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Abstract 
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in the same multi-core platform, with the objective of improving the performance/cost ratio of the system. Such 
integrated systems are commonly referred to as mixed-criticality systems (MCS). Most of the MCS-related research 
published in the state-of-the-art cite the safety-related standards associated to each application domain (e.g. 
aeronautics, space, railway, automotive). However, those standards are not, in most cases, freely available, and 
do not always clearly and explicitly specify the requirements for mixed-criticality systems. This paper addresses the 
important challenge of presenting the relevant information available in some of the safety-related standards, such 
that the mixed-criticality concept is understood from an industrialist 19s perspective. In addition, the paper 
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core platform, with the objective of improving the performance/cost ratio of the

system. Such integrated systems are commonly referred to as mixed-criticality sys-

tems (MCS). Most of the MCS-related research published in the state-of-the-art cite

the safety-related standards associated to each application domain (e.g. aeronautics,

space, railway, automotive). However, those standards are not, in most cases, freely

available, and do not always clearly and explicitly specify the requirements for mixed-

criticality systems. This paper addresses the important challenge of presenting the

relevant information available in some of the safety-related standards, such that the

mixed-criticality concept is understood from an industrialist’s perspective. In addition,

the paper evaluates state-of-the-art mixed-criticality real-time scheduling models and
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1 Introduction

In the last decade and in most application domains, the industry has shown a growing

interest in developing methods and tools to implement, deploy, validate, and certify

independently-developed applications of different “criticalities” in the same multi-core

platform, with the evident objective of improving the performance/cost ratio of the

system. Such integrated systems are commonly referred to as mixed-criticality systems

(MCS). All over the world, the industrial interest in MCS has manifested itself in the

form of important investments placed into R&D projects and academics since long

time started to manifest their interest as well. The research community that focuses

on the real-time scheduling theory has actively taken part in these efforts regarding

MCS. Their base application model has quickly developed into a mixed-criticality

(MC) task model that is today well-accepted and used in most research works on the

subject. This model is based on the model proposed by Vestal (2007) and in this paper

we will focus on that specific model and its related work. This new MC task model is

in essence the result of combining the standard hard real-time requirements (studied

by the real-time research community since the 70s) with the notion of “criticality” of

execution. When transposed into the industrial world, the applications that correspond

the best to that MC model and its combined requirements are those in which a part of

the core functionality is delivered by safety-critical components.

The introduction of new constraints and requirements into the theoretical models has

unexpectedly unveiled a brand new research landscape. Into this virgin research field

some of the seminal results in scheduling theory had to be restated and revalidated, and

an entire body of knowledge was to be rebuilt. The popularity of MCS immediately

soared up in the real-time research community, which has been evidenced by the

sudden emergence of tracks, sessions, and workshops that are now entirely dedicated

to MCS in most of the flagship conferences on real-time systems.

Since its conception, the MC model has been gradually gaining sophistication

by incorporating multiple levels of criticality or probabilistic WCET estimates to

mention a couple of examples. Each transformation of the model has been motivated

and justified as a mean to better cope with the requirements of MCS. However, most of

the safety-related standards are not freely available, and still, the real-time community

is confronted with the challenge of proposing solutions with certification potential to

current industrial problems, i.e., solutions that are compliant with the safety-related

industrial standards requirements and constraints. Considering this challenge, the main

contributions of this paper are: (i) a practical survey and interpretation of some of

the main safety-related industrial standards, thus complementing the academic MCS

survey by Burns and Davis (2013); (ii) the identification of key requirements that

must be taken into consideration when designing MCS solutions with certification

potentials.

It is important to highlight that the objective of this work is not to judge all the

theoretical contributions on MCS proposed so far, but simply to provide the minimum

background material for those motivated to propose solutions to current industrial

problems and challenges of the safety-critical industry. It is our hope that theoretical

works can benefit from the contribution of this paper, in the sense that they can re-
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think and strengthen their assumptions toward more robust models with certification

potential.

In our discussions, we refer to recommendations and requirements for the design of

safety-critical applications using the three following standards: the IEC61508 [generic

electrical and/or electronic and/or programmable electronic (E/E/PE)] (IEC61508

2010), the ISO26262 (automotive domain) (ISO26262 2011) and the DO-178C (aero-

nautics domain) (DO-178C 2011); those three standards being the most commonly

cited in the real-time research literature on MCS.

An important aspect that must be highlighted with respect to the focus of this work

is that it does not aim at covering or debating hardware configurations, e.g., multi-

core versus single-core. Nevertheless, with the current trend of evolution of hardware

platforms toward multi-cores, mainly due to the need of sharing resources to improve

on SWaP (size, weight, and power), our work inevitably biases its attention towards

those architectures. Note however that all the concepts discussed hereinafter are also

applicable to single-core hardware platforms.

Organisation of the paper In order to provide the reader with sufficient background

information, we start in Sect. 2 with an overview of the safety assessment process as

required by the standards for the development of safety-critical systems. That section

briefly explains how in practice the safety requirements are derived and how the devel-

opment assurance levels (DALs) are assigned to the system safety functions. With this

background, we introduce in Sect. 3 the concept of a mixed-criticality system (MCS

for short). In Sect. 4, we summarize the most important architectural considerations

and requirements from the three above mentioned safety-related industrial standards,

with respect to the development of MCS. We conclude the “industry-oriented” part of

the paper by presenting in Sect. 5 the industrial solutions that prevail in the aeronautic

and automotive application domains to design mixed-criticality systems in accordance

with their domain-specific requirements. We then move to the “academy-oriented” part

of the paper. We start in Sect. 6 by discussing the Vestal model, the theoretical model

of MCS most commonly found in the academic literature. We focus on Vestals model

because of its wide acceptance in the real-time system academic community to model

MCS. We use Sect. 6 to highlight key aspects of that model that are not fully compliant

with the safety-related industrial standards. As a preliminary step towards setting a

model that is compliant with the safety-related standards, we list in Sect. 7 some key

requirements that must be captured and taken into consideration in the model. Then in

Sect. 8 we discuss some of the academic solutions that may be compliant with those

requirements. Finally, the paper is concluded in Sect. 9.

2 System design and development assurance process

In order to understand the concept of MCS from the industrial perspective, it is neces-

sary to firstly understand that the safety-related industrial standards do not explicitly

specify requirements for MCS, but they do specify stringent requirements that must

be met to ensure the safety of the system. Secondly, it is necessary to understand

that “criticality” is a generic term commonly adopted to designate the type of sys-

tems that perform safety critical functions, i.e., functions that in case of failure can
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potentially lead to e.g., injuries, death or damage to properties or to the environment.

In the safety-related standards, different types of more specific terminologies are use

to designate those functions, as well as their different levels of “criticalities”, which

depend on the severity of the consequences and the probability of occurrence of their

failures. The generic concept of “criticality” is therefore used to determine the level

of rigour required to develop those safety critical functions in such a way that the risk

of failure can be brought to an acceptable level. Therefore, to avoid generalizations of

terminology that may potentially lead to misinterpretation of the safety-related stan-

dards requirements, it is of uttermost importance to precisely understand the industrial

process for assigning those “criticality levels” to those functions, and why these func-

tions must be isolated from each other to be able to safely coexist in the same platform

(i.e., an essential requirement for implementing an MCS). To achieve that goal, we

summarize in this section, as an example, the system design and development pro-

cess adopted in the aeronautic domain for assigning those “criticality levels”, more

specifically known as development assurance levels (DALs).1

During a typical development life-cycle of a safety-critical system, the behavior

and characteristics that are expected from the system are expressed in the form of a

list of requirements. Those are developed based not only on the system operational

requirements (what the system is expected to do), but also considering non-functional

properties related to safety, security and performance, including timing and energy

constraints. In order to ensure the safety properties of a safety-critical system, a sys-

tem safety assessment process must be carried out as part of the development life-cycle

to determine and categorize the failure conditions of the system (e.g. through a hazard

analysis). As a result of the system safety assessment process, safety-related require-

ments are derived, which may include functional, integrity, dependability requirements

and design constraints. These requirements are then allocated to hardware and software

components, thereby specifying the mechanisms required to prevent a fault occurring

or to mitigate their effects and avoid the propagation of failures.

To help understand the safety-critical system development life-cycle, we provide

below an overview of the safety assessment process commonly defined by the stan-

dards, e.g., ARP4761 (1996) and ARP4754 (ARP4761A 1996). We hence briefly

explain how, in practice, the development assurance levels (DALs) are assigned to the

system safety functions. Note however, that even though the fundamental concepts

are in essence the same across most safety-related standards, the approaches adopted

in each case varies, which makes the description of a general cross-domain safety

assessment process not a straightforward task.

2.1 General safety assessment process

The safety assessment process starts at the system level with a hazard analysis. This

technique identifies the system hazards and assesses their severity (according to the

domain specific severity scale) by taking into account the operational environment.

After that, a fault analysis is performed to identify the failure conditions that can trigger

1 Note that in Sect. 2.2 other terminologies used in other domains will be presented.
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the identified hazards. The most known fault-analysis techniques that are used across

domains are the Fault Tree Analysis (FTA) (see Sect. 4.1 of ARP4761 (1996)) and the

Failure Modes and Effects Analysis (FMEA)(see Sect. 4.2 of ARP4761 (1996)).

FTA is a top-down analysis technique that proceeds down through successively

more detailed lower levels of the design. It facilitates the safety assessment process

in the sense that it identifies only the failure events that combined (or individually)

can lead to the occurrence of the undesired top level event. If the failure rates of the

basic events are known, the probability of occurrence of the top level event can be

quantified.

The FMEA on the other hand is a systematic bottom-up technique used to identify

the failure modes of a system, function or component, and to determine their effects to

the system upper levels. Contrary to the FTA, the FMEA addresses only failure effects

that result from single failures.

FTA and FMEA are complementary techniques. Section 3.2 of ARP4761 provides

a good overview of how these two techniques relate to each other and to the hazard

analysis. After the identification of the failure conditions in the hazard analysis, the

FTA can be applied to determine what single failures or combinations of failures can

exist (or not) at the lower system levels that might cause each failure condition. The

fault tree can then be complemented by the FMEA to ensure that all significant effects

are identified as basic events (lowest level) of the tree. The FTA basic events can also

get their failure rates from the FMEA. A lower level system item (e.g., component)

contributes to the failure condition if it appears in one of the tree branches leading

to the failure condition. A DAL is then assigned to the item according to the severity

level of the worst failure condition that it contributes to.

Safety assessment also plays an important role at the software level, especially

in the context of MCS, where the isolation of applications of different criticalities

requires special attention. The inclusion of software errors in a qualitative manner in

the safety analysis shows their contribution to the various failure conditions and can

provide valuable information on deriving the DAL. The software safety assessment

can also identify the specific safety related requirements for software such as contain-

ment boundary definitions, partitioning strategies, and specific verification strategies.

Considering this, the criticalities of the applications need to be demonstrated by means

of a fault analysis (either FTA, FMEA or both), which allows to assess the contribution

of their software failures to the identified system hazards. However, when applying

fault analysis techniques to software, the relationship between the top level hazards

and software hazards or feared events (software specific anomalous behaviours) must

be clearly determined. It is important to explicitly identify how a failure of a certain

software function can affect other software and system functions, and whether they

can potentially contribute or not to a system hazard.

The software hazard analysis is a top-down technique that makes recommenda-

tions to eliminate or control software hazards and relates the hazards to the interfaces

between the software and the system. Software hazard analysis should ensure that the

software does not interfere with the objectives and correct operation of the system.

In the case where interference cannot be totally avoided the software hazard analy-

sis must also evaluate and make recommendations to mitigate how the software can

hinder the objective or operation of the system.
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Fig. 1 Generic FMEA process
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As explained in Sects. 4.1.2 and 4.2 of ARP4761, both FTA and FMEA can be used

to perform a qualitative analysis of complex systems such as MCS, hence support-

ing the definition of mitigation measures, which may include hardware or software

mechanisms and/or the inclusion of specific verification activities in the development

process. We briefly describe the software fault analysis process using FMEA as an

example. Figure 1 summarises the generic software FMEA process. The first step

consists in performing a functional analysis, i.e., a listing and description of the soft-

ware functions (rather than the items used in their implementation), and to define the

generic failure modes to be applied to each function of each software component. The

generic failure modes typically include incorrect execution, non-execution, or late

execution of a software function. Therefore, based on the input documentation and on

the previously identified software functions derived from the software requirements,

the generic failure modes are mapped to the functions of each software component and

the component’s specific failure modes are then derived. Step 2 consists in analysing

the component possible failure causes that can trigger the identified failure modes and

on identifying the end effects of the failure mode to the system (possible failure prop-

agation). During Step 3 severity categories (i.e., how bad is the consequence for the

system) are assigned to every single failure mode. The severity of the consequences of

the failure modes assigned in accordance with the severity assignment criteria defined

specifically for the system being developed. Step 4 is the identification of existing

compensating provisions that can either

1. circumvent or mitigate the effect of the failure,

2. control or deactivate product items to halt the generation/propagation of failure

effects, or
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3. activate backup or standby components to (at least partially) recover from the

failure.

Generally speaking, design compensating provisions include:

– Redundant components or alternative modes of operation that allow continued and

safe operation;

– Safety or relief feature (hardware or software) that allows effective operation or

limit the failure effects.

Once the severity categories have been assigned to the failure modes and consequently

to the respective software components, recommendations can be provided with the

objective of reducing the risk associated with the potential critical faults identified

(e.g. by increasing the amount and rigour of verification and validation activities).

2.2 Development assurance level

The software DAL establishes the necessary rigour of the development and of the

verification and validation (V&V) activities that need to be performed on the software,

in accordance with the adopted standard. The higher the DAL of a software, the higher

the number of assurance activities that need to be performed, thus also increasing

considerably the costs of its development. The process for the development of safety-

critical software, which assures the software safety and dependability properties at a

certain DAL is defined in several standards across several application domains (for

instance, see Sect. 5.6 of ARP4761A (1996)). Typically, the DALs are divided into 4

or 5 levels, related to the categories of severity of a failure adopted by the standard.

For instance, under the DO-178C (DO-178C 2011) standard (in the avionic domain),

five severity categories are defined. These five categories are:

1. Catastrophic failures that result in multiple fatalities or the loss of the airplane.

2. Hazardous failures that result in serious or fatal injury to a relatively small number

of occupants.

3. Major failures that reduce the capability of the airplane or the ability of the crew

to cope with adverse operating conditions.

4. Minor failures that do not significantly reduce the airplane safety.

5. No safety effect failures that have no effect on safety.

The software DALs are then assigned depending on the severity category assigned

to the failure(s) that may be caused by the analysed software component. Specifically,

there are five levels defined as level A/B/C/D/E which are respectively assigned to

software components (or modules) whose anomalous behaviour would lead to a system

failure of catastrophic, hazardous, major, minor or negligible consequences. That is,

a software that can potentially contribute to a catastrophic system failure shall be

developed according to DAL-A requirements.

So far we have used DO-178C as reference for explaining the concept of devel-

opment assurance level (DAL). However, IEC61508 and ISO26262 use different

terminologies for describing the development process of a safety-critical or safety-

related system, although the fundamental concepts are in essence the same.

123



752 Real-Time Syst (2018) 54:745–795

IEC61508 defines the concept of system safety function. System safety functions

are implemented by a safety-related system whose purpose is to achieve or maintain a

safe state for the equipment under control (e.g. car engine) when a specific hazardous

event occur. Associated to the system safety functions, the concept of safety integrity

is defined, which refers to the probability of a safety-related system to satisfactorily

perform the required safety functions under all the state conditions within a specified

period. There are four safety integrity levels (SIL). The higher the safety integrity

level of the safety function, the lower the probability that the safety-related system

that executes that function will fail. Software SILs are used as the basis for specifying

the safety integrity requirements of the system safety functions implemented by safety-

related software. Although the SIL is composed of four levels, the IEC61508 does not

explicitly define the failure severity categories and their association with the SIL.

Only examples are provided that are not fully detailed. For instance, in Table C.1

of IEC61508-5 (IEC61508 2010), the following failure severity category levels are

provided: catastrophic, critical, marginal and negligible. It is up to the system designers

to define and detail those categories but it is important to note that the definition of

those is based only on qualitative rather than quantitative measures. This note will be

further discussed in Sect. 8.6.

ISO26262 derives from the generic IEC61508 and addresses the specificities of

the automotive sector. ISO26262 defines the automotive safety integrity level (ASIL).

Similarly to the SIL defined in IEC61508, the ASIL are composed of four levels,

where D represents the most stringent and A represents the least stringent level in

terms of requirements and safety measures (note that this is the exact opposite to the

scale used by DO-178C). The higher the ASIL, the greater the needs to reduce the

risk. Table 1 presents the risk matrix for the ASIL determination of hazardous events

of automotive systems. It uses three parameters: “severity”, “probability of exposure”

and “controllability”.2,3 The severity defines the estimation of the extent of harm to one

or more individuals that can occur in a potentially hazardous situation, the associated

probability is the likelihood of the occurrence of harm, and the controllability is the

ability to avoid a specified harm or damage through the timely reactions of the agents

involved (e.g. the driver of the vehicle) possibly with support from external measures.

Therefore, the ASILs explicitly consider one more parameter in comparison to the

SILs, which is the ability to control failure effects. Note that, as it can be seen in Table 1,

a high controllability (class C1) can often help reduce the ASIL of the components by

2 levels in comparison to the case where the controllability is almost inexistent (class

C3).

2.3 Distinction between safety-critical, mission-critical and non-critical systems

Based on the safety assessment process presented in the previous subsections for

assigning the DAL or the SIL, it is important to make the distinction between safety-

2 A detailed description of these 3 parameters are outside the scope of this work. Please refer to ISO26262

(2011) for further details.

3 In addition to the four ASILs, the class QM (quality management) denotes no requirement to comply

with ISO26262 other than the project quality assurance requirements.

123



Real-Time Syst (2018) 54:745–795 753

Table 1 ASIL determination

for hazardous events (ISO26262

2011)

Severity class Probability class Controllability class

C1 C2 C3

S1 E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2 E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3 E1 QM QM A

E2 QM A B

E3 A B C

E4 B C DS severity class, E exposure, C

controllability

critical, mission-critical and non-critical systems. To grasp the difference between

those, it is fundamental to understand the difference between the concepts of safety

and dependability (reliability, availability and maintainability). A safety-critical sys-

tem can be understood as a system that, in case of severe failures, can lead to, e.g.,

injuries or death of individuals or group of individuals, or severe damage to envi-

ronment, in accordance to the safety assessment performed according to the project

criteria, as explained in the previous subsections. Examples of those types of sys-

tems are: aeronautic, railway and automotive systems. On the other hand, there are

certain types of systems where the safety assessment process can demonstrate that

even in a worst case failure scenario, the worst consequence that can potentially occur

is the loss of the system, without any threat to human integrity or the environment.

Mission-critical systems are commonly developed, for instance, for the space indus-

try (e.g., satellite systems). In this case, it will be the organization or business that

owns the system that will suffer the consequences of the failure, such as consider-

able financial losses. Therefore, the reliability, availability and maintainability (RAM)

properties become the key concern when designing mission-critical systems. As an

example, the reader is invited to consult Table 6-1 of standard (ECSS-Q-ST-40C

2009), which defines how the severity of potential consequences of undesirable events

shall be categorized, both in terms of safety and/or dependability. As explained in

clause 6.4.1b of ECSS-Q-ST-40C (2009), an understanding of the criteria defined in

Table 6-1 (ECSS-Q-ST-40C 2009) shall be agreed between customer and supplier.

For example, satellites developed for the European Space Agency (ESA) are typically

developed to criticality level B (similar to the aeronautic DAL-B), as defined in Table

D-1 of ECSS-Q-ST-80C (2009). Finally, non-critical systems are those types of sys-

tems where, according to the project criteria, even in a worst case failure scenario,

the consequences will be minor, thus not significantly impacting the nominal system

operation.
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3 The notion of mixed-criticality systems

Considering the process presented in the previous section for assigning the DALs,

the concept of mixed-criticality becomes straightforward to understand. A mixed-

criticality system consists of applications of different DALs coexisting in the same

system, sharing the same resources (potentially including the CPUs) but still preserving

the safety characteristics of each individual application as required by the domain-

specific safety-related standards. In addition, a MCS is first of all a critical system

for which we want simple and modular designs. All safety-related standards in every

application domain advocate the use of these principles in the design of such systems.

These guidelines can be justified in a thousand ways, but in short, a simpler design

guarantees a simpler conception phase and a simpler and thus less costly V&V, while

modularity allows for better maintainability and easier upgradability.

The high-level process explained in the previous section for assessing the criticality

of software systems is an important activity in the design of safety-critical systems, and

consequently of mixed-critical systems. Based on the understanding of this process,

one can conclude that there are two main solutions to reduce the criticality of a system

component (i.e., to reduce the risk of severe failures):

1. Avoiding the propagation of faults between different components and in particular

from low criticality components to higher criticality components;

2. Providing compensating provisions by adding effective mechanisms that could

either prevent or mitigate the effects of a failure.

It also becomes clear that improving the reliability of the software, by reducing the

risk of failures, is an essential step in the design of MCS.

Another important observation, considering the development assurance require-

ments derived from the risk assessment process described in the previous section, is

that a certain system does not change its criticality during operation. Therefore, a

mismatch in the interpretation of the concept of “system criticality” exists between

the industrial standards and the academic papers, and is further discussed in Sect. 6.2.

What happens in practice is that in the occurrence of a fault, the system may enter a

different mode of operation, where less important functions can be dropped in benefit

of the more important ones. This is related to the concept of graceful degradation,

which will be discussed later in Sects. 4.2.4 and 6.5.

4 Requirements of safety-related industrial standards applicable to the
development of MCS

After the introduction of the basic concepts, methodologies, and terminology for under-

standing and discussing MCS in Sects. 2 and 3, we summarize next key architectural

considerations and requirements extracted from three safety-related industrial stan-

dards (IEC61508, DO-178C and ISO26262) that are deemed as most relevant for the

design of MCS solutions with certification potential. We highlight the importance of

this section since most of the safety-related standards are not freely available for the
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real-time community and even for industrialists it is very difficult to get access to a

broad set of standards of several different domains.

4.1 The DO-178C

The DO-178C standard describes a set of important techniques that can be applied

during the design of avionics systems, which may prevent software failures and/or

limit or circumvent their effects on the system functions. To achieve that goal, the sys-

tem safety assessment process needs to demonstrate that the software components will

execute with sufficient independence. This independence must be ensured at the func-

tional level, i.e., during the specification of the high-level software requirements, and

at the design level, e.g., definition of common design elements, languages, and tools. If

sufficient independence between software components cannot be demonstrated (e.g.,

through partitioning), then those components will be viewed as a single software com-

ponent when assigning the software DAL. This implies that the DAL assigned to the

components will be the DAL associated with the highest failure severity category that

those components can contribute to.

Under DO-178C, the following safety-related software design methods are dis-

cussed: partitioning, dissimilarity (or redundancy), and safety monitoring. Dissimi-

larity is a design technique also referred to as multi-version software, where two or

more different software components that perform the same functions are developed

independently (Sect. 2.4.2 of DO-178C). It intends to avoid common sources of errors

to contaminate the different versions of the same component. However, in the industry

this technique is rarely applied due to its typically excessive cost and is thus not further

discussed in this paper. Partitioning and safety monitoring as described in DO-178C

are discussed in details below.

4.1.1 Partitioning

Similarly to IEC61508, DO-178C presents partitioning as one of the most important

design instruments to safety-critical systems. The decision regarding the partitioning

approach to be applied to a project must be taken during early phases of the software

development life-cycle (Sect. 2.4.1 of DO-178C) and must address the following

aspects: (i) the extent and scope of interactions that will be allowed between the

partitioned components, (ii) how to isolate the components from each other, i.e., which

protection strategy will be adopted (e.g through hardware functions or a combination

of hardware and software).

Regardless of the adopted approach, DO-178C establishes five requirements for

ensuring partitioning between the partitioned software components. The first require-

ment states that the code, input/output, or data storage areas of a software component

cannot be contaminated by another software component that belongs to a different

partition. The second requirement refers to the consumption of shared CPU time.

A partitioned software component is only allowed to consume CPU time during its

scheduled period of execution. The third requirement is related to hardware failures

within a partition. Each partition should be able to contain the fault, i.e., a fault should
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not be able to propagate to the other partitions and hence cause failure of software

components in those other partitions. The fourth requirement discusses the DAL level

of the software application that provides the partitioning functionality to the system.

This requirement states that the software that implements the partitioning functionality

should have the same or higher DAL than the highest DAL of the software compo-

nents assigned to any of the provided partitions. If the partitioning functionality is

provided via hardware, the fifth requirement requires that a safety assessment must be

performed on that hardware to ensure that in case of failure it will not cause failures

on the software partitions and consequently affect the system safety.

4.1.2 Safety monitoring

As already mentioned in Sect. 4.2.2, safety monitoring (Sect. 2.4.3 of DO-178C) is

a technique that allows the protection against specific failures through the generation

of events (e.g., alarms) and activation of protective mechanisms when the monitored

system function enters a faulty state. The safety monitoring functions can be imple-

mented by hardware, software, or a combination of both. From the safety point of

view, the safety monitor implements a safety barrier that will inhibit the failure of a

software component from propagating throughout the system and adversely affecting

its safety. Therefore, through the safety monitoring technique, the DAL level assigned

to a software component will be derived from the severity of the consequence of the

loss of the system function associated to that component. From a “schedulability”

point of view, monitors are commonly used in safety-critical operating systems for

the monitoring of the time budgets assigned to each application (or task). In case

an application exceeds its time budget, an event is raised which is dealt with at the

application level, i.e., each system may take different measures to compensate for

those violations. In DAL-B systems for instance, the system could simply provide an

indication for the user (a human or another system) that the integrity of the system

has been compromised. This can be the case of aeronautic navigation systems, where

several redundant instruments are available to aid performing the same navigation

functions. This means that in case the integrity of a certain system has been com-

promised, it is still possible to use the readings of another instrument that performs

identical functions.

DO-178C describes three important attributes that should be considered when

designing the safety monitor. The first attribute is related to the monitor DAL assign-

ment. The safety monitoring software inherits the DAL of the highest failure severity

category associated with the monitored function (similarly to the IEC61508). The sec-

ond attribute is aimed at ensuring that the monitors are designed and implemented in

such a way that it will detect the intended faults under all necessary conditions (oth-

erwise it cannot be trusted and thus becomes useless). In order to ensure that all fault

conditions are identified, an assessment of the system faults needs to be performed to

ensure that the monitor will cover all cases. The last attribute refers to the independence

between the monitoring and the monitored functions. The monitor and the protective

mechanisms triggered by the events generated by the monitoring function should not

be affected by the same failure causing the failure condition it is supposed to monitor.

For instance, a monitor that is supposed to detect non-respected timing properties of
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software components (e.g., due to starvation), cannot be subject to the same source

of blocking as the monitored tasks. In this case, the monitor and the monitored tasks

should for example be associated to different partitions.

4.2 The IEC61508

The IEC61508 (2010) is a generic safety standard widely used throughout the industry.

It serves as a common base for domain specific standards such as the ISO26262 (2011)

(automotive), or EN 50128 (2009) (railway). IEC61508 is composed of a series of eight

volumes addressing the complete safety life-cycle activities for systems comprised of

electrical/electronic/programmable electronic (E/E/PE) elements (including software)

that are used to perform safety functions. This standard defines strict rules regarding the

isolation and independence between safety related and non-safety related functions.

For instance:

“Where the software is to implement both safety and non-safety functions, then all of

the software shall be treated as safety-related, unless adequate design measures ensure

that the failures of non-safety functions cannot adversely affect safety functions.”

[Sect. 7.4.2.8 of IEC61508-3].

“Where the software is to implement safety functions of different safety integrity

levels, then all of the software shall be treated as belonging to the highest safety

integrity level, unless adequate independence between the safety functions of the

different safety integrity levels can be shown in the design. It shall be demonstrated

either (1) that independence is achieved by both in the spatial and temporal domains, or

(2) that any violation of independence is controlled. The justification for independence

shall be documented.” [Sect. 7.4.2.9 of IEC61508-3].

Under IEC61508, several safety-related software design techniques and measures

are presented as detailed below.

4.2.1 Partitioning

Partitioning is a technique that allows isolating software components from each other.

This isolation is essential for critical systems as it allows the containment of faults, as

well as the reduction of the software V&V effort. Typically, there are two approaches to

achieve partitioning between software components. The first approach is to physically

segregate the components by allocating unique hardware resources to each compo-

nent (i.e., only one software component is executed on each hardware component

composing the system). The second approach is to virtually separate the components

by establishing partitioned hardware provisions that allow multiple software compo-

nents to run on the same hardware platform.

Annex F of IEC61508-3 provides further recommendations on techniques for

achieving non-interference between software elements on a single computer. In this

context, the term “independence of execution” is used, meaning that applications

should not interfere with each other’s behaviour . This independence shall be achieved

and demonstrated in both spatial and temporal domains. Spatial isolation means that

one application shall not change data used by another application . Note that spatial
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isolation is even more important considering the fact that the highest severity software

failure modes are typically associated to data corruption (e.g., due to buffer overflows

or memory violation). Temporal isolation on the other hand shall ensure that one

application will not cause malfunction of another application by consuming too high

processor execution time or by blocking a shared resource used by other applications,

thus affecting its timing properties. In order to demonstrate the independence of exe-

cution, an analysis of the proposed design is performed to determine the causes of

execution interference in both spatial and temporal domain through the application of

the methodologies described in Sect. 2.

The standard explicitly recommends the following techniques for achieving and

demonstrating spatial independence (Sect. F.4 of IEC61508-3):

1. hardware memory protection;

2. virtual memory space;

3. rigorous design, source code and possibly object code analysis; and

4. software protection of higher integrity applications.

Ideally, data should not be passed between applications of different criticalities.

However, in practice, especially in MCS, there may be a need to exchange data between

applications of different criticalities. Considering this, the system should ensure that

higher SIL applications are able to verify the integrity of any data received from lower

SIL applications. This can be achieved, for instance, through the use of unidirectional

interfaces such as messages or pipes, rather than through shared memory.

With respect to temporal independence, the following techniques (intrinsically

related to the choice of scheduling policy) are mentioned by the standard (Sect. F.5 of

IEC61508-3):

1. Deterministic scheduling methods such as cyclic scheduling and time triggered

architectures;

2. Strict priority based scheduling by real-time executive (with mechanism to avoid

priority inversion);

3. Time fences that terminate the execution of an application in case it exceeds its

time budget;

4. Time slicing, which ensures that no process can be starved of CPU time.

However, the resource sharing protocol is also important when sharing resources

between applications, because the design shall ensure that the applications will not

malfunction due to a locked resource. Therefore, it is essential that the time required

to access a shared resource is taken into consideration when performing the timing

analysis of the system.

Note that the software functions used to provide spatial and/or temporal inde-

pendence (e.g operating system, real-time executive) shall be allocated the highest

criticality of the applications running on top of them (Sect. F.6 of IEC61508-3), since

such software represents a potential common cause of failure of the independent ele-

ments.
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4.2.2 Diverse monitor

The diverse monitor (Sect. C.3.4 of IEC61508-7) is an architectural design technique

that allows the protection against faults in software, preventing the system from enter-

ing an unsafe state. It is an external monitor, running in an independent hardware,

which continuously monitors the main application. In the occurrence of a fault, the

monitor will trigger an event (e.g., fire an alarm) so that a corrective measure can

be activated, e.g., through a restart of the monitored application or through a human

operator action. Typically, the utilization of a monitor allows to reduce the critical-

ity of the monitored application. Indeed, following the FMEA analysis of the main

application (see Sect. 2), the monitor would appear as a compensating provision that

would prevent the failure from propagating throughout the system, thus reducing the

criticality of the monitored application. However, in this case it can be considered

that the monitor “inherits” the criticality of the monitored application, because if the

monitor fails, there is typically no compensating provision to compensate for that fail-

ure. Therefore, the monitor is assigned a criticality derived from the highest severity

failure modes of the monitored applications. In short, if the monitor can be certified at

the highest criticality level, then the criticality level of the monitored component can

be reduced under the condition that an effective corrective measure is available.

4.2.3 Dynamic reconfiguration

Another architectural design technique is the dynamic reconfiguration of the system

(Sect. C.3.10 of IEC61508-7), whose objective is to maintain the system functions

operational despite an internal fault. This concept is more commonly applied to the

recovery from hardware faults, but it can also be applied to software, if the logical

architecture of the system can be mapped onto a subset of the available resources, e.g.,

through “run-time redundancy” to allow a software re-try or through redundant data,

which can reduce the severity of the consequence of an isolated failure.

4.2.4 Graceful degradation

Graceful degradation is a technique aimed at maintaining the more important system

functions available, despite failures, by dropping the less important system functions.

According to the IEC61508-7, Sect. C.3.8:

“This technique gives priorities to the various system functions to be carried out

by the system. The design ensures that if there is insufficient resources to carry out all

the system functions, the higher priority functions are carried out in preference to the

lower ones. For example, error and event logging functions may be lower priority than

system control functions, in which case system control would continue if the hardware

associated with error logging were to fail. Further, should the system control hardware

fail, but not the error logging hardware, then the error logging hardware would take

over the control function.This is predominantly applied to hardware but is applicable

to the total system including software. It must be taken into account from the topmost

design phase.”
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As it will be further discussed in Sect. 6, most of the academic works on mixed-

criticality scheduling claim to implement a graceful degradation strategy. To help

understand the discussion that we will have in Sect. 6 about that claim, note already a

few details of the quoted example:

1. The illustrative example involves a high priority function and a low priority func-

tion (i.e., it does not refer to criticality but priority).

2. The high priority task continues to run if the low priority task fails (i.e., a failure

of a low priority task does not impact on the execution of a high priority task).

3. The hardware dedicated to the low priority function is used to execute the high

priority task if the hardware of the high priority task comes to fail, thus stopping

the execution of the low priority task.

4. The example assumes a hardware failure, which leaves the system with not enough

hardware resource to serve all the software functions.

Note also that this is the only example given in the IEC61508 standard to describe

the graceful degradation concept.

4.2.5 Performance modelling

Performance modelling (Sect. C.5.20 of IEC61508-7) ensures that the system oper-

ational capacity is sufficient to meet the specified throughput and response time

requirements, considering any constraint on the use of system resources. The system

processes and their interactions are modelled, including their demanded resources (e.g.

CPU time) under average and worst-case conditions. Performance properties such as

worst-case throughput and response times of the individual system functions are then

calculated. To avoid the risk of resource starvation, the systems are often designed to

use only some fraction of the total available resources (e.g. 50%, as explained in Sect.

C.5.20 of IEC61508-7).

4.2.6 Response timing and memory constraints

It consists in determining the temporal and memory demands under average and worst-

case conditions to ensure that the system requirements will be met (Sect. C.5.22 of

IEC61508-7). One of the methods to obtain these estimates is through prototyping

and benchmarking of time critical systems. In terms of schedulability analysis, this

is the usual analysis that needs to be performed on MCS to ensure that all safety-

critical system functions will successfully meet their deadlines under the given system

constraints.

4.3 The ISO26262

ISO26262 is an adaptation of IEC61508 addressing the specific needs of the automo-

tive sector. Therefore, everything discussed in the two previous subsections is also

applicable to this standard. For instance, software partitioning aspects are addressed

in Sect. 7.4.11 and in Annex D of ISO26262-6. Mechanisms for error detection at the
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software architectural level (including monitoring techniques) are listed in Table 4 of

ISO26262-6. Several techniques for temporal and logical program sequence monitor-

ing at the hardware level are also presented in Table D.10 of ISO26262-5.

From a shared resource viewpoint, if software partitioning techniques are to be

applied, the resources shared between the partitions must be used in such a way that

the software components running on the different partitions do not interfere with each

other.

At the software architectural design level, the standard establishes that an upper

estimation of required resources for the embedded software shall be made, which

includes the execution time, the storage space (e.g. RAM for stacks and heaps) and

the communication resources.

Annex D of ISO26262-6 (ISO26262 2011) also provides some common examples

of timing and execution faults that can cause interference between software elements

of different partitions and must therefore be assessed before certifying the system:

blocking of execution, deadlocks, livelocks, incorrect allocation of execution time

and/or incorrect synchronization between software elements. To prevent or mitigate

these faults, some mechanisms are also referred such as: cyclic execution scheduling;

fixed priority based scheduling; time triggered scheduling; monitoring of processor

execution time; program sequence monitoring, and arrival rate monitoring. These

important aspects must be considered when designing a real-time scheduling algorithm

and/or a resource sharing protocol for MCS.

4.4 Final remarks

In the previous subsections, we have presented a summary of several requirements

from industrial standards that must be considered in the design of MCS. Those can be

transversally applied to several domains of application (e.g. aerospace, automotive,

railway). Although the presented safety-related industrial standards do not explic-

itly specify requirements for MCS, they do specify stringent requirements that must

be met to ensure the safety of the system, especially in terms of isolation and inde-

pendence between applications running on the same platform. Notwithstanding, the

irreversible and inevitable appearance of multi-core hardware platforms in the industry

introduces several additional challenges in terms of scheduling and resources shar-

ing, which makes the isolation and independence of the mixed-criticality applications

even more complex (and even more imperative). The requirements presented are clear

in what concerns the isolation and independence of applications, even when they

share common resources. Therefore, when designing a scheduling algorithm and/or

resource sharing protocol that is intended to be compliant with such standards, it is

necessary to provide evidences that the isolation between components is sufficient to

avoid failure propagation between them. To address these challenges, several tech-

niques have also been described that can be applied to the design of such systems,

which can support the generation of the evidences required by the certification author-

ities.

123



762 Real-Time Syst (2018) 54:745–795

5 Industry solutions for mixed-criticality systems

After presenting in the previous section the summary of relevant requirements

from safety-related standards for the design of MCS, we present two examples of

industry solutions (ARINC-653 and AUTOSAR) that meet the isolation and indepen-

dence requirements established by the previously presented industrial standards. As

explained by Burns and Davis (2013), most avionics and automotive complex embed-

ded systems are evolving to mixed-criticality systems, mainly due to increasingly

demanding non-functional requirements related to cost, space, weight, heat dissipa-

tion and power consumption. ARINC-653 and AUTOSAR provide the basic platform

for supporting MCS in avionics and automotive domains, respectively. However,

the implementation of MCS solutions based on ARINC-653 and AUTOSAR, i.e.,

solutions that can satisfy the stringent partitioning requirements, but still allowing

for efficient sharing of resources among the partitions is still a problem not fully

solved by the industry by the time this paper is being written. As explained by

Burns and Davis (2013), problems such as modelling and verification, and system

problems related to the development of necessary hardware and software run-time

controls are still currently being addressed. Therefore, with the goal of contribut-

ing to the research aimed at the resolution of those issues, we present next the

key aspects of ARINC-653 and AUTOSAR that are relevant for the development

of MCS.

5.1 ARINC-653

ARINC-653 specifies the baseline operating environment for application software run-

ning on an Integrated Modular Avionics (IMA) (Watkins and Walter 2007; Diniz and

Rufino 2005) platform or in traditional federated architectures developed according

to ARINC 700 avionics standards (ARINC 2015).

The purpose of an IMA system is to support the execution of one or more avionics

applications independently. Each application may have completely different require-

ments and thus be associated different DALs (i.e., criticalities). This separation is

achieved through the partitioning technique, which provides the functional separation

of the applications (mainly to inhibit failure propagation), as well as the facilitation

of the V&V activities. A partition is basically an environment running a program,

comprising its own data, context, configuration attributes, etc.

The primary objective of ARINC-653 is to define a general-purpose interface

between the avionics application software and the operating system (OS) running

on a avionics computer. This interface is known as the APEX (APlication/EXecutive).

The APEX defines the interfaces that allow the applications software to control the

OS scheduling, communication and status information functions. The key objectives

of the APEX interface are portability, reusability, modularity and integration of soft-

ware of multiple criticalities, i.e. it supports the co-location of software applications of

different levels of criticality. However, it is important to note that the APEX interface
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merely defines the services that the OS needs to provide. It is up to the OS provider

to implement those services.

Under ARINC-653, it is required that the hardware offers the following function-

alities to the OS: ability to restrict memory spaces, processing time and access to I/O

for each individual partition.

Although industrial solutions such as ARINC-653 exist, most of them were initially

intended for single-core platforms and must now be extended to multi-core.

The following subsections briefly describe some key functionalities specified by

ARINC-653 that are pertinent to this work.

5.1.1 Partition management

The partitioning concept is central to the ARINC-653 philosophy, whereby the

programs resident on the partitions are partitioned with respect to space (memory

partitioning) and time (temporal partitioning). The partitioned system has to be robust

enough to support applications of different criticality levels to execute in the same

core platform, without affecting each other, both spatially and temporally.

The scheduling of partitions shall be strictly deterministic over time. Based on the

configuration of the partitions, time windows are assigned to each partition which are

then activated on a time-based schedule. The schedule is fixed for a particular config-

uration. Partitions are scheduled on a fixed, cyclic basis. This provides a deterministic

scheduling methodology whereby partitions are assigned a fixed amount of CPU time.

This ensures that each partition will have uninterrupted access to common resources

during its assigned period. The scheduling configuration is done by the system inte-

grator only and thus cannot be modified during operation. The memory areas allocated

to each partition are predefined. Access outside each partition’s assigned memory area

is forbidden.

5.1.2 Process management

In ARINC-653, the term “process” is used to designate each “task” comprised within

a partition. Still, the term task is more commonly adopted within the real-time com-

munity and it is the term chosen to be used in this paper.

Considering the IMA concept, within each partition, the scheduling model defines

the tasks as the scheduling units. One or more tasks can operate concurrently to provide

the aeronautic functions required by the partition. A fixed priority is assigned to each

task. A task can be preempted at any time by another with higher priority. The tasks

may be periodic or sporadic and certain scheduling capabilities are required by the

OS to accurately control the tasks execution in order to meet the application timing

requirements. These tasks interact with the OS through the APEX interfaces and the

OS is responsible to arbitrate the tasks access to the CPU. The occurrence of a fault may

trigger an action to either initialize or terminate a task. Therefore, a method is required

to safely synchronize the access to the system’s mutually exclusive resources. The

partition code executes in user mode only, i.e. no privileged instructions are allowed.

It is also important to highlight that the above concepts are applicable to the tasks

inside a partition, i.e., tasks that have the same criticality level. Hence, the decision
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to terminate a task in case of misbehaviour is not linked with its criticality, but rather

with the application requirements.

5.1.3 Memory allocation

The partitions and their associated memory spaces are defined during system config-

uration, i.e. offline. The APEX interface does not offer memory allocation services.

The exchange of information between tasks pertaining to different partitions can be

done through buffers, which are also declared at the system configuration.

5.1.4 Intrapartition communication

Intrapartition communication is performed by means of buffers, blackboards,

semaphores, and events. Buffers and blackboards are used for general inter-process

communication, whereas semaphores and events are used for inter-process synchro-

nization. Buffers and blackboards allow processes to communicate by exchanging

messages that are directed to the respective buffers and blackboards associated with

the destination processes. The memory space required to manage buffers and black-

boards and to store messages is allocated for the partitions memory and is configured

at design time. Buffers store multiple messages in message queues, either in FIFO or

priority order. Blackboards on the other hand do not allow message queueing. Mes-

sages written to a blackboard remain there until they are either cleared or overwritten

by a new instance of the message.

5.1.5 Intepartition communication

Interpartition communication is conducted via the exchange of messages through a

channel. A message is defined as a continuous block of data of finite length. The

channels define a logical link between a source partition and one or more destination

partitions. The partitions can access the channels via defined access points designated

as ports. The ports provide the required resources that allow a partition to send and

receive messages over a specific channel. It is important to note that the destination of a

message is always a partition, and not a process within a partition. As for intrapartition

communications, interpartition communication is also performed with queues and

blackboards.

5.1.6 Time management

The OS provides time slicing for partition scheduling, deadline, periodicity, and delays

for task scheduling. Timeouts for intrapartition and interpartition communication are

also provided in order to manage time. Time is unique and independent of partition

execution. A time capacity is associated with each task that ensures that its processing

requirements are met. When a task starts, its deadline is set to the value of the current

time plus an execution time capacity.
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Fig. 2 AUTOSAR architectural overview (AUTOSAR 2011)

5.2 AUTOSAR

AUTOSAR appears as a response of the automotive industry OEMs (Original Equip-

ment Manufacturers) to the increase of complexity on vehicle applications. It is a

standardized and open software architecture that can be used for the diverse in-vehicle

systems without compromising the quality and with cost-efficiency. The software

that implements the automotive functionality is mainly encapsulated in software

components. The standardized functional interfaces (with different layers) of those

components are a central element to support scalability and transferability of automo-

tive functions across electronic control units of different vehicle platforms. AUTOSAR

achieves the standardization of functional interfaces across manufacturers and sup-

pliers and also the standardization of interfaces between different software layers.

Hardware abstraction layers are present upon these, besides the software specific ones.

The standard scope includes all vehicle domains, and serves as a platform upon

which vehicle applications can be implemented. This process aims at minimizing the

barriers between the functional domain and the mapping of functions and functional

networks, almost independently of the associated hardware. The illustration presented

in Fig. 2 describes an AUTOSAR architectural overview.

By looking at Fig. 2 bottom-up, the following layers are identified:

– Basic Software (BSW): The standardized software layer that provides the services

to the AUTOSAR application software components (functional part), including the

communication with the hardware. The functional part needs the basic software

layer to run, but the BSW layer does not perform any functional job itself. The

BSW is composed of the following sub-layers: Complex Device Drivers (CDD),

hardware abstraction (ECU4 and Microcontroller) and AUTOSAR Services. The

CDD is a loosely coupled container, where specific software implementations can

be placed. The main goal of the CDD is to provide support for complex sensors

and actuators that have special functional and timing requirements. It might also be

used to encapsulate legacy functionality of a non-AUTOSAR system (AUTOSAR

2015). The Microcontroller abstraction layer (MCAL) provides a standard inter-

4 ECU: Electronic Control Unit
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face to the components of the BSW, which avoids direct access to microcontroller

registers from higher-level software (AUTOSAR 2011). The ECU abstraction pro-

vides the software interface to the specific ECU electrical interfaces, thus removing

all the higher-level software dependencies from the underlying hardware. The Ser-

vices sub-layer is split into three main services: general services (e.g. diagnostic

protocols and memory management), communications (e.g. CAN), operating sys-

tem services (e.g. priority-based scheduling).

– Runtime Environment (RTE): RTE implements the communication functions for

inter- and intra-ECU information exchange. It provides communication abstrac-

tion to the software components attached to it at the application layer, which is

independent from whether inter-ECU communication channels (e.g. CAN) are

used or communications are intra-ECU. RTEs are ECU specific and need to be

tailored according to the communication requirements of the software components

running on top of them. Note that in the AUTOSAR concept, the RTE is the con-

cretization of the Virtual Functional Bus (VFB). The VFB is an abstraction layer

that allows the communication between different AUTOSAR Software Compo-

nents and its environment (e.g. hardware driver, OS, services, etc.) to be specified

independently from any underlying hardware (e.g. a communication system). The

advantage of this approach is that it enables the virtual integration of different

automotive software components very early in the design process.

– Software Component (SWC): the application layer is composed of interconnected

“AUTOSAR Software Components”. The AUTOSAR SWCs are atomic pieces of

software that implement part of an application, are independent of the infrastruc-

ture, and can be mapped on an ECU. Each Software Component within an ECU

encapsulates a distinct part of the overall application functionality. SWCs expose

well-defined interfaces, described and standardized within AUTOSAR.

The AUTOSAR OS standard specifies a fixed priority preemptive RTOS with sup-

port for multi-core. Some aspects of the AUTOSAR OS that are relevant to the support

of mixed-criticality are discussed in the following subsections.

5.2.1 Time partitioning

AUTOSAR requirement SRS_Os_11008 (AUTOSAR 2013) specifies that the OS

shall not allow a timing fault in any OS-Application to propagate to other applications

running on the same processor. A timing fault of a task or interrupt service routing

(ISR) occurs when: (i) the specified execution time is violated or (ii) the specified

arrival rate is violated. To ensure that a task or ISR meets its deadline in a fixed

priority preemptive operating system like AUTOSAR OS, the following protections

are necessary:

– Prevention of timing errors from the execution time of Task/ISRs in the system by

using execution time protection to guarantee a statically configured upper bound,

called the Execution Budget;

– Prevention of timing errors from the blocking time that tasks/ISRs suffers from

lower priority tasks/ISRs locking shared resources or disabling interrupts by using
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locking time protection to guarantee a statically configured upper bound, called

the Lock Budget;

– Prevention of timing errors from the inter-arrival rate of task/ISRs in the system

by using inter-arrival time protection to guarantee a statically configured lower

bound, called the Time Frame;

5.2.2 Space partitioning

AUTOSAR requirement SRS_Os_11005 (AUTOSAR 2013) specifies that the OS

shall provide the ability of partitioning OS-Applications with respect to memory and

prevent an OS-Application from modifying the memory of other OS-Applications.

However, memory protection under AUTOSAR is only possible on processors that

provide hardware support for memory protection. The memory protection scheme is

based on the (data, code and stack) sections of the executable program, as described

next:

– Stack protection: an OS-Application comprises a number of tasks and ISRs. Mem-

ory protection for the stacks of tasks and ISRs is important because it:

– provides a more immediate detection of stack overflow and underflow for the

task or ISR than can be achieved with stack monitoring;

– provides protection between constituent parts of an OS-Application, for exam-

ple to satisfy some safety constraints;

– Data protection: OS-Applications can have private data sections and tasks/ISRs

can have private data sections. OS-Application’s private data sections are shared

by all tasks/ISRs belonging to that OS-Application;

– Code protection: code sections are either private to an OS-Application or can be

shared between all OS-Applications (to use shared libraries). In the case where

code protection is not used, executing incorrect code will eventually result in a

memory, timing, or service violation.

5.2.3 Communications between applications

Since AUTOSAR requires that OS-Applications be protected against each other,

a mechanism needs to be provided to transport data between those applications.

AUTOSAR offers a communication mechanism to transfer data between OS-

Applications: the Inter OS-Application Communicator (IOC).

The IOC is part of the operating system and is responsible for the communication

between OS-Applications and in particular for the communication crossing core or

memory protection boundaries. The IOC is a third type of communication, in addi-

tion to: intra OS-Application communication (always handled within the RTE) and

inter ECU communication [already available via well defined interfaces to the com-

munication stack (COM)]. The IOC offers communication of data to another core or

between memory protected partitions with guarantee of data consistency. The IOC

provides communication buffers, queues, and protected access functions/macros to

these buffers that can be used from any pre-configured partitions concurrently.
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5.3 Final remarks

After having analysed the key aspects of the industry solutions for implementing

mixed-criticality systems, there are some important aspects that need to be highlighted.

Although the ARINC-653 and AUTOSAR approaches have some commonalities,

these standards propose very different techniques to solve the issues of independence

and isolation between applications. In ARINC-653 this goal is achieved through hier-

archical scheduling, where partitions are scheduled using a table driven approach, i.e.,

no changes can be made to the schedule during run-time, hence resulting in a sys-

tem with reduced flexibility. This scheduling policy renders the isolation extremely

robust against any timing fault. However, it also involves a complex configuration

phase where partitions must be dimensioned and the partition schedule compiled. Sys-

tem integrators must consider the timing constraints of each independent task along

with the interactions between all the different partitions, I/O devices and other shared

resources. AUTOSAR on the other hand proposes a more flexible approach, which

does not specify a specific scheduling policy, and is thus more open (or less conser-

vative); note, however, that AUTOSAR still specifies timing protection requirements

that must be provided to prevent a timing fault in any OS-Application to propagate to a

different application resident in the same processor. ARINC-653 and AUTOSAR have

similar requirements with respect to spatial partitioning and in both cases, the com-

munication between partitions/applications must be made through a protective layer,

i.e., a mechanism to transport data between applications. ARINC-653 uses messages

and channels, and AUTOSAR uses the IOC.

6 The theoretical MC model and its certification concerns

In the previous sections we have presented the main design principles and requirements

that drive the development of industrial MCS. We now move the focus of the paper to

the academic work. We will discuss one of the most prominent model adopted in the

state-of-the-art and some common misconceptions.

6.1 The state-of-the-art in academy

These last years, the real-time research community has been extremely active in

the domain of MCS. Almost 200 papers treating of the scheduling of MCS have

been referenced in Burns and Davis (2013), and tens of related papers are still

published every year. It would therefore be unrealistic to review and analyse here

the whole state-of-the-art on real-time scheduling of MCS. Instead, this section

evaluates the key concepts and approaches commonly encountered in real-time

scheduling models and algorithms against the recommendations and requirements

found in the safety-related industrial standards that were presented in the previous

sections.

Most of the works about MCS published by the real-time scheduling research

community are based on a model proposed by Vestal (2007). Therefore, we will mainly

focus on that specific model and its related work. Yet, the discussion proposed in the
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rest of this chapter is quite generic and most of the remarks made are thus valid for other

academic MC models introduced during the last decade. The Vestal model assumes

that the system has several modes of execution, say modes 1, 2, . . . , L . The application

system is a set of real-time tasks, where each task τi is characterized by a period and a

deadline (as in the usual real-time task model), an assurance level ℓi and a set of worst-

case execution time (WCET) estimates {Ci,1, Ci,2, . . . , Ci,ℓi
}, under the assumption

that Ci,1 ≤ Ci,2 ≤ · · · ≤ Ci,ℓi
. The different WCET estimates are meant to model

estimations of the WCET at different assurance levels. The worst time observed during

tests of normal operational scenarios might be used as Ci,1 whereas at each higher

assurance level the subsequent estimates Ci,2, . . . , Ci,ℓi
are assumed to be obtained

by more conservative WCET analysis techniques or by considering safety margins

imposed by certification authorities. Vestal initially studied the schedulability of the

system under such assumptions and proposed a task priority assignment algorithm

optimising the overall schedulability. In later works, solutions started to be proposed in

order to improve the schedulability of higher criticality tasks over the lower criticality

ones. Those solutions usually rely on variations of the following scheme (Baruah et al.

2011). The system starts its execution in mode 1 and all the tasks are scheduled to

execute on the core[s]. Then at runtime, if the system is running in mode k then each

time the execution budget Ci,k of a task τi is overshot, the system switches to mode

k + 1. It results from this transition from mode k to mode k + 1 that all the tasks of

criticality not greater than k (i.e., ℓi ≥ k) are suspended. Mechanisms have also been

proposed to eventually re-activate the dropped tasks at some later points in time (Santy

et al. 2013).

It must be noted that one of the derivatives/simplifications of this model is the

Vestal’s model with only two modes, usually referred to as LO and HI modes (which

stand for Low- and High-criticality modes). Multiple variations of that scheduling

scheme exist (please refer to Burns and Davis (2013) for a comprehensive survey);

some for single-core, others for multi-core architectures. In the case of multi-core,

both global and partitioned scheduling techniques have been studied. Solutions for

fixed priority scheduling, earliest deadline first, and time-triggered scheduling have

been proposed. Some works also propose to change the priorities or the periods of the

tasks during a mode change rather than simply stopping the less critical ones. Note that

we use Vestal’s model to illustrate this section as most (not all) theoretical works in

the state-of-the-art are based on similar assumptions. However, as mentioned in Burns

and Davis (2013), more practical solutions such as the EMC2 framework (Chisholm

et al. 2016; Kim et al. 2016; Chisholm et al. 2015) are also being developed in the

context of academic research. Even if those works are not directly mentioned here,

we believe that some of the concepts discussed in this section may be useful to back

up choices made in those more applied researches.

6.2 The mismatch in the notion of criticality

There is a clear mismatch of interpretation of the concept of “system critical-

ity” between the industrial standards and the academic papers based on Vestal’s

model (Vestal 2007), which use the terminology “system criticality” to refer to modes
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of execution of software tasks (e.g., high or low criticality). That is, switching from a

mode k to a mode k + 1 is usually referred to as an “increase of the system criticality

level”. Although this concept is not fundamentally wrong, it creates confusion in the

context of industrial MCS, where the term “system criticality” is used to refer to the

level of assurance (DAL or SIL or ASIL) applied in the development of a software

application that implements critical system functions, i.e., safety functions.

Therefore, there exist a misalignment in the interpretation of the notion of critically

by the MCS scientific literature and the safety-related industrial standards. We believe

that over the years this discrepancy has generated some sort of confusion, which

caused the academic work not to be fully compliant with the concept of criticality

defined in the standards. In order to address this issue, we warmly invite the reader

to consult the part 1 of the ISO26262 that clearly defines fundamental concepts that

pertain to safety-critical systems, such as “safety functions”, “safety-related systems”,

and “safety integrity level”.

6.3 Software task assurance level and the notion of importance

As a second point, in the standards the word “function” is used at the system level,

in reference to a system function, or in other words, an action that the system must

be able to perform (accelerate, break, etc.). A “function” as defined in the standard

may thus involve the whole chain of software and hardware components that play

a role in the execution of that action. It may include sensors, processing elements,

and actuators for instance, according to IEC61508. This implies the assignment of a

SIL to the whole functionality and not only the individual software functions that are

part of it. This is explicitly written in the following note associated to item 3.5.10 of

IEC61508-4 (IEC61508 2010):

“SIL characterises the overall safety function, but not any of the distinct subsystems

or elements that support that safety function. In common with any element, software

therefore has no SIL in its own right. However, it is convenient to talk about “SIL N

software” meaning “software in which confidence is justified (expressed on a scale

of 1 to 4) that the (software) element safety function will not fail due to relevant

systematic failure mechanisms when the (software) element is applied in accordance

with the instructions specified in the compliant item safety manual for the element”.

The concept of SIL is not trivial and its definition is commonly misunderstood. It

is common to think that a real-time task of higher SIL is “more important” than a

task of lower SIL (we further discuss that point in the next section). In actual systems

these tasks are part of one or several system functions and those functions are the

entities which are assigned a SIL. Therefore, a real-time task must be implemented in

accordance with the development rules defined for the SIL of the functionality to which

it belongs. If the task belongs to more than one functionality then it must naturally

be implemented in accordance with the development rules defined for the highest SIL

among the SILs of all the functionality to which it belongs. Once implemented, the

SIL of the functionality to which the software function belongs will also impact the

way the function will be deployed on the hardware architecture and it will define or

restrict its interaction with other functions.
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For example, the implementation of a system function A that has to be conform with

SIL 4 is more costly than the development of the same system function in accordance

to SIL 3. But by no means this implies that a system function A implemented at SIL

4 is more important than any other system function B implemented in accordance to

SIL 3. Irrespective of their SIL, all these functions are safety-critical and may cause

severe damage in case of failure. Therefore, a software function that is part of a high-

SIL functionality cannot be considered as “more important” than a software function

that is part of a functionality of lower SIL. Moreover, the notion of “importance”

is not explicitly defined in the safety-related standards, thus it can be considered as

subjective and/or ambiguous. Only an application designer is qualified to define which

functions are important and which ones are not, depending on the mode of operation

of the system. Therefore, a unique criteria for defining “importance” is very difficult

to establish, because it fully depends on the specific application context.

In order to further illustrate the difference between the notions of importance and

criticality, and also to illustrate why the “discarding tasks model” discussed in the

previous subsections is not the most appropriate degradation model for safety-critical

systems, a more specific example from the automotive sector is provided.

Example 1 The example is composed of two configuration scenarios, each one of them

with two fictitious automobiles: AUTO1 and AUTO2. Consider two system functions

SF1 and SF2 implemented in each car, respectively. Let us also assume that in case

of a serious failure of SF1 and SF2, both cars will be unusable, but in the case of

AUTO1 the driver is able to control the car and park it safely, whereas in the case

of AUTO2 the driver is not able to control the car, thus resulting in a serious crash.

In both cases we assume that the probability of failure of the functions are the same.

Therefore, by analysing the two scenarios involving cars AUTO1 and AUTO2, we

can conclude that both functions are important, because both of them can potentially

put the physical integrity of the passengers at risk (i.e. harm) in case of failure. Let

us assume that a risk assessment was performed for each scenario to determine the

criticality (or ASIL) of functions SF1 and SF2. As previously shown in Table 1, the

ASIL resulting from the risk assessment is a function of three parameters: probability

of exposure, the controllability, and the severity of the hazardous events with regard to

the item under analysis, i.e., SF1 and SF2 in our example. Now let us assume that as

a result of the risk assessment, SF1 was assigned with severity class S3,5 probability

class E46 and controllability class C2,7 thus leading to the assignment of ASIL C. SF2

was also assigned with severity class S3, probability class E4, but with controllability

class C3,8 thus leading to the assignment of ASIL D. As described in this example,

even though SF1 and SF2 have the same severity and probability classes, they differ

in the controllability classes, i.e., when SF1 fails, the driver is normally able to control

the vehicle, whereas in case SF2 fails, the driver is not able to control it. Through this

example, we can highlight the following important observations:

5 S3: life-threatening injuries (survival uncertain), fatal injuries;

6 E4: high probability;

7 C2: normally controllable;

8 C3: difficult to control or uncontrollable.
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– The software tasks that implement the automotive function SF2 cannot be con-

sidered more important than the software tasks that implement the automotive

function SF1, because both lead to failure conditions with the same severity class.

Hence, the criticality of each task is not assigned just as a function of its impor-

tance for the system, the probability of occurrence, the severity of its failure, or

the capacity of the system to recover from its loss. It is instead the result of an

analysis combining all those different factors (e.g. by combining FMEA and FTA)

that will define the criticality, and consequently all the requirements and rules that

will have to be respected during the development process;

– Several academic works have followed the approach of associating a lower priority

to lower criticality tasks, which introduces limitations to the model, because lower

criticality tasks also implement functions whose effects can cause harm to the

system users in case of failure;

– In the definition of a MCS model with certification potential for use in the industry,

we have to dissociate the concepts of importance and criticality; as shown in the

example, sometimes it is not always acceptable from the system perspective to

stop (either permanently or temporarily) a less critical task in favour of a critical

task with higher criticality, because both of them are important to ensure the

safety of the system. Therefore, from a certification point of view, it would be

extremely difficult to justify and demonstrate the scenarios under which it would

be acceptable to stop a lower criticality task in favour of a high criticality one.

Example 2 Now let’s discuss even further the notions of importance and criticality

by analysing a generic industrial scenario, based on the example from IEC61508-7

provided in Sect. 4.2.4 of this paper and illustrated in Fig. 3. In that example we have

two system functions: a system control function (SC1) whose software runs on its

associated hardware (HW A) and an error and logging function (EL1) whose software

runs on another hardware (HW B). These two functions are clearly not isolated because

they exchange data between each other (Fig. 3a). Normally EL1 sends data to SC1

in order to improve the quality of control of the system. The system control function

is typically assigned the highest criticality level applicable to the system, because it

implements essential functions that in case of failures can lead to severe consequences.

Due to the fact that EL1 is not isolated from SC1, it will inherit the criticality of SC1,

i.e., the highest level. When a failure in HW A occurs (Fig. 3b), the system can be

reconfigured, by stopping EL1 (non-essential function) and switching the execution

of SC1 to HW B. Through this example, we can highlight the following important

observations:

– Contrary to the approach adopted by the Vestal model, the example illustrates

that in some scenarios it is possible sometimes to suspend a high criticality task

of lower importance in favour of a task of the same criticality level with higher

importance. Therefore, provided that the safety analysis (e.g. FMEA) shows that

there will be no safety consequences to the system, it is possible sometimes to stop

a high criticality task;

– In safety-critical systems, the decision of which task can be stopped during run-

time must be taken during design time and must rely on the risk assessment
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(b) Stopping a high criticality function (logging)

Fig. 3 Example of a generic industrial scenario

performed, which will map beforehand all the possible events that can trigger

such suspension. In the example provided, the conditions to be met (e.g. hardware

failure) that allow the logging function to be stopped are typically identified during

design time, based on the analysis of this potential failure mode (e.g. by means of

a FMEA).

To conclude, different SILs (or ASILs) do not mean different importance. Tasks

of different SILs are simply subject to different development requirements but the

isolation and independence between them still has to be preserved and guaranteed to

ensure safety. Therefore, the conditions that can trigger the suspension of some task

in favour of another must always be identified during design time and justified by a

risk assessment. Note, however, that the approach adopted by the Vestal model works

fine for dual criticality systems where one can have critical tasks (e.g., DAL A, B

or C, or ASIL D, C or B) and non critical tasks (e.g., DAL D or E or ASIL QM) in

the same system. In that case, low criticality tasks are also less important than high

criticality ones. The equivalence disappears when a system is composed of tasks of
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several criticality levels (e.g. DAL A, B and C, or ASIL D, C and B). In that latter

case, a DAL C task is not necessarily less important than a DAL B task.

6.4 Assigning different WCET estimates

Different SIL imposes different development rules, including coding rules. Although

the consequences of timing violations could potentially be less severe for tasks of

applications of lower SIL (yet, not always as discussed in Sect. 6.3), there is no rec-

ommendations in the safety-related standards that advocate the use of specific WCET

estimation techniques. The standards simply recommends more rigorous testing meth-

ods for higher SILs to demonstrate the timing performance of the safety mechanisms

at the system level (see Table 11 of ISO26262-4). In contrast, the paper from Vestal

(2007) and all the academic works based on it assume that the higher the degree of

assurance of a task, the more pessimistic the estimation of its WCET. Although this

assumption is perfectly relevant (since a more pessimistic estimate may be understood

as more reliable), it does not equate to the recommendations of the standards. More

rigorous testing could also be understood as a method to achieve less pessimistic esti-

mates (according to the usual trade-off between accuracy and runtime complexity of

most of computation techniques). As shown in the automotive example in the previous

section, it would not be an appropriate design decision to apply a greater WCET mar-

gin to the tasks that implement the automotive function SF1 (ASIL C), just because

it has a lower ASIL than automotive function SF2 (ASIL D). As demonstrated in that

example, both functions have the potential to cause harm to the car passengers in

the occurrence of a hazardous event with the same probability level. Therefore, from

the safety perspective such design option would be very difficult to justify toward

the certification authority. Furthermore, one could even say that by applying a lower

WCET margin to the tasks that implement the lower ASIL function as done in the

Vestal model, we would be in fact increasing the probability of failure of the function

of lower ASIL in relation to the higher ASIL function (through increasing the proba-

bility of overshooting its time budget), which would require a re-evaluation of the risk

assessment matrix of the system.

Although this strategy for determining the WCET is valid in the conjecture of

Vestal’s paper, the most important aspect from the safety point of view that needs

to be considered is that the accurate determination of the WCET upper-bound is a

necessary but not sufficient condition to ensure the safety of the overall system (see

further discussion in Sect. 8.6). In addition to that, mechanisms must be implemented

to handle a task overshooting its execution budget without impacting on the system

safety.

Exceeding the allocated budget is an obvious failure condition identified during

the FMEA of any real-time embedded system. This failure condition can lead to a

system failure that can potentially trigger a system hazard. Therefore, more important

than accurate estimations of the WCET is the design of mechanisms to ensure that the

system safety is not compromised in case of an excessive use of processor resources.

In the next section we discuss some of the techniques proposed in the literature for

handling those budget violations.
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6.5 Graceful degradation

The plethora of work based on Vestal’s model could be understood by its resem-

blance with the graceful degradation technique described in IEC61508. However, as

discussed in Sect. 4.2.4 and illustrated in Example 2, this technique aims at dropping

the less important system functions, and not the ones with lower criticality. Hence,

graceful degradation allows the system to enter a degraded mode of operation where

limited service is provided, without compromising the safety or survival of the sys-

tem.

Graceful degradation is a technique that lends itself very nicely for the scheduling

of MCS. However, in the context of MCS, the decision to suspend a less important

task in favour of another more important one in the event of a critical fault (e.g., budget

overshooting) must be supported by analyses performed during design time, including

a risk assessment.

Considering the above explanation and all the concepts presented so far, it becomes

clear that a safety-critical system does not “change” its criticality during operation.

In practice, what can happen is that a system, during certain specific operational con-

ditions (e.g. in case of a major failure), can enter a certain mode of operation where

some or all of the non-essential system functions, i.e., those that are not required to

ensure the safety and survival of the system, may be stopped, and potentially reac-

tivated later. This principle is commonly applied in the space sector, for instance.

Whenever a satellite has a major failure it may enter the so called safe mode, where

only the essential functions (e.g platform survival functions such as the power and

communication subsystems) are kept active, whilst other non-essential functions (e.g.

scientific instrument data collection) are deactivated.

6.6 Timing isolation

Most of the theoretical works previously cited are mainly concerned about fulfilling

the tasks’ requirements in terms of execution time based on accurate WCET estimation

techniques, as discussed in Sect. 6.4. However, if we aim towards a MCS model with

certification potential, there are also other aspects that need to be considered to achieve

timing isolation between applications. For instance, as stated by AUTOSAR (see

Sect. 5.2), the period of activation of a task is an important parameter that needs to

be taken into account. A violation of the assumptions associated to this parameter

could cause the propagation of faults that could affect the timing properties of other

applications residing in the same processor. This is, in fact, one of the limitations of the

Vestal model, which assumes that the minimal inter-arrival times are always respected.

However, this may not always be the case in industrial systems, which in many cases

have to withstand very demanding operational conditions. Therefore, it becomes clear

that a mechanism to encapsulate the applications is required to ensure their timing

properties under all operational scenarios (i.e., nominal and non-nominal).

In addition, AUTOSAR allows tasks of different criticality to execute on the same

platform, provided that a higher-criticality task gets a higher priority than a lower-

criticality task, and provided that inversion effects are excluded (Ernst and Natale
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Fig. 4 Analysis of tasks isolation in the Vestal model

2016). In that case timing isolation is ensured, since a lower-priority task cannot delay

a high-priority one. However, the typical scenario of most of the theoretical works

previously cited that are based on the Vestal model do not enforce this restriction,

thus violating the timing isolation. An additional example is provided to illustrate this

scenario.

Example 3 Our example scenario is composed of a single-core processor and a sched-

uler running two tasks with different criticalities, one of them being the low criticality

task (LC) and the other the high criticality task (HC), as shown in Fig. 4a. By adopt-

ing a typical safety-analysis industrial approach to identify and evaluate systematic

failures, we perform a simple Failure Modes and Effects Analysis (FMEA) on this

system by injecting a potential fault in the LC task, according to the process described

in Sect. 2, and shown in Fig. 4b. It is important to highlight that when applying this

process we try to brake some fundamental assumptions about the operational scenario.

The failure mode we analyse in this example is a sudden change in the period of the

external event that activates the LC task. This event is supposed to be periodic or

sporadic, but for some reason the reaction time becomes uncontrolled and the event

is activated more often than it is supposed to. As a consequence, the immediate local

effect is an unexpected change in the period of the LC task. Due to the fact that the
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two tasks run on the same core and are scheduled by the same scheduler that does

not implement any type of time partitioning, the change of period of the LC task may

alter the response time of the HC task (if the LC task has a higher priority than the HC

task, which is permitted in the model). In the FMEA analysis, the failure modes are

evaluated based on a worst case scenario and in this case, the HC task would miss its

deadline, thus leading to a failure of the highest severity applicable to the system under

analysis. Since isolation between LC and HC cannot be ensured, the LC task would

inherit the criticality of the HC task and both of them would need to be developed to

the highest level of assurance of the system, missing the initial objective of having a

mixed-criticality system.

As explained in Example 3, the most commonly adopted MCS theoretical model

raises concerns in terms of tasks isolation. Therefore, in the safety-critical domain, it

will be extremely difficult to prove to the certification authorities that the timing prop-

erties of higher criticality tasks will hold even under the most unfavourable scenarios.

Note that if the Vestal model did impose the restriction of assigning higher priorities

to higher-criticality tasks, then there would not be any justification for dropping lower

criticality tasks, since they could not delay the higher-criticality ones anyway.

On the other hand, this model can potentially be very useful for the development of

systems that are not safety-critical (e.g. some types of mission critical or non-critical

systems—see Sect. 2.3) and that don’t have so strict requirements in terms of timing

isolation as required by the safety-related standards. In a non safety-related system, the

idea of suspending less important tasks in favour of more important ones is perfectly

acceptable, since in a worst case, only the quality of the service provided to the end

users will experience some level of degradation. Hence, a possible application of that

model would be to ensure the quality of service (QoS) of a non-safety-critical system,

where it would be perfectly acceptable to suspend less important tasks of the system

in favour of more important ones.

In conclusion, several other parameters than the WCET need to be considered when

designing MCS with certification potential. The theoretical MCS model commonly

adopted has several limitations in terms of timing isolation of tasks developed with

different levels of assurance. An industrial MCS should be capable of mitigating or

isolating any timing fault. However, the model can still be useful for the development

of non safety-related systems, such as the ones that need to ensure different levels of

QoS of tasks with different priorities (e.g., mission-critical or non-critical-systems).

7 Desirable requirements of a MCS model

In the previous sections we have reviewed the MCS concept and requirements in

light of the safety-related industrial standards; although those standards do not always

clearly and explicitly specify the requirements for mixed-criticality systems, we have

researched and analysed the requirements and techniques specified by those standards

that are applicable to the development of MCS; we have also discussed several miscon-

ceptions that currently exist in the real-time system scheduling models and algorithms.

Considering all that previous discussion, and aiming to fill this gap between the MCS

concept and the safety-related standards, we have compiled a brief set of essential
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requirements that define the key desirable functions and characteristics towards a

MCS model with enhanced certification potential.

7.1 Time partitioning

TP.01—time budget

Real-time tasks shall shall not be allowed to exceed their reserved time budget (CPU

time).

Note: In a MCS it is possible to have either “critical” or “non-critical” real-time

tasks. The term “critical” is used here to denote the tasks of the system that have

safety implications, as determined by the project’s risk assessment process and criteria.

Nevertheless, the requirement is still applicable to both categories. Note also that

no specific technique to ensure temporal independence of the tasks (e.g. scheduling

policy) is purposely mentioned to keep the requirement as generic as possible.

TP.02—inter-arrival rate

Real-time tasks shall respect their inter-arrival rates.

Note: In order to ensure that the tasks can meet their deadlines, the operating sys-

tem must control at runtime the tasks inter-arrival rates, time budget (see TP.01) and

blocking times (see SR.01 and SR.02).

TP.03—protection against timing failure propagation

In case a real-time task malfunctions (i.e. does not fulfils requirements TP.01 and

TP.02), either by consuming its reserved time budget without meeting its deadline,

or by suffering from over-activation, it shall not affect the timing properties of other

tasks running in other partitions.

Note: The detection of such failures shall be performed by the safety monitoring

function described in Sect. 7.6.

TP.05—time partitioning software development assurance level

The software that implements the time partitioning function shall be developed with

the highest level of assurance required by the system, i.e. it shall be assigned the

highest applicable criticality level.

Requirement Rationale: It is foreseen that this software function will normally be

implemented by the scheduler.

7.2 Space partitioning

SP.01—logical isolation

All system tasks shall respect their own assigned memory space and shall not be

allowed to modify data in the memory space assigned to other tasks.

Requirement Rationale: Isolation is required to protect at least the tasks data, code

and stack.
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SP.02—hardware enforced protection

In order to ensure the isolation of the multiple individual partitions, the underlying

hardware shall be able to: restrict memory spaces, processing time, and access to

input/output (I/O).

SP.03—memory space definition

The configuration of the memory partitions and their respective sizes shall be defined

at design time.

Requirement Rationale: For safety reasons the configuration of the memory partitions

shall not be modified at runtime and are hence defined offline.

7.3 Handling of shared resources

SR.01—intra-partition shared resources

A resource sharing protocol shall ensure that the time required to access resources that

are shared within a partition is deterministic and predictable.

Requirement Rationale: An upper bound for the blocking time when accessing shared

resources within a partition shall be determined and taken into account during the

schedulability analysis of the tasks within a partition.

SR.02—inter-partition shared resources

A resource sharing protocol shall ensure that the time required to access resources that

are shared between partitions is deterministic and predictable.

Requirement Rationale: An upper bound for the blocking time when accessing inter-

partition shared resources shall be determined and taken into account during the

schedulability analysis of the time partitions.

SR.03—budget expiration before resource access

A task whose budget expires while waiting for a shared resource shall not be allowed

to request access again until its budget is replenished.

Requirement Rationale: Otherwise the other waiting tasks would suffer an unaccept-

able blocking time.

7.4 Management of modes of operation

MO.01—change of modes of operation

The system shall be allowed to change between different modes of operation without

compromising the safety of the system.

Requirement Rationale: Different modes of operation are normally required by mixed-

criticality systems in order for the system to able to react to external events (e.g. sensor

reading) and internal events (e.g. hardware failure) in accordance with the project

requirements. However, the safety properties of the system must be ensured at all
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times (including the timing properties of the tasks), by ensuring that the essential

critical system functions remain operational under all circumstances.

7.5 Graceful degradation

GD.01—safe graceful degradation

The system shall be allowed to change to degraded modes of operation by suspending

only the non-essential tasks required for safe operation.

Requirement Rationale: The operation in degraded mode may be required by the

system in case a critical fault occurs. However, only tasks that don’t have safety

implications (less important) are allowed to be suspended.

GD.02—task suspension

The definition of which tasks may be allowed to be suspended during runtime shall

be defined during design time.

Requirement Rationale: In the event of a critical fault that triggers a transition to a

degraded mode of operation, the selection of which tasks will be suspended shall have

been pre-defined during design time.

7.6 Safety monitoring

SM.01—fault analysis

A fault analysis shall be performed to ensure that all potential failure conditions that

are required to be monitored are identified.

SM.02—monitoring function assurance level

The monitoring function (hardware and software) shall be developed with the assur-

ance level of the highest failure severity category associated with the monitored

function.

SM.03—isolation between monitoring and monitored functions

The monitoring function shall not be affected by failures of the monitored function,

i.e., the same failures it is supposed to monitor.

Note: This can be achieved, for instance, by assigning the monitoring and monitored

functions to different partitions, which could be even allocated to different hardware.

SM.04—detection of timing failures

If a task timing violation occurs, the operating system shall be able to detect the

violation and shall generate an event that shall be handled at the application level.

Requirement Rationale: If a timing violation occurs it means that the integrity of the

system has been compromised; the decision on how to deal with it (e.g. activation

of protective mechanism) is project specific and shall be handled at the application

level.
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Table 2 Traceability matrix

Req. ID Req. title Section/solution

TP.01 Time budget 8.1

TP.02 Inter-arrival rate 8.1

TP.03 Protection against timing failure propagation 8.1

TP.04 Time partitioning software development

assurance level

8.1

SP.01 Logical isolation Hardware support

SP.02 Hardware enforced protection Hardware support

SP.03 Memory space definition Hardware support

SR.01 Intra-partition shared resources 8.4

SR.02 Inter-partition shared resources 8.4

SR.03 Budget expiration before resource access 8.4

MO.01 Change of modes of operation 8.2

GD.01 Safe graceful degradation 8.2, 8.3

GD.02 Task suspension 8.2

SM.01 Fault analysis 8.5

SM.02 Monitoring function assurance level 8.5

SM.03 Isolation between monitoring and monitored

functions

8.5

SM.04 Detection of timing failures 8.5

8 Potentially certifiable academic solutions and open problems

In Sect. 6 we focused our analysis on the academic solutions that are based on the

theoretical MCS model originally based on the Vestal model, and have presented

arguments demonstrating the limitations of those solutions in complying with the

requirements of safety-related standards. Then in the previous section we have com-

piled a general set of desirable requirements for implementing MCS solutions with

certification potential. Next we proceed to the identification of existing state-of-the-

art solutions that are potentially good candidates to comply with those requirements,

i.e., academic solutions that have good certification potential. We have also created

a traceability (Table 2) between the MCS requirements and the respective academic

solution addressing the requirement. The goal is to demonstrate that several existing

state-of-the-art academic solutions can fulfil several of those requirements, despite

the fact that combining or integrating those individual solutions into a complete MCS

solution compliant with the standards may not be at all straightforward to achieve,

and is still under investigation by both the industry and academy. It is also important

to note that space partitioning is addressed by requirements SP.01 to SP.03. Due to

the high level of trust that is required to perform this function (e.g. physical or virtual

memory address protection), the only means to achieve the desired levels of reliability

to ensure safety is through hardware support features, whose discussion is outside the

scope of this work.
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8.1 Resource reservation

8.1.1 Hierarchical scheduling

Resource reservation under hierarchical scheduling is another technique that lends

itself very nicely for the scheduling of MCS, because it allows for strong time par-

titioning between applications. These techniques limits the effects of overruns in

applications with variable computation times, where each application is assigned a

fraction of the available resources, which is enough to satisfy their timing constraints.

As explained in Lipari and Bini (2005), many techniques have been proposed for

extending resource reservation to hierarchical scheduling. These techniques that allow

reservation of processing resources (CPU time) build on the concept of server as the

main schedulable entity. These techniques limits the effects of overruns in applica-

tions with variable computation times, where each application is assigned a fraction

of the available resources, which is enough to satisfy their timing constraints. It is the

real-time operating system responsibility to ensure temporal protection between appli-

cations, i.e. that each application does not consume more than the allocated amount of

CPU. Therefore, an application which is allocated a fraction Bi of the total processor

bandwidth behaves as if it were executing alone on a slower processor with a speed

equal to Bi times the total processor speed.

A server is characterized by two tunable parameters (Qi , Pi ), where Qi is the server

maximum budget and Pi is the server replenishment period. The ratio Bi = Qi/Pi is

known as the server bandwidth. According to the resource reservation technique, one

or more tasks τi can be attached to a server Si . Whenever the scheduler chooses to run

Si , one of the tasks assigned to Si is executing and the budget is decreasing. Once the

budget runs out the task cannot execute any more. The server’s budget is replenished

periodically every Pi time units.

The advantage of this method is that the isolation of each task is guaranteed at the

CPU core level, i.e., the respect of their deadlines do not depend on the behaviour

of other tasks associated to other servers as they always receive their reserved band-

width. Therefore, hierarchical scheduling is a technique that naturally fulfils the time

partitioning needs of MCS, which have been expressed in requirements TP.01 to TP.03

(see Table 2).

Although this method is very effective to achieve predictability in a platform where

hard, soft and non-real time coexist, the overall system performance is very dependent

on the correct computation and optimisation of the bandwidth allocation. For instance,

if the CPU bandwidth allocated to a task is too small, then some tasks served by the

server might not be able to respect all their deadlines. On the other hand, if the allocated

bandwidth is larger than the actual task needs, the system may become underutilized,

thus wasting valuable system resources. Therefore, a trade-off needs to be performed

to ensure an acceptable level of performance, but still ensuring the safety properties

of the system.

Several state-of-the-art solutions exist that implement resource reservation schemes

for both single-core and multi-core platforms. Several of them are addressed in Burns
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and Davis (2013), including: Checconi et al. (2009), Davis and Burns (2005), and

Lipari and Bini (2005).

8.1.2 Time-triggered scheduling

Currently, time-triggered (TT) scheduling is a common technique used in many safety-

critical systems (e.g. aeronautic systems—see Sect. 5.1). In TT scheduling, the entire

schedule is built off-line, during design time. During run-time, tasks are then acti-

vated at pre-defined instants of time. Under this approach, predictability and timing

isolation are strictly ensured, thus easing the system certification process. The main

challenge of this approach is the generation of a schedule that satisfies the require-

ments of all safety-critical applications that need to run on the system (Puffitsch et al.

2015).

8.2 Multi-mode scheduling

Multi-mode scheduling has similarities with the Vestal model, but it is actually more

generic and hence has more potential to fulfil the MCS requirements specified in

Sect. 7. Multi-mode scheduling focuses on real-time systems wherein the executing

task set may undergo a structural change at runtime, which may include a modification

of the task parameters, removing one or multiple tasks, and/or adding one or multiple

tasks to the system. Such a reconfiguration may be imposed by a change in the physical

environment, or requested to maintain system operation. For example in an avionics

system, the tasks that must execute during taxing are different from those that must

execute during flying.

Systems in which tasks may be updated and/or replaced for other tasks are organized

in different “modes”. Each mode comprises a set of tasks and the entire system is thus

called a “multi-mode” system. During the execution of such systems, switching from

the current mode to any other mode requires to substitute the currently executing set of

tasks with that of the new mode. This substitution introduces a transient phase during

which tasks of both the old and new modes may run and be scheduled concurrently,

thereby leading to a possible overload that can compromise the system schedulability,

even if both the old and new modes have been asserted schedulable separately. When

developing MCS, these multi-mode system models and their mode-switching protocols

and analysis techniques could be used to preserve and guarantee the timing properties

of all the tasks in the system while performing a mode change (to meet the requirement

MO.01 described in the previous section). Moreover, the mode change solution is

capable of ensuring that the tasks that have not been suspended (essential tasks) or

re-activated (non-essential tasks) will still meet all their deadlines. Therefore, multi-

mode scheduling is a good solution to achieve safe graceful degradation during the

MCS operation, thus fulfilling also requirements GD.01 and GD.02.

In the past years, researchers have proposed multiple protocols to decide when a task

in a new mode can be activated and start running (Ahmed et al. 2012; Junsung Kim et al.

2012; Goossens and Richard 2013; Nelis et al. 2011; Rattanatamrong and Fortes 2011;

Phan et al. 2010; Hang and Hansson 2012; Lee and Shin 2013). Burns (Burns 2014),
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for instance, presents a comparison of Vestal’s model with mode-change and how they

relate to each other. Researchers have also proposed analysis methods that can prove,

for a given scheduling algorithm in each mode and a given mode-change protocol, that

the timing requirements of all the tasks will always be met. The scheduling problem

during a transition between modes is manyfold and its complexity depends on the

behaviour and requirements of the tasks in the old and new mode when a mode change

is initiated.

8.3 Elastic task model

To fit with industrial requirements, several research works focus on the elastic tasks

model instead of the discarding tasks model (Buttazzo et al. 1998, 2002; Buttazzo

and Abeni 2002). Under this framework, periodic tasks can change their execution

time based on the system load. System overload conditions can be handled in a more

flexible manner, by degrading the quality of service through the adaptation of the

tasks’ periods.

8.4 Resource sharing protocols

As previously explained, an MCS implementation that complies with the safety-related

standards must allow independent development teams (e.g. subcontractors) to produce

software applications that are further integrated to form a complete final product. To

achieve this goal, it is desirable that the timing behaviour of the several subsystems

be independent, even if they share mutually exclusive resources (e.g. semaphores

or mutexes). This need is reflected in requirements SR.01 to SR.03, which can be

effectively addressed by state-of-the-art resource sharing protocols (see mapping in

Table 2), which are briefly discussed hereafter.

Resource control policies for single-core processors are well established and devel-

oped (Sha et al. 1990; Audsley et al. 1995; Baker 1991). These protocols are compliant

with the standards and most of them are either partially or fully supported by the exist-

ing industrial solutions and therefore this is not an open problem any more. Most of

the existing solutions for resource sharing in multi-core are extensions of single-core

approaches (Rajkumar et al. 1988; Rajkumar 1990; Chen and Tripathi 1994; López

et al. 2004; Gai et al. 2001; Lakshmanan et al. 2009; Easwaran and Andersson 2009).

Fewer solutions were conceived specifically for multi-core (Devi et al. 2006; Block

et al. 2007).

When hierarchical scheduling is involved, the problem becomes more complex

because it must be ensured that one task in a server Sa that shares resources with another

task in server Sb does not suffer from unbounded blocking when trying to access the

resource. Several solutions exist that implement resource sharing with time partitioning

such as Faggioli et al. (2010), Inam et al. (2014), Biondi et al. (2013), Bertogna et al.

(2009), and Davis and Burns (2006). The solution proposed in Brandenburg (2014)

has been specifically designed for MCS.

When combining resource sharing protocols with servers, one of the most important

problem that needs to be addressed is related to the exhaustion of a server’s budget
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when one of its served tasks is executing a critical section (i.e. an inter-partition

shared resource). Several approaches to solve this problem have been proposed. The

first solution is to allow the server to consume some extra budget until the served task

finalizes the execution of the critical section (Abeni and Buttazzo 2004; Davis and

Burns 2006; Behnam et al. 2008, 2010). However, allowing such extra bandwidth

requirement violates the servers’ temporal isolation property. Another solution to this

problem was proposed in the SIRAP protocol (Behnam et al. 2007). SIRAP introduces

a budget check before access to the shared resource is granted, i.e. if the servers budget

is not sufficient for one of its executing tasks to complete the execution of a critical

section, the access to the resource is only allowed after the next budget replenishment.

The disadvantage of this approach is that it penalizes the response time of the served

tasks. A third solution to this problem was proposed by the BROE (Bounded-Delay

Resource Open Environment) approach (Bertogna et al. 2009). Under BROE, when a

task attempts to access a critical section and the budget is not sufficient, the full budget

is replenished at the earliest possible time, so that both the server and the maximum

task response time is preserved. More recently, the synchronous mixed-criticality IPC

protocol(MC-IPC) (Brandenburg 2014) has been proposed. MC-IPC servers use the

concept of bandwidth inheritance: with that solution, one server may undertake the

processing of a resource critical section on behalf of another task assigned to another

server.

Therefore, the problem of sharing resources within a time partition (see requirement

SR.01) is reduced to a single-core problem and can effectively be addressed by the

consolidated single-core protocols previously referred. When considering resources

sharing between partitions (see requirements SR.02 and SR.03), the problem becomes

more complex and although several solutions exist, only MC-IPC (Brandenburg 2014)

effectively addresses MCS by ensuring logical and temporal isolation of tasks of differ-

ent criticalities. However, even though this solution is quite promising and has a series

of advantages, it still needs to be tested and validated in the field with real systems (e.g.

avionics or automotive) and then undergo evaluation by certification authorities. In this

process, some disadvantages are foreseen, such as the high migration cost of the server

that encapsulates the resources shared between partitions (due to bandwidth inheri-

tance) and the overall complexity of the solution, which will make the construction of

the safety argument not straightforward to achieve, in order to successfully convince

the certification authorities. Hence, a solution that combines resource sharing with

servers still remains an important research direction in the context of MCS.

8.5 Runtime verification

In the past twenty years, Runtime Verification (RV) has been growing considerably

and became widely recognized as a discipline (Leucker and Schallhart 2009), in the

broader area of formal verification. It has a special place as a complement for the

more traditional static approaches, such as Model Checking (Baier and Katoen 2008)

and Theorem Proving (Bertot and Castéran 2004). RV can be seen as a side prod-

uct of Model Checking with Runtime Monitoring as the supporting technology. RV

consists in enriching a target system with monitors capable of observing the system
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behaviour by means of the analysis of finite traces of events resulting from its exe-

cution. Differently from runtime monitoring, RV verifies that the requirements of the

system and/or some of its components are respected at runtime. Those requirements

are defined using well-formed and semantically sound specifications written in a for-

mal language of choice, e.g., Linear Temporal Logic, Regular Expressions, etc. The

monitors can then be automatically generated using formally correct methods, which

ensure that whatever may cause the requirement to not be observed, the anomaly will

always be detected. The monitors can be used to detect and sometimes predict errors,

faults, failures or simply abnormal deviations from the expected system behaviour.

That information can finally be used to provide compensating provisions (and thus

satisfying requirement SM.04), which may for instance implement graceful degrada-

tion, trigger a mode change, deactivate or isolate the faulty component.

RT-MaC (Sammapun et al. 2005) is a good example of a complete runtime verifica-

tion solution. The RT-MaC system is a real-time extension of its precursor MaC (Kim

et al. 2002). RT-MaC allows to define functional requirements, time-bound conditions

and probabilistic properties to be verified at runtime. Many other RV frameworks

are described in the state-of-the-art, some of which became commercially available.

Notorious examples are Eagle (d’Amorim and Havelund 2005), Time Rover,9 MOP

(Chen and Roşu 2007), RMOR (Havelund 2008), RuleR (Barringer et al. 2009) and

RV-Monitor (Luo et al. 2014). MOP and RuleR for instance have the flexibility to allow

users to define RV specifications using different input formal languages, which makes

these platforms very flexible depending on the target system they intend to monitor.

Their major drawback though is their intrusiveness. Most of those frameworks add

calls to verification procedures into the application code. This modification of the tar-

get application may be problematic in safety critical systems if it is not planned from

the very beginning of the system design. Furthermore, they do not ensure isolation

between the monitors and the monitored application. Hence, a failure of the moni-

tored application may very well impact the capability of the monitor to detect that

failure.

The isolation problem for runtime verification in MCS has been recently studied in

Nelissen et al. (2015). A runtime monitoring architecture was proposed as a variation

of Chodrow et al. (1991). The presented solution allows for a complete time and space

isolation between monitors and the monitored applications if implemented on top of

a hierarchical scheduling framework, hence complying with requirement SM.03.

Therefore, if runtime verification technique is integrated early in the system design

process, it can be a good candidate software solution (thus covering SM.03) for veri-

fying if the timing requirements of a MCS are satisfied during runtime (thus covering

requirement SM.04). It was also previously discussed that runtime verification can

also provide good independence between monitoring and monitored application if

implemented on top of a hierarchical scheduling framework, as required by SM.03.

Requirements SM.01 and SM.02 are related to the development assurance process,

but the activities therein specified still need to be performed for achieving a solution

that is compliant with the safety related standards.

9 http://www.time-rover.com.
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8.6 Assignment of a software failure rate

Recent research on the mixed-criticality scheduling theory have introduced the concept

of probabilistic WCET (Davis et al. 2014), which can be understood as the “proba-

bility of violating a timing requirement”. In this model, from a mathematical point of

view the WCET of a task is no longer a single rigid value. Rather, the model provides

a threshold, i.e., an upper-bound on the execution time, that has a given probability of

being exceeded at runtime. Informally, the rational behind the introduction of proba-

bilities in the model is the assumption that if the probability of exceeding that threshold

is shown to be smaller than the probability of experiencing an irreversible failure (like

an irreversible hardware failure for instance), then that threshold can be used as a

“safe” estimate of the WCET. Recent papers present various techniques to derive such

probabilistic WCET (Abella et al. 2014). In those papers the target probabilities are

either taken directly from the probabilities of failure of a safety function allocated

to the E/E/PE safety-related system (like in Davis et al. (2014)), e.g., probability of

failure of 10−9 per hour for a SIL 4 function as defined in Table 3 of IEC61508-1 (or

in the FAA Advisory Circular AC-25-1309), or for the same reasons they are set to

even lower values (Abella et al. 2014).

These probabilistic techniques aim at building a reliability model of the software,

according to which confidence can be placed in the expected timing behavior of the

application and in particular in its worst-case responsiveness. In broad terms, software

reliability is the property of the software being “free from faults”. Failures caused by

software can degrade the system performance, up to the complete loss of the system or

potential loss of life or major damage to the environment. According to this definition,

exceeding a pre-allocated execution budget can indeed be seen as a software fault as

it may bring about the same consequences. There are, however, three important points

that we would like to discuss in this paper.

First, although the rationale behind this probabilistic model is well motivated and

fully justified (from the community point of view), in most of recent research works

on probabilistic timing estimates the research community has shown a particularly

high confidence in the applicability of their model to real systems. In some of those

papers, sometimes it seems granted that this probabilistic model will soon be used in

MC system V&V processes. However, it must be highlighted that at the time of writing

this paper, although numerous consolidated reliability models have been developed

to quantitatively assess the compliance of the hardware components to the reliability

requirements (RIAC-HDBK-217Plus 2006), software reliability models are still under

debate within industry, academia, and international standards community. Those mod-

els rely on a number of assumptions that have proven not to be fully justified in the

vast majority of bespoke software and currently in the industry, confidence cannot be

placed in such models to assess the reliability of the software parts. This is clearly

and explicitly stated, for instance, in Sect. 4.1.2 of ECSS-Q-HB-80-03A (2009) or

Sect. 12.3.3 of the DO-178C:

“Many methods for predicting software reliability based on developmental metrics

have been published, for example, software structure, defect detection rate, etc. This

document does not provide guidance for those types of methods, because at the time of
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writing [2011], currently available methods did not provide results in which confidence

can be placed.”—Sect. 12.3.3, p. 89 of DO-178C (DO-178C 2011).

Second, these probability thresholds (e.g. 10−5, 10−9, etc.) have been defined at

the system level as function failure rates and to the best of our knowledge, there

is no publications whatsoever that discuss why those specific thresholds could be

applied to the software parts of the system. Last but not least, until now the safety

and dependability assessment of safety-critical software has always been performed

through a set of qualitative processes that are applied during all phases of the software

development life-cycle. To the best of our knowledge, there is currently no evidence

indicating that the process of assessing software safety is about to change from a

qualitative process to a quantitative process. Unlike the typical process applied to

develop the hardware, the development of a software to a certain assurance level does

not imply the assignment of a failure rate for that software. In other words, there is no

evidence that those specific thresholds (or any other thresholds) applied to function

failure rates will ever apply in the assessment of software safety.

Although the previous arguments demonstrate the limitations of the probabilistic

WCET software models to justify safety aspects, it is again important to highlight

(similarly to the Vestal’s model) that the objective of this work is not to question the

usefulness or credibility of those methods, but rather to demonstrate that in the safety-

critical domain it will be extremely difficult to prove to the certification authorities

that, by using these approaches, the safety of the system will be ensured even under the

most unfavourable conditions. However, the probabilistic WCET estimation can be

considered as a very important and useful tool to support the design of mixed-criticality

systems, mainly in terms of determining more realistic estimates of the tasks WCETs.

Instead of the very conservative values that are typically used to define the safety

margins to be applied in the actual system design, this technique has the potential to

allow the determination of much more accurate WCET estimations, hence enhancing

the cost-effectiveness of the system design.

Therefore, at this date, even though the computation of probabilistic estimates to

MCS constitutes an important research direction that aims at improving the WCET

estimation of real-time tasks, it cannot be taken as granted that those estimates will

ever be used in industrial systems to prove the safety of a software function.

8.7 Open problems

After the identification of the state-of-the-art solutions that address the proposed MCS

requirements, we now perform an evaluation of the integration potential of some of

those solutions in the same MCS platform, i.e. whether those solutions are compatible

with each other. Note that not all possible combinations of techniques herein pre-

sented were analysed. We have only evaluated those solutions whose integration seem

pertinent as a research direction.

As discussed in the previous subsections, hierarchical scheduling and resource

sharing are two techniques that can be integrated in the same MCS model. In a time

partitioned environment, the need of a resource sharing protocol that allows tasks in

different partitions to synchronize the access to a shared resource in a predictable
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way is evident. As discussed in Sect. 8.4, several state-of-the-art solutions exist that

have demonstrated the feasibility of combining these two techniques in the same plat-

form. However, as also briefly discussed in Sect. 8.4, the integration of these two

techniques poses several challenges, such as the well known problem of server bud-

get exhaustion inside a critical section. Therefore, even though several sophisticated

solutions exist for resource sharing in a hierarchical scheduling approach, there is still

margin for improvements, especially in the constrained context of mixed-criticality

systems.

The use of runtime verification on top of a hierarchical scheduling framework was

also addressed in Sect. 8.4. These two techniques provide a nice integration, where the

timing isolation provided by the partitions improve the reliability of the monitors, by

guaranteeing their isolation and independence from the monitored applications, thus

enforcing requirement SM.03.

Considering the techniques presented, two fundamental problems remain open, both

of them related to multi-mode change solution. The first is related to the integration

between multi-mode change and hierarchical scheduling. In order to integrate these

two solutions, the schedulability of the system would need to be ensured at all levels

during mode transition, i.e., at the level of the top scheduler, responsible to schedule

the servers (time partitions), and at the level of the local scheduler, responsible to

schedule the tasks within the server. To the best of our knowledge, this still remains

an open problem.

The second problem refers to the integration between multi-mode change and

resource sharing protocols. A solution potentially integrating these two techniques

would need to ensure an upper bound for the time to access a shared resource even

during a transition between the old and new modes. To the best of our knowledge, this

still also remains an open problem.

9 Conclusion

In this paper we discussed the mixed-criticality systems (MCS) concept from an

industrial perspective. The main objective was to ease the understanding of the MCS

challenges and constraints for non-experts, and hence stimulate the development of

adequate solutions while avoiding the propagation of inaccurate assumptions.

To achieve that goal, we started by presenting an overview of the general process

for the development of safety-critical systems in compliance with the relevant safety-

related standards from several industrial domains (avionics, space, industrial process,

automotive). The concepts presented in this introductory part are essential for the

accurate understanding of the concept of criticality and its allocation to subsystems

and components.

After the introduction of the MCS concept, we performed a review of the most

important architectural considerations and requirements from three safety-related

industrial standards, with respect to the development of MCS. Some of these tech-

niques are well known to the real-time community, but some of them are especially

relevant for the development of mixed-criticality systems, such as partitioning and

graceful degradation.
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We concluded the “industry-oriented” part of the paper by presenting the industrial

solutions that prevail in the aeronautic and automotive application domains (ARINC-

653 and AUTOSAR, respectively) to design mixed-criticality systems in accordance

with their domain-specific requirements. The design and development of industrial

MCS in accordance with such solutions greatly facilitate the certification process,

because they specify architectural and design requirements that are compliant with

the stringent requirements of the safety-related standards, especially with respect to

the isolation and independence of the MCS applications.

We then moved to the “academy-oriented” part of the paper, where we discussed

the strengths and weaknesses of the theoretical model of MCS found in the academic

literature. Based on references and examples from the safety-related industrial stan-

dards, we highlighted some misalignments that exist in the interpretation of some

key concepts used in the MCS scientific literature and those standards, especially in

what concerns the notion of software task assurance level and the notion of impor-

tance.

As a preliminary step towards a MCS model that is compliant with the safety-related

standards, we presented some key requirements that must be captured and taken into

consideration in the model. And finally, we identified and discussed some academic

state-of-the-art solutions that are potentially compliant with those requirements.

It is rather difficult to discuss about potential trends and perspectives regarding

the adoption of MCS by the industry, mainly because of the considerable amount of

open problems that currently still exist. To perform this evaluation, we believe the

most adequate approach is by evaluating some of the industrial sectors (or domains)

separately. The avionic sector is known to be very conservative, and currently there is

not indication that this approach is going to change. TT scheduling will continue to

be the main technique to be used during the coming years. Moreover, with the advent

of multi-core, this sector is being faced with several additional challenges, such as

ensuring predictability with resource sharing in those platforms. The automotive sector

is likely to become the sector where MCS will face the fastest development, mainly

because there is no central certification authority, like in the aeronautic sector, where

entities like FAA (Federal Aviation Administration) or EASA (European Aviation

Safety Agency) perform a very strong technical and safety regulation. The ISO26262 is

a more recent standard in relation to other industrial standards, and is an important step

toward the safer development of automobiles, whose amount of software implemented

functionalities (critical and non-critical) is facing an incredible growth during recent

years. In relation the more traditional industrial sector (e.g. oil and gas), the need for

concurrently running critical and non-critical applications in the same platform will be

more limited (because of no direct interaction with individual consumers), but at some

point the MCS approach may bring significant benefits in terms of cost reduction. It

is also our belief that the MCS can be useful for the development of mission-critical

(e.g. military or space systems), where compliance with dependability requirements

become the main concern. MCS solutions will also become interesting for the railway

sector, although the development may not be so fast as in the automotive sector, because

it is a more conservative industry. Nevertheless, the amount of critical and non-critical

functionalities is increasingly growing (especially the latter) and currently processing

123



Real-Time Syst (2018) 54:745–795 791

platforms are facing great challenges in terms of performance, with safe and non-safe

single-core embedded computers are running near their performance limits.
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