

Analyzing Fixed Task Priority Based Memory

Centric Scheduler for the 3-Phase Task Model

Conference Paper

CISTER-TR-220608

2022/08/23

Jatin Arora

Syed Aftab Rashid

Cláudio Maia

Eduardo Tovar

Conference Paper CISTER-TR-220608 Analyzing Fixed Task Priority Based Memory Centric ...

© 2022 CISTER Research Center
www.cister-labs.pt

1

Analyzing Fixed Task Priority Based Memory Centric Scheduler for the 3-Phase

Task Model

Jatin Arora, Syed Aftab Rashid, Cláudio Maia, Eduardo Tovar

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, syara@isep.ipp.pt, clrrm@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

The sharing of main memory among concurrently executing tasks on a multicore platform results in increasing the

execution times of those tasks in a non-deterministic manner. The use of phased execution models that divide the
execution of tasks into distinct memory and execution phase(s), e.g., the PRedictable Execution Model (PREM) and

the 3-Phase task model, along with Memory Centric Scheduling (MCS) present a promising solution to reduce
main memory interference among tasks.

Existing works in the state-of-the-art that focus on MCS have considered (i) a TDMA based memory scheduler, i.e.,
tasks' memory requests are served under a static TDMA schedule, and (ii) Processor-Priority (PP) based memory

scheduler, i.e., tasks' memory requests are served depending on the priority of the processor/core on which the
task is executing. This paper extends MCS by considering a Task-Priority (TP) based memory scheduler, i.e., tasks'

memory requests are served under a global priority order depending on the priority of the task that issues the
requests. We present an analysis to bound the total memory interference that can be suffered by the tasks under

the TP-based MCS. In contrast to most existing works on MCS that consider non-preemptive tasks, our analysis
considers limited preemptive scheduling. Additionally, we investigate the impact of different preemption points on
the memory interference of tasks. Experimental results show that our proposed TP-based MCS can significantly

reduce memory interference that can be suffered by the tasks in comparison to the PP-based MCS approach.

Analyzing Fixed Task Priority Based Memory

Centric Scheduler for the 3-Phase Task Model

Jatin Arora†*, Syed Aftab Rashid†‡, Cláudio Maia†, Eduardo Tovar†

†CISTER Research Centre, ISEP, Porto, Portugal ‡VORTEX CoLab, Porto, Portugal

Abstract—The sharing of main memory among concurrently
executing tasks on a multicore platform results in increasing the
execution times of those tasks in a non-deterministic manner. The
use of phased execution models that divide the execution of tasks
into distinct execution and memory phase(s), e.g., the PRedictable
Execution Model (PREM) and the 3-Phase task model, along with
Memory Centric Scheduling (MCS) present a promising solution
to reduce main memory interference among tasks.

Existing works in the state-of-the-art that focus on MCS have
considered (i) a TDMA-based memory scheduler, i.e., tasks’
memory requests are served under a static TDMA schedule,
and (ii) Processor-Priority (PP) based memory scheduler, i.e.,
tasks’ memory requests are served depending on the priority
of the processor/core on which the task is executing. This paper
extends MCS by considering a Task-Priority (TP) based memory
scheduler, i.e., tasks’ memory requests are served under a global
priority order depending on the priority of the task that issues
the requests. We present an analysis to bound the total memory
interference that can be suffered by the tasks under the TP-
based MCS. In contrast to the recent works on MCS that
considers non-preemptive tasks, our analysis considers limited
preemptive scheduling. Additionally, we investigate the impact
of different preemption points on the memory interference of
tasks. Experimental results show that our proposed TP-based
MCS can significantly reduce the memory interference that can
be suffered by the tasks in comparison to the PP-based MCS.

I. INTRODUCTION

In commercial-off-the-shelf (COTS) multicore processors,

different hardware resources are shared among the processing

cores such as last-level caches, interconnects/memory buses,

main memory, etc. Consequently, tasks executing on a given

core can suffer inter-core interference while trying to access

any of these shared resources. Several works in the litera-

ture [2], [3], [6], [10], [13], [14] have shown that the main

memory interference is one of the main sources of interference

in COTS multicore platforms that can significantly impact the

execution times of tasks. As a result, a plethora of works have

focused on solving the memory interference problem [2], [3],

[6], [10], [13]–[15], [18], [19].

It has been shown that the use of phased execution models,

e.g., the PRedictable Execution Model (PREM) [11], or its

generalization, the 3-phase task model [4], [9], with Memory

Centric Scheduling (MCS) [15], [18]–[20] provide an efficient

solution to the memory interference problem in particular.

Phased execution models, such as PREM or the 3-phase

task model divide the execution of tasks into execution and

memory phase(s) to ensure that tasks only access the main

*Corresponding author

memory during their memory phase(s), and computation is

only performed during the execution phase, without the need

of accessing the main memory. Then, at the system level, a

memory centric scheduler can be used to serialize the accesses

to the main memory to reduce inter-task memory interference.

Several implementations of MCS have been proposed in

the literature. Works like [10] generate a system-level offline

schedule of tasks such that no two tasks can access the

main memory at the same time, thereby eliminating memory

interference. However, enforcing such an offline schedule

may not be possible in scenarios where tasks are event/time

triggered. Other works have adopted time-division multiple-

access (TDMA) to implement MCS [18], [19]. However, due

to its non-work-conserving nature, a TDMA-based MCS can

overestimate the memory interference of tasks. In a recent

work, Schwäricke et al. [15] have presented an analysis that

implements MCS using Processor-Priority (PP)-based memory

scheduler. In PP-based MCS, memory requests (or phases)

of tasks are served depending on the priority of the proces-

sor/core on which the tasks are executing. A two-level priority

mechanism is used where at the core level, tasks are scheduled

using partitioned fixed-priority non-preemptive scheduling and

the memory arbiter employs a global fixed processor priority

based scheduling to schedule memory phases of tasks.

While the PP-based MCS approach can outperform the

TDMA-based MCS, it still has limitations. For example, under

the two-level priority mechanism used by the PP-based MCS,

a task Äi with the highest local priority on a core Ãl may still

suffer memory interference from other tasks that are executing

on processors/cores with higher global priorities than Ãl. This

can have a significant impact on the schedulability of Äi and

consequently on the schedulability of the system.

State-of-the-art [3], [12] has shown that fixed Task-Priority

(TP)-based memory arbitration schemes provide much tighter

bounds on the main memory interference for the generic task

model. This provides strong motivation to use a TP-based

MCS to schedule PREM/3-phase tasks. Thus, in this work, we

propose a Task-Priority (TP) based implementation of MCS,

i.e., tasks’ memory requests (or phases) are served under a

global priority order depending on the priority of the task that

issues the requests. This leads to a significant reduction in the

memory interference of tasks.

The main contributions of this work are the following:

1) We present an analysis to bound the total memory inter-

ference that can be suffered by the tasks under a TP-based

MCS approach. In contrast to most existing works on MCS

that consider non-preemptive tasks, our approach considers

limited preemptive scheduling at the core level;

2) Existing implementations of MCS that allow task preemp-

tions, e.g., [19], usually assume fully preemptive computation

phases of tasks. We investigate the impact of different preemp-

tion points on the memory interference suffered by tasks and

show that this assumption may not always lead to a tighter

bound on the memory interference of tasks; and

3) We compare the performance of our proposed TP-based

MCS approach to the PP-based MCS approach [15] under

different settings. Experimental results show that our proposed

approach can provide significantly tighter bounds on the mem-

ory interference of tasks, which can lead to an improvement

in the task set schedulability by up to 91 percentage points.

Paper Organization: The rest of the paper is organized as

follows: Section II describes the system and execution models.

Motivational example is presented in Section III. Section IV

discusses the proposed TP-based MCS analysis. The WCRT

analysis for the proposed TP-based MCS is presented in

Section V. The impact of different preemption point selection

on the memory interference of tasks is discussed in Section VI.

Experimental results are detailed in Section VII, followed by

related work in Section VIII and conclusion in Section IX.

II. SYSTEM MODEL

We assume a multicore system comprising m identical cores

(Ã1, Ã2, . . . , Ãm) that access the main memory (e.g. DRAM)

through a single memory arbiter that can handle only one

memory request at a time. As in [19], we also assume that

the local memory (i.e., cache/scratchpad) of each core can

be partitioned among all the tasks running on that core such

that each task has its own non-overlapping partition which is

sufficiently large to store all its code/data. If this is not possible

due to the limited size of the local memory, tasks can be

divided into multiple segments using existing framework [16]

so that the code/data required by any segment of a task can

be stored in its own partition.

A. Task Model

We consider a task set Γ comprising n sporadic tasks from

which a subset Γ′ is assigned to each core at the design

time according to any given task-to-core mapping strategy.

Each task Äi is characterized by Ci, that is the Worst-Case

Execution Time (WCET) of Äi measured in isolation, Ti, that

is the minimum inter-arrival time between any two consecutive

jobs of Äi, and Di, that is the relative deadline of Äi. We

assume Di f Ti. Tasks assigned to a core at design time

are not allowed to migrate during run-time. Task priorities are

assigned at design-time using a fixed-task priority algorithm

such as rate/deadline monotonic [8], ensuring that the index

of each task is unique, which provides a global priority order.

The global priority of each task translates into a local priority

order on each core which is used for scheduling purposes.

In this work, we consider a 3-phase task model which have

been studied by the academia and industry [2], [4], [9], [10],

[17]. In the 3-phase task model, the execution of a task is

divided into Acquisition (A), Execution (E), and Restitution

(R) phases. When a task is released, it first executes the

A-phase by fetching all its data/instructions from the main

memory to the core’s local memory. It then executes its

E-phase using the data/instructions already available in the

core’s local memory without requiring access to the main

memory. Finally, in the R-phase, the task writes-back the

modified data to the main memory and completes its execution.

This execution behavior categorizes the A- and R-phase into

memory phases, i.e., time intervals in which accesses to the

main memory are allowed/performed, and the E-phase into a

computation phase, i.e., no memory request can be issued in

this phase. The WCET of A, E and R-phases of task Äi is

given by CA
i , CE

i , and CR
i , respectively, which sums up to

the total WCET of task Äi, i.e., Ci = CA
i + CE

i + CR
i .

We assume fixed-priority limited preemptive scheduling

where a lower priority task can be preempted any time during

the execution of its E-phase by a higher priority task released

on the same core. This assumption is in line with existing

works, e.g., [19]. Memory phases are assumed to be non-

preemptive and only one phase can execute at a time on a given

core. Each task releases potentially infinite number of jobs

where each job instance is denoted by k. The response time

of the kth job of task Äi is denoted by Ri,k. The Worst-Case

Response Time (WCRT) of task Äi, i.e., the largest response

time of any job of Äi, is denoted by Rmax
i .

For notational convenience, we use: hpi,l, hepi,l and lpi,l to

denote the set of tasks assigned to the same core Ãl as Äi with

priorities higher, higher or equal, and lower than that of Äi,
respectively. The core on which the task under analysis, i.e., Äi,
executes is termed as the local core. Similarly, hpi,r and lpi,r
denotes the set of tasks assigned to a core Ãr (i.e., Ãr ̸= Ãl)

with priorities higher and lower than that of Äi, respectively.

All cores in the platform other than the local core are termed

as the remote cores.

B. Task Priority (TP) based Memory Centric Scheduler

We assume that a Task Priority (TP) based memory centric

scheduler is used to control tasks’ accesses to the main

memory. Under the TP-based memory centric scheduler, tasks’

memory requests/phases are served in a global priority order.

Each core maintains a memory buffer which stores at most

one memory phase that is ready to execute. The state of this

memory buffer can be updated by the core as per the tasks

released on that core. The core’s memory buffer can be empty

if there is no active task or the core is executing an E-phase.

If the memory buffer of at least one core is non-empty, the

TP-based memory scheduler schedules a memory phase of a

task that has the highest global priority among all ready tasks.

Once a memory phase starts executing, the TP-based memory

scheduler does not schedule any other memory phase to ensure

the non-preemptive execution of the memory phase. Once the

ongoing memory phase completes its execution, the TP-based

memory scheduler checks the memory buffers of all the cores

and schedules the memory phase of a task that has the highest

global priority among all ready tasks.

(a) PP-based MCS [15]

(b) TP-based MCS

Fig. 1: Inter-Core Memory Interference

III. MOTIVATIONAL EXAMPLE

The first implementation of Memory Centric Scheduling

(MCS) [19] considers TDMA-based static slots to schedule

the memory accesses of tasks. The TDMA-based MCS allows

the memory phases to preempt the execution phases at the

core level to efficiently utilize the available TDMA slots. This

can potentially improve the response time of tasks. However,

the TDMA-based MCS is built on top of conventional TDMA

which is a non-work-conserving arbitration policy and thus

may overestimate memory interference of tasks. Schwäricke

et al. [15] improved the TDMA-based MCS by considering

Processor Priority (PP)-based memory scheduling. Their work

considers a two-level scheduling approach: 1) fixed-priority

non-preemptive scheduling to schedule tasks at the core level;

2) fixed processor priority to schedule the memory requests

(phases) at the system level. Due to the two-level scheduling

used by the PP-based MCS, tasks with higher local priorities

that execute on lower global priority cores can suffer high

memory interference, i.e., from all tasks that execute on all

higher priority cores. This can potentially result in deadline

misses. See Figure 1a, for an example scenario that shows 6

tasks are scheduled on 3 cores such that two tasks execute

on each core. Task priorities are assigned at the core level

using deadline monotonic, i.e., shorter the deadline, higher the

priority, and each core has a unique global priority to access

the main memory. We can see in Figure 1a, that task Ä1 that

executes on core 1 is the highest priority task on that core.

However, since core 1 has the lowest global priority among

all the cores, Ä1 on core 1 can suffer memory interference from

all tasks executing on other higher priority cores (disregard of

their local priorities). Consequently, this memory interference

may lead to a deadline miss for task Ä1 on core 1.

It has been proven in the literature [3], [12] that fixed task

priority-based memory scheduling can perform significantly

better than fixed processor priority or TDMA-based scheduling

for the generic task model (see Figure 5 of [3]). This provides

a strong motivation to implement memory centric scheduler

using a Task Priority (TP) based scheduling approach. In TP-

based MCS, task priorities are assigned in a global priority

order to schedule the main memory accesses. This global

priority order translates into a local priority at the core, which

is used to schedule the tasks at the core level. Consequently, by

doing so, TP-based MCS can improve the response time of all

higher priority tasks, e.g., tasks with shorter deadlines/periods,

at the system level. To illustrate, consider the same example

scenario shown in Figure 1a applied to the TP-based MCS. The

resulting schedule of tasks is shown in Figure 1b. Since the

TP-based MCS assigns a global priority order to tasks, the task

Ä1 executing on core 1 in Figure 1a, will be assigned a global

priority of 2 according to the TP-based MCS. Effectively, task

Ä1 executing on core 1 in Figure 1a is labeled as task Ä2 in

Figure 1b. Consequently, we can see in Figure 1b that due to

the global priority ordering used by TP-based MCS, task Ä2
will only suffer memory interference from one higher priority

task, i.e., task Ä1 on core 2. This confirms that, under TP-

based MCS, task Ä2 will suffer significantly lower memory

interference in comparison to the PP-based MCS.

IV. ANALYZING FIXED TASK PRIORITY BASED MEMORY

CENTRIC SCHEDULER

When combining phased task models, e.g., PREM or the 3-

phase task model, with a memory centric scheduler, the goal is

to eliminate/minimize main memory interference suffered by

the tasks. However, depending on the scheduling algorithm and

the behavior of the memory scheduler, tasks may still be sub-

jected to different types of execution delays. Under TP-based

MCS, each task in the system is assigned a global priority

using a fixed-priority scheduling scheme, e.g., Rate/Deadline

monotonic. Effectively, any task Äi executing on a core Ãl will

be served in a global priority order depending on its priority.

Formally, under TP-based MCS, task Äi can suffer four types

of delays due to the tasks running on the local core and on

remote cores, namely,

1) Intra-core Interference: The maximum interference

that can be suffered by task Äi due to all higher priority

tasks released on the local core Ãl.

2) Intra-core Blocking: The maximum blocking that can

be suffered by task Äi due to lower priority tasks that

execute on the local core Ãl.

3) Inter-core Memory Interference: The maximum mem-

ory interference that can be suffered by task Äi due to all

higher priority tasks executing on all the remote cores.

4) Inter-core Memory Blocking1: The maximum memory

blocking that can be suffered by task Äi due to all lower

priority tasks executing on all the remote cores.

In fixed-priority limited preemptive scheduling, the WCRT of

task Äi is observed during the longest level-i busy window [1].

Definition IV.1. [Level-i busy window (from [7])] A level-i

busy window is a time interval (a, b) in which the pending

workload of tasks with priorities higher or equal to that of

1Note that PP-based MCS [15] use global memory preemptions to avoid
inter-core memory blocking. However, global memory preemptions in TP-
based MCS can lead to unbounded priority inversion (see Figure 3 of [15]).

task Äi is positive for all t ∈ (a, b) and 0 at the boundaries a
and b.

Let Wi,l denote the length of the longest level-i busy window

for a task Äi executing on the local core Ãl. The value of Wi,l

can only be obtained by first bounding the following terms.

A. Bounding Intra-Core Interference

The maximum intra-core interference that can be caused by

all tasks in hpi,l during the level-i busy window Wi,l depend

on the maximum number of jobs released by all the tasks

in hpi,l during Wi,l. Therefore, to upper bound intra-core

interference, we use the upper event arrival function ¸+h (∆)
that captures the maximum number of jobs released by a task

Äh in any time interval of length ∆ [13]. Consequently, the

maximum intra-core interference that can be caused by all

tasks in hpi,l during Wi,l is given by

Ii(Wi,l) =
∑

τh∈hpi,l

(¸+h (Wi,l)× Ch) (1)

Equation 1 considers the WCET of all jobs released by all

higher priority tasks on the local core, i.e., ∀Äh ∈ hpi,l, during

any time interval of length Wi,l.

B. Bounding Intra-Core Blocking

As explained in the system model, we assume limited

preemptive scheduling where tasks can be preempted during

the execution of their E-phases. Considering this, a given task

Äi can only suffer intra-core blocking due to only one memory

phase of a lower priority task that starts executing before the

arrival of Äi because Äi can preempt the lower priority task

once it starts executing its E-phase. Therefore, the maximum

intra-core blocking that can be suffered by task Äi is given

by the length of the largest memory phase (i.e., either A- or

R-phase) among all the tasks in lpi,l. The upper bound on the

intra-core blocking of Äi is denoted Bi and can be computed

as follows:

Bi = max(max
∀τj∈lpi,l

{CA
j }, max

∀τj∈lpi,l

{CR
j }) (2)

C. Bounding Inter-Core Memory Interference

Under the TP-based MCS, the memory phases of a task

Äi can only be served after the completion of all the mem-

ory phases of all tasks having higher priority than Äi. The

contribution of tasks with higher priority than Äi, executing

on the local core Ãl, is already accounted for in the intra-

core interference Ii(Wi,l). Therefore, the maximum inter-

core memory interference caused by all higher priority tasks

running on all the remote cores will be computed using the

following lemma.

Lemma 1. The maximum inter-core memory interference that

can be suffered by tasks executing on the local core Ãl due to

higher priority tasks running on all the remote cores during

Wi,l is upper-bounded by IMem
i (Wi,l), where

IMem
i (Wi,l) =

m∑

r=1,r ̸=l

∑

τu∈hpi,r

¸+u (Wi,l)× (CA
u + CR

u) (3)

Proof. Under the TP-based MCS, memory phases of tasks are

served in a global priority order. Thus, a task Äi executing on

a core Ãl can suffer inter-core memory interference from all

tasks executing on all the remote cores that have a higher

priority than Äi. A task Äu released on a remote core Ãr

with priority higher than that of Äi, i.e., Äu ∈ hpi,r, can

only cause inter-core memory interference on Äi when it

executes its memory phases. So, the maximum inter-core

memory interference that one job of Äu ∈ hpi,r can cause

is given by the sum of the WCET of its A- and R-phases,

i.e., CA
u + CR

u . Furthermore, from the upper event arrival

function, the maximum number of jobs released by task Äu
during any time interval of length Wi,l is upper bounded

by ¸+u (Wi,l). Hence, the maximum memory interference that

can be caused by a task Äu ∈ hpi,r during Wi,l is upper

bounded by ¸+u (Wi,l)×(CA
u +CR

u). Considering that all higher

priority tasks released on core Ãr during Wi,l can contribute

to the inter-core memory interference, the maximum inter-core

memory interference that can be caused by all tasks executing

on core Ãr is given by
∑

τu∈hpi,r
¸+u (Wi,l)× (CA

u +CR
u). Ex-

tending this result to all remote cores, the maximum inter-core

memory interference that can be suffered by tasks executing on

the local core during Wi,l is upper bounded by Equation 3.

D. Bounding Inter-Core Memory Blocking

Due to non-preemptive memory phases, a task Äi can suffer

inter-core memory blocking if a lower priority task on a remote

core starts executing its memory phase before the release of

a memory phase of task Äi. This behavior is observed for all

tasks that execute on the local core Ãl during Wi,l. We use the

following steps to compute the inter-core memory blocking.

• Bounding the maximum number of inter-core memory

blockings that can be suffered.

• Bounding the maximum number of inter-core memory

blockings that can be caused.

• Upper bounding the maximum inter-core memory block-

ing during Wi,l.

Next, we explain how each of these steps will be performed.

1) Bounding the maximum number of inter-core memory

blockings that can be suffered: In this step, we will explain

how to upper bound the maximum number of inter-core

memory blockings that can be suffered by tasks executing on

the local core during Wi,l. Firstly, we present the following

example to illustrate the computation of this step. We then use

Lemma 2 for formal computation.

Example 1: Figure 2 shows an example schedule where 3

tasks are executing on the local core and task Ä3 is the task

under analysis. Global priorities are assigned to tasks and are

indexed according to their priorities, i.e., Ä1, Ä2, Ä3. We can see

in Figure 2, each time a memory phase executes after an E-

phase on the local core Ãl, it may suffer inter-core memory

blocking due to the execution of a memory phase (i.e., A or

R-phase) of a lower priority task running on a remote core

Ãr. Furthermore, due to preemptive E-phases of tasks, each

higher priority task can preempt a lower priority task during

its E-phase in the worst-case scenario. So, when an E-phase

Fig. 2: Maximum number of inter-core memory blockings that

can be suffered on the local core Ãl during Wi,l

is executed on core Ãl, a lower priority task on a remote core

can start executing its A/R-phase, causing inter-core memory

blocking. Therefore, we see in Figure 2 that the inter-core

memory blocking is suffered by each memory phase of tasks

Ä1, Ä2, and Ä3 that executes after an E-phase on the local core.

Lemma 2. The maximum number of times that tasks executing

on the local core Ãl can suffer inter-core memory blocking

during Wi,l is upper-bounded by Φi(Wi,l), where

Φi(Wi,l) =
∑

τh∈hepi,l

¸+h (Wi,l)× 2 (4)

Proof. It is only during the execution of E-phases that the local

core can not schedule any memory phases during the level-i

busy window. Consequently, in the worst-case, the local core

can suffer an inter-core memory blocking from a lower priority

task executing on a remote core for every memory phase that

execute on the local core after an E-phase. For example, if

the local core is executing an E-phase at time instant t, the

memory scheduler is allowed to schedule a memory phase

of a lower priority task Ä ′l executing on a remote core. Now,

when the local core completes the execution of its E-phase and

wants to execute a memory phase at time instant t+ ϵ, it may

suffer inter-core memory blocking as Ä ′l is already executing

a memory phase. This implies that the maximum number of

memory blockings that the local core can suffer depends on

the number of times E-phases are executed on the local core

during Wi,l. However, considering that in our model the E-

phases are preemptive, a task can be preempted several times

during its E-phase and each preemption may lead to an inter-

core memory blocking. Consequently, the local core can suffer

several memory blockings during the execution of an E-phase.

Although we cannot predict how many times an E-phase is

preempted during Wi,l, we know that in the worst-case each

memory phase that executes during Wi,l can suffer inter-core

memory blocking. Therefore, knowing that ¸+i (Wi,l) upper

bounds the number of jobs that can be released by task Äi
during Wi,l, ¸

+
i (Wi,l)×2 upper bounds the number of times Äi

can suffer inter-core memory blocking during Wi,l. Similarly,∑
τh∈hepi,l

¸+h (Wi,l)× 2 upper bounds the maximum number

of inter-core memory blockings that can be suffered by all

tasks executing on core Ãl during Wi,l.

2) Bounding the maximum number of inter-core memory

blockings that can be caused: The maximum number of inter-

core memory blockings that can be caused by lower priority

tasks running on all remote cores during Wi,l are computed

using the following lemma.

Lemma 3. The maximum number of times that lower priority

tasks running on all remote cores can cause inter-core memory

blocking during Wi,l is upper-bounded by µi(Wi,l), where

µi(Wi,l) =
m∑

r=1,r ̸=l

∑

τq∈lpi,r

¸+q (Wi,l)× 2 (5)

Proof. For a task Äq running on a remote core Ãr such

that Äq ∈ lpi,r, the maximum number of jobs that can be

released by Äq during Wi,l is upper bounded by ¸+q (Wi,l). As

memory phases are non-preemptive, each inter-core memory

blocking caused by a lower priority task can be of at most

one memory phase. Consequently, the maximum number of

inter-core memory blockings that can be caused by one job

of task Äq during Wi,l is 2 (i.e., by its A- and R-phases) and

the maximum number of inter-core memory blockings that can

be caused by all jobs of Äq that execute during Wi,l is upper

bounded by ¸+q (Wi,l)×2. Similarly, the maximum number of

inter-core memory blockings that can be caused by all lower

priority tasks released on a remote core Ãr, i.e., lpi,r, during

Wi,l is upper bounded by
∑

τq∈lpi,r
¸+q (Wi,l)× 2. Extending

this to all remote cores, the Lemma follows.

3) Upper bounding the maximum inter-core memory

blocking: Having bounded the values of Φi(Wi,l) and

µi(Wi,l), we will now compute an upper bound on the

maximum inter-core memory blocking that can be suffered

by tasks executing on the local core during Wi,l. To do so,

we consider the following cases:

Case 1: Φi(Wi,l) g µi(Wi,l), the maximum number of inter-

core memory blockings that can be suffered by tasks executing

on core Ãl is greater than or equal to the maximum number of

inter-core memory blockings that can be caused by all lower

priority tasks running on all remote cores during Wi,l.

Case 2: Φi(Wi,l) < µi(Wi,l), the maximum number of inter-

core memory blockings that can be suffered by tasks executing

on core Ãl is less than the maximum number of inter-core

memory blockings that can be caused by all lower priority

tasks running on all remote cores during Wi,l.

Maximum Inter-Core Memory Blocking for Case 1: Under

Case 1, the maximum inter-core memory blocking will be

computed using the following lemma.

Lemma 4. If Φi(Wi,l) g µi(Wi,l), then the maximum inter-

core memory blocking that can be suffered by tasks executing

on the local core Ãl due to lower priority tasks running on

all remote cores during any time interval of length Wi,l is

upper-bounded by BMem
i (Wi,l), where

BMem
i (Wi,l) =

m∑

r=1,r ̸=l

∑

τq∈lpi,r

¸+q (Wi,l)× (CA
q + CR

q) (6)

Proof. As proven in Lemma 2, tasks running on the local core

Ãl during Wi,l can suffer at most Φi(Wi,l) inter-core memory

blockings. As the precise memory access time of the lower

priority tasks running on a remote core is not known at design-

time, if Φi(Wi,l) g µi(Wi,l), there can be a scenario in which

all the memory phases of all lower priority tasks released on

all the remote cores during Wi,l can cause inter-core memory

blocking to tasks executing on the local core Ãl during Wi,l.

Thus, the maximum inter-core memory blocking that can

be caused by one job of a lower priority task Äq released on

a remote core Ãr, i.e., Äq ∈ lpi,r, is upper-bounded by the

sum of the WCET of its A- and R-phases, i.e., CA
q +CR

q . So,

the maximum inter-core memory blocking that can be caused

by all the jobs of task Äq during Wi,l is upper-bounded by

¸+q (Wi,l) × (CA
q + CR

q). Similarly, the maximum inter-core

memory blocking that can be caused by all lower priority

tasks executing on a remote core Ãr during Wi,l is upper-

bounded by
∑

τq∈lpi,r
¸+q (Wi,l) × (CA

q + CR
q). Finally, the

maximum inter-core memory blocking that can be suffered by

tasks executing on the local core due to lower priority tasks

running on all the remote cores during Wi,l is upper-bounded

by
∑m

r=1,r ̸=l

∑
τq∈lpi,r

¸+q (Wi,l)× (CA
q + CR

q).

Maximum Inter-Core Memory Blocking for Case 2: We

know that all tasks that execute on core Ãl during Wi,l

can suffer at most Φi(Wi,l) inter-core memory blockings. If

Φi(Wi,l) < µi(Wi,l), we need to extract Φi(Wi,l) number

of memory phases released by all the lower priority tasks

running on all the remote cores during Wi,l that can lead

to the maximum inter-core memory blocking. To do this

computation, we introduce the following notations.

Let M be an ordered set that contains the WCET of all the

memory phases (i.e., A- and R-phases) of all the lower priority

tasks released on all the remote cores during any time interval

of length Wi,l, sorted in a non-increasing order as follows:

M = {C
A/R
1 , C

A/R
2 , . . . , C

A/R
V | CA/R

x g C
A/R
x+1 } (7)

where C
A/R
x denotes the WCET of either A- or R-phase of a

lower priority task released on a remote core Ãr during Wi,l.

In Equation 7, the index V is equal to the µi(Wi,l).
The maximum inter-core memory blocking for case 2 is

then computed using the following lemma.

Lemma 5. If Φi(Wi,l) < µi(Wi,l), then the maximum inter-

core memory blocking that can be suffered by tasks executing

on the local core Ãl due to lower priority tasks running on

all remote cores during any time interval of length Wi,l is

upper-bounded by BMem
i (Wi,l), where

BMem
i (Wi,l) =

Φi(Wi,l)∑

x=1

CA/R
x where CA/R

x ∈ M (8)

Proof. As proven in Lemma 2, tasks running on the local

core Ãl during Wi,l can suffer at most Φi(Wi,l) inter-core

memory blockings. As Φi(Wi,l) < µi(Wi,l), we need to

extract Φi(Wi,l) number of memory phases of the lower

priority tasks released on all the remote cores during Wi,l that

can lead to the maximum inter-core memory blocking. As we

cannot predict the actual schedule of task executions on remote

cores, we do not know the specific memory phases of lower

priority tasks running on remote cores that can cause inter-

core memory blocking during Wi,l. Therefore, to maximize

the inter-core memory blocking, we choose Φi(Wi,l) number

of memory phases with the largest execution times among all

the memory phases of lower priority tasks released on all the

remote cores during Wi,l. This is achieved by summing up the

first Φi(Wi,l) elements of M , which contains the WCET of

all memory phases of all lower priority tasks released on all

remote cores during Wi,l. The Lemma follows.

V. WCRT ANALYSIS

In fixed-priority limited preemptive scheduling, the WCRT

of task Äi is observed during the longest level-i busy win-

dow [1]. Having bounded all the terms that can contribute to

the length of level-i busy window on core Ãl, i.e., Ii(Wi,l), Bi,

IMem
i (Wi,l), and BMem

i (Wi,l), the length of Wi,l is given by

the first positive fixed-point solution of the following equation:

Wi,l = Ii(Wi,l) +Bi + ¸+i (Wi,l)× Ci

+IMem
i (Wi,l) +BMem

i (Wi,l)
(9)

where ¸+i (Wi,l)×Ci considers the maximum contribution of

all jobs released by task Äi during Wi,l.

Having bounded the length of the level-i busy window Wi,l,

we compute the maximum number of jobs of task Äi that can

execute on core Ãl during Wi,l using the following equation.

Ki = ¸+i (Wi,l) (10)

Using the values of Wi,l and Ki, we can now compute the

WCRT of task Äi. For this, we need to analyze the response

time of each job of task Äi that execute during Wi,l. Let Äi,k
be the kth job of task Äi that execute during Wi,l. To compute

the response time of Äi,k, we compute the latest start time of

the R-phase of Äi,k as it can be delayed by tasks running on

the local core/remote cores until the start of its R-phase.

The latest start time of the R-phase of Äi,k is denoted by

sRi,k, where sRi,k is given by the first positive solution to the

fixed-point iteration on the following equation.

sRi,k = Ii(s
R
i,k) +Bi + ((k − 1)× Ci) + CA

i + CE
i

+IMem
i (sRi,k) +BMem

i (sRi,k)
(11)

where Ii(s
R
i,k) is the maximum intra-core interference suffered

by Äi,k during sRi,k, given by Equation 1. The term Bi is the

maximum intra-core blocking, given by Equation 2. The term

(k−1)×Ci considers the WCET of k−1 jobs of task Äi. We

consider the WCET of the A-phase and the E-phase of Äi using

CA
i +CE

i while computing the latest start time of the R-phase

of Äi,k. The term IMem
i (sRi,k) considers the maximum inter-

core memory interference suffered by Äi,k during sRi,k, given

by Lemma 1. The term BMem
i (sRi,k) considers the maximum

inter-core memory blocking that can be suffered by Äi,k during

sRi,k and can be computed using Lemma 2 to Lemma 5.

As sRi,k appears on both sides of Equation 11, it can be

solved iteratively by initializing sRi,k = CA
i + CE

i + Bi +∑
τh∈hpi,l

Ch. The start time sRi,k will then be given by

the smallest positive value of sRi,k for which Equation 11

converges. Having computed the value of sRi,k, we can compute

the response time Ri,k of Äi,k using the following equation.

Ri,k = sRi,k + CR
i (12)

Fig. 3: Maximum number of inter-core memory blockings

when E-phases are non-preemptive

Finally, we can compute the WCRT of task Äi by analyzing

the response time of each job of Äi that executes during Wi,l

and consider the largest response time among all the jobs, i.e.,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (13)

where the computation of Ki is obtained using Equation 10.

A taskset Γ is said to be schedulable only if the WCRT

of each task in the taskset is less than or equal to its relative

deadline, the utilization of each core is less than or equal to

the core’s capacity, i.e., 1, and the total memory utilization of

the taskset is less than or equal to 1, i.e.,
∑

τi∈Γ
CA

i +CR
i

Ti
f 1.

VI. ANALYZING THE IMPACT OF PREEMPTION POINT

SELECTION

Most existing works in the state-of-the-art that focus on

MCS of PREM/3-phase tasks assume non-preemptive schedul-

ing at the core level [15], [18]. Considering that in general,

limited preemptive based approaches tend to perform better

than non-preemptive approaches in terms of schedulability, a

few existing works have also considered limited preemptive

scheduling-based MCS approaches [19]. The TP-based MCS

approach presented in Section IV also assumes limited pre-

emptive scheduling where tasks executing on the same core

can be preempted anytime during their E-phases. However, in

this section, we will explore how preemption point selection

can impact the TP-based MCS, by considering an alternate

task scheduling approach where E-phases of tasks are also

assumed to be non-preemptive, i.e., task preemptions are only

allowed at the boundary of task phases. First, we will present

an example that shows how this alternate preemption point

selection can reduce the inter-core memory blocking of tasks.

We will then discuss how the analysis presented in Section IV

needs to be adapted when considering this preemption scheme.

Example 2: For the same example depicted in Figure 2,

if the E-phases are non-preemptive, the resulting schedule is

shown in Figure 3. Due to non-preemptive E-phases, each E-

phase executes without being preempted and the local core

can suffer at most one memory blocking from remote cores

for each E-phase that executes on the local core. For instance,

we can see in Figure 3 that the A-phase of Ä1, Ä2 only starts

after the completion of an E-phase. Since a memory blocking

can be suffered when the local core executes an E-phase,

Ä1, Ä2 suffer memory blocking before their A-phases. However,

this in turn leads to a scenario in which the R-phases of

Ä2, Ä3 do not suffer inter-core memory blocking. This happens

because the local core does not execute any E-phase after

the R-phase completion of Ä1 and there is always a ready

memory phase on the local core, thus, memory scheduler will

not schedule a memory phase of any lower priority task of a

remote core. Consequently, for the same example scenario, at

most 4 memory blockings can be suffered by tasks executing

on the local core when the E-phase are non-preemptive in

comparison to the 6 memory blockings suffered by the local

core when E-phases are preemptive (see Figure 2).

When analyzing the impact of non-preemptive E-phases

of tasks on the TP-based MCS approach, the computation

of intra-core interference and inter-core memory interference

remains exactly the same as presented in Section IV, i.e., the

intra-core interference can still be computed using Equation 1

and the inter-core memory interference will be upper bounded

using Equation 3 (Lemma 1). However, the computation of

intra-core blocking and inter-core memory blocking needs to

be adapted, which is explained as follows.

A. Bounding Intra-Core Blocking

When each phase of a 3-phase task executes non-

preemptively, task preemptions can only happen at the

start/end of E-phases. So, if task Äi is released when a lower

priority task is already executing, Äi suffers intra-core blocking

from at most one phase (i.e., A, E, or R-phase) executing

on the same core as Äi. Therefore, the maximum intra-core

blocking Bi suffered by task Äi is given by the WCET of the

largest A, E, or R-phase among all the tasks in lpi,l, i.e.,

Bi = max(max
∀τj∈lpi,l

{CA
j }, max

∀τj∈lpi,l

{CE
j }, max

∀τj∈lpi,l

{CR
j })

(14)

B. Bounding Inter-core Memory Blocking

As discussed in Section IV-D, the inter-core memory block-

ing of tasks depends on the value of Φi(Wi,l), i.e., the

maximum number of inter-core memory blockings that can

be suffered by all tasks executing on the local core during

Wi,l, and µi(Wi,l), i.e., the maximum number of inter-core

memory blockings that can be caused by all lower priority

tasks executing on all the remote cores during Wi,l. When

considering non-preemptive execution of E-phases of tasks,

the computation of µi(Wi,l) remains unchanged and it can

be computed using Equation 5 (Lemma 3) as detailed in

Section IV-D2. However, the computation of Φi(Wi,l) needs

to be adapted, which is done using the following lemma.

Lemma 6. If preemptions are allowed only at the start/end

of E-phases of tasks, then the maximum number of times

that tasks executing on core Ãl can suffer inter-core memory

blocking during Wi,l is upper-bounded by Φi(Wi,l), where

Φi(Wi,l) =
∑

τh∈hepi,l

¸+h (Wi,l) + 1 (15)

Proof. When considering non-preemptive E-phases of tasks,

each E-phase that executes on the local core during Wi,l will

run until its completion. This implies that at most one inter-

core memory blocking can be caused by a lower priority task

of a remote core at the completion of each E-phase that execute

on the local core during Wi,l. Consequently, the maximum

number of inter-core memory blockings that can be suffered

by all tasks that execute on the local core Ãl during Wi,l is

equal to the maximum number of E-phases that execute on

the local core Ãl during Wi,l. As each job releases one E-

phase, the maximum number of E-phases that can be released

by a task Äh can execute during Wi,l is upper-bounded by

¸+h (Wi,l). Similarly, the maximum number of E-phases that

can be released by all tasks in hepi,l during Wi,l is upper-

bounded by
∑

τh∈hepi,l
¸+h (Wi,l).

Additionally, we need to consider one inter-core memory

blocking that can be suffered on the local core Ãl at the start of

the level-i busy window Wi,l. Therefore, the maximum number

of inter-core memory blockings that can be suffered by tasks

that can execute on the local core Ãl during Wi,l is upper

bounded by
∑

τh∈hepi,l
¸+h (Wi,l)+1. The Lemma follows.

Having computed the value of Φi(Wi,l) using Lemma 6, the

maximum inter-core memory blocking can be computed using

the exact same steps as detailed in Section IV-D. However,

knowing that the maximum inter-core memory blocking that

can be suffered by the tasks during Wi,l depends both on the

value of Φi(Wi,l) and µi(Wi,l), and the value of Φi(Wi,l)
computed using Lemma 6 can be different from the value

of Φi(Wi,l) when computed using Lemma 2. Therefore, the

resulting values of the maximum inter-core memory blocking,

i.e., BMem
i (Wi,l), computed considering non-preemptive E-

phases can be different from the values obtained considering

preemptive E-phases (i.e., analysis detailed in Section IV-D).

Finally, the WCRT for non-preemptive E-phase based

scheduling can be computed using the exact same procedure

detailed in Section V, with Bi computed using Equation 14

and BMem
i (Wi,l) computed using Lemma 3 to Lemma 6.

VII. EXPERIMENTAL EVALUATION

In this section, we discuss the experiments that were per-

formed to evaluate the effectiveness of the proposed TP-based

MCS in comparison to the existing PP-based MCS [15]. For

the default configuration, we consider a multicore system

composed of 4 cores and a taskset size of 32 tasks in which

8 tasks are assigned to each core. Tasks utilization Ui is

randomly generated using the UUnifast-discard algorithm [5].

Task periods Ti are randomly generated in the range of [100-

1000] using log-uniform distribution. The WCET Ci is then

assigned by applying the relation Ci = Ui × Ti. The Memory

Demand (MD) is assigned a random value in the range [10%-

50%] of the WCET, i.e., MD = rand(10%, 50%) × Ci.

The WCET of the A- and R-phases2 is given by CA
i =

CR
i = MD/2 and the WCET of the E-phase is given by

CE
i = Ci − (CA

i +CR
i). Task priorities are assigned globally

using rate monotonic algorithm [8]. Task deadlines are implicit

(i.e., Di = Ti).

We evaluate the performance of the proposed TP-based

MCS in comparison to the existing PP-based MCS [15] by

2For PP-based MCS [15], we consider one memory phase of length MD

varying: 1) the core utilization (i.e., utilization of each core); 2)

the number of cores; 3) task memory demands; and 4) the task

period range. We use taskset schedulability, i.e., the percentage

of schedulable tasksets, as a metric to evaluate the performance

of each approach. For each point depicted in each plot, 1000

tasksets were randomly generated. In all the experiments, the

proposed TP-based MCS that considers preemptive E-phases

is marked as "TP-MCS-PE" whereas the proposed TP-based

MCS that considers non-preemptive E-phases is marked as

"TP-MCS-NPE". Similarly, the existing PP-based MCS [15]

is marked as "PP-MCS". In all plots, the x-axis represents

the core utilization and the y-axis represents the percentage of

schedulable tasksets for all the analyzed approaches.

1) Varying Core Utilization: In this experiment, we varied

the core utilization of each core under the default configuration

from 0.025 to 1 in steps of 0.025 and plotted the resulting

number of schedulable tasksets in Figure 4b. Figure 4b shows

that the taskset schedulability of all the approaches decreases

by increasing the core utilization. The is mainly because

increasing the core utilization increases the task utilizations,

which, in turn, increases the WCET of tasks. This increase

in Ci results in an increase in the values of CA
i , CE

i , and

CR
i . Consequently, the intra-core interference/blocking and

inter-core memory interference/blocking increases, resulting in

decreasing taskset schedulability. Nevertheless, the proposed

TP-MCS-PE and TP-MCS-NPE approaches outperform the

PP-based MCS. In particular, TP-MCS-PE analysis was able

to schedule around 51% of more tasksets as compared to PP-

based MCS at the core utilization value of 0.375. Similarly,

the TP-MCS-NPE analysis was able to schedule around 59%
of more tasksets as compared to PP-based MCS at the core

utilization value of 0.40. This happens due to fixed task

priority based memory scheduling used by proposed TP-based

MCS that reduces the inter-core memory interference/blocking

suffered by tasks in comparison to the PP-based MCS. Also,

due to the use of limited preemptive scheduling, the proposed

TP-based MCS approach reduces the intra-core blocking in

comparison to the PP-based MCS that assume non-preemptive

task executions. Figure 4b also confirms that TP-MCS-NPE

outperforms the TP-MCS-PE due to a tighter estimation of

inter-core memory blocking.

2) Varying Number of Cores: In this experiment, we varied

the number of cores, which in turn, also varies the number

of tasks in the taskset3. We varied the number of cores m
between 2 to 8 along with the core utilization. As shown

in Figure 4, increasing the value of m results in a decrease

in taskset schedulability for all the considered approaches.

This is because increasing the number of cores also increases

the number of remote cores and thus the number of tasks

running on remote cores. This increases the inter-core memory

interference and memory blocking, eventually resulting in

decreasing taskset schedulability.

We can see in Figure 4c that increasing the number of

3Per core tasks remains the same but increasing/decreasing number of cores
results in increasing/decreasing the total tasks in the taskset

(a) Varying Core Utilization for m=2 (b) Varying Core Utilization for m=4 (c) Varying Core Utilization for m=8

Fig. 4: Varying Core Utilization and Number of Cores

(a) VL Configuration (MD=5%-20%) (b) L Configuration (MD=20%-40%) (c) H Configuration (MD=40%-60%) (d) VH Configuration (MD=60%-80%)

Fig. 5: Varying Core Utilization for Different MD Configurations

(a) Task Period Range of 100-1000 (b) Task Period Range of 100-2000 (c) Task Period Range of 100-5000

Fig. 6: Varying Core Utilization for Different Task Period Ranges

cores tends to increase the difference between our proposed

approaches and the PP-based MCS. In particular, the TP-MCS-

PE was able to schedule around 90% more tasksets than PP-

based MCS at the core utilization value of 0.225. Similarly,

the TP-MCS-NPE was able to schedule around 91% of more

tasksets than PP-based MCS at the core utilization value of

0.225. On the contrary, the gain of TP-MCS-PE and TP-

MCS-NPE over PP-based MCS was negligible for m = 2. In

fact, the PP-based MCS was able to perform slightly better

than TP-MCS-NPE for some values of core utilization as

shown in Figure 4a. We explain these variations as follows:

when the number of cores are smaller then the impact of

inter-core memory interference and memory blocking is not

that significant due to fewer tasks on remote cores. This

results in producing similar performance of all the approaches.

Similarly, for m = 2, tasks scheduled using PP-based MCS

suffer inter-core memory interference from only one remote

core, thereby, resulting in a slightly better performance than

the TP-MCS-NPE approach. Note that for m = 2, TP-MCS-

PE also performs slightly better than TP-MCS-NPE. This is

mainly due to the fact that TP-MCS-PE provides a slightly

tighter bound on the intra-core blocking than TP-MCS-NPE

whose impact is maximized when the taskset size is smaller.

3) Varying Memory Demand (MD): In this experiment,

we vary the Memory Demand (MD) of all tasks in the

taskset along with the core utilization. For this, we con-

sider 4 different configurations based on the value of MD,

that are, Very Light (VL) MD, i.e., MD=(5%, 20%) × Ci,

Light (L) MD, i.e., MD=(20%, 40%) × Ci, Heavy (H) MD,

i.e., MD=(40%, 60%) × Ci, Very Heavy (VH) MD, i.e.,

MD=(60%, 80%)× Ci. The value of MD is assigned to each

task in the taskset randomly as per the chosen configuration.

As shown in Figure 5, all the approaches perform the best

in the VL configuration and the worst in the VH configuration.

This is intuitive as an increase in the value of MD also

increases the WCET of memory phases that results in increas-

ing the inter-core memory interference and memory blocking.

However, we can see that for all configurations, proposed TP-

based MCS approaches outperform the PP-based MCS. In

fact, for H and VH configurations, the difference between our

proposed approaches and the PP-based MCS becomes more

prominent. This is due to increasing the length of memory

phases, that directly impacts the memory interference of tasks.

4) Varying Task Periods: In this experiment, we vary

the core utilization for different task period ranges. For this,

we consider three task period ranges that are [100-1000],

[100-2000], [100-5000]. As shown in Figure 6, number of

tasks deemed schedulable by all the approaches is reduced

by increasing the task period ranges. This is mainly because,

by increasing the task period, the WCET of execution and

memory phases of tasks also increases. This has a direct

impact on the inter-core memory interference/blocking of

tasks. However, we can see in Figure 6 that the proposed

TP-based MCS approaches outperforms the PP-based MCS

for the all task period ranges. As proposed TP-based MCS

provides a tighter bound on the memory interference, the gain

of the proposed analyses over PP-based MCS increases with

the increase in task period range due to the higher impact of

inter-core memory interference/blocking.

VIII. RELATED WORK

Sharing of main memory is a major source of contention

in COTS multicore platforms, and several existing works have

focused on the problem of inter-core memory interference in

multicore platforms [2], [3], [6], [10], [13]–[15], [18]–[20].

The phased execution models such as the PREM [11] and

the 3-phase task models [4], [9] along with the Memory

Centric Scheduling (MCS) [10], [15], [18]–[20] have been

studied in several works to solve the problem of inter-core

memory interference. Pagetti et al. [10] proposed a framework

to generate an offline task schedule at the system level that

minimizes inter-core memory interference. However, enforcing

such an offline schedule may not be possible in all the

scenarios. Yao et al. [19] proposed TDMA-based MCS that

uses static TDMA slots to schedule the memory accesses

under partitioned scheduling. Unlike conventional TDMA

scheduling [14], TDMA-based MCS [19] allows preemptions

during the E-phases so that the cores can efficiently utilize

the available TDMA slot by prioritizing memory phases. The

concept of MCS was then extended to the global scheduling

in [20]. Schwäricke et al. [15] have presented fixed Processor

Priority (PP) based MCS that considers two-level scheduling

approach: 1) fixed-priority non-preemptive scheduling at the

core level; and 2) fixed processor priority to schedule the

memory phases at the system level. Due to the two-level

scheduling used by the PP-based MCS, tasks with higher

local priorities, i.e., tasks with shorter deadlines/periods, that

execute on lower global priority cores can suffer high memory

interference, i.e., from all tasks that execute on all higher

priority cores, and can potentially result in deadline misses.

Works like [3], [12] have shown that task priority based

memory scheduling can significantly reduce memory inter-

ference of tasks. However, none of the existing works on

MCS have considered task priority-based memory scheduling.

Therefore, in this work, we investigated TP-based MCS and

showed how it can improve the state-of-the-art.

IX. CONCLUSION

This work extends the notion of memory centric scheduling

to consider task priority based memory scheduler. We showed

how the memory interference of 3-phase tasks executing on

a multicore platform can be bounded, assuming memory

requests are served based on the priority of the generating

task. Contrary to most works in the state-of-the-art, our anal-

ysis supports limited preemptive scheduling and also investi-

gates the impact of preemption point selection on the inter-

core memory interference suffered by tasks. Experimental

results reveal that the proposed TP-based MCS can schedule

up to 91% more tasksets than the state-of-the-art PP-based

MCS [15]. As future work, we plan to extend our analysis by

using the Direct-memory-access (DMA) engines.
Acknowledgments. This work was partially supported by European Union’s

Horizon 2020 -The EU Framework Programme for Research and Innovation 2014-2020,

under grant agreement No. 732505. Project “TEC4Growth - Pervasive Intelligence, En-

hancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER000020”

financed by the North Portugal Regional Operational Programme (NORTE 2020),

under the PORTUGAL 2020 Partnership Agreement; also by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Technology), within the CIS-

TER Research Unit (UIDP/UIDB/04234/2020); by FCT and the Portuguese National

Innovation Agency (ANI), under the CMU Portugal partnership, through the European

Regional Development Fund (ERDF) of the Operational Competitiveness Programme

and Internationalization (COMPETE 2020), under the PT2020 Partnership Agreement,

within project FLOYD (POCI-01-0247-FEDER-045912), also by FCT under PhD grant

2020.09532.BD.

REFERENCES

[1] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption revisited. In ECRTS’07, pages 269–279, 2007.

[2] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. A holistic
memory contention analysis for parallel real-time tasks under partitioned
scheduling. In IEEE RTAS 2020, pages 239–252, 2020.

[3] Robert I. Davis, Sebastian Altmeyer, Leandro S. Indrusiak, Claire Maiza
and·Vincent Nelis, and Jan Reineke. An extensible framework for
multicore response time analysis. Real-Time Systems, July 2017.

[4] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez,
Claire Pagetti, and W. Puffitsch. Predictable Flight Management System
Implementation on a Multicore Processor. In ERTS’14, February 2014.

[5] P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis
of multiprocessor tasksets. WATERS’10, 01 2010.

[6] Mohamed Hassan and Rodolfo Pellizzoni. Analysis of Memory-
Contention in Heterogeneous COTS MPSoCs. In ECRTS 2020, volume
165 of LIPIcs, pages 23:1–23:24, Dagstuhl, Germany, 2020.

[7] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. [1990] 11th RTSS, pages 201–209, 1990.

[8] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[9] Claudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia
Perez. A closer look into the AER Model. In ETFA 2016. IEEE, 2016.

[10] Claire Pagetti, Julien Forget, Heiko Falk, Dominic Oehlert, and Arno
Luppold. Automated generation of time-predictable executables on
multi-core. In RTNS 2018, POITIERS, France, October 2018.

[11] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John
Criswell, Marco Caccamo, and Russell Kegley. A Predictable Execution
Model for COTS-Based Embedded Systems. In IEEE RTAS, 2011.

[12] Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar. Cache
persistence-aware memory bus contention analysis for multicore sys-
tems. In DATE 2020, pages 442–447, 2020.

[13] Simon Schliecker and Rolf Ernst. Real-time performance analysis of
multiprocessor systems with shared memory. ACM Transactions on

Embedded Computing Systems, 10(2):1–27, December 2010.
[14] Andreas Schranzhofer et al. Timing analysis for tdma arbitration in

resource sharing systems. In IEEE RTAS 2010, pages 215–224, 2010.
[15] Gero Schwäricke, Tomasz Kloda, Giovani Gracioli, Marko Bertogna,

and Marco Caccamo. Fixed-Priority Memory-Centric Scheduler for
COTS-Based Multiprocessors. In ECRTS 2020, LIPIcs, 2020.

[16] M. R. Soliman and R. Pellizzoni. Prem-based optimal task segmentation
under fixed priority scheduling. In ECRTS, 2019.

[17] Muhammad R. Soliman, Giovani Gracioli, Rohan Tabish, Rodolfo
Pellizzoni, and Marco Caccamo. Segment streaming for the three-phase
execution model: Design and implementation. In RTSS 2019, 2019.

[18] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo. A
real-time scratchpad-centric os with predictable inter/intra-core commu-
nication for multi-core embedded systems. Real-Time Systems, 55, 2019.

[19] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco
Caccamo. Memory-centric scheduling for multicore hard real-time
systems. Real-Time Systems, 48, 11 2012.

[20] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco
Caccamo. Global real-time memory-centric scheduling for multicore
systems. IEEE Transactions on Computers, 65(9):2739–2751, 2016.

