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Abstract:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability
requirements are of major concern. Architectures for DCCS must be designed considering the
integration of processing nodes and the underlying communication infrastructure. Such
integration must be provided by appropriate software support services.
In this paper, an architecture for DCCS is presented, its structure is outlined, and the services
provided by the support software are presented. These are considered in order to guarantee
the real-time and reliability requirements placed by current and future systems.
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1. Abstract

In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability
requirements are of major concern. Architectures for DCCS must be designed
considering the integration of processing nodes and the underlying communication
infrastructure. Such integration must be provided by appropriate software support
services.

In this paper, an architecture for DCCS is presented, its structure is outlined, and
the services provided by the support software are presented. These are considered in
order to guarantee the real-time and reliability requirements placed by current and
future systems.

2. Introduction

Distributed Computer-Controlled Systems (DCCS) are increasingly used in the
industrial environment, where computer systems are expected to perform correctly,
even in the presence of faults. The traditional approach to guarantee the dependability
requirements of DCCS is to replicate some of its components, in order to tolerate
individual faults. However, when replicated components are used, there is the need for
reliable and time-bounded communication services. Messages must be correctly and
orderly delivered according to their timing requirements. Therefore, the full
integration of the communication infrastructure with the processing nodes is required
in order to obtain the desired level of confidence in the system.
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Using COTS as the systems’ building blocks provides a cost-effective solution,
and at the same time allows for an easy upgrade and maintenance of the system.
However, as COTS hardware and software does not usually provide the confidence
level required by reliable real-time applications, reliability requirements must be
guaranteed by a software-based fault-tolerance approach.

The use of COTS components usually implies the use of fail-uncontrolled
components. It is not possible to guarantee fail-silent properties for off-the-shelf
hardware and/or software, as these components usually do not have the required self-
checking mechanisms for detecting faults. Fail-uncontrolled components require the
use of active replication (Powell, 1994), since masking faults in one component
requires the replication of such component in other nodes. Consequently, a COTS-
based system must be able to manage by its own such component replication.

The proposed architecture is targeted to provide a guaranteed (timely and reliable)
execution environment to hard real-time applications. In addition, it is also targeted to
provide the adequate quality of service to soft real-time applications, which must not
interfere with the behaviour of the hard real-time applications. It is not targeted to
safety-critical systems, as these systems require a greater level of dependability and a
more restricted set of failure assumptions (Laprie, 1992).

3. System Architecture

The system architecture (Figure 1) is based on the use of a set of processing nodes,
where distributed hard real-time applications may execute. To ensure the desired level
of reliability to hard real-time applications, specific components of these applications
may be replicated.

Real-Time
Network

COTS
node

Sensors/Actuators

General
purpose
network

Remote
Application

Remote
Supervision

COTS
node

COTS
 node

Figure 1. System architecture.

Nodes are interconnected by a real-time network, which provides the
communication infrastructure for the hard real-time applications (interconnecting
controllers, sensors and actuators). This real-time network is also intended to support
the replica management mechanisms. At the above level, as there is the need of
interconnection with the upper levels of the DCCS (e.g. for remote access, remote
supervision and/or remote management), there is a general-purpose network
interconnecting some of the DCCS nodes.
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3.1. Node Architecture

Each node (Figure 2) integrates both a hard real-time subsystem (HRTS) and a soft
real-time subsystem (SRTS). The goal of the HRTS is to provide a framework to
support reliable hard real-time applications, which are at the core of the system. The
SRTS provides the interface for the remote supervision management of the DCCS.

Soft Real-Time Subsystem

Real-Time Network

Soft Real-
Time App

Hard Real-Time Subsystem

Soft Real-
Time App

Lower
Reliability

Level

Higher
Reliability

Level

General-purpose network

Hard Real-
Time App
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Figure 2. Node structure.

The communication mechanisms between both subsystems must guarantee that
failures in the SRTS (less reliable) do not interfere with the HRTS (concerning its
timing and reliability requirements). Therefore, mechanisms for memory partitioning
must be provided, and the communication mechanisms must guarantee the integrity of
data transferred from the SRTS to the HRTS, by upgrading its confidence level.

The HRTS is responsible for providing a framework for reliable execution of hard
real-time applications. Hence, applications have guaranteed execution resources,
including processing power, memory and communication support. This claims for a
separated real-time communication network for the HRTS, where messages sent from
one node to another are received and processed in a bounded time interval. The HRTS
Support Services are responsible for the real-time communication management and
also provide a transparent framework for the replication of application components.

The SRTS provides a set of services to support the supervision and management
level of the DCCS. It may provide CORBA/HTTP servers, which can be accessed
using supervision and management tools. At this system level, flexibility is a major
goal, since new services can be created as the system is upgraded.

3.2. Communication Infrastructure

Current work is being performed in order to assess the suitability of the Controller
Area Network (CAN) (ISO, 1993) to act as the real-time network. Although being
originally designed for use within road vehicles, CAN is also being considered for the
automated manufacturing and distributed process control environments (Zuberi and
Shin, 1997). Several studies on how to guarantee the real-time requirements of
messages in CAN networks are available (e.g. (Tindell et al., 1995)). Nevertheless,
the continuity of service is not fully guaranteed, since it may be disturbed by
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temporary periods of network inaccessibility (periods during which stations cannot
communicate with each other, due to the existence of on-going error detection and
recovery mechanisms). A study of the inaccessibility characteristics of CAN networks
has been presented at (Rufino and Veríssimo, 1995), identifying the duration of its
error detection and recovery periods. The integration of the inaccessibility studies
with the timing analysis (Pinho et al., 2000a) indicate that CAN presents some
problems, as it is not able to provide different integrity levels to the supported
applications. However, it is also perceived that, under an appropriate set of fault
assumptions, it can be used to support reliable real-time DCCS (Pinho et al., 2000a).

4. Hard Real-Time Subsystem

The HRTS allows real-time applications to be distributed over the nodes of the system
(Figure 3). It is based on the software integration of COTS components, that is,
“replication handled entirely by software using off-the-shelf hardware” (Guerraoui
and Schiper, 1997), rather than building software on top of specialised hardware.

Hard Real-Time Application

Hard Real-Time Application

Hard Real-Time Application

Real-Time Network

Figure 3. HRTS structure.

The HRTS provides a framework to support hard real-time applications, where
timing requirements are guaranteed through the use of current off-line schedulability
analysis techniques (Response-Time Analysis (Audsley et al., 1993)). A multitasking
environment is provided to support real-time applications, with services for task
communication and synchronisation (including distribution).

One hard real-time application is constituted by several tasks (processing units),
which combined together perform the desired service. In Figure 4, a hard real-time
application is divided in four tasks, which execute in different nodes of the HRTS.
Each node has its own (non-distributed) COTS kernel and hardware, which provides
the desired real-time multitasking support. An additional advantage of using both a
COTS kernel and hardware is that it provides means for the easy upgradability and
portability of the system.

The goal of the HRTS support software (Figure 4) is to provide the distribution
support (including both the application distribution and the replication management)
to hard real-time applications. This module manages the communication between
different nodes, resulting from the replica management, the application distribution
and the interface with the controlled environment.

The HRTS supports the active replication of software with dissimilar task sets in
each node. The reason for allowing dissimilar task sets is twofold. By providing
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different execution environments in each node, the tolerance to design faults is
increased, as the probability of the same fault occurring in more than one node
decreases. At the same time, the architecture flexibility is increased, since nodes are
not just duplicates, allowing for a more flexible design of real-time applications.

KernelKernelKernel

HRTS Support Software

HardwareHardwareHardware

τ1

τ2

τ3

τ4

Figure 4. Distributed Hard Real-Time Application.

However, multitasking applications with differentiated execution environments are
likely to result in replicated components with non-deterministic executions. Hence,
the HRTS support software provides mechanisms to guarantee deterministic
execution. As these mechanisms need to be time-efficient, they are not based in
replica co-ordination but in the concept of timed messages (Poledna et al., 2000).

A layered approach is provided to the HRTS, in order to simplify the system
development. The HRTS support software (Figure 5) comprises two layers:
1. The Communication Manager layer, which is responsible for the reliable and

timely transfer of real-time data;
2. The Replica Manager layer, which is responsible for the transparent management

of the replicated components, in order to not burden the programmer with
explicitly programming of replicate managing mechanisms.

Applications Layer

Communication Manager

Replica Manager HRTS
support

software

KernelKernelKernel

HardwareHardwareHardware

Figure 5. Hard Real-Time Subsystem layers.

4.1. Scheduling model

The HRTS is intended to support one or more hard real-time applications. Each
application consists of a set of related tasks (τ1 … τn), being each task a single
processing unit. Tasks from the same application can be allocated to different nodes,
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(distributed environment). In order to use the well-known Response Time Analysis
(Audsley et al, 1993), each task is released only by one invocation event, but can be
released an unbounded number of times. A periodic task is released by the runtime
(temporal invocation), while a sporadic task can be released either by another task or
by the environment. After being released, a task cannot suspend itself or be blocked
while accessing remote data (external blocking).

Tasks are allowed to communicate with each other either through shared data or
by release event objects. Shared data objects are used for asynchronous data
communication between tasks, while release event objects are used for the release of
sporadic tasks. Tasks are designed as small processing units, which, in each
invocation, read inputs; carry out the processing; and output the results. The goal is to
minimise task interaction, in order to improve the schedulability analysis and increase
the system’s efficiency.

As there is no synchronous interaction between tasks, the release of a task cannot
be directly made by other tasks. Thus, sporadic tasks are suspended waiting in a
release event object, which is triggered by waking tasks, whereas the runtime
executive triggers periodic tasks. Internal blocking due to task communication can be
bounded and off-line analysed using Priority Ceiling Protocols (Sha et al., 1990).

4.2. Replication Model

As there is the target of reliability through replication, it is important to devise which
is the replication unit (that is, the smaller replication entity). Therefore, the notion of
component is introduced. Applications are divided in components, each one being a
set of tasks and resources that interact to perform a common job. The component can
include tasks and resources from several nodes, or it can be located in just one node.
In each node, several components may coexist. As an example, Figure 6 shows a real-
time application with 4 tasks (τ1, τ2, τ3 and τ4) divided in two different components.
Component C1 encompasses tasks τ1 (node 1) and τ2 (node 2). Its replica encompasses
tasks τ1’ (node 3) and τ2’ (node 5). Component C2 encompasses tasks τ3 (node 2) and
τ4 (node 3), while its replica encompasses tasks τ3’ (node 4) and τ4’ (node 5).

C1

C1’

C2’C2

τ1 τ1’ τ2’τ2

τ3 τ4 τ4’τ3’

Figure 6. Replicated Hard real-time application.

A similar concept to the component can be found in the notion of “capsules” of the
Delta-4 architecture (Powell, 1991). As the component, a Delta-4 “capsule” is the unit
of replication, embodying a set of tasks (referred as threads) and objects. However, a
“capsule” has its own thread scheduling and separated memory space, and is also the
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unit of distribution. Thus, the Delta-4 concept of “capsule” is more related to Unix
processes, whilst the presented component is a more lightweight concept, which is
used to structure replication units.

By creating components, it is possible to define the replication degree of specific
parts of the application, according to its desired reliability level and the reliability of
its components. The degree of replication of a component is referred as n-replicated
component. In Figure 6, both components C1 and C2 are 2-replicated components.

By replicating components, efficiency decreases as the number of tasks and
messages increases and there is the need for agreement on the output of computations.
Hence, it is possible to trade reliability for efficiency and vice-versa. Although
efficiency should not be regarded as the goal of a reliable system, it can be increased
by means of decreasing the degree of redundancy of more reliable components (if this
assumption can be guaranteed).

The component is the fault-containment unit. Faults in one task may produce the
failure of the component. However, if a replica of the component fails, the application
will not fail, since the output consolidation will mask the failed replica. Therefore, in
the model of replication, the outputs of internal tasks (within a component) do not
need to be agreed. The output consolidation is only needed when results are made
available to other components or to the controlled system. As can be seen in Figure 7,
several possibilities exist for the configuration of an application. The first part of the
Figure shows the same configuration presented in Figure 6, while in the second part
there is a solution where the application is divided in three components and only
component C2 is replicated. The double arrows indicate communication between
different components, thus communication needing consolidated data.

C1

C3

Sensor

C2’

C2

Actuator

C1 C2

C1’ C2’

Sensor’

Sensor

Actuator

τ1 τ2 τ3 τ4

τ1’ τ2’ τ3’ τ4’

τ1

τ2 τ3

τ2’ τ3’
τ4

Figure 7. Examples of application configuration.

Note that the second solution is more efficient, as there are only two more tasks
than the strictly needed by the application. However, the reliability assumption of
both the sensor and components C1 and C3 (and the nodes where they execute) must
be higher than in the previous solution, as they are not replicated.

There is the need to guarantee that replicas execute deterministically, that is,
replicated tasks execute with the same data and timing-related decisions are the same
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in each replica. This determinism can be achieved restricting the application from
using timing non-deterministic mechanisms. However, the use of multitasking would
not be possible, since task synchronisation and communication mechanisms
inherently lead to timing non-determinism. The use of timed messages (Poledna et al.,
2000) allows a restricted model of multitasking to be used and at the same time
eliminates the need for agreement between the internal tasks of each component. With
timed messages, agreement is only needed to guarantee that all replicated components
work with the same input values and that they all vote on the final output. The use of
timed messages implies the use of appropriate clock synchronisation algorithms, since
there is the need of clocks with a bounded difference.

4.3. HRTS Replica Manager

The goal of the Replica Manager layer is to provide hard real-time applications with
the set of resources required for communication between distributed tasks and
between replicated components. In the HRTS, tasks communicate with each other by
using shared data and the release of event objects. However, these mechanisms must
be different when they are used for intra-component communication or for inter-
component communication. In addition, there is also the difference when
communication is due to distribution or it is due to the replication mechanisms.

If precedence relations exist between tasks, the communication mechanisms can be
simplified, since these precedence relations guarantee deterministic execution
(Wellings et al., 1998). If the receiving task is sporadic and is released by a sending
task, it is guaranteed that, in all replicated components, the replicas of the task will
execute with the same data. The same reasoning can be applied when the receiving
task is periodic with a period related to the period of the sender task.

Although the goal of the replica manager is to transparently manage distribution
and replication, it is considered that a completely transparent use of these mechanisms
may introduce unnecessary overheads, since there are some special cases that must be
considered. Therefore, the application programmer (transparent approach) does not
consider the use of components at the design phase. Later, in a configuration phase,
the system engineer configures the components and its replication level and allocates
the different tasks in the distributed system. In this phase, the communication streams
that need timed messages are identified. Guidelines for splitting the application in
components are to be developed to ease the job of engineers.

4.4. HRTS Communication Manager

The Communication Manager layer is responsible for providing a reliable and timely
transfer of real-time data. The group communication abstraction is used as the
framework for reliable communication and to support the replica management
(Powell, 1994). In the replication model, a set of replicas from the same component is
referred as a group. The Communication Manager must provide the following set of
mechanisms:

1. 1-to-many communication, when a task of a non-replicated component wishes
to disseminate its result to the n input tasks of a n-replicated component
(reliable multicast protocol).
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2. Many-to-1 communication, when an input task of a non-replicated component
receives inputs from a n-replicated component (consensus algorithm).

3. Many-to-many communication, when a group of n output tasks of a
n-replicated component disseminates its results to the n input tasks of a n-
replicated component (interactive consistency (Pease et al., 1980) algorithm).

4. 1-to-1 communication, for communication between tasks of the same
component (intra-component communication) or between the output task of a
non-replicated component and the input task of a non-replicated component
(no need for specific algorithms).

The suitability of the CAN protocol for the communication infrastructure is being
studied (Pinho et al., 2000a) (Pinho et al., 2000b). Although current results indicate
that CAN presents some problems as it is not resilient to station errors, it is perceived
that, with the appropriate set of fault assumptions, it can be used as the
communication infrastructure.

4.5. Interconnection with the outside world

The interconnection of the HRTS with the SRTS must provide mechanisms for
transfer of information between both subsystems. Communication from the HRTS to
the SRTS does not present any major problem, since it is assumed that this
information has a higher reliability level. However, if the output to the SRTS comes
from replicated components, appropriate agreement must be performed. Conversely,
the reliability of the data arriving from the SRTS must be increased, in order to
prevent the introduction of erroneous values. Also, if the data is to be provided to
replicated components, reliable communication algorithms must be used to
disseminate this data.

Interconnection with the controlled system is performed through the use of sensors
and actuators. Sensor values can be treated as the output of non-replicated
components and its dissemination must be performed accordingly to the desired
reliability. The time at which the value is valid must be agreed upon. Output to
actuators must also be agreed upon between different replicas. Such agreement may
be made either in the computational system or the actuators may perform themselves
this agreement, by mechanical or electronic voting on the result.

5. Conclusions

In this paper, an architecture for Distributed Computer-Controlled Systems (DCCS) is
presented. It is targeted to provide a guaranteed (timely and reliable) execution
environment to current and future systems.

The structure of the architecture is presented, together with the guidelines used in
its design, and its scheduling and replication models. The support software, which
provides distribution support (including both the application distribution itself and the
replication management) to hard real-time applications, is also discussed.
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