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Abstract 

The wireless environment poses a significant challenge to the propagation of signals. Different effects such as 
multipath scattering, noise, degradation, distortion, attenuation, and fading affect the distribution of signals 
adversely. Deep learning techniques can be used to differentiate among different modulated signals for reliable 
detection in a communication system. This study aims at distinguishing COVID-19 disease images that have been 
modulated by different digital modulation schemes and are then passed through different noise channels and 
classified using deep learning models. We proposed a comprehensive evaluation of different 2D Convolutional 
Neural Network (CNN) architectures for the task of multiclass (24-classes) classification of modulated images in 
the presence of noise and fading. It is used to differentiate between images modulated through Binary Phase Shift 
Keying, Quadrature Phase Shift Keying, 16- and 64-Quadrature Amplitude Modulation and passed through 
Additive White Gaussian Noise, Rayleigh, and Rician channels. We obtained mixed results under different settings 
such as data augmentation, disharmony between batch normalization (BN), and dropout (DO), as well as lack of 
BN in the network. In this study, we found that the best performing model is a 2D-CNN model using disharmony 
between BN and DO techniques trained using 10-fold cross-validation (CV) with a small value of DO before 
softmax and after every convolution and fully connected layer along with BN layers in the presence of data 
augmentation, while the least performing model is the 2D-CNN model trained using 5-fold CV without 
augmentation. 
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The wireless environment poses a significant challenge to the propagation of signals. Different effects such as multipath scattering,
noise, degradation, distortion, attenuation, and fading affect the distribution of signals adversely. Deep learning techniques can be
used to differentiate among different modulated signals for reliable detection in a communication system. This study aims at
distinguishing COVID-19 disease images that have been modulated by different digital modulation schemes and are then passed
through different noise channels and classified using deep learning models. We proposed a comprehensive evaluation of
different 2D Convolutional Neural Network (CNN) architectures for the task of multiclass (24-classes) classification of
modulated images in the presence of noise and fading. It is used to differentiate between images modulated through Binary
Phase Shift Keying, Quadrature Phase Shift Keying, 16- and 64-Quadrature Amplitude Modulation and passed through
Additive White Gaussian Noise, Rayleigh, and Rician channels. We obtained mixed results under different settings such as data
augmentation, disharmony between batch normalization (BN), and dropout (DO), as well as lack of BN in the network. In this
study, we found that the best performing model is a 2D-CNN model using disharmony between BN and DO techniques trained
using 10-fold cross-validation (CV) with a small value of DO before softmax and after every convolution and fully connected
layer along with BN layers in the presence of data augmentation, while the least performing model is the 2D-CNN model
trained using 5-fold CV without augmentation.

1. Introduction

An important point to consider in modern wireless communi-
cation services is the ability to distinguish between different
modulation schemes. Effective communication is essential in
bounded network operations. The monitoring of wireless radio
communication signals is necessary for the detection, identifica-
tion, and localization of these signals [1]. The efficient propaga-
tion of signals through a wireless channel is of paramount
importance to allow the signal energy to be carried optimally.
Challenges such as the effects of channel depolarization, inter-
symbol and co-channel interferences [2], Rician fading [3],
and Rayleigh fading channels [2] exist that makes it difficult
for the signals to propagate smoothly. The wireless communica-

tion systemneeds to be able to operate in different environments
(rural, urban, and suburban), including indoor and outdoor and
in all kinds of multipath and time-varying fading channels.
Often the transmitter and receiver sources are far away from
each other, and a direct line of sight (LOS) path is not possible
between them. Hence, the multipath channel is used between
the two sources, which is associated with data loss [4].

Modulation schemes are used to provide power and
bandwidth-efficient communication satisfying Shannon chan-
nel capacity limits and to achieve better efficiency in wireless
systems [5]. Single and multicarrier modulation techniques
are employed in practice where single or multiple subcarriers
carry over information. Modern communication networks
are complex and diverse systems, where homogenous and
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heterogeneous signals coexist as a standard. In such different
environments, the detection and recognition of complex sig-
nals are necessary to maintain signal fidelity [6].

Deep learning is a computational paradigm that allows
models to learn abstractly with applications in images like
the classification of objects and regression and model identi-
fication for different purposes [7–10], [11, 12]. Zhang et al.
and Guo et al. [13, 14] presented a deep learning approach
to remove the noise from the images, but it is very necessary
to classify the noise-affected patterns to remove those noises.
Qiang et al. proposed the Gaussian related spatial-spectral
gradient network to remove the mixed noises and the Bayes-
ian posterior deep learning model to remove the non-
independent identically distributed noise from the images
[15, 16]. There are many studies reported in the literature
to study the classification of digital and analog signal schemes
deploying deep learning based neural network architectures
such as adaptive multistream network incorporating a super-
position convolutional unit in each stream [17], adversarial
transfer learning architecture [18], polar coordinate
approach based network [19], deep neural network consist-
ing of a Convolutional Neural Network (CNN) followed by
a long short-term memory network as the classifier which
can efficiently explore the temporal and spatial correlations
of a signal [20], and exploitation of co-channel signals based
on deep learning techniques using a CNN architecture [21].
Different from other works, we deployed novel CNN based
architectures on 2D images rather than 1D signals to study
multiclass classification problem using COVID-19 lung X-
ray samples. Our architectures were designed to study dishar-
mony between Batch Normalization (BN) and dropout (DO)
techniques in the presence of data augmentation, to study
the impact of different data augmentation techniques such as
random rotation, translation, reflection, and shear, without
BN and without data augmentation schemes. Higher dimen-
sional signals are known to carry more information and thus
can be exploited to achieve better results. To effectively under-
stand the challenges posed by different modulated signals
(images modulated by different signals) passed through fading
and noisy channel models, we deployed different CNNs to dif-
ferentiate COVID-19 patients and normal people lungs X-ray
images thus solving a multiclass classification problem.

In this paper, our contributions are as follows:

(i) Through development of a dataset with the multi-
class (24 classes) modulated images of COVID-19
disease for transmission in Additive White Gaussian
Noise(AWGN) and fading channels and classified
using deep learning architectures

(ii) We developed a systematic deep learning approach
to evaluate the effects of training with a small num-
ber of samples for the multiclass classification task

(iii) We estimated our models’ competencies on an inde-
pendent dataset using 5 and 10-fold cross-validation
(CV) approaches

(iv) To understand the effect of more data on the classi-
fication performance and CNN architectures, we
deployed data augmentation methods such as ran-

dom rotation, translation, reflection, and shear to
improve the performance of models

(v) We evaluated the effect of the absence of BN on the
classification performance and deployed architec-
tures without it. The architectures are found to have
performance bottlenecks such as mean and variance
issues in the absence of BN

(vi) Finally, to understand the “variance shift” phenom-
enon associated with the disharmony (DH) between
the BN and DO techniques as mentioned in [22], we
deployed a configuration with a small value of DO
before softmax and after every convolution and fully
connected layer along with BN layers in the presence
of data augmentation

The rest of the article is organized as follows. Section 2
presents related work and the mathematical formulation of
the modulation schemes, CNNs, AWGN, Rayleigh, and
Rician channels. In the methodology Section 3, we present
the details of the datasets used in the experiments as well as
2D-CNN architectures for the novel and consistent achieve-
ment of the results. Section 4 presents the experimental
results of the paper. Section 5 presents the discussion
followed by a conclusion in Section 6.

2. Related Work

CNNs are believed to learn equivariance, invariance, and
equivalence properties [23] effectively. Spatial transforma-
tion methods such as per-pixel flow, mean blur, and differen-
tiable bilinear interpolation can also be used to deform the
input images benefitting from visual recognition tasks [24].

CNNs are already translation equivariant; that is, small
input image translations produce proportionate changes in
feature maps, which is not the case for rotations [25]. Aggres-
sive data augmentation helps in improving the performance
of translationally variant systems [7]. In response to manu-
ally generated perturbations to the input, such as image
transformations, a quantitative approach towards analyzing
networks measures output changes [26]. However, neither
the architectural changes nor the data augmentation may
help in achieving the desired invariance [27]. Deformations
such as pose, affine transformations such as translation, scal-
ing, rotation, or shear, as well as optical flow, are commonly
used for object recognition tasks [28]. Colour information
instead of a grayscale image may also improve prediction
performance [29]. Visualization of CNN representations is
a promising way to explore network representations. It pro-
vides a technical foundation for many approaches of CNN
representations [30].

A refined invariant representation is a typical image con-
structed with a cascade of invariants, which retains transla-
tion, rotation, skin, and shear information [31]. CNN
mainly depends upon satisfying the requirements laid down
by the Nyquist sampling theorem. While this will not
completely restore rotational equivalence, it shows that the
aliasing introduced through the downsampling is signifi-
cantly reduced [32]. CNNs deal with shift variance far better
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than scale invariance. At the same time, invariance helps in
building robust input transformations through regulariza-
tion in the network [33, 34]. Furthermore, dataset bias is a
major hurdle for the generalization of CNN to the real world
and has applications in recognition and detection tasks [35,
36]. Bruna and Mallat presented the invariant scattering
technique for the CNNs to reduce the variabilities such as
rigid translations, rotations, or scaling as well as nonrigid
deformations [37].

Sohn and Lee studied the transformation equivariant
architectures trying to infer the best matching filters by trans-
forming them using linear transformation matrices to learn
locally invariant features that can be useful in classification
tasks [38]. While Ruderman et al. find that the deformation
of networks with pooling increases significantly throughout
the training process [39]. Bruna et al. stated the relationship
between group invariances in CNNs providing an under-
standing of their classification function performance and
explaining why the weight sharing caused by convolutions
in the presence of a deformations group is an authentic reg-
ularization method [40].

Ngiam et al. show that the sparsity of lifetime is accom-
plished when the feature is selective and permits examples
to be found. High dispersal is achieved for a particular row
of features when the distribution has similar statistics for all
rows [41]. Cohen and Welling proposed transformation
properties of learned visual representations, an invariant
CNN group that could be used to develop a scalable represen-
tation learning system [42]. Bengio et al. presented the repre-
sentation learning for complex real-world distributions [43].

When a complex neural network is trained on a small
training set, it usually performs poorly on a held-out test
set that can be mitigated by a random omission of feature
detectors. Overfitting can be reduced by using the DO tech-
nique [44]. Methods for applying DO to CNN layers as well
as to recurrent neural networks are reported consistently in
the literature [45].

The internal covariance shift is a significant problem
when training deep networks. BN mitigates this problem by
normalizing each training minibatch. Eliminating the inter-
nal covariance shift also speeds up the training of deep net-
works. BN may lead the layer jacobians to have singular
values close to identity, which is known to be beneficial for
learning. Training without DO but with BN is also a promis-
ing approach for achieving higher prediction accuracy but
has different train-test calculations [22, 46].

Hong et al. worked on deep learning-based methods such
as Graph Convolutional Networks (GCNs) and CNNs which
are fused together for hyperspectral image classification tasks
[47], for the classification and identification of the materials
lying over or beneath the earth’s surface by designing a mul-
timodal deep learning framework [48], to address spectral
variability [49], for feature extraction of hyperspectral images
[50] and semisupervised transfer learning with limited cross-
modality data in remote sensing [51].

2.1. Theoretical Analysis. This section includes a brief math-
ematical formulation of the CNNs, modulation schemes
including the Binary Phase Shift Keying (BPSK), Quadrature

Phase Shift Keying (QPSK), 16-Quadrature Amplitude Mod-
ulation (16-QAM), and 64-QAM, and AWGN, Rayleigh, and
Rician channels.

Modulation is fundamental to all wireless communica-
tion systems and the technique of impressing the data to be
transmitted on a high-frequency carrier. The objective is to
achieve spectral efficiency by squeezing more data into the
least amount of spectrum possible. The issues related to
interference, hardware, and noise are quickly reduced in the
digitally modulated systems as it resists noise and interfer-
ence and offers bandwidth efficiency, in comparison to the
analog modulated systems which need higher bandwidth to
transfer symbols. We used BPSK, QPSK, 16-QAM, and 64-
QAM digital modulation schemes in this study.

Mathematically, BPSK signal generation can be expressed
as

Ζm tð Þ =
ffiffiffiffiffiffiffi
2Eb

Tb

s
cos 2πf ct + π 1 −mð Þð Þ,m = 0, 1: ð1Þ

Here, Ebis energy per bit, Tbis bit duration,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb/Tb

p
is

the amplitude, f cis carrier signal frequency, and t is the time.
The BPSK signal transmits one bit per symbol and is mapped
to one of two possible phase states, 0 and π.

Mathematically, QPSK signal generation can be
expressed as

Ζm tð Þ =
ffiffiffiffiffiffiffi
2Es

Ts

s
cos 2πf ct + 2m − 1ð Þπ4
� �

,m = 1, 2, 3, 4: ð2Þ

Here, Es is energy per symbol, Ts is symbol duration,ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Es/Ts

p
is the amplitude, f cis carrier signal frequency, and

t is the time. The QPSK signal transmits two bits per symbol
and is mapped to one of the four possible phase states, 7π/4,
5π/4, 3π/4, and π/4 .

The complex envelope of the transmitted waveform with
QAM can be written as

~Z tð Þ = A〠
n

c t − nT ,Xnð Þ, ð3Þ

where cðt − nT ,XnÞ = xnuaðtÞ, uaðtÞ is the amplitude
shaping wave, and xn = xI,n + jxQ,n is the complex-valued
data symbol that is transmitted at baud rate n.

With noise variance σ2 and power constraint Ρ, the
capacity of the (real) AWGN channel is

CAWGN =
1
2

log 1 +
Ρ

σ2

� �
: ð4Þ

For the optimal rate adaptation to channel fading with a
constant transmitting power, bandwidth B and signal to
noise ratio γ, the Rayleigh channel capacity can be expressed
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as

CRayleigh = B
ð∞
0

log2 1 + γð Þpγ γð Þdγ: ð5Þ

The Rician fading channel capacity for an indeterminate
number of transmitting/receiving antennas can be written as

CRician =
ð
λ1,⋯,λk

〠
k

i=1
log 1 +

P
NT

λi

� �
f λ1,⋯,λk λ1,⋯, λkð Þdλ1 ⋯ dλk:

ð6Þ

Here, Ρ represents an upper-bound on the total average
power, NT is the number of transmit antennas, and λ is any
unordered eigenvalue of the noncentral Wishart distributed
random matrix.

CNNs are a specialized form of neural networks common
with known topology for the processing of data. They use a
mathematical operation known as convolution which can
be defined as

s tð Þ =
ð
x að Þw t − að Þda = x x ∗wð Þt: ð7Þ

Here, x is the input while w is known as the kernel. The
output is widely known in the literature as a feature map.
Usually, we use discrete rather than the continuous version
of equation (7) defined as

s tð Þ = x ∗wð Þ tð Þ = 〠
∞

a=−∞
x að Þw t − að Þ: ð8Þ

In machine learning applications, the input and the ker-
nel are usually tensors. In the case of two-dimensional input
and kernel, the convolution operation can be expressed as

S i, jð Þ = I ∗ Kð Þ i, jð Þ =〠
m

〠
n

I m, nð ÞK i −m, j − nð Þ: ð9Þ

Usually, the convolution operation is implemented as
cross-correlation in the neural network software which is
defined as

S i, jð Þ = I ∗ Kð Þ i, jð Þ =〠
m

〠
n

I i +m, j + nð ÞK m, nð Þ: ð10Þ

3. Methodology

3.1. Dataset and Preprocessing. We downloaded (https://
www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-
images and https://github.com/ieee8023/covid-chestxray-
dataset/tree/master/images) a random dataset of images of
COVID-19 patients and normal people lungs X-rays from
the internet. Sample images are shown in Figure 1. These
images are, then, modulated by BPSK, QPSK, 16-QAM,
and 64-QAM schemes and passed through AWGN, Ray-
leigh, and Rician fading channels. We used five and 10-fold
CV procedures. The modulated images dataset description

for 10-fold and 5-fold CV is given in Tables 1 and 2, respec-
tively. We build datasets to study the 24 class classification
problem.

We performed a series of experiments for the multiclass
classification to study the impact of channel fading and noise
on the different modulation schemes. In this study, we used
BPSK, QPSK, 16-QAM, and 64-QAM representation of the
images of COVID-19 patients and normal people lungs X-
rays after passing them through AWGN, Rayleigh, and
Rician channels as shown in Figure 2. The workflow of the
proposed approach is illustrated in Figure 3.

The dataset is a crucial part before training a CNN. The
raw datasets have been pre-processed and are then passed
through a deep learning algorithm for the multiclass classifi-
cation task. Normalization ensures a uniform shape of image
during image processing to resize and sharpen the image.
The preprocessed images are modulated by BPSK, QPSK,
16-QAM, and 64-QAM signals and are then passed through
AWGN, Rayleigh, and Rician fading channels to add the
effect of the channel. The modulated images are distorted
and attenuated by channel effects. The images are then
divided into training, validation, and testing sets, and then,
training and validation sets are passed through the data aug-
mentation techniques. Data augmentation is a powerful
method to prevent overfitting and generates additional train-
ing and validation data from the smaller existing datasets.
Thereafter, the data augmentation process is used to produce
new images for the training of COVID-19 patients and nor-
mal people lung X-ray images. Practical data augmentation
techniques, including translation, rotation, reflection, shear-
ing, flipping, and so on, are the easiest way of generating
new data. We have used random rotation, translation, scal-
ing, reflection, and shear. Finally, augmented data are fed to
different 2D-CNN architectures for multiclass (24 classes)
classification of modulated images.

3.1.1. Data Augmentation Techniques. Big datasets are
extremely expensive and are vital to the deep learning
model’s performance, whereas small datasets overfit during
the training process. Pre-trained models are vulnerable to
new invisible data and thus may not help in the generaliza-
tion of the validation set. Data augmentation is used in deep
learning models to solve the overfitting problem due to lim-
ited data. Data augmentation is a good approach for building
better datasets. In general, overfitting does not pose a prob-
lem with significant data access. A massive amount of data
is required in the training of a deep learning model. It is a dif-
ficult task to collect so much amount of data so data augmen-
tation is employed, and the data already present is
transformed. It increases the dataset size and adds variability
to the dataset. A further enhancement is still required to gen-
eralize the efficiency of deep learning models. By using data
augmentation, generalization performance can be enhanced.
These augmentations usually take the form of geometric or
colour augmentations for input images in image processing,
which have proven extremely successful in reducing CNN
overfitting.

In this work, experiments have been performed to study
multiclass (24-classes) classification problems (1) without
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data augmentation, (2) with data augmentation, (3)
absence of BN in the CNN-based classification architec-
tures, and (4) to understand disharmony between BN
and DO techniques in which we used a small value of
DO before softmax and after every convolution and fully
connected layer.

We deployed 5-fold and 10-fold CV [52] approaches to
select the optimal set of hyperparameters such as filter size,
strides, and DO probabilities. We used grayscale images of
size 297 × 167 × 1. The intensity values of images that were
inputted into the classifiers were in the range 0-255, and sam-
ple modulated images are shown in Figure 2.

3.2. Methods

3.2.1. 2D Convolutional Neural Networks. The 2D-CNN
architectures for this experiment are shown in Figure 4. In
the architecture shown in Figure 4, we used zero center nor-
malization to center the data around the origin. Seven convo-
lutional layers have been used to extract features using a filter
of size 3 × 3 and stride 1 × 1 where the number of feature
maps varied from 8 to 96. Each convolutional layer has been
followed either by a BN layer or not and an Exponential Lin-
ear Unit (ELU) nonlinearity activation function with an α
value of 1. BN is used for reducing the mean and variance
problems and has been employed before ELU nonlinear acti-
vation to speed up the training process and to conform to the
commonly used practices [52]. Disharmony between DO and
BN are contradictory neuronal variances behaviours during
the transitioning process of the networks. The deduction of
“differential changes” observed in contemporary network
bottleneck blocks and finding a sufficient explanation for this
confusion between DO and BN has been discussed in the lit-
erature [22]. After every nonlinear activation layer, the max
pooling layer has been adopted to reduce the number of fea-
ture maps. Three dense layers with global averaging with
ELU activation function are applied to connect the informa-
tion extracted by the fully convolutional layers. The dense
layer before the softmax classification layer has 24 neurons
that are aimed at solving the 24-classes classification
problem.
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Figure 1: Sample of COVID-19 patient’s lungs X-ray and normal people lungs X-ray images.

Table 1: COVID-19 and normal lungs X-ray images dataset
statistical approach using 10-fold CV.

Categories
Training

set
Validation

set
Testing
set

Total

Number of images 10368 1152 480 12000

Percentage (%) 86.4 9.6 4 100

Number of COVID-
19

Lungs X-ray images 5184 576 240 6000

Number of normal

Lungs X-ray images 5184 576 240 6000
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Three different architectures have been adopted during
training. The first one is without BN with employed max
pooling after every two convolutional layers, which is given
on the top of Figure 4. The second one is to study the data
augmentation effect for higher precision during training is
shown in the middle of Figure 4. Finally, to study the effect
of disharmony (between BN with DO techniques) for best
training accuracy is given at the bottom of Figure 4.

The first architecture without BN has an input of size
297 × 167 × 1 and employed a zero-center normalization
procedure. After this input layer, there is a block employing
a 2D convolutional layer with filter size 3 × 3 and stride 1
followed by an ELU activation layer with an alpha value of
1 followed by a 2D convolutional layer with filter size 3 × 3
and stride 1 followed by an ELU activation layer with an
alpha value of 1 followed by a 2D max pooling layer with fil-
ter size 2 × 2 and stride 2. This block is repeated 3 times such
that the number of feature maps in the convolutional layers
are 8, 16, 32, 48, 64, and 80, respectively. After that there is
a convolutional layer with filter size 3 × 3, a number of fea-
ture maps equal 96, with stride size 1 followed by an ELU
activation layer with an alpha value of 1 followed by a 2D
max pooling layer with filter size 2 × 2 and stride 2 followed
by a DO layer with ratio 40% followed by 3 dense layers with
the number of neurons equal to 100, 50, and 24, respectively,
followed by a global average pooling layer with an ELU acti-
vation function, followed by a softmax probability layer and a
classification layer.

The second architecture with and without data augmen-
tation has an input of size 297 × 167 × 1 and employed
zero-center normalization procedure. After this input layer,
there is a block employing a 2D convolutional layer with filter
size 3 × 3 and stride 1 followed by a BN layer followed by an
ELU activation layer with an alpha value of 1 followed by a
2D max pooling layer with filter size 2 × 2 and stride 2. This
block is repeated 7 times such that the number of feature
maps in the convolutional layers are 8, 16, 32, 48, 64, 80,
and 96, respectively. Finally, there is a DO layer with a prob-
ability of 50%, followed by three dense layers with 100, 50,
and 24 neurons each, followed by a global average pooling
layer with an ELU activation function, followed by a softmax
layer and a classification layer.

The third architecture that is designed to study the dis-
harmony between BN and DO techniques has an input layer
with size 297 × 167 × 1 and employed a zero-center normali-

zation procedure. After this layer, there is a block employing
a 2D convolutional layer with filter size 3 × 3 and stride 1
followed by a BN layer followed by an ELU activation layer
with an alpha size of 1 followed by a 2D max pooling layer
with filter size 2 × 2 and stride 2 followed by a DO layer with
a ratio of 10%. This block is repeated 7 times such that the
number of feature maps in the convolutional layers are 8, 16,
32, 48, 64, 80, and 96, respectively. After that, there are 3 dense
or fully connected layers with a number of neurons equal to
100, 50, and 24, respectively, followed by a global average
pooling layer with an ELU activation function, followed by a
softmax probability layer and a classification layer. After every
dense layer, there is a DO layer with a ratio of 10%.

3.2.2. Effect of Batch Normalization. Note that we used a sim-
plified architecture in comparison to the previous architec-
tures to speed up the training process as the removal of BN
layers slows down the network training by a significant mar-
gin. This architecture took the most amount of time to run.
The architecture without BN can slow the training cycle as
shown at top of Figure 4, and also, the model consistency is
disrupted by means and variance issues. It reduces the sum
by the covariance of the hidden unit values. BN allows each
network layer, separate from other layers, to learn by itself.
It adds a little noise to activations in the hidden layers. It is
important to use less DO if BN is used, because a lot of data
is lost with a higher DO ratio. Nonetheless, even BN is not
the last hope, it is better to use it with DO. BN norms the out-
put of previous activation layers by subtracting the batch
mean and dividing by the batch standard deviation, thus
enhancing neural network stability. But the weights in the
next layer are no longer suitable after changing activation
outputs with other arbitrarily initialized parameters. Adam
optimizer reverses this normalization because it is a way to
reduce the loss function. BN adds two trainable parameters
to each layer, then multiplying the standard output by the
parameter “standard deviation” (gamma) and adding the
parameter “means” (beta). BN allows Adam to denormalize
by adjusting these beta and gamma weights for each activa-
tion instead of sacrificing all the network weights. But still,
the CNNs are unstable due to the inconsistency of variance
shifts.

3.2.3. Effect of Disharmony between Batch Normalization and
Dropout Techniques. Overfitting and long training time are
two significant issues in multi-layered neural network train-
ing, especially in deep learning. Two well-known approaches
to addressing these issues are DO and BN. DO works because
the mechanism produces many implicit sets of weight shar-
ing. The concept is that one randomly removes neurons for
each training set. Indeed, one has a first neural net subset that
runs inferences and updates its weights. To accomplish the
classification, you have more neural networks, which work
as ensembles. BN works by normalizing the inputs dynami-
cally per minibatch. A study shows that the effect is much
quicker to learn without a loss of generalization when remov-
ing DO while using BN. One of the benefits of DO is that it
can reduce mutual information quadratically, and the corre-
lation between any neuron pair about the DO layer

Table 2: COVID-19 and normal lungs X-ray images dataset
statistical approach using 5-fold CV.

Categories
Training

set
Validation

set
Testing
set

Total

Number of images 9216 2304 480 12000

Percentage (%) 76.48 19.2 4 100

Number of COVID-19
lungs X-ray images

4608 1152 240 6000

Number of normal
lungs X-ray images

4608 1152 240 6000
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parameter can be reduced linearly. Although these two
methods share universal principles of design, multiple
research findings have shown that they have distinct
strengths to improve deep learning. Many tools simplify both
approaches as a simple call function, enabling flexible stack-
ing to build deep learning architectures. Although its usage
use directives are available, there are unfortunately no
defined guidelines or detailed studies on network configura-
tion, data input, accuracy, and learning efficiency to investi-
gate them. It is unclear when users should consider using
both DO and BN, and how they can be combined (or used
as an alternative) to obtain optimized deep learning perfor-
mance. In CNNs, BN and DO should be used with precau-
tion and experimentation.

The phenomenon of variance shift causes the dishar-
mony between BN and DO techniques. DO's behaviour is
different between the training and the testing stages, which
shift the input statistics that are learned in BN. DO will
change the variance of a specific neural unit as we switch
the network position from train to test. BN will, therefore,
preserve the statistical variation accumulated throughout
the test phase during the learning procedure. The inconsis-
tency of such variance (“variance shift”) results in numeri-
cally unstable behaviour in the inference that ultimately

leads to more incorrect predictions when DO is applied
before the BN.

BN technique is a way to achieve deterministic informa-
tion flow where each neuron participates in a process to
achieve zero mean and unit variance. Let values of variable
x over a minibatch be represented with m instances
(B = fxð1Þ⋯ðmÞg). Mathematically, we can express the nor-
malize part as

μ =
1
m
〠
m

i=1
x ið Þ, σ2 =

1
m
〠
m

i=1
x ið Þ − μ
� �2

, x∧ ið Þ =
x ið Þ − μffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + ϵ

p , ð11Þ

where μ and σ2 appears in the backpropagation. Normal-
ization of activations based on the minibatch enables efficient
training but is neither required nor desired during inference.
As a result, BN accumulates moving averages of neural
means and variances throughout learning to track a model
accuracy as it trains which can be expressed as

Emoving xð Þ⟵ EB μð Þ, VarMoving xð Þ⟵ ÉB σ2
� �

: ð12Þ

Here, EBðμÞ represents the expectation based on multiple
training minibatches, and ÉBðσ2Þ signifies the expectation

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and
AWGN channel

noise added

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and
rayleigh channel

noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and
rayleigh channel

noise added

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and

rician channel
noise added

Sample image of
QPSK modulated

normal people
lung X-RAY and
AWGN channel

noise added

Sample image of
QPSK modulated

normal people
lung X-RAY and
rayleigh channel

noise added

Sample image of
QPSK modulated

normal people
lung X-RAY and

rician channel
noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and

rician channel
noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and
AWGN channel

noise added

Sample image of
64-QAM

modulated
normal people

lung X-RAY and
rayleigh channel

noise added

Sample image of
64-QAM

modulated
normal people

lung X-RAY and
rician channel
noise added

Sample image of
64-QAM

modulated
normal people

lung X-RAY and
AWGN channel

noise added

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and
AWGN channel

noise added

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and
rayleigh channel

noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and
rayleigh channel

noise added

Sample image of
BPSK modulated
covid-19 patient
lung X-RAY and

rician channel
noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and

rician channel
noise added

Sample image of
16-QAM

modulated
covid-19 patient
lung X-RAY and
AWGN channel

noise added

Figure 2: Random sample modulated images of COVID-19 patient’s lungs X-ray and normal people lungs X-ray used in the experiments.
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based on the unbiased variance estimate over multiple train-
ing minibatches. They are all obtained by moving averages
implementations and are fixed during inference for linear
transform which can be expressed mathematically as

x̂ =
x − Emoving xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarMoving xð Þ + ϵ

p : ð13Þ

We will now present theoretical analysis for the case
shown in Figure 5, where there is a single convolutional layer
sandwiched between a BN and a DO.

Here, X is obtained by ∑d
i=1wiaið1/pÞxi during training,

where w denotes the corresponding weights for x taking into
consideration the fact that DO has been applied. To ease the
analysis, we assume that weights ofw remain constant so that
the gradients approach to zero. We can expand VarTrainðXÞ
as follows:

VarTrain Xð Þ = Cov 〠
d

i=1
wiai

1
p
xi, 〠

d

i=1
wiai

1
p
xi

 !

=
1
p

c2 + v
� �

− c2
� �

〠
d

i=1
w2

i + ρax 〠
d

i=1
〠
d

j≠i
wiwj

 !
,

ð14Þ

where ρax = Covðaixi, ajxjÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðaixiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðajxjÞ

q
∈ ½−

1, 1�.

Similarly, VarTestðXÞ can be written as follows:

VarTest Xð Þ = Cov 〠
d

i=1
wixi, 〠

d

i=1
wixi

 !
= v 〠

d

i=1
w2

i + ρx 〠
d

i=1
〠
d

j≠i
wiwj

 !
,

ð15Þ

where ρx = Covðxi, xjÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxjÞ

q
∈ ½−1, 1�.

Finally, variance shift can be expressed as

Δ p, dð Þ = VarTest Xð Þ
VarTrain Xð Þ ð16Þ

Ideally, we would like Δðp, dÞ⟶ 1 which can be
achieved by eliminating DO or by growing the width of the
channel.

4. Experimental Results

As given in Tables 1 and 2, we deployed 5-fold and 10-fold
CV approaches to study the Automatic Modulation Classifi-
cation (AMC) problem. We performed experiments to study
disharmony between BN and DO techniques in the presence
of data augmentation methods, without BN, without data
augmentation, and with different data augmentation
schemes. We performed a total of 66 experiments. 60 exper-
iments were done as part of 5- and 10-fold CV approaches to
select the optimum set of hyperparameters, while 6 experi-
ments were done on the testing dataset. Note that we did
not perform any experiments on the testing dataset while
tuning hyperparameters done on the experiments without
BN. We augment only the training dataset and validation
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Figure 3: Workflow of the proposed approach for multiclass (24-classes) modulated images classification.
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datasets in the experiments while the testing dataset is never
augmented. The experiments were done in order to show the
effectiveness of the proposed methods. We note that deploy-
ing 10-fold CV leads to a model that has better performance
as compared to its 5-fold counterpart. We performed a suffi-
cient number of experiments to ensure that our results are
representative of real-time scenarios at par with other studies
reported in the literature.

The computational work was carried out with MATLAB
2019b (9.7) on the Window Server with only a single NVI-
DIA GPU Titan RTX. Datasets were divided into training,
validation, and testing structures, and we used different 2D-
CNN architecture parameters. As given in Tables 1 and 2,
the distribution of data is 86.4% for training, 9.6% for valida-
tion, and 4% for testing for 10-fold CV, while the distribution
of data is 76.8% for training, 19.2% for validation, and 4% for

Pooling

Conv-1
Conv-2 Conv-3Conv-4 Conv-5 Conv-6 Conv-7

PoolingPooling
PoolingPooling

Conv-1 BN Conv-2 BN Conv-6 BN BN
Conv-7

PoolingPoolingPooling

Conv-1 BN BNConv-2 Conv-6 BN BN
Conv-7

PoolingPoolingPoolingPooling

Zero center
norm

DO = 0.4

DO = 0.5

DO = 0.1

Global average
pooling with
linear ELU

Output

𝛼 = 1

𝛼 = 1

𝛼 = 1

Figure 4: Three different architectures used for analyzing the effect of data augmentation, BN and disharmony between BN and DO
techniques.

x Dropout Convolution x Batch
normalization ••••••

Figure 5: A representation of disharmony between BN and DO techniques.
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testing for the 5-fold CV. The techniques of with/without
data augmentation, absence of BN, and disharmony between
BN and DO are adopted during training. While CV methods
for 5-fold and 10-fold are used to get high accuracy in the
modulated data collection of limited samples. Each model
has a different performance and the 2D-CNN model using
disharmony between BN and DO techniques has the highest
efficiency shown in Table 3. The training and validation
accuracy of different models are shown in Figures 6 and 7,
respectively.

We used data augmentation to increase the diversity of
data for training the models. The parameters used for data
augmentation are random rotation with a range of -5 to +5,
horizontal and vertical translations from -3 to +3 pixels, ran-
dom reflections in the top-bottom and left-right directions
with a probability of 50%, as well as horizontal and vertical
shear in the range -5 to +5. We used a minibatch size of 10
and a piecewise learning rate schedule in which we multiply
the last learning rate with 0.1 after every 5 epochs. We trained
the model for 200 epochs and shuffled the training dataset
after every epoch, and the initial learning rate of 0.01 was
chosen to train the model with the Adam optimization algo-
rithm [53].

Confusion matrices evaluation results for the architec-
tures presented earlier in the methodology section are shown
in Table 4. The confusion matrices are obtained by testing the
best model in all of the considered scenarios on the testing
set. The confusion matrix evaluation results for the CNN
architectures trained without BN using both 5- and 10-fold
CV approaches are not presented as they are severely over-
fitted to just one class. The error rate for the test split is given
in equation (17).

Error Rate = FP + FN
TP + FP + TN + FN

, ð17Þ

where false positive (FP) is incorrect positive prediction,
false negative (FN) is incorrect negative prediction true pos-
itive (TP) is the correct positive prediction, and true negative
(TN) is correct negative prediction.

Sensitivity is also known as recall (REC) or true positive
rate (TPR) rate and is given in equation (18).

Sensitivity =
TP

TP + FN
, ð18Þ

where true positive (TP) is the correct positive prediction
and FN is the false negative.

Specificity, which is the ratio of TN values to TN+FP is
given in equation (19).

Specificity =
TN

TN + FP
, ð19Þ

where FP is false positive and true negative (TN) is cor-
rect negative prediction.

Precision, ratio of TP, and TP+FP are shown in equation
(20).

Precision =
TP

TP + FP
: ð20Þ

Cohen’s kappa is a calculation of how well the test is con-
ducted in comparison to how well it should have been done
at all. In other words, a model would have high kappa scores
if the model has a significant difference between its accuracy
and error rate.

Cohen’s kappa =
P0 − Pe
1 − Pe

, ð21Þ

where P0 is the overall model accuracy and Pe is the mea-
sure of the agreement between the predictions of the model
and the values of the actual class.

F-Score is typically useful than accuracy, mainly when
the class distribution is inconsistent. Accuracy works better
if the FN and the FP of the model have the same costs. If
the costs of FP and FN are significantly different, both preci-
sion and recall need to be considered. The formula of F-Score
is given in equation (22).

F − SCORE =
2 ∗ Sensitivity ∗ Precisionð Þ

Sensitivity + Precision
: ð22Þ

Furthermore, we considered the following seven metrics
for the evaluation and comparison of the performance of
architectures for all classes of signal classification: Relative
Classifier Information (RCI), Strength of Agreement Mat-
thews’ benchmark (SOA-Matthews) for all categories, Mat-
thews’ correlation coefficient (MCC), class-wise Index of
Balanced Accuracy (IBA), class-wise Geometric Mean
(GM), class-wise Confusion Entropy (CEN), and F2 Score.

GM is defined as the square root of the product of true
positive rate (TPR) and true negative rate (TNR). It focuses
only on the recall of each class. Algorithms that completely
misidentify one class will receive a GM assessment value of
zero. Alone, it may not be a sufficient metric for model
assessment.

RCI is an information-theoretic approach designed
expressly to summarize how distinctly classes have been sep-
arated. This measure has a range between zero and one where
large values indicate better classification. The performance of
different classifiers on the same domain can be measured by
comparing RCI values. RCI is essential for ranking unifor-
mity of predictions while ignoring if the classes have been
predicted correctly or not. A hazardous quality of RCI is that
both perfect misclassification and perfect classification return
the same value.

MCC is a correlation coefficient between the observed
and predicted binary classifications; it returns a value
between -1 and +1. A factor of +1 represents a perfect predic-
tion, 0 represents no better than a random forecast, and -1
indicates total disagreement between prediction and observa-
tion. Though MCC has been established as one of the best
binary classification task measures, its performance in
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multiclass settings is far less studied. One of the strengths of
MCC is that it can correctly identify random assignments of
data with more consistency than the other measures. Hence,
it can be best reserved for understanding if a classifier is ran-
domly assigning class labels.

SOA-Matthews is a way of calculating the Pearson
product-moment correlation coefficient. It has the same
interpretation as MCC.

CEN is an information-theoretic approach that discrimi-
nates among confusion matrices. It may fail to recognize ran-
domness in a classifier’s information and may be used in
cases where discrimination between the confusion matrix is
essential. Small values of CEN represent less information loss
and better classification performance.

IBA is a method that combines an unbiased index of its
overall accuracy and a measure of how dominant the class with
the highest individual accuracy rate is. Like GM, it focuses only
on the recall of each class. A significant shortcoming of IBA is
that it will neglect how well the classifier is performing the pre-

dictions. A loss in themeasure’s discriminatory power is a direct
result of this oversight and manifests itself when trying to com-
pare two models with similar per class performance. IBA may
tend to uplift models that predict well across all categories while
ignoring those that cannot.

The CNN models trained without BN severely overfitted
to just one class, and hence, their results are omitted.

The RCI metric for the 2D-CNN model trained using 5-
fold CV and 10-fold CV without data augmentation is 82.3%
and 75.5%, while the 2D-CNN model trained using 5-fold
CV and 10-fold CV with data augmentation is 85.4% and
76.6%, respectively. 2D-CNN using disharmony between
BN and DO techniques trained using 5-fold CV with data
augmentation with a small value of DO before softmax and
after every convolution and fully connected layer along with
BN is 86.2% and trained using 10-fold CV with the same
parameters are 90.2% which is given in Table 5.

Based on the RCI metric alone, the best performing
models from the highest to lowest order are the 2D-CNN

Table 3: The training, testing, and validation accuracy using different 2D-CNN models.

Models 5-FCV 10-FCV Aug BN Disharmony Training accuracy (%) Testing accuracy (%) Validation accuracy (%)

2D-CNN ✓ ✓ 80.91 79.54 77.03

2D-CNN ✓ ✓ 84.22 81.12 82.17

2D-CNN ✓ ✓ ✓ 88.89 85.83 85.26

2D-CNN ✓ ✓ ✓ 90.05 88.41 88.60

2D-CNN ✓ ✓ ✓ ✓ 91.0 89.03 89.78

2D-CNN ✓ ✓ ✓ ✓ 96.59 92.31 93.13
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Figure 6: Comparison of the training accuracy of 6 different parameters models.
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model trained with disharmony between BN and DO tech-
niques with 10-fold CV and data augmentation, 2D-CNN
model trained with disharmony between BN and DO tech-
niques with 5-fold CV with data augmentation, 2D-CNN
using 5-fold CV with data augmentation, 2D-CNN using 5-
fold CV without data augmentation, 2D-CNN using 10-fold
CV with data augmentation, and 2D-CNN using 10-fold
CV without data augmentation.

Based on combined metrics such as SOA-Matthews,
MCC, IBA, GM, CEN, F2 Score, F1 Score, F0.5 Score, Error
Rate, Specificity, Sensitivity, Precision, and Cohen’s kappa
for multiclass modulated signal classification, the best per-
forming model is the 2D-CNN model trained with dishar-
mony between BN and DO techniques, while the least
performing model is the 2D-CNN trained using 5-fold CV
without data augmentation.
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Figure 7: Comparison of the validation accuracy of 6 different parameters models.

Table 4: The error rate, specificity, sensitivity and precision, Cohen’s kappa, F0.5 Score, and F1 Score using different 2D-CNN models.

Models Error rate (%) Specificity (%) Sensitivity (%) Precision (%) Cohen’s kappa (%) F0.5 Score (%) F1 Score (%)

2D-CNN+5FCV 40.918 99.11 79.53 80.43 78.651 80.05 79.69

2D-CNN+10FCV 28.333 99.38 85.84 86.50 85.217 86.21 85.93

2D-CNN+5FCV+Aug 23.184 99.49 88.49 89.12 87.902 88. 86 88. 60

2D-CNN+ 10FCV+Aug 8.260 99.17 81.14 82.13 80.30 81.66 81.23

2D-CNN+5FCV+DH 2.282 99.51 88.86 89.53 88.358 89. 25 88.97

2D-CNN+10FCV+DH 1.539 99.66 92.32 93.02 91.973 92.03 92.44

Table 5: The Relative Classifier Information (RCI), Strength of Agreement Matthews’ benchmark (SOA-Matthews), Matthews correlation
coefficient (MCC), Index of Balanced Accuracy (IBA), Geometric Mean (GM), Confusion Entropy (CEN), and F2 Score using different
2D-CNN models.

Models RCI (%) SOA-Matthews (%) MCC (%) IBA (Avg) (%) GM (%) CEN (%) F2 Score (%)

2D-CNN+5FCV 82.3 Strong 85.23 74.05 92.31 13.68 79.54

2D-CNN+10FCV 75.2 Strong 78.67 63.6 92.44 19.44 85.82

2D-CNN+5FCV+Aug 85.4 Strong 87.92 78.55 93.80 11.24 88.48

2D-CNN+10FCV+Aug 76.6 Strong 80.33 66.48 89.62 18.25 81.09

2D-CNN+5FCV+DH 86.2 Strong 88.37 79.15 94.01 10.66 88.85

2D-CNN+10FCV+DH 90.2 Very strong 91.99 85.35 95.90 7.4 92.27
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5. Discussion

From the results, it is pertinent that the comparison based on
a single performance metric is error prone. Therefore, we dis-
cuss the effects that we obtained based on all parameters
combined. The best performing model is the 2D-CNNmodel
trained with disharmony between BN and DO techniques
using 10-fold CV with data augmentation. 10-fold CV is gen-
erally considered to be more representative of the real-world
scenarios due to its large training set (fewer validation set
samples) as compared to its 5-fold counterpart. Augmenta-
tion helped in this case because, as the number of examples
increases, the generalization ability of the model improves.
The second best model, which studies the disharmony
between BN and DO techniques trained using 5-fold CV with
augmentation, is more representative of the real-world sce-
narios performs slightly worse due to more validation data.
Next comes, the 2D-CNN model trained using 10-fold CV
with augmentation along with BN. This model is performing
better than the CNN model trained using 5-fold CV with
augmentation along with BN layer, which can be explained
by its larger training set size. The performance of CNN
models trained using 10-fold CV without augmentation is
lower due to their inability to model real-world statistics ade-
quately due to their smaller validation set sizes and also lack
of augmentation. We can see that the model with augmenta-
tion is performing better than its non-augmentation counter-
parts. The model using disharmony between BN and DO
techniques trained with 10-fold CV performed better than
the model using disharmony between BN and DO techniques
trained with 5-fold CV or other 2D-CNN models without
disharmony between BN and DO techniques. We can also
see that if we will not keep the DO rate smaller, then the dis-
harmony between BN and DO deteriorates the performance
of the models and results in the loss of generalization abili-
ties. Hence, it would be a better idea to cater to this effect.
The models without BN are not able to generalize at all,
which highlights the importance of the fair use of BN in
training the deep learning models for the multiclass digital
modulated signals classification.

The work presented has important contributions in the
real settings. First, the deployment of higher-order data
dimension such as 2D allows for better exploitation of infor-
mation present in the data. Secondly, the use of medical
image datasets such as COVID-19 instead of normal images
is more beneficial in practice to the people. Thirdly, the use of
deep learning architectures such as CNNs allows for a more
powerful representation of the data for classification tasks.
Most of the time, data affected by noise or fading effects is
hard to classify. The proposed methods deploy deep learning
architectures thus exploiting the structure of data effectively
leading towards robustness and cost-effectiveness while also
being time efficient.

6. Conclusion

In this article, we presented the problem of the detection of
digital modulated images in the presence of channel noise
using CNNs. The best performing model is the 2D-CNN

model using disharmony between BN and DO techniques
trained using 10-fold CV with augmentation. This study
can be further enhanced in a number of ways. 3D-CNN
architectures can be deployed instead of 2D with variations
in the types of augmentation methods deployed in the net-
work. In addition, more digital modulation schemes and
channel types can be considered to build a robust AMC sys-
tem to cater for the real world environments.
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