000

samples of the learning experience at every step. The

performance of the multi-agent LSTM-DDPG is compared

with two state-of-the-art multi-agent approaches using DQL

and channel-priority assignment (CPA):

• Multi-agent DQL (MA-DQL). The trajectories of the

drones are predetermined, where MA-DQL is trained

to schedule the data transmission of the ground sensors

by learning the changes of their battery levels, buffer

lengths, and channels.

• Multi-agent CPA (MA-CPA). The drones move at their

lowest speed and send beacons to the ground sensors.

The drones measure the air-ground link qualities ac-

cording to the ground sensors’ replies to the beacons.

The ground sensor with the highest link quality is

scheduled for data aggregation.

Figure 3 presents the training of the new multi-agent

LSTM-DDPG in regards to the episodes, where the number
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TABLE I: Comparison of the typical multi-agent DRL methodologies in IoD-assisted sensor networks.

Multi-agent learning methodologies Key features Heads Tails

LSTM-DDPG with online sharing Drones can share the real-time ac-
tions.

Improved learning accu-
racy and accelerated learn-
ing convergence.

Large signaling overheads
with the increasing number
of agents.

LSTM-DDPG with the second-hand visiting
experiences

Drones train their DRL based on
the visitor log of ground nodes.

Reduced overheads with
the large number of agents.

Extended training time for
the convergence.

DDPG Enabling network state observa-
tions and training of actions in the
continuous domain.

Instantaneous headings and
patrol velocities of the
drones can be trained.

Each of the drones trains
the action with incomplete
network state observations.

DQL Actions of the drones are trained in
the discrete domain.

Can be used for training
discrete actions, e.g., way-
points planning or commu-
nication scheduling.

Cannot be used to train the
continuous flight control of
the drones.
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Fig. 3: Training of the multi-agent LSTM-DDPG, where

the IoD contains 3 or 10 drones.

of iterations for training the LSTM characterization is set to

500. Given 3 drones, the LSTM-DDPG model conducts the

online sharing. Once the LSTM-DDPG model is sufficiently

trained and the performance converges to 18.5%, which

achieves the lowest packet loss rate, as compared to MA-

DQL and MA-CPA. The reason can be twofold. First, the

LSTM characterization of the LSTM-DDPG model, which

is trained by the offline datasets, effectively predicts the

time-varying network states in the learning environment

of the DDPG. Therefore, the DDPG can train the actions

of the drones with both the observed and predicted state

information of all the ground sensors to minimize the

packet loss. Second, the flight control of the IoD and data

aggregation scheduling can be adapted by the DDPG in the

continuous action space. This can lead to more degrees of

freedom on the trajectory design and speed control while

scheduling more potential ground sensors to minimize the

packet loss.

When the number of drones increases to 10, the LSTM-

DDPG model takes advantage of the second-hand visiting

experiences, and the packet loss rate drops to around 9.6%.

This is because increasing the number of drones allows

more ground sensors to be scheduled in parallel, hence
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Fig. 4: Trajectories of the drones are designed by the multi-

agent LSTM-DDPG model, where the number of drones is

2 or 10.

reducing the buffer overflow. Despite increasing the number

of drones can extend the data aggregation coverage and

reduce the packet loss, the learning accuracy of the LSTM-

DDPG model may decrease. Since the drones may not

schedule the same ground node, some records in the visitor

log of the ground node are not updated. As a result, the

drone is not able to timely learn the others’ flight control

decisions.
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Figure 4 plots the trajectories of the drones, which are

optimized by the multi-agent LSTM-DDPG model. Every

drone of the IoD is employed to maneuvere over part of

the target field where a large number of ground nodes

are sparsely deployed. Given two drones, the multi-agent

LSTM-DDPG applies online sharing for the flight control

and data aggregation, where the drones are aware of the

real-time actions of each other. Given ten drones, the multi-

agent LSTM-DDPG is trained with the second-hand visiting

experiences, where the trajectory is designed according to

the historical records in the local visitor log of the ground

node. The multi-agent LSTM-DDPG is trained at each of

the drones, and then, the drones separately move to different

areas for data aggregation. Therefore, Figure 4 validates the

feasibility of the multi-agent LSTM-DDPG in small and

large IoD-assisted sensor networks.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We discussed the need for data-driven flight control in the

IoD. As shown in this article, deep learning approaches help

to significantly improve the performance. In particular, we

presented a multi-agent LSTM-DDPG model for flight con-

trol and data aggregation scheduling. Given a small number

of drones, the joint action of the multi-agent LSTM-DDPG

model can be trained with the shared online decisions of the

drones to minimize buffer overflows at the ground nodes

and communication failures. When increasing the number

of drones, sharing the online flight control and scheduling

decisions can result in large communication overhead and

interference in the IoD. In this case, the multi-agent LSTM-

DDPG model can be trained with the second-hand visiting

experiences, where the drones learn the actions of each

other based on the records at the ground nodes.

In future research, the multi-agent LSTM-DDPG model

could be extended to improve the IoD-assisted data ag-

gregation while satisfying heterogeneous quality-of-service

requirements. For example, considering a stringent delay

requirement of the aggregated data, the training time of

the multi-agent LSTM-DDPG model at the drones has to

be reduced to ensure the data freshness. In addition, more

datasets will be used to train the LSTM-DDPG model to

validate the stability and optimality in diverse IoD-assisted

applications.
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