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Abstract 
Modern real-time embedded systems have increasingly penetrated our daily life and are also often constrained in 
terms of temperature and energy. In this paper, a thesis is defended that from real-time systems perspective, 
thermallyconstrained dynamic power management approaches behave very similar to idealised dynamic voltage 
and frequency scaling. Hence, existing dynamic voltage and frequency scaling solutions proposed for 
periodic/sporadic task models can be applied to thermally constrained dynamic power management systems with 
moderate effort. A detailed discussion is presented that shows the similarities along with the distinctive elements 
between two approaches. Within the case study, the porting of a dynamic voltage and frequency scaling algorithm 
of the literature to thermally constrained dynamic power management system is demonstrated. The proof of 
concept and effectiveness of the proposed approach is shown with the help of extensive simulations performed by 
varying system-specific parameters across different dimensions. 
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Abstract—Modern real-time embedded systems have increas-
ingly penetrated our daily life and are also often constrained
in terms of temperature and energy. In this paper, a thesis
is defended that from real-time systems perspective, thermally
constrained dynamic power management approaches behave
very similar to idealised dynamic voltage and frequency scaling.
Hence, existing dynamic voltage and frequency scaling solutions
proposed for periodic/sporadic task models can be applied to
thermally constrained dynamic power management systems with
moderate effort. A detailed discussion is presented that shows
the similarities along with the distinctive elements between two
approaches. Within the case study, the porting of a dynamic volt-
age and frequency scaling algorithm of the literature to thermally
constrained dynamic power management system is demonstrated.
The proof of concept and effectiveness of the proposed approach
is shown with the help of extensive simulations performed by
varying system-specific parameters across different dimensions.

I. INTRODUCTION

The increase in power density of modern processors de-
mands efficient thermal management solutions to keep the tem-
perature within given limits to avoid physical damage and also
to increase the reliability of the chip. Thermal management
can be done at design time through sophisticated packaging
and heat dissipation techniques, and at run time through
dynamic thermal management (DTM). However, packaging
and active heat dissipation solutions are very expensive [1]. It
has been predicted that the packaging solutions will become
more challenging in the near future due to an increase in peak
power and the high power density in emerging system-in-
packages. This trend motivates to explore DTM techniques
for a wide variety of systems.

Energy consumption is another important concern in the
design process with the objective to prolong the battery life
of embedded systems. The increased energy demand, due
to further integration can lead to an increase in the size of
embedded system which is not desirable in many cases such
as mobile phones. Furthermore, a longer lasting battery is a
market differentiator. Energy efficiency has the objective to re-
duce the cumulative power dissipation, while DTM techniques
aim to keep the peak temperatures of the processor below the
critical limit. A large amount of work exists dealing with both
issues in a non real-time setting summarised by Kong et al. [2].
However, the problem is acerbated with additional timing
constraints of real-time (RT) systems, which are required to
be met on top of functional aspects for the overall system to
be considered correct.

The commonly used DTM approaches in RT systems to
handle the thermal constraint along with energy and temporal
restrictions are speed scheduling and thermally constrained
dynamic power management (TCDPM). Speed Scheduling:
The frequency of the processor is reduced to decrease the tem-
perature and the dynamic power consumption of the system.
TCDPM: The processor executes the workload at full speed
and switches off when the peak temperature is reached to cool
down the system. In the context of this research effort only
TCDPM approach is considered.

The state-of-the-art has mostly focused on the objective to
reduce the peak temperature of the system under performance
constraints [3], [4], [5], [6], [7]. For instance, Chaturvedi et
al. [6] developed a leakage-aware scheduling algorithm called
m-oscillating for frame-based (same period tasks) periodic
hard RT systems to minimise the peak temperature. Given
2-speed schedule, their m-oscillating algorithm divides the
high-speed level and low-speed interval into m sections, and
run these sections alternatively. The maximum temperature
decreases with an increase in m. Similarly, the temporal
aspects (schedulablity) of the hard RT systems are explored
by Quan et al. [8].

Another area of RT research in this domain is the energy
minimisation under thermal constraint. For example, Huang
and Quan [9] extended the m-oscillating algorithm [6] to
reduce the energy consumption of the frame-based RT system.
They derived the energy function in the form of m and
obtained its optimal value with an exhaustive search under
the given temperature constraint.

Recently, it has been shown that leakage power consumption
is temperature dependent and increases rapidly with a rise
in temperature [10]. Yuan et al. [11] proposed the online
temperature-aware leakage minimisation technique TALK for
frame-based RT systems. The basic idea is to execute workload
when the processor is cool and postpone it at high temperature.
A pattern based approach [12] reduces the energy consumption
of the frame-based RT systems with a temperature depen-
dent leakage-power consumption. This approach divides the
given frame (Time Horizon) into several equally-sized time-
segments. The execution of the task is performed in the
beginning of each time-segment and followed by a cooling
phase using a low power sleep state. The required execution
of the system and the idle time is equally divided among the
time-segments. They developed a procedure to determine the
optimal pattern that minimise the energy consumption.



The state-of-the-art though addresses the various aspects of
RT systems under thermal constraints but makes some of the
following assumptions: i) frame based (same period tasks)
RT system, ii) leakage power consumption is independent
of temperature, iii) ignore energy consumption. This paper
presents the detailed study on the equivalence of idealised
DVFS with TCDPM and shows conventional idealised DVFS
algorithms can be applied with minimal modifications to
TCDPM to reduce the energy consumption of the system. A
realistic power model is considered with temperature depen-
dent leakage current. The equivalence shown in this work,
relaxes the restriction of identical period tasks (frame-based
systems) and allows generic workload model such as sporadic
tasks model without any additional complexity in the analysis.

The rest of the paper is organised as follows: Section II
describes the system model that includes workload model,
power model and thermal model. Section III and Section IV
present the preliminaries needed for the discussion on the
equivalence of DVFS and TCDPM given in Section V. The
case study shown in Section VI ports the existing DVFS
algorithms to TCDPM. The implementation concerns are
discussed in Section VII. The evaluation of the given approach
is performed in Section VIII. The concluding remarks along
with the future directions are presented in Section IX.

II. SYSTEM MODEL

This section presents the workload/task-set model and the
characteristics of the underlying hardware. The power and the
thermal model used in this paper are adopted from the work
of Yang et al. [12].

A. Workload Model

This work assumes a hard RT system, where a system
cannot afford to miss any deadline. The workload consists
of a task-set ⌧ of ` independent sporadic tasks i.e. ⌧

def
=

{⌧
1

, ⌧
2

, · · · , ⌧`}. A task ⌧i is characterised by a 3-tuple
hCi, Di, Pii, where Ci is the worst-case execution time
(WCET), Di is the relative deadline and Pi is the minimum
inter-arrival time of the tasks. This work can be extended for
Di < Pi, however, for the ease of presentation it is assumed
Di = Pi. The optimal uniprocessor Earliest-Deadline-First
(EDF) dynamic priority algorithm is used to schedule a task-
set ⌧ . A Task ⌧i has an individual utilisation of Ui

def
=

C
i

P
i

and

the overall system utilisation is defined as U
def
=

P`
i=1

Ui.
Each task ⌧i releases potentially an sequence of infinite jobs
ji,m. A job ji,m of a task ⌧i may execute for less than its Ci.
The actual execution time of ji,m is denoted as ci,m.

B. Power Model

The leakage-current is considered to be temperature depen-
dent. The average leakage current ¯I(T, Vdd) at temperature T
and Supply voltage Vdd is modelled by Laio et al. [10] as
given in Equation 1,

¯I(T, Vdd) =
¯I(T

0

, V
0

)

⇣
AT 2e(

↵V

dd

+�

T

)

+Be(�Vdd

+�)
⌘

(1)

where ↵,�, �, �, A and B are empirical constants. ¯I(T
0

, V
0

) is
a reference leakage current on temperature T

0

with a reference
supply voltage of V

0

. The unit of temperature is in Kelvin (K).
It is based on the curve fitting of the power consumption of
the different circuit types at different temperatures with SPICE
simulations. Yang et al. [12] found a good approximation of
such modelling in a quadratic form as shown in Equation 2,

¯I(T, Vdd) =

ˆAT 2

+

ˆB (2)

ˆA =

¯I(TH , Vdd)� ¯I(TL, Vdd)

T 2

H � T 2

L

(3)

ˆB =

¯I(TL, Vdd)� ˆAT 2

L (4)

where ˆA and ˆB are constants, while TH and TL define the op-
erating temperature range of the chip. They showed difference
of this approximation is negligible when compared to average
leakage current modelled by Laio et al. [10] (Equation 1).

The processor assumed in this work has two modes: active
and sleep state. The execution of tasks is performed in the
active mode and Pa denotes its power consumption. It has
two components: a) dynamic power consumption Pdyn and
b) static or leakage power consumption Plkg . The dynamic
power consumption of the processor is considered constant in
active mode, while the static power consumption is modelled
as Plkg = AT 2

+ B, where A and B are Ngate
ˆAVdd and

Ngate
ˆBVdd respectively. Ngate is a constant that depends on

the circuit characteristics (for more details refer to [12], [10]).
The system can transition to a sleep state for two different
purposes: 1) to cool down the processor and 2) to reduce
the energy consumption. Each sleep transition has energy and
delay cost associated to it. The transition time of going into
and out of sleep state is denoted as tstr and twtr respectively. The
extra energy consumed during a transition phase is denoted as
Esw. The processor has to complete its transition into and
out of a sleep state once initiated. When the processor is in
sleep state, it has a constant power consumption of Ps. The
processor assumed in this model runs at top speed in the active
mode and does not support DVFS.

C. Thermal Model

A widely adopted [11], [12] thermal RC model is used
to characterise the temperature behaviour of the proces-
sor and expressed as a differential equation (Equation 5),
where Cth, Rth, PW , T and Tamb are the thermal capacitance
(Joule/K), thermal resistance (K/Watts), processor’s power
consumption (Watts), processor’s temperature (K) and the
ambient temperature (K) respectively.

dT
dt

=
1

C
th

P
W

� 1
R

th

C
th

(T � T
amb

) = ↵̂P
W

� �̂(T � T
amb

) (5)

Yang et al. [12] solved the differential equation (Equation 5)
and derived temperature as a function of time for both active
(Equation 6) and sleep state (Equation 7) modes. The same
notations are used here for consistency.
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When the processor is in active mode for an interval of
(

ˆt, ˆt + t], Tact(ˆt, t) is the temperature at time instant ˆt + t
assuming ˆt is the time instant in the beginning of execu-
tion. Similarly, Tdor(ˇt, t) is a temperature at the end of the
interval (ˇt, ˇt + t] assuming system in the sleep state starting
from a time instant ˇt. Tact(ˆt, 0) and Tdor(ˇt, 0) are temper-
atures at time instance ˆt and ˇt respectively. The parameters
✓
1

=

b+
p
b2�4ac
2

, ✓
2

=

b�
p
b2�4ac
2

, k =

�
(

aT
act

(

ˆt,0)+✓
2

)

(

aT
act

(

ˆt,0)+✓
1

)

, ⌘ =

(Tamb+
↵̂
ˆ�
Ps), a = ↵̂A, b = �ˆ� and c = ↵̂(Pa+B)+ ˆ�Tamb.

Assume, Tcri defines the maximum allowed temperature for
the safe operation of the chip. The Equation 6 and Equation 7
can be rewritten in terms of temperature and their corre-
sponding equations are given in Equation 8 and Equation 9
respectively. With Equation 8 and Equation 9, one can compute
the time units system takes to move from one temperature to
another both in active and sleep modes respectively.
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1
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The energy consumption in sleep state for an interval of
[t
1

, t
2

] is Es = Ps(t2 � t
1

). The active energy consumption
Ea is computed by integrating Pa [12] as given in Equation 10.
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III. AVAILABLE UTILISATION

The execution of a workload on a processor increases
its temperature. When its temperature reaches the thermal
threshold, a cooling phase is triggered. The decision should
be made about the duration of the cool down phase. Before
making such decision, discussion of two conflicting scenarios
is required as given below.

1) The exponential nature of the thermal model allows the
system to perform more execution at high temperatures
as the temperature rise in the active phase is slower
and the fall in the cooling phase is faster. The leakage
current also increases at high temperature and results
in additional energy consumption. Moreover, performing
execution at high temperatures also increase the number
of sleep transitions to decrease its temperature, which
is not desirable due to an overhead associated to each
sleep transition.

2) Conversely, when the processor cools down to low
temperatures, its temperature rises faster in the active

phase and falls slower in the cooling phase. The leak-
age current is also relatively less at low temperatures.
Nevertheless, a relatively long cooling phase is required
to attain the low temperature. A long cooling phase de-
creases the system’s energy by reduced sleep transitions.

Hence, a trade-off between performance and the energy con-
sumption exists between two different aforementioned cases.
In RT systems, the worst-case requirements of the system
are known a-priori. Initially the available utilisation of the
system is defined as a function of time while later extended
to a function of temperature. The available utilisation of the
system is the maximum amount of execution per unit time that
system can ensure respecting the thermal constraint. Assume,
Tmax is the upper threshold temperature after which scheduler
switch on the cooling phase. The value of T

max

 Tcri. The
scheduler allows the system to execute unless its temperature
reaches T

max

. Similarly, the cooling phase is switched off
when the temperature reaches to a lower threshold temperature
To < T

max

. The available utilisation Uavail of the processor
with such repetitive cycles is given in Equation 11, where ta
is the time system takes in active state to reach from To to
T
max

and tc is the time it takes to cool down to To from T
max

.

Uavail =
ta

ta + tc
(11)

The execution is performed during ta time interval, while tc
is the idle time. Using the empirical data given in the work of
Yang et al. [12], Figure 1 plots the temperature profile of the
processor versus time. The cooling phase and the execution
phase are exponential functions and the rate of change in
temperature is higher in the beginning of their respective
phases. This illustrates the fact that one can execute more
by setting T

max

and To at high temperatures. The available
utilisation of the system for different lengths of execution
times in active phase (ta) are presented in Figure 2. The value
of T

max

is fixed to 400K. Given the system requirements in
terms of Uavail, one can vary the values of ta and tc, to reduce
energy consumption while respecting the thermal constraint.

Assume, a system transition into a sleep state in the cooling
phase. Equation 8 and Equation 9 can be used to replace the
corresponding values of ta and tc respectively to define Uavail

as a function of temperature given in Equation 12. The value
of Tdor(ˇt, 0) = Tact(ˆt, t) and replaced with T

max

. Similarly,
Tdor(ˇt, t) = Tact(ˆt, 0) and these symbols are replaced with To.
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ˆ� ln(
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) ln(
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IV. ENERGY CONSUMPTION OF RT SYSTEMS UNDER
THERMAL CONSTRAINT

The energy consumption of the system with leakage-aware
TCDPM can be minimised through two different factors.

1) Initiating the sleep state for longer intervals to reduce
the total cost of sleep transitions and to maximise the
idle period in low power state.
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2) Running the system at low operating temperatures to
avoid the higher leakage power dissipation at high
temperatures.

In the first case, duration of the sleep intervals is increased,
the system gets more time to cool down. This effect decreases
the available utilisation of the system as the temperature rises
at faster rate at low temperatures in active mode and on
contrary, the rate of cooling is slower at low temperatures.
In the second case, running a system at high temperature
increases the leakage power consumption. However, if the
operating temperature range, i.e. both T

max

and To, is shifted
to low temperatures, the available utilisation of the system also
decreases because of the same aforementioned reason. Hence,
in both cases the decrease in available utilisation is due to a
reduction in the duty cycle.

An optimal solution should consider both factors mentioned
above to minimise the overall energy consumption of the
system. Nevertheless, intuition is clear that the energy con-
sumption of the system in TCDPM is reduced by running the
system at the lowest possible available utilisation (decreasing
the duty cycle). One can propose different techniques to find
the optimal set of T

max

and To considering both factors
for different values of Uavail. However, the objective of this
research effort is not to find such values, rather to show that
idealised DVFS algorithms are equivalent to TCDPM in a
sense that both have the same objective to run the system
at low available utilisation Uavail whenever it is possible. As
a first approximation it is assumed that the value Uavail is
computed by fixing T

max

to Tcri and varying To. Figure 3
shows the energy consumption per unit time (power) of the
system using such approximation for different values of To

(T
max

= 400K). It is evident that the energy consumption
of the system increases when increasing the value of To. The
same fact is also varied by plotting the energy consumption
per unit time against the available utilisation in Figure 4. It is
evident from Figure 4 that energy consumption increases by
running the system at high available utilisation and high utili-
sation can only be achieved by operating at high temperatures.
Given T

max

and To, the values of tc and ta can be determined
by using Equation 8 and Equation 9.

V. EQUIVALENCE OF IDEALISED DVFS AND TCDPM
The available utilisation Uavail given in Equation 11 pro-

vides the execution per unit time for long time intervals
(i.e. �t � tc), which is virtually equivalent to the normalised
speed of the processor. The reduction in the amount of work

per unit time (i.e. available utilisation or virtual speed of
the processor) also decreases the energy consumption of the
system. This occurs as the amount of work per unit time is
decreased by reducing the duty cycle in TCDPM which can
be achieved either by allowing the system to stay longer in
the sleep state or by decreasing the operating temperature
range (i.e. T

max

and T
0

) of the system. This virtual reduction
of speed also means prolonging the execution time of the
tasks as the temperature rise is exponential and execution
per unit of time does not scale linearly with a decrease in
temperature. The traditional idealised DVFS theory is also
based on a convex function of the power consumption. The
decrease in speed/frequency of the processor though saves
energy but also prolongs the execution time of the given
workload by running the processor slower. In real DVFS, the
execution time does not scale linearly with the processor speed
1

f (for example, memory access time does not scale with the
processor frequency)[13]. However, the above assumption is
often made in the literature. Under TCDPM, the execution
of the workload is performed at full speed and it behaves
almost at 50% speed when given a 50% duty cycle (available
utilisation). Similarly, in idealised DVFS, it is assumed the
execution scales by a factor of 1

f . If the frequency is 50%, the
execution time scales by a factor of 2 which is equivalent to
50% duty cycle in TCDPM at full speed. Moreover, another
reason for similarity is that idealised DVFS has a continuously
spectrum of available frequencies and similarly, TCDPM can
represent the duty cycle in any ratio. If frequencies are
normalised in idealised DVFS, there is a correlation between
idealised DVFS frequencies and normalised speed (duty cycle)
in TCDPM. In both cases the objective is to reduce the amount
of work per unit time to reduce the overall energy consumption
of the system.

A. Schedulability Concerns

The similarities between these two problems allow us to
apply any existing DVFS algorithms on TCDPM to reduce the
energy consumption of the system with some minor modifica-
tions in the schedulability analysis and/or speed modifications
in TCDPM.

In DVFS, the amount of work per unit time is reduced
by decreasing the physical frequency of the processor. The
processor runs the instruction at slow but constant rate. The
schedulability of the sporadic task model in DVFS is preserved
if f

t

f
m

� U , where ft is the processor’s frequency at any time
t and fm is its maximum frequency. On the other side, the
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suspension of the execution in the cooling phase of TCDPM
may cause some of the tasks to miss their deadlines under
EDF. Lets consider one task in isolation to show how it can
miss its deadline and then propose a method to avoid it. Later
in this section, this analysis is extended for multiple sporadic
tasks.

1) Single Task Case: Figure 5 represents TCDPM process-
ing in an execution vs time graph commonly known as service
curve. The continuous line step function represents the ideal-
case, where the task starts its execution in the beginning of the
active phase. The straight line beneath it shows the gradient of
execution i.e. Uavail. Assume, a worst-case scenario, i.e. the
task arrives in the beginning of the cooling phase and suffers
an initial delay of tc, it may miss its deadline (see dotted
step function in Figure 5). This delay reduces the effective
amount of work that a system should deliver per unit time
to meet all deadlines in the system. Assume t

1

is the initial
time instant and t

2

is any time instant such that t
2

> t
1

&& t
2

> tc. The amount of work done in ideal-case in the
interval �t = t

2

� t
1

will be equal to �tUavail = Cx. While,
in worst-case with an initial delay of tc it will be equal to
Uavail�t � Uavailtc = Cy . By substituting the value of Cx

and rearranging, Cx � Cy = Uavailtc. This is the maximum
delay that a task can have in its Ti.

To preserve the system schedulability, the effect of this
additional delay of tc should be accounted in the requested
utilisation. The effect of this error is quantified by computing
the requested utilisation Ureq as given Equation 13. The
value of tc is computed by considering the ideal-case (no
blocking in the beginning of execution phase). The scaling
of Uavail � Ureq ensures that the extra amount of work
done per unit time will be greater than or equal to t

c

P
i

. The
schedulability of the single task is ensured if its period satisfy
the condition given in Equation 14. Both Equation 13 and
Equation 14 are sufficient conditions. Equation 14 computes
the number of active phases required to execute the task and
adds the corresponding cooling phase, and ensures it is greater
than the period/deadline of the task to preserve schedulability.

Ureq =

Ci

Pi
+

tc
Pi

(13)

Pi >

�
Ci

ta

⌫
(ta + tc) + (Ci%ta) + tc (14)

2) Multiple Tasks Case: This analysis is extended to mul-
tiple sporadic tasks to ensure their schedulability. First of all,
a slight modification is made in Ureq as given in Equation 15.
Instead of t

c

P
i

, t
c

min(P
i

)

is used and now for each period of the
highest priority task the amount of extra work will be equal
to Uavailtc. Similar to a single task case, the value of tc is
obtained by considering the ideal-case and the original value of
Uavail is raised to Ureq to ensure the system schedulability of
all tasks. Moreover, all the tasks should satisfy the condition
given in Equation 16 to check that they are getting enough
active phases in their period to compete their execution to
ensure the schedulability. The quantisation error that occurs
in TCDPM due to cooling and active phases is bounded to

t
c

min(P
i

)

. This is a pessimistic but safe bound. Similar to single
task, Equation 15 and Equation 16 are sufficient conditions.

Ureq =

X

8⌧
i

Ci

Pi
+

tc
min(Pi)

(15)

8⌧i, Pi >

�
Ci

ta

⌫
(ta + tc) + (Ci%ta) + tc (16)

Now consider the other effects (that may affect the schedu-
lability of tasks) such as if a task is executing with a worst-case
scenario and other tasks are released during its execution. The
arriving task may have higher or lower priority when compared
to the currently executing task. If there is an arrival of a
lower priority task(s) the normal execution of the system is not
interrupted at all as it has to wait for the currently running task
to complete its execution. Now consider the effect of the higher
priority task ⌧i. The schedulability of the higher priority task
⌧i is ensured by Equation 16. The phasing of ⌧i with respect
to the phasing of the cooling is of no concern as the overall
execution requirement is only increased by Ci. Similarly, it
can be shown that by adding extra tasks, the schedulability of
the system remains unaffected.

VI. CASE STUDY

This section shows that TCDPM problem can be solved
with existing DVFS algorithms. For demonstration purpose,
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two DVFS algorithms for RT systems from the work of Pillai
and Shin [14] are considered in this case study. It is assumed
all the frequency set-points of the processor are normalised
with the maximum frequency of the processor.

A. Static Allocation of Frequency
In the first algorithm of Pillai and Shin [14], it is assumed

that all the tasks execute for their worst-case and they find
statically the operating frequency of the processor. The oper-
ating frequency fo of the processor is set to U ⇥ f

max

. The
execution time of all the tasks are scaled by a factor of 1

f
o

.
Similarly, Uavail in TCDPM corresponds to U in DVFS. The
value of Ureq is computed to eliminate the error caused due to
the quantisation effect and set the value of Uavail � Ureq . The
selected value of Uavail in turn is used to estimate ta and tc.
Afterwards, periods of all the tasks are checked for condition
given in Equation 16

B. Using Generated Slack to further reduce the Frequency
In RT systems, tasks are budgeted for the worst-case sce-

nario but normally, they execute less than their worst-case
estimation. The difference of WCET and the actual execution
time is collated and terms as execution slack. Pillai and Shin
[14] explored execution slack to further reduce the operating
frequency. On the early completion of any task the unused
execution time is reclaimed and the utilisation of the system
is recomputed by considering the actual execution time of the
current task. The operating frequency is set accordingly with
this newly computed system utilisation. The individual utili-
sation of the task considering its actual execution is used until
its next arrival. On any task arrival, the system utilisation is
computed again by replacing the previous individual utilisation
of the currently arrived task with C

i

P
i

. The operating frequency
is changed accordingly. This algorithm does the frequency
adjustment on the task arrival and on its completion.

Similar to Pillai and Shin’s approach [14] , TCDPM should
also make decisions about changing Uavail at the arrival and
the completion of all tasks. For the temporal correctness,
Uavail should be greater than or equal to Ureq (i.e. Uavail �
Ureq). Ureq is composed of two components. The first com-
ponent computes the current utilisation of the system, while

second factor considers the effect of blocking. A change in
current utilisation of the system will vary the cooling phase,
which in turn will effect the blocking time (i.e. second factor
in Ureq). To eliminate this issue, it is assumed that tmax

c is a
maximum achievable cooling time in the system. This value
can be estimated by setting T

max

and To to their feasible
extremes (i.e. T

max

= Tcri and To = Tamb). In theory the
value of tmax

c can reach to infinity if To is set equal to Tamb.
Therefore, for practical purposes To can be set to a value
Tamb + tth, where tth is a small offset to keep tmax

c in a
reasonable limit. If min(Pi) � tmax

c , then second component
in Ureq equation can be replaced with tmax

c

min(P
i

)

. Any task in a
system cannot suffer from a blocking greater than tmax

c . The
first component of Ureq equation (that estimates the current
required utilisation of the system) can be computed in a similar
way as computed in Pillai and Shin’s approach [14]. However,
there is just one exception, if a task arrives in the cooling
phase, then system needs to wait for the completion of the
current cooling phase to make decision about the new Uavail.

C. Reducing Pessimism

The blocking factor of tmax

c

min(P
i

)

in Ureq equation is a
pessimistic bound. The tasks rarely face such huge blocking.
Another less pessimistic approach is also presented to compute
Ureq . Assume, the previous cooling phase has a length of toldc .
On every task completion or new task arrival in the active
phase, the individual utilisation Ui of the task is updated and
the total system utilisation is recomputed. Considering this
new value of total system utilisation, the potential length of
the next cooling phase is estimated and denoted as tnewc . The
value of Ureq is set to

P`
i=1

Ui +
tnew

c

min(P
i

)

. However, if there
is a new task ⌧i arrival in the cooling phase of the system,
its processing is postponed by the end of this cooling phase.
At the end of the cooling phase, the total system utilisation
is computed by considering ⌧i’s worst-case execution and the
value of tnewc is determined. If tnewc is shorter than the current
cooling phase time, than ⌧i has suffered an extra delay. To
compensate for this extra delay, its individual utilisation Ui

is set to C
i

+max(t�r
i,m

�tnew

c

,0)
P

i

, where ri,m is the absolute
release time of ⌧i and t is the current time instant at the end



of cooling phase. With this new value of Ui and tnewc , the value
of Ureq is computed as Ureq =

P`
i=1

Ui +
tnew

c

min(P
i

)

. Uavail is
then set to any feasible value greater than or equal to Ureq

and the corresponding values of tc and ta are computed.
One more concern that system needs to deal with is the idle

mode. If a system has no workload to execute, it transition into
a sleep mode. It is equivalent to the early start of a cooling
phase. However, the sleep state is terminated on the arrival
of a new task. The delay caused due to this sleep transition
can be included in the individual utilisation of the arrived task
and that is Ui =

C
i

+tw
tr

+ts
tr

P
i

. Such additional overhead can be
ignored, if the system has an idle mode with zero transition
delay to and from active mode. Similar to the examples given
in this case study, any other DVFS algorithm can be similarly
ported and applied in TCDPM setting.

VII. IMPLEMENTATION CONCERNS

A. Computation of Uavail, To and T
max

In order to reduce the online complexity of the system,
an offline table for Uavail is computed that contains the
corresponding values of T

max

, To, ta and tc. Given the values
of T

max

and To, the values of tc and ta can be easily computed
for the required table. The values of T

max

and To against
Uavail can be computed through various techniques such as
exhaustive exploration, dynamic programming, approximation
algorithm in which a value of T

max

is fixed and To is varied
to get different values of Uavail. The values of this table
are platform dependent only and are estimated once for the
given platform. This table reduces the online complexity of
the system to O(log

2

(n)) to obtain T
max

, To, ta and tc against
Uavail, where n is the number of Uavail entries in the table.
The length of this table defines the resolution of Uavail. In case
of non-linear relation of Uavail and the energy consumption,
the efficient distribution is to get high resolution of Uavail

where the rate of change of energy consumption is high.

B. Transition Overheads of the Sleep State

Equation 11 assumes the sleep state has no overhead.
However, in reality each sleep transition has a time and energy
overhead. The energy overhead comes from the fact that it
has to store the current status of the system (e.g. cache write-
backs). These overheads may have an impact on the system
temperature, which in turn also effect the available utilisation
of the system. Lets consider two different cases given below.

1) Transition Phase Decreases the Temperature: Consider a
case where the the temperature of the system decreases during
the transition into a sleep state as shown in Figure 6-i. The
active state of the system is unaffected. The cooling phase
may be affected as the complete circuitry is not off during the
transition phase and the cooling time may be different from
the cooling behaviour in the sleep state. Therefore, the cooling
phase is divided into three intervals as shown in Figure 6-i.
The curves given in Figure 6 are arbitrary and their main
purpose is to illustrate the differences. In the start of the
cooling phase system transition into a sleep state for tstr time
units and temperature at the end of this transition is T ⇤

ws. The

Parameters Values
Task-set sizes |⌧ | {5, 10, 15, . . . , 50}
Minimum inter-arrival time P

i

for RT tasks
[30ms, 50ms]

Sporadic delay limit � 2 {0, 0.05, 0.1, . . . , 1}
Best-case execution time limit
Cb

{0.2, 0.25.0.3, . . . , 1}

System Utilisation U {0.35, 0.40, 0.45, 0.5, . . . , 0.7}
Energy Overhead E

sw

(mJoules) {10}
↵̂(K/Joules) {26, 27, 28, . . . , 35, 35.62}
Dynamic Power P

dyn

(Watts) {0.5, 1, 1.5, . . . , 5, . . . , 9}

TABLE I
OVERVIEW OF SIMULATOR PARAMETERS

sleep state lasts for tc time units between T ⇤
ws and T ⇤

sw. The
value of T ⇤

sw is set such that a system takes twtr time units to
approach To in a transition out phase. The available utilisation
in this case can be represented as given in Equation 17.

Uavail =
ta

ta + tc + tstr + twtr
(17)

2) Transition Phase Increases the Temperature: In a case,
when the temperature of the system increases during a transi-
tion into a sleep state, the execution phase is stopped such that
it does not cross T

max

(Figure 6-ii). The transition into a sleep
state is divided into two parts. 1) Let ts1tr be the time system
takes to do the processing related to the transition of the sleep
state (e.g. cache write-backs, IRQ to serve sleep request). 2)
ts2tr is the transition time needed to initiate the sleep state after
the processing phase and T ⇤

ws is the temperature after ts2tr time
units. Assume T ⇤

a is the system temperature such that if the
sleep state is initiated it finishes its sleep related processing
before the temperature reaches to T

max

. In this case, Uavail

of the system is shown in Equation 18.

Uavail =
ta + ts1tr

ta + ts1tr + ts2tr + tc + twtr
(18)

VIII. EVALUATION

The behaviour of the algorithms presented in the case
study (Section VI) is discussed in this section across different
dimensions. The results of idealised DVFS setting of the
chosen algorithms presented in the work of Pillai and Shin
[14] are compared with the same algorithms ported in TCDPM
setting. This comparison shows that the trend of energy saving
is consistent demonstrating the equivalence of the idealised
DVFS and TCDPM. Note: The result section does not show
the direct energy saving comparison of idealised DVFS and
TCDPM rather demonstrates the fact that idealised DVFS can
be applied in TCDPM setting to save energy. The amount of
energy saved in both cases is obviously different and depends
on different hardware parameters. The experimental setup used
is explained below.

A. Experimental Setup

The discrete event simulator SPARTS (Simulator for Power
Aware and Real-Time Systems) [15] has been extended to
implement the algorithms discussed in the case study. It is
an open source simulator of a real-time device. The variety of
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Fig. 9. Effect of Variation in Task-Set Size

applications are considered by varying task-sets size from a
large number of fine grained small tasks (50) to a small number
of coarse grained tasks (5). SPARTS implements Rate-Based
Earliest Deadline first (RBED) framework [16], which pro-
vides temporal isolation via enforced budgets. The temporal
isolation of the RBED framework allows for mixed-criticality
workloads (hard, soft and best-effort type applications). In the
context of this research, only hard real-time type applications
are considered. The actual individual utilisation per task is
generated such that it achieves the target system utilisation.
Selecting the utilisation Ui and minimum inter-arrival time Pi

for each task according to the limits in Table I, the WCET of
each task is computed to be Ci = Ui ⇥ Pi.

A two level approach is used for generating a wide variety of
different tasks and subsequently varying jobs. In the first level,
all tasks are annotated with a limit on the sporadic delay � in
the interval [0,�⇥Pi] and on best-case execution time (BCET)
Cb

i in the interval [Cb ⇥Ci, Ci]. � models the delay after the
minimum-inter arrival time, while, Cb gives a limit over the
BCET of a task. These two limits are determined for each
task. The second level generates different jobs of the same
task with varying behaviour dependent on the system state
and input parameters. Such varying behaviour is modelled by
assigning each ji,m an actual sporadic delay in [0,�i] interval
and an actual execution time in [Cb

i , Ci] interval. Similar to the
analysis, the implicit deadlines Di = Pi are assumed in the
evaluation as well. A uniform distribution is used to generate
all the random numbers needed for the given experiment setup.
Each task-set is simulated for 100 seconds and each particular
configuration is averaged over 100 runs with a seed value of
1 to 100. For more details, see original work of SPART [15].

Various hardware platforms are available in the market
with diverse characteristics. The values of ˆ�, Ps, tstr = twtr,
A, B, Esw, Tamb and T

max

are adopted from [12] and are
fixed to 9.52/ sec, 50µ Watt, 5 msec, 0.0002188 Watt/K2,
8.5143 Watt, 10 mJoules, 300 K and 373 K respectively.
Other parameters such as Pdyn, ↵̂ are considered as a variable
in different set of experiments to vary the hardware platform
behaviour. SPARTS simulator is used with the configurations
summarised in Table I. The default values are underlined.

B. Results

In this section, all the results presented below are normalised
to the highest value in the corresponding graph. The default
value of the parameter is considered if not mentioned in the

description of the experiment. The static frequency alloca-
tion algorithm (Section VI-A), dynamic frequency allocation
algorithm (Section VI-B) and dynamic frequency allocation
algorithm with reduced pessimism (Section VI-C) are labelled
as SFA, DFA and DFA-LP respectively. As the results
section frequently refers to the simulations results of Pillai
and Shin [14], therefore, it is important to mention that SFA
and DFA in an idealised DVFS setting are termed as static
EDF(staticEDF ) and cycle-conservative EDF (ccEDF ) re-
spectively. It has been observed that the difference of overall
energy consumption between DFA and DFA-LP is negli-
gible with few exceptions. Therefore, only the comparison of
SFA and DFA is presented, while DFA-LP is mentioned
only when it makes difference compared to DFA.

Initially, the effect of change in the system utilisation is
studied for three different approaches. Figure 7 presents the
results for a task-set size of 10 with � = 0 and Cb

= 0.2. The
increase in system utilisation obviously increases the energy
consumption of the system. This trend is consistent with the
results of Pillai and Shin [14], where, the energy consumption
of staticEDF and ccEDF also increases with the system
utilisation. The interesting fact evident from Figure 7 is
the difference of energy consumption of SFA and DFA.
SFA only exploits the spare capacity available in the system
schedule called static slack that occurs as the system is loaded
less than what can be guaranteed by the schedulability tests
and computes Uavail considering WCET time of the tasks.
On the other hand, DFA makes use of the static slack in
the offline phase, and utilises the execution slack (Ci � ci,m)
when recomputing Uavail online on early completion of all
tasks. The execution slack helps to further reduce the energy
consumption by decreasing the demand on Uavail. The same
reason explains the difference of energy consumption at a
utilisation of U = 1. DFA consumes approximately 9% less
energy when compared to SFA. Furthermore, SFA and DFA
behave identical if it is assumed that all the task execute for
their WCET. The same is true for staticEDF and ccEDF .

The effect of variation in the execution slack available in
the schedule is analysed in Figure 8 with � = 0, U = 0.5
and task-set size of 10. The value of Cb is varied from 0.2
to 1. The increase in the value of Cb means a decrease in the
execution slack. At Cb

= 1, the amount of execution slack
becomes zero as all tasks execute for their WCET. Therefore,
at such utilisation (U = 1) both algorithms (SFA and DFA)
perform identical due to unavailability of any source of slack
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and the same observation holds for staticEDF and ccEDF .
In general, the energy consumption of the system increases
with a decrease in the amount of execution slack in schedule.
The similar trend is followed by the energy consumption of
staticEDF and ccEDF in the idealised DVFS that verifies
the equivalence. The DFA algorithm exploits execution slack
in the system by adapting Uavail to a low value according
to the system requirement. Nevertheless, SFA only makes
use of the execution slack by initiating early start of cooling
phase and keeping the system in a sleep mode till the arrival
of new task. However, it does not readjust Uavail to decrease
the energy consumption of the system. Likewise to DFA,
ccEDF can reduce the system frequency with execution slack
to save the energy. The energy consumption of staticEDF
is not affected with a variation in the execution slack as
Pillai and Shin [14] assumed in their experimental setup that
energy consumption of the system is zero in the idle phase
with negligible transition overhead. The earlier start of cooling
phase helps to save energy in SFA.

The effect of task-set size is analysed in Figure 9. The
DFA-LP algorithm is also included in this experiment for
comparison. The task-set size is varied from 5 to 50. This
experiments shows the difference of energy consumption does
not depends on the task-set size as the difference is negligible.
For instance, the maximum difference of energy consumption
exists between a task-set size of 35 and 45, and is equal to
⇡ 1%. The main factors are the system utilisation and the
amount of dynamic slack in the system. The staticEDF and
ccEDF also behave similar for different task-set sizes.

This work also analyses extra task-set property called spo-
radic delay, which is not investigated in the work of Pillai
and Shin [14] due to period task model. In the analysis, the
system is analysed with another worst-case assumption that
each job of a sporadic task will be released as soon as possible
i.e. released periodically with the minimum inter-arrival time
but it rarely occurs in HRT system. The extra spare time
generated due to sporadic delays is termed as Sporadic Slack.
Figure 10 demonstrate the behaviour of the system towards
sporadic slack in the system. The task-set size, Cb and U are
fixed to default values. � is varied from 0 to 1 with a step size
of 0.05. The increase in the value of � increases the sporadic
slack. Normally, it is impossible to determine sporadic slack
beforehand. Therefore, SFA and DFA make use of such
slack in the cooling phase by extending it till next task arrives.
The behaviour of all the algorithms is approximately linear

with the variation of �. The energy consumption of the system
reduces to 20% from � = 0 (no sporadic slack) to � = 1.
This experiment demonstrate that the proposed algorithms can
exploit this type of slack implicitly.

After analysing the task-level properties, the hardware plat-
form specific parameters (↵̂ and Pdyn) are considered. The
hardware platform specific parameters ↵̂ presented here is
not evaluated by Pillai and Shin [14] as it is specific to
the temperature model and not relevant in DVFS case. This
parameter is discussed to demonstrate the behaviour of the
TCDPM algorithms for different types of hardware platforms.

↵̂ is the inverse of thermal capacitance Cth and has a unit
of K/Joules. The higher value of ↵̂ heats up the hardware
platform quickly but cooling phase is independent of it.
Figure 11 shows the variation in the energy consumption with
different values of ↵̂. The values of Pdyn and Esw are fixed
to 5 Watts and 0.01 Joules respectively. As the system heats
up at a fast rate for a large value of ↵̂, therefore, the active
phase of the system shortens with an increase in the value
of ↵̂ . This decreases the leakage power consumption of the
system, as the system stays for a shorter period of time at high
temperatures. On contrary, a low of value of ↵̂ has long active
period and it takes longer to heat up the system. System though
executes more but consumes more leakage energy. Therefore,
Figure 11 shows that with an increase in the value of ↵̂ the
energy consumption of the system decreases. The difference
in energy consumption of SFA and DFA increases at high
values of ↵̂. This is motivated by the fact that when system
heats up quickly it is important to exploit the available slack
consciously. On one side, the system’s active phase is shorter
and hence, its leakage power consumption reduces. On the
other side, the decrease in active phase time means system
needs to operate at high Uavail values, i.e. short cooling phase.
Hence, the effect of execution slack becomes important to
extend the cooling phase by reducing the duty cycle i.e. Uavail.

The thermal behaviour of the system is modified by in-
creasing the dynamic power consumption of the system. Both
leakage and dynamic power consumption contribute to the
temperature increase. Varying the dynamic power consumption
of the system, not only changes the thermal behaviour but also
the varies the ratio of dynamic to leakage power consumption.
The dynamic power consumption of the system is varied from
0.5 Watts to 9 Watts. The leakage power consumption of the
system at ambient temperature is 11.178 Watts. Therefore,
the ratio of Pdyn to Plkg varies between 0.0447 to 0.8052.



The resulting energy consumption of the system is presented
in Figure 12. The increase of dynamic power increases the
energy consumption. There is ⇡ 35% rise in energy by varying
Pdyn from 0.5 Watts to 9 Watts. Furthermore, the difference
in energy consumption of SFA and DFA also increases with
an increase in dynamic power. The increase in dynamic power
increases the temperature of the system and it heats up at a
fast rate. Therefore, the active phase of the system decreases
that consequently decreases the length of cooling phase. The
leakage power consumption parameters are not altered, hence,
it varies proportionally and does not affect the behaviour.
The shortening of active and cooling phase enhances the
need for effective management of Uavail, which is obviously
better in DFA when compared to SFA. Therefore, DFA
performs better at high dynamic power consumption. A similar
parameter called idle level (ratio of energy consumption in idle
cycle to energy consumption in active cycle) is explored by
Pillai and Shin [14]. If the power consumption of the system
in idle mode is considered constant, then idle level essentially
means a variation in dynamic power. The increase in idle level
mean decrease in dynamic power and vice versa. Pillai and
Shin [14] showed that a decrease in the idle level increases
the energy consumption of staticEDF and ccEDF . This is
consistent with the results presented in Figure 12 that shows
that an increase in dynamic power (decrease in idle level)
increases the energy consumption of SFA and DFA.

Each sleep transition has an energy overhead associated to
it, which is modelled as Esw in the given system model.
The frequent sleep transitions are undesirable and increase
the energy consumption. The number of sleep transitions
of the previous experiments is shown in Figure 13. In this
experiment, the normalised sleep transitions of DFA-LP
are also included in the comparison as well. An increase in
dynamic power heats up the system quickly and decreases the
active phase, which in turn also increases the number of sleep
transitions. This effect is evident from Figure 13 that shows
an increase in the number of sleep transition with an rise in
dynamic power consumption. As mentioned previously, DFA
and also DFA-LP manage Uavail effectively and extend their
cooling phase, hence their number of sleep transition are fewer
when compared to SFA. Especially at high dynamic power
consumption, this difference reaches to ⇡ 22%. Furthermore,
the difference of DFA and DFA-LP is also visible in this
experiment at high value of dynamic power consumption that
shows the minor gains of the proposed optimisation.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In this research effort, it is demonstrated that idealised
DVFS and TCDPM are very similar in their nature and with
some minor modifications in the schedulability analysis and
online mechanisms, the work done for DVFS algorithms can
be applied to TCDPM to save energy. This strategy allows
to relax the assumptions commonly made in the literature
(such as frame based RT system, single task, neglecting energy
and temperature independent leakage power consumption) of
TCDPM and to apply it on generic RT task model under
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Fig. 13. Number of Sleep Transitions

dynamic priorities. This work has shown the proof of the
concept with the help of the case study on DVFS algorithms of
the literature. The performance of DVFS algorithms applied
to TCDPM is investigated for a broad range of workloads
and set of different hardware platforms. The results show
the effectiveness of the proposed algorithms. In future, it is
intended to look into the efficient ways to find the values of
To and T

max

against Uavail. It will be interesting to explore
the optimal method to achieve such values. This algorithm will
be extended to multicore platform implementing RT systems.
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