

A Thermal-Aware Approach for DVFS-enabled

Multi-core Architectures

Conference Paper

*CISTER Research Centre

CISTER-TR-221205

2023

Javier Pérez Rodríguez*

Patrick Meumeu Yomsi*

Pavel Zaykov

Conference Paper CISTER-TR-221205 A Thermal-Aware Approach for DVFS-enabled Multi-core ...

© 2023 CISTER Research Center
www.cister-labs.pt

1

A Thermal-Aware Approach for DVFS-enabled Multi-core Architectures

Javier Pérez Rodríguez*, Patrick Meumeu Yomsi*, Pavel Zaykov

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: perez@isep.ipp.pt, pmy@isep.ipp.pt, pavel.zaykov@honeywell.com

https://www.cister-labs.pt

Abstract

Reducing thermal dissipation is vital for modern multi-core architectures to meet increasing computational

demands. In this paper, we consider non-preemptive periodic tasks at two importance levels - Safety-Critical tasks

(SC-tasks) and Best-Effort tasks (BE-tasks) - executing on a homogeneous multi-core processor with DVFS
capabilities under thermal-aware design. We assume that tasks are scheduled according to a fully partitioned

Fixed-Task-Priority (FTP) scheduler. Then, we propose two main contributions: (1) a new scheduling scheme, called
NP-SafeSC, which reduces the responsiveness of SC-tasks as much as possible by procrastinating the execution of

some BE-tasks; and (2) a new framework, called NP-ThermCare, that allows controlling both processor activity and
the triggering of the cooling mechanism so that timing and thermal requirements are met. We provide a thorough

analysis of our solutions, validate the results and evaluate their performance against a real-world use-case and
intensive simulations. Our approach shows a consistent improvement of NP-SafeSC over NP-COIN in the

responsiveness of all SC-tasks on each core. In particular, the improvement for the SC-task with the lowest priority
reaches 39.53% for the real-world use-case and 45.17% for the simulations.

A Thermal-Aware Approach for DVFS-enabled

Multi-core Architectures

Javier Pérez Rodrı́guez
CISTER, ISEP, IPP, Porto, Portugal

perez@isep.ipp.pt

Patrick Meumeu Yomsi
CISTER, ISEP, IPP, Porto, Portugal

pmy@isep.ipp.pt

Pavel Zaykov
Honeywell Aerospace, Brno, Czechia

pavel.zaykov@honeywell.com

Abstract—Reducing thermal dissipation is vital for modern
multi-core architectures to meet increasing computational de-
mands. In this paper, we consider non-preemptive periodic tasks
at two importance levels – Safety-Critical tasks (SC-tasks) and
Best-Effort tasks (BE-tasks) – executing on a homogeneous multi-
core processor with DVFS capabilities under thermal-aware
design. We assume that tasks are scheduled according to a
fully partitioned Fixed-Task-Priority (FTP) scheduler. Then, we
propose two main contributions: (1) a new scheduling scheme,
called NP-SafeSC, which reduces the responsiveness of SC-tasks
as much as possible by procrastinating the execution of some
BE-tasks; and (2) a new framework, called NP-ThermCare, that
allows controlling both processor activity and the triggering of the
cooling mechanism so that timing and thermal requirements are
met. We provide a thorough analysis of our solutions, validate the
results and evaluate their performance against a real-world use-
case and intensive simulations. Our approach shows a consistent
improvement of NP-SafeSC over NP-COIN in the responsiveness
of all SC-tasks on each core. In particular, the improvement for
the SC-task with the lowest priority reaches 39.53% for the real-
world use-case and 45.17% for the simulations.

Index Terms—thermal-aware scheduling, non-preemptive
schedulers, DVFS, multi-core platforms, safety-critical systems.

I. INTRODUCTION

In recent decades, thermal management has become an im-

portant issue in the development of safety-critical computing

systems geared by multi-core processors. In short, sub-micron

technological advances have exponentially increased the power

density of the chip, resulting in higher heat dissipation and

thermal hotspots than ever before. In this context, malfunction,

low reliability and even permanent damage can occur. Further-

more, in application domains such as avionics, which is our

target area, it has become common to run tasks of multiple

levels of importance on the same multi-core processor. If this

is not carefully managed during run-time, undesirable inter-

actions may occur that can affect system safety, performance,

and reliability. Typically, we need to pay special attention to

the timing behavior of important tasks, since their eventual

failures (i.e., missed deadlines) are severe. In this work, we

consider systems consisting of tasks at two importance levels:

(1) safety-critical tasks (SC-tasks), where missed deadlines

are forbidden and can lead to catastrophic consequences;

and (2) best-effort tasks (BE-tasks), where occasional missed

deadlines are undesirable but acceptable. Therefore, in order

to adequately mitigate the interaction between tasks, effi-

cient and cost-effective thermal management solutions are of

paramount importance as they help system designers maintain

temperature at acceptable levels (i.e., within predefined limits)

while ensuring that all SC-tasks meet their timing and thermal

requirements. We propose a model-based formalism and care-

ful scheduling considerations that do not depend on ad-hoc

techniques to enable a feasible system implementation. We

build on Rodrı́guez and Yomsi [1], who propose an efficient

proactive thermal-aware scheduler for DVFS-enabled single-

cores, called NP-COIN. Therein, tasks are executed non-

preemptively1 (a common execution mode in avionics [2], [3])

to: (1) avoid unpredictable timing interference between tasks;

(2) achieve a higher degree of predictability; and (3) avoid

any potential issues associated with preemption. In addition,

the scheduler (i) introduces cooling periods during run-time

only when absolutely necessary to keep the temperature within

specified range; and (ii) allows controlling processor activity

with the least possible impact on performance. In summary,

we design a thermal-aware scheduler, called NP-SafeSC, to

reduce the responsiveness of SC-tasks as much as possible by

procrastinating some BE-tasks, in a multi-core context.

▷ This research. We propose (1) a new scheduling scheme,

called NP-SafeSC, that reduces the responsiveness of SC-

tasks as much as possible by procrastinating the execu-

tion of some BE-tasks; and (2) a new framework, called

NP-ThermCare, that allows controlling both the processor

activity and the triggering of the cooling mechanism for

multi-core platforms. We restrict our focus to a dual-core

platform architecture with inter-task DVFS-enabled2 homo-

geneous cores3 for sake of readability. At this point, it should

be emphasized that generalizing to architectures with a higher

number of cores (m > 2) does not add a major conceptual

and/or technical issue to the problem. It merely requires

knowledge of the underlying platform topology (i.e., the

arrangement of cores on the chip) and additional computing

power. We validate our theoretical results and evaluate the per-

formance of our solution by using a real-world use-case (see

Section VI-A) and intensive simulations (see Section VI-B).

II. MOTIVATION

Despite the observed efficiency of the NP-COIN scheduler

for single-core processors, its extension to multi-core architec-

1Once a job starts executing, it cannot be interrupted prior to its completion.
2Task’s speed is not changed at run-time until it is preempted or completed.
3The cores have the same computing capabilities and are interchangeable.

tures is neither simple nor trivial. The very fact that multiple

cores in a multi-core processor share the same die greatly

complicates the problem of controlling timing and thermal

constraints during run-time. This is because the temperature

of each core changes dynamically and is affected by many

factors, including the local workload, the temperature of

neighboring logic cells, the material, the ambient temperature,

and the cooling mechanisms on the chip. In addition, if SC-

tasks and BE-tasks share the same core, then BE-tasks may

cause SC-tasks to fail due to the blocking time associated with

the non-preemptive execution mode.

(a) Both cores are active (b) Core2 is switched-off.

Fig. 1: Dual-core thermal behavior.

Figure 1 shows the thermal run-time behavior of a dual-

core platform executing a real-world avionics use-case, namely

“Flight Management System (FMS) simulation of F-16 fighter

aircraft” [4]. The minimum thermal constraint of the chip is

Tmin = 25◦C and the maximum thermal constraint is set to

Tmax = 38◦C. The two cores – Core1 (see red curve) and

Core2 (see green curve) – are DVFS-enabled and operate at

speeds of [0.6; 0.9; 1.2] GHz each. The details of the use-case

and task-to-core mapping are given in Table I, Section VI-A.

Each core executes SC-tasks and BE-tasks together, see rows

highlighted in white and gray, respectively. In Figure 1a, we

assume the scenario where Core1 executes its local workload

by following a NP-COIN scheduler (here Rate Monotonic)

and Core2 is always busy executing its local workload at the

highest available speed (i.e., at 1.2 GHz). As can be observed,

the maximum thermal threshold is always met on Core1 thanks

to the introduction of cooling periods (see the blue segments)

in the schedule of its local workload, but the situation is out

of control on Core2, where the maximum thermal threshold is

violated. This situation is clearly due to the inter-core thermal

interference during run-time. To illustrate this claim, let us

look at the picture when Core2 is switched-off (see Figure 1b).

Here, only Core1 is executing its local workload, and we can

see that no cooling window was required in the schedule.

However, we observe thermal activity on Core2 with a peak

temperature of 29.23◦C − 25◦C = 4.23◦C, i.e., 32.53% of

the admissible thermal range [25◦C; 38◦C].

III. MODEL OF EXECUTION

▷ Task model. We consider a set Ä
def
= {Ä1, Ä2, . . . , Än} of n re-

curring independent tasks where each task is either (1) a safety

critical (SC) task or (2) a best effort (BE) task (designated by

the system designer to specify its “criticality” or “degree of

importance”). We denote by ÄSC and ÄBE the subset of SC-

tasks and BE-tasks, respectively. Every Äi ∈ Ä is modeled by a

constrained-deadline periodic task characterized by a 5-tuple

(Oi, Ci, Di, Ti, Li), where Oi is the offset; Ci is the worst-

case execution time (WCET); Di f Ti is the relative deadline;

Ti is the exact inter-arrival time between two consecutive

releases of task Äi; and finally Li ∈ {SC,BE} is the criticality

level. These parameters are given with the interpretation

that during the execution of the system, task Äi generates a

(potentially infinite) number of successive jobs Äi,k, where

k = 1, . . . ,∞ is the job index. Specifically, job Äi,k: (1) is

released at time ri,k
def
= Oi + (k − 1) · Ti, where ri,1

def
= Oi

(the release time of the first job of Äi); (2) has an execution

requirement of Ci; and (3) must complete within [ri,k, di,k],

where di,k
def
= ri,k +Di.

▷ Platform model. Without any loss of generality, we con-

sider a dual-core platform Ã
def
= [Ã1, Ã2] composed of two

homogeneous processing elements. We assume that every core

Ãp ∈ Ã (with p = 1, 2) is DVFS-enabled and equipped with

a set of ℓ g 1 discrete speeds sÃp
= {s1, . . . , sj , . . . , sℓ},

where smax = s1 g . . . g sj g . . . g sℓ = smin holds true

for sake of easy presentation. Each Ãp supports one inactive

mode (when the core is switched-off) and ℓ active modes that

are characterized by their operating speeds sj . Tasks can be

executed on a core only if it is in the active mode, otherwise

the core is idle or cooling-down. In the latter case, no task is

allowed to execute, even if ready and pending.

▷ Scheduler model. We assume that all the tasks are executed

on the platform Ã in a non-preemptive manner by following a

Fully Partitioned Fixed-Task-Priority scheduler, i.e., (1) each

task is assigned to a specific core at design time; (2) each

core executes its subset of tasks non-preemptively by following

a classical FTP scheduler; and finally (3) migrations among

cores are forbidden at run-time. We have Ä = Ä(Ã1) ∪ Ä(Ã2)
and Ä(Ã1) ∩ Ä(Ã2) = ∅, where Ä(Ãp) denotes the subset of

tasks assigned to core Ãp. We recall that an FTP scheduler

assigns a constant priority to every task that is passed on to

all its jobs. We assume that all the jobs generated from a task

are executed at the same constant speed. Thus, for a given

reference speed, say s > 0 time units per seconds, it takes at

most Ci

s
seconds to execute each job of Äi. Such a restriction is

common in the literature [4], [5]. We denote by hp(Äi) (resp.,

lp(Äi)) the subset of tasks of higher (resp., lower) priority than

Äi. At a higher level of abstraction, this means that each task Äi
mapped to core, say Ãp, may suffer a maximum blocking time

given by Equation 1, where s(Äj) is the speed at which task Äj
is executed.

Bi
def
= max

τj∈lp(τi)

τj∈τ(πp)

{

Cj

s(τj)

}

(1)

At any point in time, if two jobs are ready and compete

for execution, it is the job coming from the task with the

highest priority that is executed first. This implicitly assumes

that all the tasks have distinct priorities and there is at most

one job per task that is ready at any time instant. The latter is

guaranteed by the adopted task model, since Di f Ti for all

Äi. We enforce that all SC-tasks have a higher priority than all

BE-tasks and missing a deadline on a BE-tasks has no critical

consequences. Any FTP scheduler can be used to define the

priority of the tasks within each task type.

▷ Thermal model. We consider a Resistance-Capacitance

(RC) thermal network [6]. Here, different parts of the chip and

cooling solution are represented by thermal nodes and there

are at least as many thermal nodes as blocks in the floorplan.

Then, the temperatures at any instant in time are modeled as a

function of three factors, namely: (i) the ambient temperature,

(ii) the power consumption, and finally, (iii) the heat transfer

among neighboring elements. For a system with N thermal

nodes and by applying Kirchoff’s first law [6], Equation 2

yields the resulting system of first-order differential equations

AT ′ +BT = P + TambG (2)

where (i) matrix A = [ai,j]N×N
contains the thermal ca-

pacitance values; (ii) matrix B = [bi,j]N×N
contains the

thermal conductance values between vertical and lateral neigh-

boring nodes; (iii) column vector T = [Ti(t)]N×1 represents

the temperatures on the thermal nodes; (iv) column vector

T ′ = [T ′
i (t)]N×1 accounts for the first-order derivative of the

temperature on each thermal node with respect to time; (v)

column vector P = [Pi]N×1 contains the values of the power

consumption on every node. Assuming that thermal node i
is operating at speed sj then we modeled it consumption as

Pi(sj) = ´0 ·s
³
j +´1 ·sj+´2 where ³, ´0, ´1, ´2 are processor

specific constants. This expression has proven to closely model

the average power consumption on a core [7]. We consider:

³ = 3, ´0 = 12.5, ´1 = 1.5625, ´2 = 1.5869, obtained from

the NXP i.MX8 QuadMax datasheet [8]. We set Tamb = 25◦C;

and (vi) column vector G = [bambi]N×1 contains the thermal

conductances between each node and the ambient temperature.

To solve this system of first-order differential equations,

we assume that Core1 and Core2 operate at reference speeds

sÃ1
and sÃ2

at a specific time instant. Note that sÃ1
, sÃ2

∈
{s1, s2, . . . , sℓ}. Then, we use the well-established multi-

dimensional Laplace transform technique. At any time in-

stant t, the general shape of the solution T
(sπ1 ,sπ2)
i (t) for

thermal node i is given by Equation 3.

T
(sπ1 ,sπ2)
i (t) = T∞

i (sÃ1 , sÃ2)+

N∑

·=0

fi,·(sÃ1 , sÃ2)·e
−¼ζ ·t (3)

In Equation 3: (1) T∞
i is the asymptote of thermal node i w.r.t.

time or the temperature to which node i will eventually con-

verge to; (2) fi,· are polynomial functions; and (3) ¼· are non-

negative real numbers. Note that T∞
i and fi,· are functions of

the core speeds sÃ1 and sÃ2 . The above-mentioned parameters;

and matrices A, B, P and G set as later in Section VI-A.

This thermal model is able to address various thermal effects

like the transient heat exchange between neighboring cores

and the permanent heat dissipation associated with the static

and/or dynamic power of the idle system. The run-time activity

of Core Ã2 on Core Ã1 is materialized by the presence of its

speed in the heating function of this core. Also, it follows from

Equation 4 that T∞

1 (sπ1 , sπ2) = limt→+∞ T
(sπ1

,sπ2
)

1 (t).

Assuming that the speeds sÃ1 and sÃ2 varies from 0 (when

the corresponding core is switched-off) to 1.2 GHz (i.e., when

the core executes at the maximum speed available on the chip),

Figure 2 illustrates the actual curves for T∞
1 (sÃ1

, sÃ2
), i.e.,

the thermal behavior of the system in its steady state (see

Figure 2a); T
(sπ1 ,0)
1 (t), i.e., the thermal behavior when Ã1

is the only active core and the neighboring core (here Ã2)

is inactive (see Figure 2b); and finally T
(0,sπ2)
1 (t), i.e., the

thermal behavior when Ã1 is inactive and Ã2 is the only active

core (see Figure 2c).

(a) Steady state (b) Intra-core (c) Inter-core

Fig. 2: Dual-core thermal behaviors from the thermal model.

IV. NP-SAFESC SPECIFICATION

To comprehend the specifics of the NP-SafeSC scheduler,

it is important to describe the main intuition behind the

scheduling policy. NP-SafeSC is designed as a proactive

scheduler [1] that computes the length of any eventual cooling

period (inserted into the schedule of the local workload) before

dispatching the corresponding task. The scheduler goal is to

reduce the responsiveness of the SC-tasks as much as possible.

To this end, it commands the procrastination of BE-tasks each

time their execution would insert a blocking time into the

execution of a SC-task. Figure 3 illustrates this idea with a

task-set consisting of two SC-tasks (see green rectangle and

orange rectangle); and one BE-task (see blue rectangle). The

tasks are ordered by their priorities as follows: the “green task”

has the highest priority; followed by the “orange task”; and

finally the “blue task” has the lowest priority. An upward arrow

indicates the release of a job generated from the corresponding

task, and a downward arrow indicates the deadline.

(a) Blocking in NP-COIN. (b) Blocking avoided in NP-SafeSC.

(c) Cascade-Blocking in NP-COIN. (d) CB avoided in NP-SafeSC.

Fig. 3: NP-COIN vs. NP-SafeSC w.r.t. blocking times.

In Figure 3a, the “orange task”, a SC-task, is released during

the execution of the “blue task”, a BE-task, and experiences a

blocking time associated with the execution of the latter under

NP-COIN. The blocking can clearly cause a deadline miss,

unfortunately. This would be the case if another SC-task, say

with 2 time units of execution and a higher priority than the

“orange task”, was also released during the execution window

of the BE-task. In Figure 3b, the blocking of the “orange task”

by the BE-task is avoided under NP-SafeSC. This is achieved

by forcing an idle period (see the purple band) between the

completion time of the “green task” and the release time of

the “orange task” and by procrastinating the execution of the

BE-task only after the completion time of the latter.

Figure 3c depicts yet another phenomenon. Here, the com-

pletion time of the BE-task triggers a “cascade-blocking” (CB)

effect in the execution of SC-tasks, resulting in a deadline

miss of the “green task”, a SC-task, which is unacceptable. In

Figure 3d, this CB is avoided by enforcing an idle period (see

the purple band) between the release time of the “blue task”

and the release time of the “orange task” and by procrastinat-

ing the execution of the BE-task after the completion time of

all the SC-tasks released in their original execution window

under NP-COIN. This way, each SC-task can be blocked at

most once at run-time and this blocking will only be due to

the execution of another SC-task. No BE-task can block the

execution of a SC-task under NP-SafeSC. Consequently, the

maximum blocking time BSC
i that any SC-task, say Äi ∈ ÄSC,

mapped to core, say Ãp, would suffer reduces to Equation 4

under NP-SafeSC, where s(Äj) is the speed of task Äj .

B
SC
i

def
= max

τj∈lp(τi)

τj∈τ(πp)∩τSC

{

Cj

s(τj)

}

(4)

From this equation, it is obvious that BSC
i f Bi (as defined

in Equation 1), since Ä(Ãp) ∩ ÄSC ¦ Ä(Ãp), thus improving

the responsiveness of each SC-task.

▷ NP-SafeSC pseudo-code. Algorithm 1 provides the pseudo-

code of the NP-SafeSC scheduler. We assume that tasks in the

ready queue are re-indexed according to their priority upon

the task- to-core mapping. We designate the pending ready

task with the highest priority in the queue (ReadyQ) as Änext
at any given time. This algorithm receives as inputs (1) the

taskset mapped to the core under analysis, here Ä(Ãp); (2) the

specific task Äi ∈ Ä(Ãp) to be scheduled; (3) the set of SC-

tasks ÄSC ∩ Ä(Ãp) on this core; (4) the factors A; B; P and

G used to feed the thermal model; (5) the thermal boundaries

Tmin and Tmax; and finally (6) the task- to-speed mapping.

Note that CheckReleases() checks the releases of all tasks

within a time interval, while CheckSCReleases() only checks

the releases of SC-tasks.

V. NP-THERMCARE SPECIFICATION

From a purely holistic multi-core perspective, it is important

to re-iterate at this point that the temperature of the individual

cores changes dynamically at run-time. This means that it is

practically infeasible, if not impossible, to predict the exact

timing behavior of the system with high resolution under

thermal-aware design. The situation exacerbates when all cores

execute tasks in parallel (see Figure 1a). Consequently, the

only option is to assume a worst-case situation in which

Algorithm 1: NP-SafeSC scheduler.

Data: Ä(Ãp); Äi ∈ Ä(Ãp); ÄSC; A; B; P ; G; Tmax; Tmin; Task-to-speed
mapping.

Result: NP-SafeSC schedule.
1 ReadyQ = ∅;
2 Record all the releases at t = 0;
3 Update ReadyQ w.r.t. tasks criticality levels;
4 if Äi ∈ ÄSC then

5 Compute BSC
i (see Equation 4);

6 else

7 Compute Bi (see Equation 1);
8 end

9 Execute(Ä
BSC

i
) or Execute(ÄBi

);

10 while ReadyQ ̸= ∅ do

11 Änext = NextExec(ReadyQ);
12 if Änext ̸∈ ÄSC then

13 while CheckSCReleases(Änext) do

14 Update ReadyQ;
15 Änext = NextExec(ReadyQ);
16 SCflag = TRUE;
17 end

18 if SCflag == TRUE then

19 CoolUntilRelease(Änext);
20 end

21 end

22 if Temperature(Änext) > Tmax then

23 cooling = ComputeCooling(Änext);
24 while CheckReleases(cooling) do

25 Update ReadyQ;
26 Änext = NextExec(ReadyQ);
27 cooling = ComputeCooling(Änext);
28 if NoFit(cooling, Änext) then

29 cooling = ComputeCooling(Änext);
30 end

31 end

32 CoolDownAndExecute(cooling, Änext);
33 else

34 Execute(Änext);
35 end

36 Remove(Änext, ReadyQ);
37 CheckReleases(Änext);
38 Update ReadyQ;
39 end

each core is permanently under stress, both from a timing

and thermal point of view, so as not to jeopardize the

actual predictability of the entire system. The goal of the

NP-ThermCare framework is to configure the system in such

a way that no thermal or timing constraint is violated.

From the preceding discussion, the timing behavior of any

task Äi ∈ Ä assigned to a core, say Ãp, can be affected by two

factors from a thermal standpoint: (1) the “intra-core thermal

interference”, which is related solely to the execution of other

tasks assigned to Ãp when it runs in isolation, i.e., assuming all

cores in the vicinity of Ãp are switched-off (see Figure 2b); and

(2) the “inter-core thermal interference”, which is due solely

to the execution of cores in the vicinity of Ãp, i.e., irrespective

of the actual activity on Ãp (see Figure 2c). To fully grasp the

essence of a per-core based solution, such as NP-ThermCare,

it is essencial to understand the difference between these two

components. The main challenge is to derive provably safe and

tight upper-bounds based on an estimation of the maximum

thermal intra- and inter-core interference.

▷ Specifics of NP-ThermCare. This framework allows us to

control both intra- and inter-core thermal interference for a

given task-to-core mapping strategy to maintain the system

within a safe operating range from a timing and thermal

viewpoint. Assuming that each core runs either a NP-COIN

or a NP-SafeSC scheduler, our methodology consists in the

following four steps to be applied in a chronological manner:
Step 1: Computation of the Thermal Profile (TP) of each

core. To profile each Core Ãp, we configure the execution

environment such that all other cores but Ãp are switched-

off (i.e., Core Ãp operates in full isolation). This way, the

inter-core thermal interference is completely removed from

the equation, and all the heat generated from the platform

is exclusively produced by the activity on Core Ãp. In this

configuration, we execute the workload assigned to Core Ãp

and compute its TP as the surface below the curve upon the

execution of the task with the lowest priority in Ä(Ãp). We

recall that Ä(Ãp) is the subset of tasks assigned to Ãp upon the

task-to-core mapping. This process is achieved by assuming

the worst-case scenario (see [1] for further details).
Step 2: Ranking each core. Upon the completion of Step 1,

we determine the order in which our per-core schedulability

analysis will be performed, since the higher the TP of a core,

the lower is its available room temperature and the higher is its

probability to trigger additional cooling periods due to inter-

core thermal interference. To this end, we sort the cores in a

non-decreasing order of their TP and assign a rank to each

of them. The core with the lowest TP is assigned the highest

rank. In case two cores share the TP, then the tie is broken in

an arbitrary manner. At the end of this process, we re-indexed

the cores according to their ranks.
Step 3: Signature speed of each core. The signature speed ssigÃp

of Core Ãp is used to reach two objectives: (1) to profile the

core runtime activity; and (2) to ensure that the temperature of

the core at any time instant falls below Tmax (the maximum

admissible temperature) upon the execution of its workload,

i.e., Ä(Ãp). Specifically, ssigÃp
is the maximum operating speed

that sets the average temperature T̄ (Ä(Ãp)) of Ãp — computed

in a similar manner as the TP of Core Ãp
4 — as the thermal

asymptote upon the execution of Ä(Ãp) on a constant core

speed. Formally, ssigÃp
is obtained for Ãp by solving Equation 5,

where the only variable is sÃp
and sÃj

(with j ̸= p) is constant.

T∞
p (sÃ1

, sÃ2
) = T̄ (Ä(Ãp)) (5)

Step 4: “Schedulability analysis”. Upon the completion of

Step 2, the schedulability analysis of Ã1 is achieved by using

its heating function as obtained from the thermal model and

the principles of the NP-COIN or NP-SafeSC scheduler

on each core. Here, in the heating function, we assume

that all neighboring cores are consistently executing at their

maximum available speed (i.e., in conditions of “extreme”

inter-core thermal interference). Once the schedulability of Ã1

is guaranteed, we proceed with that of the next core (here Ã2)

in a similar manner, but this time assuming that Ã1 operates

at its signature speed ssigÃ1
as defined in Step 3. If all the cores

are schedulable, then the system is deemed as “schedulable”

for the predefined task-to-core and task-to-speed mapping.

Otherwise, it is deemed “not schedulable” and a new task-to-

core and/or task-to-speed mapping scheme must be assessed.

4By computing the surface below the curve obtained upon the execution of
the lowest priority task in τ(πp), assuming the worst-case scenario.

▷ Pseudo-code for the NP-ThermCare schedulability test.

This is provided by Algorithm 2. This algorithm receives

as inputs (1) the task-to-speed mapping; (2) the task-to-core

mapping; (3) the factors A; B; P and G to feed the thermal

model; (4) the thermal boundaries Tmin and Tmax; and finally

(5) the per-core schedulers. Without loss of generality, we

assume that the cores are re-indexed w.r.t their rank. This

means that the first core to be analyzed is Ã1, the second is Ã2

and so on. We also assume that the tasks mapped to each core

Ãp are re-indexed w.r.t. their criticality level and Ä1 is initially

the first task in the queue. Line 10 checks the schedulability

of task Äi on core Ãp by following the input scheduler (e.g.,

NP-COIN or NP-SafeSC).

Algorithm 2: NP-ThermCare schedulability test.

Data: Task-to-speed mapping; Task-to-core mapping; A; B; P ; G; Tmax;
Tmin; Schedulers.

Result: NP-ThermCare schedulability test.
1 foreach Ãp ∈ Ã do

2 Compute the thermal profile of Ãp;
3 end

4 Rank all cores in Ã;
5 Re-index all cores w.r.t. their ranks;

6 s
sig
πj(with j ̸=p)

= max(speeds);

7 SchedulabilityFlag = TRUE;
8 foreach Ãp ∈ Ã do

9 foreach Äi ∈ Ä(Ãp) do

10 SchedulabilityFlag = analysis of scheduler(Ä(Ãp)) for Äi;
11 if SchedulabilityFlag == FALSE then

12 return Ä(Ãp) is not schedulable on Ã;
13 end

14 end

15 Compute ssigπp
;

16 end

17 return Ä is schedulable on Ã;

▷ Potential limitations. The following limitations can be

reported for this approach: (1) A dependency on the number

of cores. The higher the number of computing elements, the

higher the number of times we need to run the NP-COIN
or NP-SafeSC scheduler before we can assess the system

schedulability; and (2) A dependency on the adopted task-to-

core and task-to-frequency mapping strategies. Since the task-

to-core and task-to-frequency mapping strategies are inputs to

this approach, they directly impact the rank of each core, and

this in turn may impact the schedulability analysis.

VI. EXPERIMENTAL RESULTS

A. Application to a real-world use-case

In this section, we apply our methodology to the FMS

use-case [4] in order to show the importance of each step

and the comparison differences between NP-COIN and

NP-SafeSC. The parameters of the adopted task sets upon

the task-to-core mapping are provided in Table I. Here, the

assumed local NP-COIN scheduler or local NP-SafeSC
scheduler are Rate Monotonic per task type. We recall that

Tmax = 38◦C and Tmin = 25◦C. Finally, we consider the

characteristics of the NXP i.MX8 QuadMax [8] to build the

power and thermal models (see Section III). Matrices A, B
and G are set as follows.







83.063 0 0 0
0 83.063 0 0
0 0 305.102 0
0 0 0 305.102







︸ ︷︷ ︸

A







56.112 −0.200 −55.912 0
−0.200 56.112 0 −55.912
−55.912 0 58.467 −0.939

0 −55.912 −0.939 58.467







︸ ︷︷ ︸

B







0
0

1.616
1.616







︸ ︷︷ ︸

G

TABLE I: Task set parameters

Core 1 Core 2

Tasks Ci Di = Ti si ui Ci Di = Ti si ui

τ1 60 200 1.2 0.25 500 1000 0.9 0.017

τ2 100 1000 1.2 0.083 100 5000 1.2 0.555

τ3 80 1000 0.9 0.089 100 5000 1.2 0.042

τ4 100 1000 1.2 0.083 500 10000 1.2 0.017

τ5 60 1000 0.6 0.1

τ6 80 5000 1.2 0.013

Total 0.618 0.630

Table II shows the worst-case response time (WCRT) and

the time gain/loss5 incurred by each SC-task and BE-task

under the same settings (i.e., Core1 executes its workload by

following a NP-COIN or a NP-SafeSC scheduler and Core2
is always busy executing its workload at 1.2 GHz).

TABLE II: Core1 under NP-COIN vs. NP-SafeSC.

WCRT
SC-tasks BE-tasks

Tasks Ä1 Ä2 Ä3 Ä4 Ä5 Ä6
NP-COIN 150.0 233.33 372.22 455.55 667.48 610.92

NP-SafeSC 138.88 222.22 222.22 557.86 750.00 716.66

Gain/Loss 7,41% 4.76% 4.76% -22.45% -12.36% -17.30%

Figure 4 illustrates the WCRT of the lowest priority task on

each core, for both schedulers, when it runs in isolation. In

this figure, the execution of tasks is plotted in “red” on Core1
and “green” on Core2 under NP-COIN on each core (see

Figure 4a and Figure 4b). Here, there is no distinction between

the execution of SC-tasks and BE-tasks because NP-COIN is

completely agnostic to the criticality levels of the tasks and

their execution rely solely on their predefined priorities. In

contrast, under NP-SafeSC on each core (see Figure 4c and

Figure 4d), the execution of SC-tasks is plotted in “red” on

Core1 and “green” on Core2; while the execution of BE-tasks

is plotted in “gray” on both cores. Here, the enforced idle

periods inserted in the schedule to reduce the responsiveness

of SC-tasks are plotted in “purple”.

Upon completion of Step 1, we have: (1) TPÃ1 =
33.65◦C and TPÃ2 = 32.22◦C under NP-COIN; whereas

we have (2) TPÃ1 = 33.09◦C and TPÃ2 = 30.97◦C,

under NP-SafeSC. From these results, Rank(Ã1) = 1 and

Rank(Ã2) = 2 (see Step 2). This means that our per-core

schedulability analysis, in both cases, will start by Core1,

assuming a constant maximum inter-core thermal interference

from Core2; followed by the schedulability analysis of Core2,

assuming that Core1 consistently operates at its signature

speed ssigÃ1
. With this configuration, Figure 5 displays the result

of the schedule of the lowest priority task on Ã1.

By applying the procedure presented in Step 3, we obtain

ssigÃ1
= 0.994 GHz under NP-COIN on each core; and ssigÃ1

=
0.986 GHz under NP-SafeSC on each core. By plugging these

values in the heating function of Ã2 and by performing the

schedulability analysis of this core, Figure 6 displays the result

of the schedule of the lowest priority task on Ã2.

5A positive percentage means an improvement in the WCRT; whereas a
negative percentage means a procrastination of the corresponding task.

(a) Only Core1 is active. (b) Only Core2 is active.

(c) Only Core1 is active. (d) Only Core2 is active.

Fig. 4: Extraction of the TP for each core.

(a) Both cores active. (b) Both cores active.

Fig. 5: Schedule of Ã1 with Ã2 operating at 1.2 GHz.

In contrast to Figure 5a and Figure 5b, we observed that all

constraints are now satisfied for both cores (see Figure 6a and

Figure 6b). The peak temperature reached on the platform is

now 38.00◦C on Ã2 (i.e., Tmax), in contrast to 39.37◦C and

39.34◦ in Figure 5a and in Figure 5b under NP-COIN and

NP-SafeSC, respectively. This represents a gain of ∼ 3.48%
and ∼ 3.40% in the peak temperatures. In addition, the

thermal profiling of Ã1 during the schedulability analysis of Ã2

shows a peak temperature at 35.58◦C against 29.93◦C under

NP-COIN and 29.58◦C under NP-SafeSC observed when Ã2

was executing in isolation (see Figure 4b and Figure 4d). This

represents an increase of ∼ 15, 87% and ∼ 16.86% above

the maximum inter-core thermal interference when the core is

running in isolation. This trend suggests that our approach

is safe as this behavior must be coupled with the activity

of the core. Table III reports the WCRT and the timing

gain/loss incurred by each SC-task and BE-task in Core2 after

performing NP-ThermCare. Here, we compare the results

when both cores run either NP-COIN or NP-SafeSC.

(a) Both cores active. (b) Both cores active.

Fig. 6: Schedule of Ã2 with Ã1 operating at ssigÃ1
.

TABLE III: Core2 under NP-COIN vs. NP-SafeSC.

WCRT

SC-tasks BE-tasks

Tasks Ä1 Ä2 Ä3 Ä4
NP-COIN 973.19 1056.52 1695.41 2284.25

NP-SafeSC 775.45 638.88 1694.44 2212.59

Gain/Loss 20.31% 39.53% 0.05% 3.13%

B. Application to synthetic workloads

In this section we apply the proposed methodology to a high

number of generated synthetic test cases.

▷ Task set generation. We generate 1, 000 task sets per-

core with the target utilization varying from 0.1 to 1 by

step of 0.05. Each core is equipped with three operating

speeds [0.6, 0.9, 1.2] GHz. The utilization ui of each task Äi
is computed as ui

def
= Ci/(Ti · si). The longest admissible

execution time ∆C on each core (computed as in [1]) is set

at ∆C = 321.83 and the task parameters are generated as

follow: (1) the execution times Ci are uniformly distributed

within [∆C/4; 3 ·∆C/4]; (2) the periods Ti ∈ [1500; 162000]
are generated by using the hyper-period limitation technique

proposed in [9]; and (3) the deadlines Di are randomly

generated within [0, 8 · Ti;Ti]. The task-to-speed mapping is

performed in a random manner and the ratio of SC-tasks in

each task set is chosen between 60%; 80% and 100% of the

total number of tasks. The remainder are BE-tasks. Finally,

the tasks are scheduled by following Deadline Monotonic.

▷ Evaluation metrics. We validate the performance of our

NP-ThermCare framework by running local executions of

four different schedulers on each core. We compared (1) the

classical DVFS, where only time matters while thermal con-

straints are ignored; (2) the proactive non-preemptive thermal-

aware NP-COIN scheduler [1], which introduces cooling pe-

riods during run-time only when absolutely necessary to keep

the temperature within specified parameters; (3) our proactive

NP-SafeSC scheduler which aims to reduce the responsive-

ness of the SC-tasks as much as possible by procrastinating

the execution of some BE-tasks; and finally (4) an adaptation

to non-preemptive workloads of the so-called Simple Time

Derivative (STD) proactive scheduler [10], which uses time

derivatives on each core to predict future temperature rise,

resulting in low temporal variability. Note that, the classical

DVFS defines an upper bound for all possible solutions when

other variables (here temperature) are considered in addition

to time. Thus, the closer the behavior to DVFS, the better.

▷ Interpretation of the results. Figure 7 illustrates the system

schedulability ratio when 60% of the tasks (see Figure 7a)

and 100% of the tasks (see Figure 7b) in each core are

SC-tasks. We observe that NP-DVFS always outperforms

all other schedulers and schedules task sets even at high

utilizations (see “blue” curves). This is because it ignores

all thermal constraints. In Figure 7a, our NP-SafeSC-60

(see “solid green” curve) clearly dominates NP-COIN (see

“orange” curve) and NP-STD (see “brown” curve) when

both the timing and thermal constraints are checked only for

SC-tasks. If these constraints are also checked for BE-tasks

upon the procrastination of their execution (see “dash green”

curve), then NP-COIN dominates NP-SafeSC-full and the

behavior against NP-STD is contrasted. NP-STD dominates

NP-SafeSC-full at high utilizations per core (here, from 85%).

From a numerical viewpoint, NP-SafeSC-60 can schedule

at least 83.3% of the task-sets until 80% vs. 97.6% for classical

DVFS (i.e., a performance loss of only 14.65%); 77.4% for

NP-COIN (i.e., a performance gain of 7.08%); and 53.2%
for NP-STD (i.e., a performance gain of 36.13%). The loss

against classical DVFS decreases with an increase in the

system utilization; whereas the gain over NP-COIN and

NP-STD increases. Figure 7b illustrates the schedulability

ratio with only of SC-tasks. Figure 8 compares the [Minimum-

Average-Maximum] performances of the three schemes. The

improvement in the responsiveness for the SC-task with the

lowest priority – when 60% of the workload are SC-tasks –

reaches 45.17%, obtained at 65% of utilization per core.

(a) (SC-tasks, BE-tasks) = (60, 40)%. (b) (SC-tasks, BE-tasks) = (100, 0)%.

Fig. 7: Schedulability ratios.

VII. STATE OF THE ART

Targeting only the peak temperature. Fisher et al. [11]

proposed a thermal-aware scheduling for sporadic real-time

tasks to minimize peak temperature by deriving a preferred

speed for each core. Chantem et al. [12] presented a Mixed-

Integer Linear Programming (MILP) formulation to assign and

schedule tasks with hard real-time constraints to minimize

peak temperature. Schor et al. [13] proposed an analytical

method to compute an upper bound on the worst-case peak

temperature for a real-time system under all possible scenarios

of task executions. Ahmed et al. [14] derived necessary and

sufficient conditions for thermal feasibility of periodic task-

sets. In [15], [16], the authors developed a task assignment

heuristic that minimizes dynamic energy consumption and

hence temperature. In [17], a multi-task look-ahead approach

for managing power peaks and maximum temperatures is

developed to ensure that dynamic slacks are allocated to tasks

that have the greatest impact on the system. Recently, Safari

et al. [18] proposed a thermal-aware scheduling scheme for

fault-tolerant Mixed-Criticality Systems, called TherMa-MiCs,

that satisfies the temperature and timing constraints of high-

criticality tasks while attempting to maximize the QoS of low-

criticality tasks. Unfortunately, all of these works ignore the

thermal maximums of individual cores, which can significantly

affect the resulting peak temperatures.

Inclusion of transient thermal behavior. In [19], the

authors presented a convex optimization-based method for

determining the operating frequencies of the underlying pro-

cessor. Fu et al. [20] proposed a feedback thermal control

(a) Min-Ave-Max thermal variation. (b) Min-Ave-Max thermal variation. (c) Min-Ave-Max WCRT variation. (d) Min-Ave-Max WCRT variation.

Fig. 8: NP-COIN vs. NP-SafeSC vs. NP-STD vs. DVFS performances.

loop to enforce the desired temperature and utilization bounds.

Pagani et al. [21] presented a method to calculate transient

temperature for arbitrary time resolution without loss of accu-

racy, but we are not aware of any thermal-aware control tech-

nique. D’Souza and Rajkumar [22] proposed two algorithms to

enable a thermally efficient sleep schedule. In [23], the authors

proposed a thermal-aware server framework that considers the

effect of continuously varying ambient temperature to limit

the maximum operating temperature of mixed-criticality multi-

core systems. Recently, Ansari et al. [24] developed a thermal-

aware technique for standby-sparing that aims to maximize the

Quality of Service of soft real-time tasks. Nevertheless, none

of these contributions have succeeded in accurately capturing

transient and peak temperatures in the same framework while

providing temporal guarantees. This work fills this gap.

VIII. CONCLUSION

This paper specifies an efficient thermal-aware resource

management scheduler (NP-SafeSC) and a new framework

(NP-ThermCare) for workloads running on DVFS-enabled

multi-core platforms in a non-preemptive manner. NP-SafeSC
reduced the responsiveness of Safety-Critical tasks, while

procrastinating the execution of Best-Effort tasks. We validated

the run-time behavior of our solution using a real-world use-

case as well as intensive simulations. An interesting future

work is to perform experiments on a real platform to expose

the differences due to model abstraction.

ACKNOWLEDGMENT

This work was supported by the CISTER Research

Unit (UIDP/UIDB/04234/2020) financed by National Funds

through FCT/MCTES (Portuguese Foundation for Science and

Technology); by project VALU3S (ECSEL/0016/2019 - JU

grant nr. 876852), financed by national funds through FCT and

European funds through the EU ECSEL JU. (The JU receives

support from the European Union’s Horizon 2020 research

and innovation programme and Austria, Sweden, Spain, Italy,

France, Portugal, Ireland, Finland, Slovenia, Poland, Nether-

lands, Turkey - Disclaimer: This document reflects only the

author’s view and the Commission is not responsible for any

use that may be made of the information it contains).

REFERENCES

[1] J. P. Rodriguez and P. M. Yomsi, “An efficient proactive thermal-aware
scheduler for dvfs-enabled single-core processors,” in RTNS, 2021.

[2] ——, “Thermal-aware schedulability analysis for fixed-priority non-
preemptive real-time systems,” in RTSS, 2019, pp. 154–166.

[3] O. Benedikt, M. Sojka, P. Zaykov, D. Hornof, M. Kafka, P. Šůcha,
and Z. Hanzálek, “Thermal-aware scheduling for mpsoc in the avionics
domain: Tooling and initial results,” in RTCSA, 2021, pp. 159–168.

[4] S. K. Roy, A. Sarkar, and R. Gangopadhyay, “Processor and bus co-
scheduling strategies for real-time tasks with multiple service-levels,” in
RTCSA, 2021, pp. 21–30.

[5] S. Zhang and K. S. Chatha, “Approximation algorithm for the
temperature-aware scheduling problem,” in ICCAD, 2007, pp. 281–288.

[6] J. P. Rodriguez and P. M. Yomsi, “WiP: Towards a fine-grain thermal
model for uniform multi-core processors,” in RTSS, 2020, pp. 403–406.

[7] S. Pagani, “Power, energy, and thermal management for clustered many-
cores,” Ph.D. dissertation, Karlsruher Institut für Technologie, 2016.

[8] i.MX 8QuadPlus Automotive and Infotainment Applications Processors,
NXP Semiconductors, 12 2020, rev. 1.

[9] V. Nelis, P. M. Yomsi, and J. Goossens, “Feasibility intervals for homo-
geneous multicores, asynchronous periodic tasks, and FJP schedulers,”
in RTNS, 2013, pp. 277–286.

[10] S. Shaik and S. Baskiyar, “Proactive thermal aware scheduling,” in IGSC,
2017, pp. 1–6.

[11] N. Fisher, J. Chen, S. Wang, and L. Thiele, “Thermal-aware global real-
time scheduling on multicore systems,” in RTAS, 2009, pp. 131–140.

[12] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs,” Trans. on

VLSI Systems, vol. 10, no. 10, pp. 1884–1897, 2010.
[13] L. Schor, I. Bacivarov, H. Yang, and L. Thiele, “Worst-case temperature

guarantees for real-time applications on multi-core systems,” in RTAS,
2012, pp. 87–96.

[14] R. Ahmed, P. Ramanathan, and K. Saluja, “Necessary and sufficient
conditions for thermal schedulability of periodic real-time tasks,” in
ECRTS, 2014, pp. 243–252.

[15] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Cooling-aware
node-level task allocation for next-generation green hpc systems,” in
HPCS, 2016, pp. 690–696.

[16] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, “Thermal-
aware task scheduling for energy minimization in heterogeneous real-
time mpsoc systems,” TCAD, vol. 35, no. 8, pp. 1269–1282, 2016.

[17] B. Ranjbar, T. D. A. Nguyen, A. Ejlali, and A. Kumar, “Online peak
power and maximum temperature management in multi-core mixed-
criticality embedded systems,” in DSD, 2019, pp. 546–553.

[18] S. Safari, H. Khdr, P. Gohari, M. Ansari, S. Hessabi, and J. Henkel,
“Therma-mics: Thermal-aware scheduling for fault-tolerant mixed-
criticality systems,” TPDS, vol. 33, pp. 1678–1694, 2022.

[19] A. Murali, S.and Mutapcic, D. Atienza, R. Gupta, S. Boyd, L. Benini,
and G. De Micheli, “Temperature control of high-performance multi-
core platforms using convex optimization,” in DATE, 2008, pp. 110–115.

[20] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, “Feedback thermal
control of real-time systems on multicore processors,” in EMSOFT,
2012, p. 113–122.

[21] S. Pagani, J. Chen, M. Shafique, and J. Henkel, “Matex: Efficient tran-
sient and peak temperature computation for compact thermal models,”
in DATE, 2015, p. 1515–1520.

[22] S. M. D’souza and R. Rajkumar, “Thermal Implications of Energy-
Saving Schedulers,” in ECRTS, vol. 76, 2017, pp. 21:1–21:23.

[23] S. Hossein, A. Ghahremannezhad, and H. Kim, “On dynamic thermal
conditions in mixed-criticality systems,” in RTAS, 2020, pp. 336–349.

[24] M. Ansari, S. Safari, S. Yari, P. Gohari, H. Khdr, M. Shafique, J. Henkel,
and A. Ejlali, “Thermal-aware standby-sparing technique on heteroge-
neous real-time embedded systems,” TETC, pp. 1–1, 2021.

