

Comparing the Schedulers and Power
Saving Strategies with SPARTS

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111104

Version:

Date: 11/23/2011

Muhammad Ali Awan

Borislav Nikolic

Stefan M. Petters

Technical Report HURRAY-TR-111104 Comparing the Schedulers and Power Saving Strategies with SPARTS

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Comparing the Schedulers and Power Saving Strategies with SPARTS
Muhammad Ali Awan, Borislav Nikolic, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: maan@isep.ipp.pt, borni@isep.ipp.pt, smp@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
We have developed SPARTS, a simulator of a generic embedded real-time device. It is designed to be extensible to
accommodate different task properties, scheduling algorithms and/or hardware models for the wide variety of
applications. SPARTS was developed to help the community investigate the behaviour of the real-time embedded
systems and to quantify the associated constraints/overheads.

Comparing the Schedulers and Power Saving
Strategies with SPARTS

Muhammad Ali Awan Borislav Nikolić Stefan M. Petters
Cister Research Unit, ISEP-IPP, Porto, Portugal

{maan,borni,smp}@isep.ipp.pt

Abstract—We have developed SPARTS, a simulator of a
generic embedded real-time device. It is designed to be extensible
to accommodate different task properties, scheduling algorithms
and/or hardware models for the wide variety of applications.
SPARTS was developed to help the community investigate the
behaviour of the real-time embedded systems and to quantify
the associated constraints/overheads.

I. INTRODUCTION

Nowadays, there is an ever increasing demand for embedded
systems. These devices interact with their environment and
perform computations which may have to satisfy several
constraints. Embedded systems with timing requirements are
called Real-Time embedded Systems. In addition to timing
constraints and function correctness, these devices often have
limited or intermittent power supply. Technology enhance-
ments and cost reduction mandated integration of the multiple
functionalities into one device. Along with this, the design
itself grew more complex. For instance, in modern cars safety
critical applications are integrated with comfort functionality.

In order to provide efficient execution of such systems, spe-
cific scheduling algorithms are needed. They are very diverse
in terms of requirements and produced results. Given those,
there is the question of evaluating the scheduling approaches
and identifying the trade-offs involved in employing one
strategy over another. One approach in tackling this problem
is to build a system model. It gives the possibility to hide
unnecessary and negligible details, so only aspects of interest
need to be implemented and tested. This method is very fast
and can provide the comparison between different scheduling
approaches or associated power management schemes. We
have developed SPARTS (Simulator for Power-Aware Real-
Time Systems) that can model aforementioned different sys-
tem behaviour aspects.

Numerous available tools target different areas of stated
problems. However, several limitations are recognised as the
greatest drawbacks of their use. Some simulators [1]–[3] utilise
an unnecessarily detailed approach in simulation which has a
huge impact on the performance. Others lack in expressiveness
while defining new functionalities and/or adapting existing
ones for personal needs, e.g. [4]. Furthermore, commercial
tools such as SymTA/S [5] or RapiTime [6] are for obvious
reasons closed systems not accessible to casual users.

This work was supported by the RePoMuC project, ref. FCOMP-01-
0124-FEDER-015050, funded by FEDER funds through COMPETE (POFC
- Operational Programme ’Thematic Factors of Competitiveness) and by
National Funds (PT) through FCT-Portuguese Foundation for Science and
Technology, and the RECOMP project, funded through the FCT under grant
ref. ARTEMIS/0202/2009, as well as by the ARTEMIS Joint Undertaking,
under grant agreement Nr. 10202.

II. SPARTS OVERVIEW

SPARTS simulates a generic real-time device and is imple-
mented as a discrete-event execution environment. It provides
extensive flexibility in task-set generation for different scenar-
ios and purposes. The task-sets can be used for schedulability
tests as well as for simulation purposes. The modular structure
of SPARTS allows easy development and integration of new
scheduling algorithms for both, single and multi-core systems.
The results of the simulations give indications about the perfor-
mance and various overheads incurred by different scheduling
approaches (pre-emptions, energy consumptions, migrations
for multi-cores, etc). SPARTS can be extended and adapted
to fit the needs of the user in the area of interest.

SPARTS performs the simulation in event-driven manner.
Rather than doing a cycle-step execution, SPARTS works by
looking backward into the interval between two consecutive
job releases and simulates the execution without unnecessary
cycle-level granularity. This feature is implemented with a
Timers mechanism. Timers represent possible interrupts of the
execution process, such as, new arrival of a job, expiration
of a deadline, completion of an execution etc. The simulation
jumps to the point in time when the first timer would fire. At
this moment possible actions corresponding to the interrupts
and the intervening time like power attribution are serviced.

The architecture of SPARTS is depicted on Figure 1. For
easier use and extensibility, we separated the responsibilities
by encapsulating limited functionalities within different mod-
ules and providing the interfaces for them to communicate.
The input parameters are delivered to the Task-Set Generator
(TSG), which creates the tasks for a particular simulation run.
Generated task-set is then passed to Job Generator (JG) and
job instances for the desired simulation time are produced.
The Job Sequencer (JS) orders the jobs by their release
times and prepares the stream for the execution. Finally, the
Execution Environment (EE) executes the stream of jobs and
collects required parameters for the reporting tool to do further
analyses.

Several performance bottlenecks recognised in related work
are addressed in SPARTS. Firstly, the simulation process is
driven by discrete events and executes by looking into the
past. With this approach we save the computation and yet
provide ”correct” execution modelling. This allows to perform
the simulations of large task-sets for long periods of time
with high temporal efficiency. Additionally, this gives the
possibility to manually configure the granularity of the system
and adapt it to the particular needs of the user. Secondly,
SPARTS breaks the simulation time into smaller pieces, which

Hardware Model

Input Parameters

Task−Set Generator

Task

Task

Task

Task

Job Job
Job

Job

Job

Job Job Job

Job

Job Sequencer Event Event Event

Job Generator

Scheduler

Execution Environment

Fig. 1. The Simulator Architecture

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

Horizon Size (Logarithmic Scale)

A
ct

u
a

l S
im

u
la

tio
n
 T

im
e

 (
in

 S
e
co

n
d
s)

LC−EDF

Fig. 2. Horizon size trade-off

100 200 300 400 500 600 700 800 900 10000

1

2

3

4

5

6

7

8

Ac
tu

al
 S

im
ul

at
io

n
Ti

m
e

(in
 S

ec
on

ds
)

Simulated Time (in Seconds)

EDF (No Horizon)
LLF (No Horizon)
ERTH (No Horizon)
EDF (With Horizon)
LLF (With Horizon)
ERTH (With Horizon)

Fig. 3. Simulation time vs actual simulated time

are sequentially, on-demand generated and utilised. By doing
this, the costly manipulations of the event queues are reduced
and the memory footprint of the simulation is significantly
smaller with a positive impact on the caching footprint of
the simulator. This partial simulation window is denoted as
the horizon. It is a configurable parameter and its utilisation
gives dramatically better performance than the system which
generates the streams for the whole simulated period at once.

In order to check the performance of SPARTS, we per-
formed several experiments in which we varied parameters
such as task-set size, total system utilisation and simulated
time for different scheduling algorithms. Several scheduling
algorithms are implemented and used in the experiments
(Earliest Deadline First (EDF), Least Laxity First (LLF) and
Enhanced Race-To-Halt [7]). The effectiveness of the horizon
feature is demonstrated in Figure 2 and Figure 3. Figure 2
illustrates that small time-windows bring unnecessary over-
heads. The extension of the horizon gives better results, but
from one point onwards, the simulation time again starts to
increase, due to very large lists and queues as a direct result
of the horizon length. We found the value that gives the best
results for this particular set-up and we used the same in
the Figure 3 and other experiments. Figure 3 shows that the
same scheduling algorithms with this feature exhibit linear
dependency on the simulated time, while the execution time
of the conventional approach grows exponentially.

When compared against reported results of aforementioned
simulators, given in respective papers, we found that the
ratio between simulated time and actual simulation time of
SPARTS is several orders of magnitude greater. The simulator
is accesible for download on its website [8]. Guidelines for
the implementations of new algorithms and further simulator
extensions will be presented during the demonstration session.

Also, the pictorial view of the schedules generated for different
schedulers will be presented.

III. CONCLUSIONS

SPARTS is under active development and is being extended
depending on concrete analysis needs. The features presented
here are only a small subset and the reader is directed for
a more detailed description of the other experiments and the
simulator in general to a full paper [9] and to the simulator
website [8].

REFERENCES

[1] S. De Vroey, J. Goossens, and C. Hernalsteen, “A generic simulator of
real-time scheduling algorithms,” in 29th Simul. Symp. 1996, pp. 242
–249, Apr 1996. 1

[2] T. Kramp, M. Adrian, and R. Koster, “An open framework for real-time
scheduling simulation,” in Int. WS Parall. & Distr. Processing, pp. 766–
772, 2000. 1

[3] R. Urunuela, A. Deṕlanche, and Y. Trinquet, “Storm a simulation tool
for real-time multiprocessor scheduling evaluation,” in Emerging Tech-
nologies & Factory Automation (ETFA), 2010 IEEE Conf., pp. 1 –8, Sep
2010. 1

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real
time scheduling framework,” in ACM SIGAda international conference,
(New York, NY, USA), pp. 1–8, ACM, 2004. 1

[5] “Symta/s, Symtavision GmbH.” http://www.symtavision.com/symtas.
html. 1

[6] “Rapitime, Rapita Systems Ltd..” http://www.rapitasystems.com/products/
RapiTime. 1

[7] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware
energy management approach for dynamic priority systems,” in 23rd
ECRTS, 2011. 2

[8] B. Nikolic, M. A. Awan, and S. M. Petters, “Simulator for power
aware and real-time systems: Sparts,” 2011. http://www.cister.isep.ipp.
pt/projects/sparts/. 2

[9] B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for
power aware and real-time systems,” in 8th IEEE Int. Conf. Emb. Softw.
& Syst., (Changsha, China), IEEE, Nov 2011. 2

