

A WSSL Implementation for Critical Cyber-

Physical Systems Applications

Conference Paper

*CISTER Research Centre

CISTER-TR-230504

2023/05/10

Márcia Rocha*

Enio Filho*

Fernando Alves

Sérgio Penna*

Pedro Miguel Santos*

Eduardo Tovar*

Conference Paper CISTER-TR-230504 A WSSL Implementation for Critical Cyber-Physical Systems ...

© 2023 CISTER Research Center
www.cister-labs.pt

1

A WSSL Implementation for Critical Cyber-Physical Systems Applications

Márcia Rocha*, Enio Filho*, Fernando Alves, Sérgio Penna*, Pedro Miguel Santos*, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: rocha@isep.ipp.pt, enpvf@isep.ipp.pt, fernando.alves@vortex-colab.com, sdp@isep.ipp.pt, pss@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

The advancements in wireless communication technologies have enabled unprecedented pervasiveness and

ubiquity of Cyber-Physical Systems (CPS). Such technologies can now empower true Systemsof-Systems, which

cooperate to achieve more complex and efficient functionalities. However, for CPS applications to become a
reality, safety and security must be guaranteed, particularly in critical systems, since they rely on open

communication systems prone to intentional and non-intentional interferences. We propose designing a Wireless
Safety and Security Layer (WSSL) architecture to be implemented in critical CPS applications to address these

issues. WSSL increases the reliability of these critical communications by enabling the detection of
communication errors. Furthermore, it increases the CPS security using a message signature process that

uniquely identifies the sender. So, we present the WSSL architecture and its implementation over an MQTT
protocol. We prove that WSSL does not significantly increase the system transmission costs and demonstrate its

capability to ensure safety and security, allowing it to be used in any general or critical CPS.

A WSSL Implementation for Critical Cyber-Physical Systems
Applications

Marcia Cunha Rocha
rocha@isep.ipp.pt

CISTER Research Centre, ISEP

Porto, Portugal

Enio Vasconcelos Filho
enpvf@isep.ipp.pt

CISTER Research Centre, ISEP

Porto, Portugal

Fernando Alves
fernando.alves@vortex-colab.com

Vortex CoLab

Vila Nova de Gaia, Portugal

Sergio Penna
sdp@isep.ipp.pt

CISTER Research Centre, ISEP

Porto, Portugal

Pedro M. Santos
pss@isep.ipp.pt

CISTER Research Centre, ISEP

Porto, Portugal

Eduardo Tovar
emt@isep.ipp.pt

CISTER Research Centre, ISEP

Porto, Portugal

ABSTRACT

The advancements inwireless communication technologies have en-

abled unprecedented pervasiveness and ubiquity of Cyber-Physical

Systems (CPS). Such technologies can now empower true Systems-

of-Systems, which cooperate to achieve more complex and e�cient

functionalities. However, for CPS applications to become a real-

ity, safety and security must be guaranteed, particularly in critical

systems, since they rely on open communication systems prone to

intentional and non-intentional interferences. We propose design-

ing a Wireless Safety and Security Layer (WSSL) architecture to be

implemented in critical CPS applications to address these issues.

WSSL increases the reliability of these critical communications by

enabling the detection of communication errors. Furthermore, it

increases the CPS security using a message signature process that

uniquely identi�es the sender. So, we present the WSSL architec-

ture and its implementation over an MQTT protocol. We prove

that WSSL does not signi�cantly increase the system transmission

costs and demonstrate its capability to ensure safety and security,

allowing it to be used in any general or critical CPS.

CCS CONCEPTS

• Computer systems organization→ Reliability; • Networks

→ Cyber-physical networks; Error detection and error cor-

rection; Security protocols.

KEYWORDS

Safety, Security, Cyber-Physical Systems.

ACM Reference Format:

Marcia Cunha Rocha, Enio Vasconcelos Filho, Fernando Alves, Sergio Penna,

Pedro M. Santos, and Eduardo Tovar. 2023. A WSSL Implementation for

Critical Cyber-Physical Systems Applications. In Cyber-Physical Systems

and Internet of Things Week 2023 (CPS-IoT Week Workshops ’23), May 09–

12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 6 pages. https:

//doi.org/10.1145/3576914.3587507

This work is licensed under a Creative Commons Attribution International
4.0 License.

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0049-1/23/05.
https://doi.org/10.1145/3576914.3587507

1 INTRODUCTION

Cyber-Physical Systems (CPS), whether cooperative or not, are

mainly subject to malicious agents. Furthermore, their implementa-

tion based on devices from di�erent manufacturers allows security

�aws [8]. Accordingly, EN 50159 proposes an end-to-end safety ap-

proach using the black channel principle [11]. In this approach [22],

safe applications are implemented over a non-secure transmission

system with non-certi�ed network communication. Therefore, the

transmission system is considered unsafe, and safety and security

mechanisms are implemented as separate layers in each end node

in the communication.

Several studies have been performed on the safety and security

of CPS devices and how often they in�uence each other [6, 15, 25].

Still, only a few address both of them in a practical way. According

to [17], between sixty-eight analyzed methods for cyber-security

and safety co-engineering, less than half are aware of security and

safety standards or even include information on the validation of the

method they propose. The authors also state that the applicability

to di�erent application domains is usually not demonstrated in

most reviewed methods, and several important issues remain open.

On the other hand, just a few studies comprise safety. Usually,

they are focused on a theoretical approach [4], like surveys analyz-

ing existing methods [13] or suggesting the importance of safety in

CPS devices [3]. On the other hand, some complex systems are be-

ing developed: a risk assessment framework focused on quick and

guided feedback about safety and security [2], or a cyber-physical

system analytical framework [23], where, despite their importance,

neither of them provide operational tools.

Safety standards like the IEC 61508 de�ne several aspects and

models to increase systems safety but still need to advance to

real applications [19]. Furthermore, most of the works encompass-

ing safety are closed in a speci�c application �eld, which reduces

their applicability to general CPS, like EURORADIO [7, 16], Wire-

lessHART [1], ISO 26262 and SAE J3061 [20]. Unfortunately, such

complex solutions related to CPS are not easily portable to other sce-

narios. Thus, current safety measures are inadequate and intrusive,

and many research proposals still need to be practical and cost-

e�ective. Consequently, integrating safety and security remains a

challenge of great importance.

In this work, we present a modular Wireless Safety and Security

Layer (WSSL) architecture, establishing a safe way to exchange

information in CPS. The proposed WSSL does not rely on standard

192

https://orcid.org/0000-0003-0138-3122
https://orcid.org/0000-0001-5459-6821
https://orcid.org/0000-0002-4744-9177
https://orcid.org/0000-0001-6897-1610
https://orcid.org/0000-0002-7162-0560
https://orcid.org/0000-0001-8979-3876
https://doi.org/10.1145/3576914.3587507
https://doi.org/10.1145/3576914.3587507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576914.3587507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587507&domain=pdf&date_stamp=2023-05-09

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA M. Rocha et al.

transmission systems such as gateways and protocols, applying to

a wide range of applications that demand secure transmissions and

safe applications, including simulated [12] and real environments

[10]. Moreover, although some defenses involve verifying the ori-

gin and destination of the messages sent, WSSL is agnostic to the

message contents or application payload, guaranteeing the data’s

trust and privacy. In addition, its implementation is independent,

as much as possible, of the communication stack used. Thus, the

contributions of this work can be divided into three main aspects:

• Demonstrate the architecture of WSSL, introducing its con-

cept and agnostic model, based on a black channel modeling,

for communication in insecure media.

• Evaluate the implementation of WSSL using MQTT as the

communication protocol between two devices, numerically

analyzing the impact of its use on the data network.

• Demonstrate the ability of WSSL to detect attack actions on

the CPS, monitor network problems, and report them to the

application, increasing the application’s security and safety.

This paper is divided as follows. Section 2 presents the WSSL

de�nition. The WSSL architecture is explained in Section 3, while

the WSSL protocols and a deeper view of the system, including

how the sender and the receiver work, are described in Section 4.

In Section 5, evaluation tests and their results are demonstrated for

di�erent use cases of WSSL. Finally, conclusions and future works

are presented in Section 6.

2 WSSL DEFINITION

The proposed WSSL consists of an additional layer to the adopted

communication system, implementing a detection process for rele-

vant communication issues, establishing a safe and secure connec-

tion between each WSSL end-point, and providing an extra level

of con�dence to the CPS devices. Its use seeks to increase trust

between the sender and receiver since communication failures or

malicious interactions can have critical consequences. It can be

used in open communication systems, where transmissions is un-

safe. The implementation is agnostic to the used communication

protocols, thus being generically applicable to many use-cases, as

illustrated in Fig. 1.

CPS
Applications

Wireless
Environment

Network
Protocols

Network
Protocols

CPS
Applications

Regular implementation

WSSL implementation

CPS
Applications

Network
Protocols

Network
Protocols

CPS
ApplicationsWSSL WSSL

Figure 1: Basic implementation of WSSL

The primary function of the WSSL proposed in this work is the

detection of communication issues between CPS devices, whether

or not caused by malicious agents. These issues can bemessage

repetition, packet loss, or inter-message delay. By de�nition,

we assume this to be the safety layer of WSSL. In addition, WSSL

implements a message signing model, ensuring increased communi-

cation security by allowing the receiver to con�rm that the received

message comes from the correct sender. This signature model guar-

antees the integrity of the received messages, discarding those with

data loss.

Considering the diversity of CPS devices, WSSL was developed

as a static library compiled in C++. It can be attached to most sys-

tems on speci�c hardware or as part of the original system. Thus,

its implementation cost is minimal, and its bene�ts signi�cant, al-

lowing its application in low-cost or high-performance systems.

Although it detects the conditions and problems of the communi-

cations network, WSSL does not alter the operation of the device

it was implemented in, informing the application about the detec-

tion of the event so that the device can handle it. In this model,

WSSL works between two end nodes, de�ned as Sender Device (SD)

and Receiver Device (RD). Both SD and RD should instantiate the

WSSL library, de�ning aēďďĈ_ďěĤĚěĨ and aēďďĈ_ĎěęěğĬěĨ . So,

the RD receives data from a �nite number of SD’s, depending on

the processing capability, and can also be an SD to other devices.

The general �ow of the WSSL architecture is illustrated in Fig. 2.

msg (string)
id_dest (string)
id_sender (string)
Struct Sender

init_wssl_send()

wssl_send_msg()

entity_safety_send()

Application
Sender

entity_security_send()

wssl_msg (string)
id_sender (string)
Struct Sender

msg (string)
id_dest (string)
id_sender (string)
Struct Sender

msg (string)
id_dest (string)
Struct Sender

Application
Receiver

wssl_msg
(string)

wssl_msg
(string)

init_wssl_rcv()

wssl_rcv_msg()

entity_security_rcv()

entity_safety_rcv()

wssl_msg (string)
id_sender (string)
Struct Receiver

wssl_msg (string)
id_sender (string)
Struct Receiver

Struct
Receiver

YesSecurity
Error?

No
plain_text (string)
id_sender (string)
rcv_TimeStamp (long int)
Struct Receiver

wssl_msg (string)
id_sender (string)
Struct Receiver

Struct
Sender

Figure 2: General �ow of the WSSL Library

WSSL library implementation codes are open-source and are

available on GitHub repository [5].

3 WSSL ARCHITECTURE

Safety and security mechanisms are implemented as separate layers

in each communication end node, and each di�ers depending on the

side (SD or RD). The SDmust provide themessage content (ģĩĝ), the

ĎĀ_ąĀ , and the ďĀ_ąĀ to theēďďĈ_ďěĤĚěĨ . Conversely, the RD

must provide the signed message (ĩğĝĤěĚ_ģĩĝ) and the ďĀ_ąĀ to

retrieve the data from theēďďĈ_ĎěęěğĬěĨ . Both sides must create a

memory table object to store the message information in the WSSL.

This memory table object contains information that can be ac-

cessed in the application by both SD and RD, including: the last

message of each sender, their timestamp, sequence number, com-

munication status, and inter-message delay.

After receiving the data from the SD, theēďďĈ_ďěĤĚěĨ safety

layer adds the safety entities (sequence number and timestamp) to

193

A WSSL Implementation for Critical CPS Applications CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

theģĩĝ, de�ning a ĩėĜ ě_ģĩĝ. Then, the ĩėĜ ě_ģĩĝ is transmitted to

theēďďĈ_ďěĤĚěĨ security layer that signs it, adding information

about the key and the message size, returning a ĩğĝĤěĚ_ģĩĝ to

the application in the SD. In the proposed architecture, the SD is

responsible for sending the ĩğĝĤěĚ_ģĩĝ as an ordinary message.

This way,WSSL does not interfere with the device’s communication

protocol.

The RD application receives the ĩğĝĤěĚ_ģĩĝ. It is important to

notice that, without the WSSL in the SD, it is impossible to modify

the data from the ĩğĝĤěĚ_ģĩĝ without being detected, guaranteeing

message integrity and increasing the system’s security. So, the SD

application calls theēďďĈ_ĎěęěğĬěĨ with the ĩğĝĤěĚ_ģĩĝ. To check

the data signature, theēďďĈ_ĎěęěğĬěĨ security layer veri�es the

signature key, and if the SD identity is valid, it removes the signature

and gets the ĩėĜ ě_ģĩĝ. Finally, theēďďĈ_ĎěęěğĬěĨ safety layer

gets the sequence number and timestamp from the ĩėĜ ě_ģĩĝ. It

returnsģĩĝ to the application, together with the safety information,

indicating the inter-message delay and the network status.

After retrieving the safety data from the ĩėĜ ě_ģĩĝ, the

ēďďĈ_ĎěęěğĬěĨ analyses the network message issues from the se-

quence number and timestamp data received from the SD. The

sequence number indicates the following message states: VALID,

OUT-OF-ORDER, DUPLICATED, or LOST. Finally, the timestamp

is used to calculate the inter-message delay and delay between the

sender and receiver. These delays are calculated if the message

is not out-of-order or a duplication. If the delay value exceeds a

threshold, theēďďĈ_ĎěęěğĬěĨ will warn the application.

4 WSSL COMPONENTS

WSSL is divided in the Sender and the Receiver sides. Each side has

a security and a safety entity function responsible for implementing

the WSSL itself, and its own packet format: Struct Sender, in case of

theēďďĈ_ďěĤĚěĨ , or Struct Receiver, in case of theēďďĈ_ĎěęěğĬěĨ .

These structures represent the information stored inside the ob-

ject tables, such as data, timestamp, sequence number, ďĀ_ąĀ or

ĎĀ_ąĀ , inter-message delays, and message status, and retain the

information about the last message sent to an RD or received from

an SD.

4.1 WSSL Sender

The SD application calls theēďďĈ_ďěĤĚěĨ , through the function

init_wssl_send, passing the objects:ģĩĝ, ďĀ_ąĀ , ĎĀ_ąĀ , and the

Struct Sender. First, theģĩĝ passes through the safety function, en-

tity_safety_send, where the safety features are added. Then, the

ĩėĜ ě_ģĩĝ, the ĎĀ_ąĀ , and the Struct Sender are passed to the

security function, entity_security_send. Finally, the ĩėĜ ě_ģĩĝ is

signed and stored inside the Struct Sender to be returned to the

ēďďĈ_ďěĤĚěĨ application. The ĩėĜ ě_ģĩĝ is a concatenated string

with the following format:

Time Stamp / Message data / Sequence Number

4.1.1 WSSL Sender Entity for Safety. The safety entity adds a times-

tamp and a sequence number to theģĩĝ, creating and updating the

ēďďĈ_ďěĤĚěĨ ’s table. In addition, it returns the Struct Sender to

be used in the security entity. The timestamp in microseconds is

obtained using C++ Chrono library, a �exible collection of types

that track time with varying degrees of precision.

The Struct Sender indexes the sent data with the ĎĀ_ąĀ . In this

architecture, the last sent message ID is compared with the last

received one. This strategy creates a virtual connection between

the SD and the RD while the messages are exchanged. A watchdog

constantly checks old connections and drops them after a threshold.

Thus, when a message for an RD is received in theēďďĈ_ďěĤĚěĨ ,

the Safety entity checks the Struct Sender and, if there is no con-

nection (previous messages), it creates a new position. Otherwise,

if there is a live connection with this RD, the Safety entity will

retrieve the timestamp and sequence number from the previous

message. It will update the message data, increment the sequence

number, and store this information in the structure, waiting for the

next message. Finally, the Struct Sender is returned to be used in

theēďďĈ_ďěĤĚěĨ ’s security entity, containing the ĩėĜ ě_ģĩĝ.

4.1.2 WSSL Sender Entity for Security. ēďďĈ_ďěĤĚěĨ ’s security

entity, entity_security_send, adds a signature to the message re-

ceived from the safety entity. Each side of the communication has

its own public/private key pair. In this work, we assume the public

keys were safely exchanged between the identities using a safe

connection, using the protocol described in [18]. These keys are

used to sign and remove the message signatures, ensuring mes-

sage integrity and authenticity. The method sign adds the signa-

ture to the ĩėĜ ě_ģĩĝ, creating the ĩğĝĤěĚ_ģĩĝ. This method works

with messages of any size since it receives a pointer object and

size (strSize). This strategy increases the system’s �exibility due

to the non-necessity of padding [14]. In the same way, as the

ēďďĈ_ĎěęěğĬěĨ will need the message size, the Security Entity adds

to the ĩğĝĤěĚ_ģĩĝ the ĩğĝĤěĚ_ģĩĝ size (fullSize) and the ďĀ_ąĀ . Fi-

nally, the message appended with this information is stored in the

structure, which is returned to the application.

4.2 WSSL Receiver

The RD application calls theēďďĈ_ĎěęěğĬěĨ , through the func-

tion init_wssl_rcv, passing the objects ĩğĝĤěĚ_ģĩĝ, ďĀ_ąĀ , and the

Struct Receiver. First, the ĩğĝĤěĚ_ģĩĝ passes through the security

function, entity_security_rcv, where the signature is removed, and

if the ďĀ_ąĀ and the signature are correct, the ĩėĜ ě_ģĩĝ is recov-

ered. Otherwise, if the security does not succeed in removing the

signature, it returns to the application without executing the safety

entity.

Assuming the security succeeded, the ĩėĜ ě_ģĩĝ is passed to

the safety function, entity_safety_rcv, where theģĩĝ is separated

from the timestamp and the sequence number and retrieved to the

ēďďĈ_ĎěęěğĬěĨ application.

4.2.1 WSSL Receiver Entity for Security. ēďďĈ_ĎěęěğĬěĨ ’s security

entity, entity_security_rcv, is responsible for removing the signature

from the received ĩğĝĤěĚ_ģĩĝ. The signature has a �xed 64-byte

size, and fullSize is obtained from the data appended by the sender

to the ĩğĝĤěĚ_ģĩĝ. Afterward, the method verifySignature is used

to remove the signature. This method veri�es if the ďĀ_ąĀ is cor-

rect and, if everything is veracious, uses this ID to remove the

signature from the ĩğĝĤěĚ_ģĩĝ. At last, the ĩėĜ ě_ģĩĝ is retrieved

and returned to be used in theēďďĈ_ĎěęěğĬěĨ ’s safety entity. The

ēďďĈ_ĎěęěğĬěĨ ’s security general �ow is shown in Fig. 3.

194

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA M. Rocha et al.

Receiver Application

wssl_msg (string)
id_sender (string)
Struct Receiver

entity_security_send()

entity_safety_send()

Struct
Receiver

Get public key of the Sender by
calling identity method

"getKnownKey()"

Get the message by calling
identity method

"verifySignature()" and store the
result inside the table

wssl_msg (string)
public key (string)

id_sender (string)

Message is
different from

message "error"?Yes

No

Struct
Receiver

plain_text (string)
id_sender (string)
rcv_TimeStamp (long int)
Struct Receiver

Sender Application

wssl_msg (string)

entity_security_send()

Get public key of the Sender by
calling identity method

"getKnownKey()"

Figure 3: WSSL Receiver’s security

4.2.2 WSSL Receiver Entity for Safety. ēďďĈ_ĎěęěğĬěĨ ’s safety en-

tity, entity_safety_rcv, has a few di�erent functionalities compared

toēďďĈ_ďěĤĚěĨ ’s safety, whereas it is necessary to make some

treatment related to the message’s integrity (illustrated in Fig. 4).

These di�erences are in the check conditions, where each received

message is designated with a status related to the sequence number

and inter-message delay. The data inside the table is organized in

the following format:

Timestamp / Msg. data / Seq. Number / Status / delay

entity_safety_rcv()

get_timeStamp()
Time Stamp (long int)

Table is
empty?Yes

Fill the first position
of the table

No

Check if the
destination ID

exists

id_dest
exists?Yes

No

Replace info. in
position with the
same dest. ID

Create new
connection inside

the table

Receiver Application

wssl_msg (string)
id_sender (string)
Struct Receiver

Struct
Receiver

Check
message
integrity

Seq. Number
less than 0?Yes

No

status = 2

Seq. Number
equal to 0?Yes

No

status = 1

No

delay_send >
delaySendMAX?

status = 4

No

delay_rcv >
delayRcvMAX?

status = 5

No

Seq. Number
equal to 1?

status = 0

No

Seq. Number
is any other

option?

status = 3

Update Struct
Receiver

Don't update
Struct Receiver

 neither calculate
delays

Struct
Receiver

entity_security_rcv()

plain_text (string)
id_sender (string)
rcv_TimeStamp (long int)
Struct Receiver

Figure 4: WSSL Receiver’s safety

The inter-message delay, delay_snd, represents the time delay

between the last two received messages. The delay_snd is quanti�ed

when the table is not empty, and the ďĀ_ąĀ is equal to any ID

inside the table; Otherwise, the delay is set to zero. This delay

is calculated by subtracting the ģĩĝ timestamp from the virtual

connection timestamp with the same ďĀ_ąĀ .

When the delay value is bigger than a de�ned threshold, a warn-

ing is generated for the application, but the status of the message

is not changed. In this way, WSSL leaves the decision to the task

to use or not the message. Similarly to theēďďĈ_ďěĤĚěĨ ’s safety

entity, when a message is received in theēďďĈ_ĎěęěğĬěĨ , if there

is no connection inside the table, the safety entity creates a new

position, �lling it with the retrieved data.

As it happens with the delay_snd, the sequence number is

checked depending on the table status. If the table is empty or

it is the �rst connection with the corresponding ďĀ_ąĀ , the only

status checked is LOST. Alternatively, if the table has live connec-

tions, the sequence number is checked for all the cases introduced

in section 3. Also, only the last message of each ďĀ_ąĀ is stored

inside the table.

If the ĎĀ_ąĀ is di�erent from the existing IDs and there is no

DUPLICATED or OUT-OF-ORDER message status, a new connec-

tion is created inside the table, and a new delay is calculated. A

VALID status occurs if the delay is not bigger than the threshold

and the di�erence between the received sequence number and the

last sequence number equals 1. A DUPLICATED status is set when

the di�erence between the sequence numbers equals 0. An OUT-OF-

ORDER status is de�ned when the di�erence between the sequence

numbers is less than zero (0). Last, LOST status happens when the

di�erence between the sequence numbers is bigger than 1. Each

message status generates a unique table event, which is returned

to theēďďĈ_ĎěęěğĬěĨ application.

5 EVALUATION

Since this work is developed for Critical Systems, it is important to

evaluate the WSSL’s e�ciency, calculate its implementation costs,

and show its ability of detecting errors. For testing purposes, Mes-

sage Queue Telemetry Transport (MQTT) messaging protocol was

chosen to be implemented over the Transport Layer [21], with the

Mosquitto Broker. Using MQTT, the publisher must be con�gured

as theēďďĈ_ďěĤĚěĨ and the subscriber as theēďďĈ_ĎěęěğĬěĨ .

5.1 Generating Errors

For evaluation of the WSSL’s e�ciency, some errors were forced

into the library. BecauseēďďĈ_ĎěęěğĬěĨ must not fail when treat-

ing and verifying the integrity of the message, in this step of the

evaluation, we deliberately sabotaged the message to verify the

correct operation of the WSSL.

During the tests, we sent twenty messages with the same ďĀ_ąĀ ;

within these messages, some samples were chosen to be purposely

sabotaged. The delay threshold was considered ten milliseconds,

and the following six types of security errors were tested (see Fig.

5):

• (A) Invalid signature (Security error) at message 2;

• (B) Invalid ďĀ_ąĀ (Security error) at message 4;

• (C) Inter-message delay bigger than the threshold (status =

4) at message 6;

• (D) DUPLICATED (status = 1) at message 8;

• (E) OUT-OF-ORDER (status = 2) at message 9;

• (F) LOST (status = 3) at message 15.

195

A WSSL Implementation for Critical CPS Applications CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Figure 5: Log �le of generated errors

Notice that the statuses are WSSL’s method for notifying the

application about the problem, so handling the error must be the

application’s responsibility. Also, the statuses related to the delay

are analyzed separately byēďďĈ_ĎěęěğĬěĨ . When it arises simulta-

neously with the other warnings, it generates two di�erent prints

for the same message, which is the case of messages 6 and 12. Con-

versely, when the message is sent twice, it ends with DUPLICATED

status, which is visible in message 8.

Finally, each error can consequently trigger other errors. For

instance, it can be noticed in messages 3 and 5 once Security invali-

dated messages 2 and 4. Also, message 12 took too long to arrive

because the previous messages were out of order and were not

being saved into theēďďĈ_ĎěęěğĬěĨ table.

The analysis of Fig. 5 demonstrates the ability of the WSSL to

detect all possible attacks, caused or not by malicious agents, on the

receiving device. Furthermore, it has proven capable of detecting

and informing the application about network threats arising from

these attacks or even network congestion.

5.2 WSSL Network Cost

WSSL involves time-critical messages and has to ful�ll real-time

constraints. Besides, it aims to be lightweight and interfere as little

as possible in the system. Therefore, the time to send all messages,

the time to receive all messages, and the inter-message delay must

be evaluated.

For evaluation tests, a laboratory setup was put together using

two desktops with an Intel Pentium CPU G645 2.90 GHz processor

and 4 GB of memory RAM running Ubuntu version 20.04.

Ten thousand messages were sent at approximately 333 Hz. This

frequency was the lowest frequency possible using the MQTT pro-

tocol when aiming for zero lost messages in the RD. Although, even

with this limitation, this frequency is su�cient to represent the

behavior of hard real-time systems, such as automotive [9] and

aerial applications [24]. The sending time is considered the total

time theēďďĈ_ďěĤĚěĨ takes to send all messages, and the total

receiving time is the total time theēďďĈ_ĎěęěğĬěĨ takes to receive

all messages. Both are calculated by subtracting the timestamp of

the �rst message from the last message being sent (or received).

The tests for both scenarios were repeated ten times for each of

the following cases, as presented in Table 1:

• Using the WSSL entities (Safety and Security) together;

• Using only the safety entity;

• Using only the security entity;

• Using only MQTT without the WSSL;

Table 1: Sending and receiving time when adding WSSL into

the communication between devices taking MQTT as a refer-

ence.

MQTT Safety Security Safe. and Sec.

Tests

Sent

time

(ms)

Rcpt.

time

(ms)

Sent

time

(ms)

Rcpt.

time

(ms)

Sent

time

(ms)

Rcpt.

time

(ms)

Sent

time

(ms)

Rcpt.

time

(ms)

T1 32160 32160 +223 +223 +3317 +3317 +3456 +3456

T2 32175 32175 +231 +232 +3295 +3295 +3472 +3472

T3 32158 32158 +234 +234 +3309 +3309 +3497 +3497

T4 32170 32170 +231 +231 +3373 +3373 +3488 +3489

T5 32167 32167 +214 +214 +3256 +3256 +3400 +3400

T6 32171 32171 +230 +231 +3319 +3319 +3450 +3450

T7 32179 32179 +218 +218 +3323 +3323 +3423 +3422

T8 32183 32183 +208 +208 +3316 +3317 +3486 +3486

T9 32178 32178 +228 +235 +3337 +3337 +3425 +3425

T10 32167 32167 +217 +217 +3342 +3342 +3466 +3466

Avg 32171 32171 +223 +224 +3319 +3319 +3456 +3456

The WSSL’s ability to detect excessive delay was also evaluated.

The purpose is to show that the WSSL will alert the application if it

exceeds the de�ned delay threshold. The excessive delay detection

accuracy was tested by sending 100 messages at the same frequency

and thresholds as before. The messages multiples of eleven were

delayed by 11 ms, so it would be possible to simulate an inter-

message delay inēďďĈ_ĎěęěğĬěĨ . The results are plotted in Fig.

6.

Figure 6: WSSL’s delay detection

Implementing the WSSL over a commonly used protocol for IoT

applications such as MQTT reinforces its �exible character for other

protocols and possible use in other conditions. In this sense, the

results obtained by sending a large packet of sequential messages

without a signi�cant increase in communication delay show the

viability of its application based on the architecture proposed in

this work.

6 CONCLUSIONS

This paper describes the architecture and the implementation of a

Wireless Safety and Security Layer (WSSL) to improve the appli-

cability of CPS devices by covering the main measures to detect

196

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA M. Rocha et al.

possible faults and threads or keeping the error probability un-

der a speci�c limit. WSSL aims to �ll the necessity of practical

applications related to Critical CPS devices and mitigate problems

that must be urgently addressed in unsecured and unsafe wireless

communication systems.

Future research must focus on the enhancement of the safety

and security layers. For example, a cryptography method could

improve the security layer, increasing the WSSL dependability. In

addition, the safety layer methods used for hazard identi�cation

may be tested in di�erent environments, not only in simulators but

in real applications, for instance, CPS applications implemented in

aerial vehicles, cars, residential automation, and others.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Technology),

within the CISTER Research Unit (UIDP/UIDB/04234/2020); by the

FCT and the Portuguese National Innovation Agency (ANI), under

the CMU Portugal partnership, through the European Regional

Development Fund (ERDF) of the Operational Competitiveness

Programme and Internationalization (COMPETE 2020), under the

PT2020 Partnership Agreement, within project FLOYD (grant nr.

45912, POCI-01-0247-FEDER-045912); by FCT and the EU ECSEL

JU under the H2020 Framework Programme, within project EC-

SEL/0010/2019, JU grant nr. 876019 (ADACORSA); also by project

FLY-PT (grant nr. 46079, POCI-01-0247-FEDER-046079), co-�nanced

by the European Regional Development Fund (ERDF) within COM-

PETE 2020, in the scope of PORTUGAL 2020. The JU receives

support from the European Union’s Horizon 2020 research and

innovation program and Germany, Netherlands, Austria, France,

Sweden, Cyprus, Greece, Lithuania, Portugal, Italy, Finland, and

Turkey. The ECSEL JU and the European Commission are not re-

sponsible for the content of this paper or any use that may be made

of the information it contains.

REFERENCES
[1] Johan Akerberg, Mikael Gidlund, Tomas Lennvall, Jonas Neander, and Mats

Björkman. 2011. E�cient integration of secure and safety critical industrial
wireless sensor networks. EURASIP Journal on Wireless Communications and
Networking 2011 (09 2011), 1–13. https://doi.org/10.1186/1687-1499-2011-100

[2] Fredrik Asplund, John McDermid, Robert Oates, and Jonathan Roberts. 2019.
Rapid Integration of CPS Security and Safety. IEEE Embedded Systems Letters 11,
4 (2019), 111–114. https://doi.org/10.1109/LES.2018.2879631

[3] Hany F. Atlam and Gary B. Wills. 2020. IoT Security, Privacy, Safety and Ethics
(2nd. ed.). Springer International Publishing, Cham, 123–149. https://doi.org/10.
1007/978-3-030-18732-3_8

[4] Ali Balador, Anis Kouba, Dajana Cassioli, Fotis Foukalas, Ricardo Severino, Daria
Stepanova, Giovanni Agosta, Jing Xie, Luigi Pomante, Maurizio Mongelli, Pier-
luigi Pierini, Stig Petersen, and Timo Sukuvaara. 2018. Wireless Communication
Technologies for Safe Cooperative Cyber Physical Systems. Sensors 18 (11 2018),
4075 pages. https://doi.org/10.3390/s18114075

[5] Márcia C. Rocha and Enio Vasconcelos Filho. 2022. WSSL_Library. https:
//github.com/marciacr/WSSL_Library

[6] Nelson H. Carreras Guzman, Igor Kozine, and Mary Ann Lundteigen. 2021. An
integrated safety and security analysis for cyber-physical harm scenarios. Safety
Science 144 (12 2021), 105458 pages. https://doi.org/10.1016/j.ssci.2021.105458

[7] Gabriele Cecchetti, Anna Lina Ruscelli, Filippo Cugini, and Piero Castoldi. 2013.
An Implementation of EURORADIO Protocol for ERTMS Systems. World Acad-
emy of Science, Engineering and Technology, International Journal of Computer,
Electrical, Automation, Control and Information Engineering 7, 6 (2013), 693–702.

[8] European Standards 2010. EN 50159. European Standards. https://www.en-
standard.eu/ilnas-en-50159-railway-applications-communication-signalling-
and-processing-systems-safety-related-communication-in-transmission-
systems/

[9] European Telecommunications Standards Institute. 2009. ETSI TR 102 638 V1.1.1
Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Ap-
plications; De�nitions. Technical Report V1.1.1. European Telecommunications
Standards Institute.

[10] Enio Vasconcelos Filho, Nuno Guedes, Bruno Vieira, Miguel Mestre, Ricardo
Severino, Bruno Gonçalves, Anis Koubaa, and Eduardo Tovar. 2020. Towards
a Cooperative Robotic Platooning Testbed. In IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), 2020. IEEE, Ponta Delgada,
Portugal, 332–337. https://doi.org/10.1109/ICARSC49921.2020.9096132

[11] Enio Vasconcelos Filho, Ricardo Severino, Anis Koubaa, and Eduardo Tovar. 2021.
AWireless Safety and Security Layer Architecture for Reliable Co-CPS. In DCE21-
Symposium on Electrical and Computer Engineering: Book of Abstracts, Vol. 1. FEUP,
Porto, Portugal, 3 pages.

[12] Enio Vasconcelos Filho, Ricardo Severino, Joao Rodrigues, Bruno Gonçalves, Anis
Koubaa, and Eduardo Tovar. 2021. CopaDrive: An Integrated ROS Cooperative
Driving Test and Validation Framework. In Robot Operating System (ROS). Studies
in Computational Intelligence, Vol. 962. Springer International Publishing, Cham,
121–174. https://doi.org/10.1007/978-3-030-75472-3_4

[13] Javier Ho�mann, Dirk Kuschnerus, Trevor Jones, and Michael Hubner. 2018.
Towards a Safety and Energy Aware protocol for Wireless Communication. In
2018 13th International Symposium on Recon�gurable Communication-centric
Systems-on-Chip (ReCoSoC). IEEE, Lille, France, 1–6. https://doi.org/10.1109/
ReCoSoC.2018.8449380

[14] N. Indira, S. Rukmanidevi, and A.V. Kalpana. 2020. LightWeight Proactive Padding
Based Crypto Security System in Distributed Cloud Environment:. International
Journal of Computational Intelligence Systems 13, 1 (2020), 36. https://doi.org/10.
2991/ijcis.d.200110.001

[15] Zuzhen Ji, Shuang-Hua Yang, Yi Cao, Yuchen Wang, Chenchen Zhou, Liang Yue,
and Yinqiao Zhang. 2021. Harmonizing safety and security risk analysis and
prevention in cyber-physical systems. Process Safety and Environmental Protection
148 (04 2021), 156–178. https://doi.org/10.1016/j.psep.2021.03.004

[16] Li jie Chen, Zhen yu Shan, Tao Tang, and Hong jie Liu. 2011. Performance
analysis and veri�cation of safety communication protocol in train control system.
Computer Standards & Interfaces 33, 5 (2011), 505–518. https://doi.org/10.1016/j.
csi.2011.02.006

[17] Georgios Kavallieratos, Sokratis Katsikas, and Vasileios Gkioulos. 2020. Cyberse-
curity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive
Survey. Future Internet 12 (04 2020), 505–518. https://doi.org/10.3390/�12040065

[18] Kai Li, Wei Ni, Yousef Emami, Yiran Shen, Ricardo Severino, David Pereira, and
Eduardo Tovar. 2020. Design and Implementation of Secret Key Agreement for
Platoon-based Vehicular Cyber-physical Systems. ACM Transactions on Cyber-
Physical Systems 4, 2 (04 2020), 1–20. https://doi.org/10.1145/3365996

[19] Micaela Caserza Magro, Paolo Pinceti, and Luca Rocca. 2016. Can we use IEC
61850 for safety related functions?. In 2016 IEEE 16th International Conference
on Environment and Electrical Engineering (EEEIC). IEEE, Florence, Italy. https:
//doi.org/10.1109/EEEIC.2016.7555402

[20] Christoph Schmittner, Zhendong Ma, Carolina Reyes, Oliver Dillinger, and Pe-
ter Puschner. 2016. Using SAE J3061 for Automotive Security Requirement
Engineering. In Computer Safety, Reliability, and Security. Lecture Notes in
Computer Science, Vol. 9923. Springer International Publishing, Cham, 157–170.
https://doi.org/10.1007/978-3-319-45480-1_13

[21] Diego R. C. Silva, Guilherme M. B. Oliveira, Ivanovitch Silva, Paolo Ferrari, and
Emiliano Sisinni. 2018. Latency evaluation for MQTT and WebSocket Protocols:
an Industry 4.0 perspective. In 2018 IEEE Symposium on Computers and Commu-
nications (ISCC). IEEE, Natal, 01233–01238. https://doi.org/10.1109/ISCC.2018.
8538692

[22] The 61508 Association 2010. IEC 61508 (2nd ed.). The 61508 Association. https:
//www.61508.org/index.php

[23] Alexey Vinel, Nikita Lyamin, and Pavel Isachenkov. 2018. Modeling of V2V
Communications for C-ITS Safety Applications: A CPS Perspective. IEEE Com-
munications Letters 22, 8 (2018), 1600–1603. https://doi.org/10.1109/LCOMM.
2018.2835484

[24] Melih Yildiz, Burcu Bilgiç, Utku Kale, and Dániel Rohács. 2021. Experimental
Investigation of Communication Performance of Drones Used for Autonomous
Car Track Tests. Sustainability 13, 10 (May 2021), 5602. https://doi.org/10.3390/
su13105602

[25] Xiang-Yu Zhou, Zheng-Jiang Liu, Feng-Wu Wang, and Zhao-Lin Wu. 2021. A
system-theoretic approach to safety and security co-analysis of autonomous
ships. Ocean Engineering 222 (02 2021), 108569 pages. https://doi.org/10.1016/j.
oceaneng.2021.108569

197

https://doi.org/10.1186/1687-1499-2011-100
https://doi.org/10.1109/LES.2018.2879631
https://doi.org/10.1007/978-3-030-18732-3_8
https://doi.org/10.1007/978-3-030-18732-3_8
https://doi.org/10.3390/s18114075
https://github.com/marciacr/WSSL_Library
https://github.com/marciacr/WSSL_Library
https://doi.org/10.1016/j.ssci.2021.105458
https://www.en-standard.eu/ilnas-en-50159-railway-applications-communication-signalling-and-processing-systems-safety-related-communication-in-transmission-systems/
https://www.en-standard.eu/ilnas-en-50159-railway-applications-communication-signalling-and-processing-systems-safety-related-communication-in-transmission-systems/
https://www.en-standard.eu/ilnas-en-50159-railway-applications-communication-signalling-and-processing-systems-safety-related-communication-in-transmission-systems/
https://www.en-standard.eu/ilnas-en-50159-railway-applications-communication-signalling-and-processing-systems-safety-related-communication-in-transmission-systems/
https://doi.org/10.1109/ICARSC49921.2020.9096132
https://doi.org/10.1007/978-3-030-75472-3_4
https://doi.org/10.1109/ReCoSoC.2018.8449380
https://doi.org/10.1109/ReCoSoC.2018.8449380
https://doi.org/10.2991/ijcis.d.200110.001
https://doi.org/10.2991/ijcis.d.200110.001
https://doi.org/10.1016/j.psep.2021.03.004
https://doi.org/10.1016/j.csi.2011.02.006
https://doi.org/10.1016/j.csi.2011.02.006
https://doi.org/10.3390/fi12040065
https://doi.org/10.1145/3365996
https://doi.org/10.1109/EEEIC.2016.7555402
https://doi.org/10.1109/EEEIC.2016.7555402
https://doi.org/10.1007/978-3-319-45480-1_13
https://doi.org/10.1109/ISCC.2018.8538692
https://doi.org/10.1109/ISCC.2018.8538692
https://www.61508.org/index.php
https://www.61508.org/index.php
https://doi.org/10.1109/LCOMM.2018.2835484
https://doi.org/10.1109/LCOMM.2018.2835484
https://doi.org/10.3390/su13105602
https://doi.org/10.3390/su13105602
https://doi.org/10.1016/j.oceaneng.2021.108569
https://doi.org/10.1016/j.oceaneng.2021.108569

	Abstract
	1 Introduction
	2 WSSL Definition
	3 WSSL Architecture
	4 WSSL Components
	4.1 WSSL Sender
	4.2 WSSL Receiver

	5 Evaluation
	5.1 Generating Errors
	5.2 WSSL Network Cost

	6 Conclusions
	Acknowledgments
	References

