
- 1 -

Communication Response Time in
P-NET Networks: Worst-Case Analysis Considering the

Actual Token Utilisation1

Eduardo Tovar‡, Francisco Vasques†, Alan Burnsξ

‡ Department of Computer Engineering, Polytechnic Institute of Porto, Rua de São Tomé,
4200 Porto, Portugal
emt@dei.isep.ipp.pt

† Department of Mechanical Engineering, University of Porto, Rua dos Bragas,
4099 Porto Codex, Portugal

vasques@fe.up.pt
ξ Department of Computer Science, University of York, Heslington, York, YO1 5DD, England

buns@cs.york.ac.uk

Abstract. Fieldbus networks aim at the interconnection of field devices such as
sensors, actuators and small controllers. Therefore, they are an effective
technology upon which Distributed Computer Controlled Systems (DCCS) can
be built. DCCS impose strict timeliness requirements to the communication
network. In essence, by timeliness requirements we mean that traffic must be
sent and received within a bounded interval, otherwise a timing fault is said to
occur. P-NET is a multi-master fieldbus standard based on a virtual token
passing scheme. In P-NET each master is allowed to transmit only one message
per token visit, which means that in the worst-case the communication response
time could be derived considering that the token is fully utilised by all stations.
However, such analysis can be proved to be quite pessimistic. In this paper we
propose a more sophisticated P-NET timing analysis model, which considers
the actual token utilisation by different masters. The major contribution of this
model is to provide a less pessimistic, and thus more accurate, analysis for the
evaluation of the worst-case communication response time in P-NET fieldbus
networks.

1 Introduction

In the past decade manufacturing schemes have changed dramatically. In particular,
the CIM (Computer Integrated Manufacturing) concept has been stressed as a means
of achieving greater production competitiveness. The driving forces behind the
changes also resulted from the increased development and utilisation of new
technologies that make massive use of microprocessor-based equipment.
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Integration implies that the different subsystems of the manufacturing environment
interact and co-operate with each other. This means transfer, storage and processing
of information in a widespread environment. In other words efficient support for data
communications is required.

Nowadays, communication networks are available to virtually every aspect of the
manufacturing environment, ranging from the production planning to the field level.
However, the use of communication networks at the field level is a much more recent
trend. Indeed, only more recently network interfaces become cost-effective for the
interconnection of devices such as sensors and actuators, which, in the majority of the
cases, are expected to be cheaper than the equipment (e.g., workstations and
numerically-controlled machines) typically interconnected at upper control levels of
the manufacturing environment.

The field level includes the process-relevant field devices, such as sensors and
actuators. The process control level is hierarchically located above the field level, and
directly influences it in the form of control signals. If the control is computer-based,
the process control level uses the data received from the sensors to compute new
commands, which are then transmitted to the actuators.

Most of the computer-controlled systems are also real-time systems. Real-time
computer systems are defined as those systems in which the correctness of the system
depends not only on the logical result of computation, but also on the time at which
the results are produced (Stankovic, 1988). For instance, assume that one of the inputs
of the computer system is a Boolean information of an alarm condition. The computer
system must be able to handle such alarm condition (process that input and produce
outputs accordingly), within a bounded time span. Thus, a computer system not only
must react to stimuli of the controlled object, which in essence means the provision of
new commands based on the current state of the controlled object, but emphatically it
must react to stimuli of the controlled object within time intervals dictated by its
environment.

A computer-controlled system may have a centralised architecture. By centralised
architecture we mean that there is only one single computer system unit, which has
I/O capabilities for supporting both the instrumentation interface (to interface the
computer system with the controlled object) and the man-machine interface (to
interface the computer system with the operator). In the case of a centralised
architecture, the sensors and actuators are connected to the computer system via
point-to-point links. Figure 1a) illustrates such kind of architecture.

There are several advantages in using a field level communication network as a
replacement for the point-to-point links between sensors/actuators and the computer
system. The main advantage is an economical one. Indeed, this is perhaps its single
best advantage. As depicted by figure 1, a cost reduction can be obtained by replacing
a significant part of the wiring by a single wire, and by using simpler network
architectures and protocols than the used in networks for the upper levels of the
control hierarchy. Of course, the use of a single wire brings also easier installation
and maintenance, easier detection and localisation of cable faults, and it provides an
easier expansion due to the modular nature of the network.

Typically, a field level network will be a broadcast network, where several network
nodes share a common communication channel. Messages are transmitted from a
source network node to a destination network node via the shared communication
channel. In fact, broadcast networks are commonly used in most types of local area



- 3 -

networks (LANs). A major problem occurs when at least two network nodes attempt
to send messages via the shared channel at about the same time. This problem is
solved by a medium access control (MAC) protocol. Independently of how this
protocol is implemented, medium access contention occurs, as a message must
contend both with other messages from the same network node as well with messages
from other network nodes. Therefore, to cope with the real-time requirements of the
controlled applications, the field level network must guarantee a bounded access time,
or, in other words, the MAC protocol must be deterministic.
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Fig. 1. Centralised (a) and Decentralised (b) Computer-Controlled Architectures

During the past decade or so, a significant number of field level networks, usually
called fieldbus networks, have been proposed to support distributed2 computer-
-controlled systems (DCCS). Some distinguished examples are FIP (Fip, 1990),
PROFIBUS (Profibus, 1992), CAN (Sae, 1992) and P-NET (P-net, 1996). In parallel,
several international standardisation efforts have been, and are still being carried out.
One of the most relevant resulted into the European Standard EN 50170 (Cenelec,
1996), which basically encompasses three different fieldbus profiles: FIP, PROFIBUS
and P-NET.

In FIP, the determinism is guaranteed by a bus arbitrator, which, for periodic
traffic, controls data transfers according a static scanning table. The real-time
capabilities of FIP have been extensively studied (Pedro and Burns, 1997, Raja et al.,
1995). PROFIBUS adopts a simplified version of the timed token (TT) protocol

                                                          
2 In both centralised and decentralised computer-controlled architectures all the control algorithms are

implemented in the single computer system. Contrarily, in a distributed computer-controlled architecture
the tasks of the control algorithms are actually distributed by several computing nodes.
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(Grow, 1982). Despite some differences to the TT protocol used in FDDI or
IEEE802.4, for which real-time characterisation have been deeply addressed -
(Agrawal et al., 1992; Montuschi et al., 1992) are just some examples -, it is still
possible to guarantee real-time behaviour with PROFIBUS networks (Tovar and
Vasques, 1998a, Tovar and Vasques, 1998b). CAN is itself a priority bus, which
adopts a collision avoidance version of the well-known CSMA (Carrier Sense with
Multiple Access) MAC protocol. In (Tindell et al., 1994; Tindell et al., 1995) the
authors showed how it is possible to guarantee real-time behaviour with CAN
networks.

P-NET also offers a deterministic access. P-NET adopts a virtual token passing
(VTP) scheme. Although this is not much relevant for the timing behaviour of this
MAC approach, it worth mentioning that, conversely to other token passing schemes,
in P-NET there is no explicit token transmission between stations. The determinism is
not achieved by means of controlling the token rotation time, as it happens in
networks based on the TT protocol. Instead, the bounded access delay is implicitly
guaranteed by the fact that at each token visit only one message request may be
performed.

In (Tovar et al., 1998c) the authors analyse the P-NET’s MAC behaviour and
propose a worst-case response time analysis for P-NET messages. We now improve
such analysis by considering the actual token utilisation, instead of considering
always the worst-case token rotation time. The major contribution of this paper is that
we provide a much less pessimistic and more accurate analysis for the evaluation of
the worst-case response time in P-NET fieldbus networks.

The remaining of this paper is organised as follows. In section 2 we briefly
describe the P-NET’s MAC protocol. In section 3 we provide a basic worst-case
response time analysis, where the actual token utilisation is not considered. In section
4, we describe how the actual token utilisation can be taken into account for the
evaluation of the worst-case response time, by proper use of the information about the
message request periodicities in all masters. Finally, in section 5 we give conclusions.

2. Basic Concepts on P-NET’s MAC Protocol

The name P-NET is a derivation of “Process Network”. P-NET was designed as a
communications link between distributed process control sensors, actuators and small
programmable controllers, and has recently gained an increased role, as it became,
along with PROFIBUS and FIP, a European Standard, the EN 50170 - General
Purpose Field Bus Communication System.

P-NET is a multi-master standard. Therefore, all communication is based on a
principle, where a master sends a request and the addressed slave immediately returns
a response. For multi-master support, P-NET uses a Virtual Token Passing (VTP)
scheme. Figure 2 illustrates the hybrid-operating mode of the P-NET's MAC.

The VTP scheme is implemented using two protocol counters. The first one, the
Access Counter (AC), holds the node address of the currently transmitting master.
When a request has been completed and the bus has been idle for 40 bit periods
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(520µs @ 76,8Kbps3), each one of the ACs is incremented by one. The master whose
AC value equals its own unique node address is said to hold the token, and is allowed
to access the bus. When the AC is incremented as it exceeds the “maximum No of
Masters”, the AC in each master is pre-set to one. This allows the first master in the
cycling chain to gain access again.
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µP
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Fig. 2. Example of Multi-Master/Slaves Organisation in a P-NET Network

The second counter, the Idle Bus Bit Period Counter (IBBPC), increments for each
inactive bus bit period. Should any transactions occur, the counter is re-set to zero. As
explained above, when the bus has been idle for 40 bit periods following a transfer, all
ACs are incremented by one, and the next master is thus allowed to access the bus.

If a master have nothing to transmit (or indeed is not even present), the bus will
continue inactive. Following a further period of 130µs (10 bit periods), the IBBPC
will have reached 50, (60, 70,…) all the ACs will again be incremented, allowing the
next master access. The virtual token passing will continue every 130µs, until a
master does require access.

The P-NET standard also stands that each master is only allowed to perform one
message transaction (later on defined as message cycle) per token visit. This is an
important notion for the remaining of the paper.

                                                          
3 The P-NET standard uses a data rate of 76800 bps. This data rate resulted from weighing up the

conflicting requirement for data to be transported as fast as possible, but not at such speed as to negate
the use of standard microprocessor UARTS, or restrict the usable distance or cable type (Jenkins, 1997).
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After receiving the token, the master must transmit a request before a certain time
has elapsed. This is denoted as the master’s reaction time, and the standard imposes a
worst-case value up to 7 bit periods).

3
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Fig. 3. P-NET’s Virtual Token Passing Protocol

A slave is allowed to access the bus, between 11 and 30 bit periods after receiving
a request, measured from the beginning of the stop bit in the last byte of the frame.
The maximum allowed delay is then 390µs (corresponding to 30 bit periods). Later
on, this delay will also be denoted as the slave's turnaround time.

As already stressed, at each token visit, a master may perform at most one message
cycle. A message cycle is composed by a master’s request followed by the addressed
slave’s response.

Assume that CM is the maximum transmission duration of all message cycles in a
P-NET network. This duration includes both the longest request and response
transmission times, and also the worst-case slave’s turnaround time.

If a master uses the token to perform a message cycle, we can define a token
holding time4 as:

τρ ++= MCH (1)

In equation (1), τ (= 40 bit periods) corresponds to the time to pass the token after a
message cycle has been performed. ρ (≤ 7 bit periods) denotes the worst-case
master’s reaction time. If a station does not use the token to perform a message cycle,
the bus will be idle during σ (= 10 bit periods) before all ACs are incremented. For
better understanding both the basic MAC procedures and the notation used, refer to
figure 3.

At a glance, the message flow in a P-NET network can be compared to a switch
with n input queues (each one corresponding to one P-NET master), and with only
                                                          
4 It is not usual to include the token passing time in the token holding time. However, due to the

specificity of the Virtual Token Passing scheme, we decided to associate the token holding time with the
state of the P-NET access counter in each node.
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one output. Each one of the input queues is served in a purely round-robin fashion,
one message at a time. Within each queue, messages are served in a first-come-first-
served (FCFS) fashion. Figure 4 depicts this analogy.

Master 1
requests

Round-Robin Servicing of Each Queue

Outgoing Sequence

C

B

A

D F

E

First-Come-First-
Served Queues

Master 2
requests

Master 3
requests

Fig. 4. Queuing Analogy of the P-NET’s VTP Protocol

Consider the example contained in figure 4. Assume that the token is passed to
master 1, and no other requests will be made in masters 2 and 3 within a relatively
long time. In this case the output sequence would be as follows:

HC, HD, HF, HB, σ, HE, HA, σ, σ, …
where HC (HA, …) corresponds to the token holding time resulting from transmitting
the message request C (A, …) and receive the associated response. Figure 5 is a Gantt
chart of the outgoing sequence resulting from the above example.
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Fig. 5. Gantt Chart of the Example

Note that σ  (= 10 bp) is normally much shorter than H, since H includes both the
request and response frames. In fact, a P-NET frame5 is as illustrated in figure 6. As
in P-NET each frame byte actually corresponds to 11 bits6, a frame may have up to
                                                          
5 The Node Address Field may have up to 24 frame bytes. P-NET uses these complex addresses if

multiple segments are used and special devices are used to relay frames between the different segments.
6 In P-NET all the frame bytes are sent asynchronously, with one start bit (logical zero), 8 data bits (with

LSB first), one address/data bit and one stop bit. Within a frame, a start bit must immediately follow a
stop bit.
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759 bits (69 x 11 bits). Thus, considering the case that both the request and response
frames have 759 bits (more realistically either the request will be longer - case of
writing data to a slave - or the response will be longer - case of receiving data from a
slave), the overall sum for the token holding (H) time may go up to 1595 bit periods,
corresponding to 20.8 ms @ 76800 bps.

Node Address Field

2 bytes 1 byte 1 byte 0-63 bytes 1-2 bytes

Control/Status Info Length Info Field Error Detection

Fig. 6. Typical P-NET Frame

Table 1 gives the worst-case duration of the token holding time (H) in P-NET, with
the explicit weight of the different contributing components.

Table 1. Worst-Case Duration for H

Component Worst-Case Duration
(in bit periods)

Master's Reaction Time (ρ) 7
Request Transmission Time 759
Slave's Turnaround Time 30
Response Transmission Time 759
Token Passing (τ) 40
Total 1595

3. Basic Timing Analysis

After queuing a request in a master’s outgoing queue, will the message cycle be
performed before its deadline? This is the main question that must be addressed by
the pre-run-time schedulability analysis of P-NET networks.

In this section we present a basic pre-run-time schedulability analysis, which is
based on the worst-case token utilisation, that is, which assumes a fully utilisation of
the token.

3.1. Network and Message Models

We consider a network with n masters, with addresses ranging from 1 to n. Each
master accesses the network according to the VTP scheme. Hence, first master 1, then
master 2, 3, … until master 1, and then again 2, 3, … Slaves will have network
addresses higher than n.

We also assume the following message stream model:

),,( k
i

k
i

k
i

k
i DTCS = (2)

Si
k defines a message stream i in master k (k = 1, .., n). A message stream is a

temporal sequence of message cycles concerning, for instance, the remote reading of
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a specific process variable. Ci
k is the longest message cycle duration of stream Si

k. Ti
k

is the periodicity7 of stream Si
k requests. Finally, Di

k is the relative deadline of the
message cycle, that is, the maximum admissible time span between the instant when
the message request is placed in the outgoing queue and the complete reception of the
related response at the master's incoming queue. We consider that messages generated
in the distributed system can be periodic or sporadic. For the case of sporadic message
requests, its period corresponds to the minimum time between any two consecutive
requests for that stream. nsk is the number of message streams associated with a
master k.

In our model the relative deadline of a message can be equal or shorter than its
period (Di

k ≤ Ti
k). Thus, if in the outgoing queue there are two message requests from

the same message stream, this means that a deadline for the first of the requests was
missed8. It also results that the maximum number of pending requests in the outgoing
queue will be, in the worst-case, nsk.

We denote the worst-case response time of a message stream i in a master k as Ri
k.

This time is measured starting at the instant when the request is placed in the outgoing
queue, until the instant when the response is completely received at the incoming
queue. Basically, this time span is made up of the two following components:

1. the time spent by the request in the outgoing queue, until gaining access to the
bus (queuing delay);

2. the time needed to process the message cycle, that is, to send the request and
receive the related response (transmission delay)9.

Thus,

k
i

k
i

k
i CQR += (3)

where Qi
k is the worst-case queuing delay of a message stream i in a master k.

In order to have simpler and more understandable analysis, we will use the
maximum token holding time (see equation (1)) for all message cycle transactions,
instead of considering the actual length for each particular message cycle. At the end
of the paper we will update formulae in order to consider the actual length of message
cycles.

Thus, we will use equation (4), instead of equation (3) to define the worst-case
response time for a message request belonging to stream Si

k:

M
k
i

k
i CQR += (4)

As we will also show, it also results from considering CM instead of Si
k that

Qi
k = Qk, ∀i and Ri

k = Rk, ∀i.

                                                          
7 In order to have a subsequent timing analysis independent from the model of the tasks at the application

process level, assume that this periodicity is the minimum interval between any two requests for that
stream. Otherwise, a message release jitter (Tindell et al., 1995) would need to be considered.

8 Actually, we can be more precise saying that deadlines will be missed if a new request appears, in the
outgoing queue, before the completion of a previous message cycle for the same request.

9 As the bit rate in P-NET is 76800 bps, the propagation delay can be neglected, even for
P-NET networks with length of some kilometers.
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3.2. Basic Analysis for the Worst-Case Response Time

A basic analysis for the worst-case response time can be performed if the worst-case
token rotation time is assumed for all token cycles. As the token rotation time is the
time span between two consecutive visits of the token to a particular station, the
worst-case token rotation time, denoted as V, is:

HnV ×= (5)

with H as defined in (1), and gives the worst-case time interval between consecutive
token visits to any master k (k = 1, .., n).

In P-NET, the outgoing queue is implemented as a FCFS queue. Therefore, a
message request can be in any position within the nsk pending requests. nsk is also the
maximum number of requests which, at any time, are pending in the master k
outgoing queue. This results from the adopted message stream model, which
considers Di

k ≤ Ti
k. Hence, the maximum number of token visits to process a message

request in a master k, is nsk.
The worst-case queuing delay occurs if nsk requests are placed in the outgoing

queue just after a message cycle was completed (at the beginning of the token passing
interval: τ) and the token is fully utilised in the next nsk consecutive token cycles. We
denote this time instant as tc. We consider that a message cycle was just completed
since the token passing time is τ (= 40 bp) instead of σ (= 10 bp). Considering τ leads
to the largest time span till the next visit of the token to that same master k. Only then
master k will be able to process the first of the nsk requests placed in the outgoing
queue at tc.

Definition 1: Master’s Critical Instant – We define the critical instant in master k,
as the instant when nsk requests are placed in its outgoing queue
just after it has completed a previous message cycle.

Note that we can not consider releasing nsk new requests while master k is
processing a message cycle, since that would mean a deadline violation in master k (a
new request released before the completion of a previous one of the same stream). If
there was no message cycle being processed, there was no point in considering an
earlier release time, since one of those nsk requests would be processed in that visit.

Due to both the deadline restriction and the FCFS behaviour of the outgoing queue,
none additional request can appear in master k till the time instant (te), when the last
of the nsk requests, made at tc, is completely processed, otherwise, message deadline
could be missed. Therefore, we introduce definition (2) and theorem (1).

Definition 2: Master’s Busy Period – We define the busy period in master k, as
the time span between the critical instant, tc, and the time instant te,
when the last of the nsk requests is completely processed.

Theorem 1: In P-NET networks, the worst-case response time of a master’s
message request corresponds to the longest busy period in such
master.
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Proof:
The busy period starts when a critical instant occurs. By the critical instant

definition, nsk requests are placed in the outgoing queue at the earliest possible
instant. As the end of the busy period is defined as being the time instant te, when the
last of those nsk requests is completely processed, the difference tc - te gives the worst-
case response time for a message request in master k, since due to the FCFS
behaviour of the outgoing queue, at tc, a message request can be in any position, from
1st to nsk-nd.
o

Theorem 2: In P-NET networks, assuming that the token is fully utilised, the
worst-case response time of a message request in a master k is:

VnsR kk ×= (6)

Proof:
Assuming that the token is fully utilised, the token will take τ+(n–1)×H from

instant tc until the next visit to master k. At the first visit, the token arrives at
t2=tc+τ+n+(n–1)×H, and only then the master will be able to process the first of the
nsk pending requests. As only one of the nsk message requests is processed per token
visit, the token will arrive at master k only at instant t3=t2+(nsk–1)×V to process the
last of the nsk requests. The time elapsed since tc is then t3–tc=τ+(n–1)×H+(nsk–1)×V.
As the worst-case reaction time of a master is ρ, the last one of the nsk message
requests will start to be transmitted with a queuing delay Qk=τ+(n–1)×H+(nsk–1)×V
+ρ. Note that as we are assuming Ci

k=CM, ∀i,k, the worst-case queuing delay is equal
for all message requests in the same master (Qi

k=Qk, ∀i). As Ri
k=Qi

k+CM, the worst-
-case response time for a message stream i in master k is (note that Ri

k is also equal to
Rk): Rk=τ+(n–1)×H+(nsk–1)×V+ρ+CM, which, considering that H=ρ+CM+τ, can be re-
-written as follows:

( ) ( ) VnsVnsVVnsHnR kkkk ×=×−+=×−+×= 11

o

Corollary: In P-NET networks, assuming that the token is fully utilised, the
worst-case queuing delay of a message request in a master k is:

( ) ( ) ρτ +×−+×−+= VnsHnQ kk 11 (7)

To illustrate both theorems 1 and 2, assume a network scenario with n=3 and
ns1=2. Figure 7 shows both Q1 and R1 for such scenario. Note that at tc, the ns1

requests are placed in the outgoing queue in any arbitrarily order. Whichever the
ordering, the busy period corresponds to R1, and therefore, the worst-case response
time for a message request in master 1 is (6): ns1×V=2×V=2×3×H=6×H.
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Fig. 7. Queuing and Response Times the Given Scenario

4. Timing Analysis Considering the Actual Token Utilisation

In the previous section we derived a basic timing analysis for the evaluation of the
worst-case message response time. Such analysis may however be very pessimistic,
since we assumed the token as being fully utilised in the nsk consecutive token cycles
of the busy period. However, the token can only be fully utilised during that interval
if:

ky
ky nsns ≠∀≥  , (8)

as, only in such case, the number of pending requests, in each master y, may be
greater than nsk. Otherwise, if ∃y≠k: nsy < nsk, the token utilisation depends on the
periodicity of message streams for those masters y.

Definition 3: Master’s Eligible Requests – We define the eligible requests of
master y ≠ k, as the maximum number of requests generated in that
master that will be pending10 within the busy period of master k.

If the number of eligible requests of master y (Ery) is smaller than nsk, then it is
possible that such master will not use all nsk token visits to process message cycles.
Therefore, the evaluation the eligible requests of each master y, is paramount for the
worst-case response time analysis considering the actual token utilisation. We will use
the following equation as the starting basis for the evaluation of Ery:

                                                          
10 Even they are processed during the busy period of master k, for a while, they were pending.
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Equation (9) gives the maximum number of requests generated by a master y
within a time interval t: nsy requests are made at the beginning of the interval, and
then, new requests are made at their maximum rate. This is also known as the asap (as
soon as possible) pattern (Liu and Layland, 1973). By tailoring equation (9) to
encompass the P-NET MAC characteristics, we will be able to perform a worst-case
message response time analysis which considers the actual token utilisation, instead
of assuming the fully utilisation of the token.

4.1. Concept of P-NET Logical Ring Request Jitter

From equation (9), it is obvious that the larger is considered the time interval, the
higher is the value for Ery. Note, however, that this equation is a step function, hence
varying only for multiples of Ti

y.
Consider that in each master y ≠ k, nsy requests are simultaneously made at the

critical instant (tc) of master k. Remembering that the busy period is defined as [tc, te],
it would be reasonable to consider as eligible requests of master y, all those requests
given by Er

y=nsy+Σi=1,..,nsy (te–tc)/Ti
y. In the following analysis, we will show that the

worst-case situation appears when the nsy requests are not simultaneously made in all
masters y ≠ k, and that the quantity before tc that must be considered for each master
y, depends of its logical ring position.

Assume that the critical instant, which must be considered, for each master y, is
denoted as tr

y, with tr
y < tc, ∀y≠k. Basically we need to analyse how much earlier tr

y can
be made, increasing the number of master y eligible requests Er

y=nsy+
+Σi=1,..,nsy (te–tc)/Ti

y, without any of the initial nsy requests being able to be processed
in an earlier token visit prior to the critical instant in master k.

For master k-1, which we denote as the predecessor of master k, tr can be shifted
back by CM +ρ+τ, being coincident to the starting of a busy period in master k-1. tr can
not be shifted further back, since it would imply a deadline violation in master k-1 or
one of the initial nsy requests would be processed prior to the busy period in master k.
Considering τ as the token passing time implies that a message cycle was just
completed at instant tr. Otherwise, the token passing time would be reduce to σ.
Consequently, the total amount tr may be shifted back for the case of master k-1, is
CM+ρ+τ=H.

Considering master k-2 and following a similar analysis, tr could be shifted back up
to 2×H. Thus, a different value for tr, denoted as tr

y, must be considered for each
master y ≠ k, and its value only depends on the relative logical ring position of master
y in respect to master k.

Definition 4: Logical Ring Request Jitter – We define the logical ring request
jitter of master y, as the difference Jry= tr

y–tc, being tr
y how much

earlier than the critical instant in k, a master y can made its nsy
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requests, without violating a deadline, nor processing any of those
nsy requests prior to the critical instant in master k.

Resulting from the previous analysis, Jry can be expressed as follows:

∑
−+=

=
11 ..., ,, kyyi

y HJr (10)

which, is equivalent to:

( )[ ] HnyknJr y ×−+=   mod (11)

To illustrate this definition, assume a network scenario as shown in table 2. For
simplification, the periodicity of streams is expressed in multiples of H.

Table 2. Stream Set Scenario 1

Master (C, T, D)
1 ns1 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
2 ns2 = 1 (CM, 8, 8)
3 ns3 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
4 ns4 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)

The Gantt chart for the master 1 busy period will result as illustrated in figure 8,
where tr

2–tc, tr
3–tc and tr

4–tc represent the logical ring request jitter, respectively of
masters 2, 3 and 4. Note that for master 2, its number of eligible requests is greater
than ns2.

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

master 1 busy period for scenario of table 2

Master 4

10 11

�

� �

0-1

�

�

Jr2

Jr3

tr
2 tr

3 tr
4 tc

τ

#Token Holding Time (H)

σ

# = nsx requests placed in the outgoing queue of master x

te

Fig. 8. Busy Period of Master 1 with the Scenario of Table 2
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Theorem 3: In P-NET networks, the longest busy period of master k occurs
when all k predecessors started their busy periods in the token cycle
previous to the busy period in master k.

Proof:
The worst-case length busy period in master k, results if all the eligible requests of

each master y are considered for transmission during the interval te–tc. Considering
that in each master y, nsy requests are placed in each one’s outgoing queue at the
instant tc–Jry, then for each master y the number of eligible requests is Er

y=nsy+
+Σi=1,..,nsy (te–tc+ tr

y)/Ti
y.

Using the definitions of busy period and of logical ring request jitter, if nsy requests
are placed in the outgoing queues at t1–Jry, then, in the token cycle prior to the busy
period in master k, busy periods has started in all predecessors of k.
o

Considering  P-NET's logical ring request jitter concept, the number of eligible
requests (9) can now be updated to:

∑
=








 +−
+=
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ttt
nsEr

1

(12)

which, using theorems 1 and 3 and definition 4, can be re-written as:

∑
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yy

T
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1

(13)

with Jry as defined in (11).

4.2. Concept of P-NET Logical Ring Visit Jitter

Equation (13) is quite pessimistic, since not all the eligible requests will be able to be
processed within the busy period of master k. The reason is obvious. If nsy is greater
than nsk, only a maximum of nsk requests will be processed by master y within the
busy period. However, for our analysis, the relevant case is when nsy < nsk, since it
leads to a scenario where the token is not fully utilised. For this case, even if Ery (as
given by (13)) is larger than nsk, it might happens that a number smaller than nsk

requests are able to be processed during the busy period.
Intuitively we can show that if a new request appears in the outgoing queue of

master y and an instant t2 (tc < t2 < te), this request may not be processed before te,
even if the outgoing queue in y was empty. This is the case of all the requests made in
master y after the last token visit (to y) prior to the completion of the busy period in
master k.

Assume the following example, where we update in table 2 the periodicity of
stream S1

2 from 8 to 12. The Gantt chart for the busy period in master k would be as
shown in figure 9, instead of that shown in figure 8. Note that a new request for
master 2 appearing before te, can not be processed during the busy period of master 1.
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Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

master 1 busy period for modified scenario of table 2

Master 4

10 11

�

� �

0-1

�

�

Jr2

Jr3

τ

Master 2 requests
not being considered
during the master 1
busy period

tetv
2

Fig. 9. Busy Period for Master 1 with the Modified Scenario of Table 2

Definition 5: Processing Window of Master’s Busy Period – We define the
processing window of master k busy period, as the time span
between tc and tv

y (tv
y < te), within which, a first-positioned pending

request in master y will assuredly be processed.

Definition 6: Logical Ring Visit Jitter – We define the logical ring visit jitter (Jvy)
of master y, as the difference te– tv

y.

It becomes obvious that the worst-case response time of a message request in a
master k corresponds to processing windows in masters y ≠ k as large as possible,
since this is the case where more eligible requests would be processed during the busy
period of master k. Thus, the worst-case response time of a message request in a
master k corresponds to the minimum logical ring visit jitter in masters y.

Such minimum logical ring visit jitter Jvy can be evaluated considering that none of
the masters y processed any message request in the last token visit prior to the
completion of the busy period in master k.

Therefore,

( )( )[ ] ( )ρσρσ −+++×−−+= M
y CnyknJv 1  mod (14)

where ρ+CM corresponds to the processing time of the last of the nsk requests in
master k (see figure 3), σ+ρ corresponds to master y, and [((n+k–y) mod n) – 1]
corresponds to the number of masters between y and k.

 There is a certain level of pessimism in considering that none of the masters y
processed any message request in the last token visit prior to the completion of the
busy period in master k. In fact, if for some of those masters nsy≥nsk, then, they will
assuredly use the token in all nsk consecutive cycles of the busy period in master k.
For those masters, we may consider H instead of σ, hence diminishing the length of
the busy period processing window.
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Therefore, equation (14) can be updated to:

( )( )[ ] ( )∑
≥

= −+

−++×−+=

ki nsns
with

kyi
M

y HCnyknJv
11,..,

  mod σσ (15)

For the previous example (figure 9), the number of eligible requests of master 2
would be 2. However, as, for that master, the logical ring visit jitter is
Jv2=[((4+1–2) mod 4)–1]×σ+CM+Σi=3,4 with nsi≥ns1(H–σ)=3×σ+CM+2×(H–σ)=2×H+ CM+σ,
only one of those two eligible requests is able to be processed within the busy period
of master 1.

4.3. Number of Unused Tokens During the Longest Busy Period

During the previous analysis, we are now able to evaluate the maximum number of
eligible requests from each master y that may be processed during the busy period of
master k. Such maximum number will lead to the worst-case response time of a
message request in master k.

Definition 7: Master’s Logical Ring Aggregate Jitter - We denote Jay=Jry–Jvy as
the logical ring aggregate jitter of master y.

Definition 8: Minimum Number of Unused Tokens During a Busy Period - We
define the minimum number of unused tokens by a master y (Uty)
during the busy period in master k, as the minimum number of times
that a master y receives the token and does not have any pending
requests, during that period.

Theorem 4: The minimum number of unused tokens by a master y within a busy
period of master k, is Uty=nsy–min{nsk, nsy+Σi=1,..,nsy (Rk+Jay)/Ti

y}.

Proof:
By theorem 3, the maximum number of eligible requests of master y is nsy+

+Σi=1,..,nsy (Rk+Jry)/Ti
y. From these requests, only those which arrive within the master

k processing window, will be able to be processed within the busy period. Therefore,
the evaluation interval for the asap pattern is Rk+Jry– Jvy= Rk+Jay.

In a master k, the number of token cycles during the busy period is, by definition 1,
nsk. Thus, the actual token utilisation by a master y, during the busy period of master
k, is min{nsk, nsy+Σi=1,..,nsy (Rk+Jay)/Ti

y}.
As a consequence, the number of times master y does not use the token during the

busy period of master k is:
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Theorem 5: The minimum number of unused tokens during a busy period of
master k, is

∑
=

=
n

y

yUtUt
1

(17)

Proof:
As for y = k, Uty = 0, the proof for this theorem is obvious.

o

4.4. Analysis of the Worst-Case Response Time

Considering that the token is fully utilised (section 3), the worst-case response time of
a message request in a master k (equation (6)) is Rk=nsk×V. It is now possible to
update (6) to incorporate the actual token utilisation, considering that, for each unused
token we must subtract the corresponding value of the token holding time (H), and
add a σ corresponding to the token passing time for the case of an unused token:

( )σ−×−×= HUtVnsR kk (18)

Using the results obtained in the previous sub-sections, the worst-case response
time of a message request in a master k is:
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As expected, this equation embodies a mutual dependence, since Rk appears in both
sides of the equation. In fact, all the previous analysis underlay this mutual
dependence, since in order to evaluate Rk, Ut must be found, and vice-versa.

The easiest way to solve equation (19) is to form a recurrence relationship
(Audsley et al. 1993):
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(20)

The set of values {W0, W1, W2, …, Wm, …} is monotonically non decreasing, since
as W evolves, less unused tokens are being considered. Starting with W0 = 0, when Wm

= Wm+1, the solution of equation (19) has been found.

4.5. Pre-Run-Time Schedulability Condition

Having found the value for the worst-case response time of a message request in each
master k, a pre-run-time schedulability test results:

ki
kk

i RD , , ∀≥ (21)



- 19 -

4.6. Numerical Example

Assume the stream set shown in table 3.

Table 3. Another Stream Set Example

Master (C, T, D)
1 ns1 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 40, 40)
2 ns2 = 1 (CM, 12, 12)
3 ns3 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
4 ns4 = 2 (CM, 14, 14) (CM, 20, 20)

Applying equation (19) by using the recurrence relationship given by equation
(20), we will be able to find the worst-case response time for master 1.

As the number of streams in master 3 is equal to the number of streams in master 1,
we need only to focus on the unused tokens of masters 2 and 4.

Therefore, the network aggregate release jitter for master 2 will be:
( )( ) σσσ ×−−×=−×++×−×=−×= 221333 22

MM CHHCHJvHJa
and the network aggregate release jitter for master 4 will be:

( ) τρσ +=−=++−=−×= MM CHCHJvHJa 01 24

For W0 = 0, then, W1 is,
( ) ( ) ( ) σσσ ×+×=−×+−××=−×−××= 39124343 HHHHnutH

For W1 = 9×H+ σ, W2 is:
( ) ( ) σσ ×+×=−×+−××= 391243 HHH

The iterations stop here, as W2 = W1. This corresponds to Gantt chart illustrated in
figure 10.

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

Q1
1

Master 4

R1
1

10 11

�

� �

0-1

�

�

τ

Fig. 10. Busy Period of Master 1 within the Scenario of Table 3

If we consider that the longest message cycle is composed by 67 P-NET frame
bytes (request + response), then this corresponds to 67×11=670 bits. Including 30 bp,
for the worst-case reaction time of a slave, then CM=767/76800=10 ms.

Therefore, H=(7+767+40)/76800 = 10.6 ms.
This means that the worst-case response time for a message request in master 1 for

the scenario of table 3 is: 9×10.6+3×(10/76800)=95.79 ms.
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4.7. Considering the Actual Transmission Times for Message Cycles

In the previous analysis, the message cycles’ length was considered, for
simplification, to be constant at CM. The results can now be updated, considering the
actual message cycles’ length, or at least, the longest (smallest) message cycle in each
master.

Considering Mk=maxi=1,..,nsk{Ci
k} as the longest message cycle in a master k, then,

the worst-case response time of a message request in master k (updating (6)),
considering that the token is fully utilised, is (note that now Ri

k = Rk, ∀i is not valid
any more):
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i CMnsQ −++×= ∑
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τρ (22)

The logical ring request jitter (10), can be updated to:

( )∑
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11 ..., ,, kyyi

iy MJr τρ (23)

The logical ring visit jitter (15), can be updated to:
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where Ll is defined as the smallest message cycle in a master l: Ll=ρ+mini=1,..,nsl{Ci
l}+τ.

The worst-case response time of a message request in a master k (19) can be
updated to (we need now to consider the shortest holding time in each master):
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Finally, as Ri
k may be different from stream to stream in each master, the pre-run-

time schedulability condition can be updated to:

ki
k
i

k
i RD , , ∀≥ (26)

4.8. Pre-Run-Time Schedulability Tool

As for the case of the response time analysis in a single processor environment, the
communication response time analysis has the same drawback, which is that each
message stream must be individually tested.

However, since the schedulability condition proposed in this paper is to be done
prior to run time, no major obstacle exists, provided that a software analysis tool is
available.

In Annex A, we outline an algorithm, which is the basis for the implementation of
such software tool. The algorithm presented considers always CM instead of the actual
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length for message cycles. Upgrade to include results from equation (22) to (26) is a
straightforward procedure.

5. Conclusions

In this paper we have drawn a comprehensive study on how to use P-NET to support
real-time communications in distributed computer-controlled systems. The major
contribution is to provide a less pessimistic evaluation of the worst-case response time
in P-NET networks, as we consider the actual token utilisation during the busy period
of masters, whereas previous work considered a fully utilisation of the token during
that period. We introduced the concept of P-NET Logical Ring Aggregate Jitter,
which is paramount for the evaluation of the actual token utilisation during a master’s
busy period.

With this analysis we are able to guarantee more stringent relative deadlines of
P-NET Messages. Indirectly, we can also say that with the analysis proposed in this
paper we can guarantee message streams with shorter periods, hence allowing a
higher utilisation of the real-time communication network. This is important, as it is
known that in order to guarantee schedulability for the systems’ peak load, the
average utilisation of the system becomes very poor.
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Annex A

Algorithm pnet_sched_analysis
input: n /* number of masters */

pass /* time to pass the token after message cycle */
idle /* time to pass the token if no message cycle transmitted */
ns[w] /* array containing number of streams in each master; w ranges from 1 to n */
M[x, y, z] /* message streams information; x ranges from 1 to n;y ranges from 1 to max (ns[])*/
           /* z ranges 1 to 3; z = 1(len. of mes. cycle); z = 2 (period); z = 3 (relative deadline) */

output:O[x, y] /* similar to M [x, y, z] except for z */
/* if O[x, y] = 1 stream marked as not schedulable; if O[x, y] = 0 stream schedul. */

R[x, y] /* worst-case response time; x ranges from 1 to n;  y ranges from 1 to max (ns[])*/
begin

1: /* computation of CM */
2: CM = 0;
3: for i = 1 to n do
4: for j = 1 to ns[i] do
5: if M[i, j, 1] > CM then
6: CM = M[i, j, 1]
7: end if
8: end for
9: end for
10: H = react + CM + pass;
11: for i = 1 to n do
12: R_tdma = ns[i] * n * H;
13: R = 0;
14: repeat
15: R_Before = R; unt = 0;
16: for j = 1 to n do
17: if j <> i then
18: /* computation of visit jitter */
19: jv = calc_visit (i, j)
20: /* computation of aggregate jitter */
21: jitter = ((n + i – j) mod n) * H – jv;
22: add_req = 0;
23:
24: for l = 1 to ns[j] do
25: add_req = add_req + int ((R + jitter) / M[j, l, 2])
26: end for
27: if (add_req + ns[j]) < ns[i] then
28: unt = unt + (ns[i] – add_req – ns[j])
29: end if
30: end if
31: R = R_tdma - unt * (H – idle)
32: end for
33: until R = R_Before;
34: for j = 1 to ns[i] do
35: R[i, j] = R;
36: if M[i, j, 3] < R then
37: /* mark message stream j of master i not schedulable */
38: O[i, j] = 1
39: end if
40: end for
41: end for

end.
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Function visit_jitter (i, j)
input: i /* equivalent master k */

j /* master y */
H, ns[w], idle /* global vars */

output: vj /* visit jitter */

Begin
1: jv = ((n + i – j) mod n) * idle + CM;
2: if j > i then
3: for k = j + 1 to n do
4: if ns[k] >= ns[i] then
5: jv = jv + H – idle
6: end if
7: end for
8: for k = 1 to i –1 do
9: if ns[k] >= ns[i] then
10: jv = jv + H – idle
11: end if
12: end for
13: else
14: for k = j + 1 to i –1 do
15: if ns[k] >= ns[i] then
16: jv = jv + H – idle
17: end if
18: end for
19: end if

return jv


