

A system model and stack for the
parallelization of time-critical applications on
many-core architectures

Technical Report

*CISTER Research Center
CISTER-TR-141206

2015/01/21

Vincent Nélis*

Patrick Meumeu Yomsi*

Luis Miguel Pinho*
Eduardo Quiñones

Marko Bertogna
Andrea Marongiu

Paolo Gai

Claudio Scordino

Technical Report CISTER-TR-141206 A system model and stack for the parallelization of ...

A system model and stack for the parallelization of time-critical applications on
many-core architectures
Vincent Nélis*, Patrick Meumeu Yomsi*, Luis Miguel Pinho*, Eduardo Quiñones, Marko Bertogna,
Andrea Marongiu, Paolo Gai, Claudio Scordino

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: nelis@isep.ipp.pt, pamyo@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Many embedded systems are subject to stringent timing requirementsthat compel them to "react" within pre-
de_ned time bounds.The said "reaction" may be understood as simply outputting the resultsof a basic
computation, but may also mean engaging in complex interactionswith the surrounding environment. Although
these strict temporalrequirements advocate the use of simple and predictable hardwarearchitectures that allow
for the computation of tight upper-bounds onthe software response time, meanwhile most of these embedded
systemssteadily demand for more and more computational performance, whichweighs in favor of specialized,
complex, and optimized multi-core andmany-core processors on which the execution of the application can
beparallelized. However, it is not straightforward how event-based embeddedapplications can be structured in
order to take advantage and fullyexploit the parallelization opportunities and achieve higher performanceand
energy-e_fficient computing. The P-SOCRATES project envisions thenecessity to bring together next-generation
many-core accelerators fromthe embedded computing domain with the programming models andtechniques from
the high-performance computing domain, supportingthis with real-time methodologies to provide timing
predictability.

This paper gives an overview of the system model and software stackproposed in the P-SOCRATES project to
facilitate the deployment andexecution of parallel applications on many-core infrastructures, whilepreserving the
time-predictability of the execution required by real-timepractices to upper-bound the response time of the
embedded application.

© CISTER Research Center
www.cister.isep.ipp.pt

1

A system model and stack for the parallelization
of time-critical applications on many-core

architectures

Vincent Nélis1, Patrick Meumeu Yomsi1, Lúıs Miguel Pinho1, Eduardo
Quiñones2, Marko Bertogna3, Andrea Marongiu4, Paolo Gai5, and Claudio

Scordino5

1 CISTER/INESC-TEC Research Center, Porto, Portugal
2 Barcelona Supercomputing Center, Spain

3 University of Modena, Italy
4 IIS - ETH Zürich, Switzerland

5 Evidence Srl

Abstract. Many embedded systems are subject to stringent timing re-
quirements that compel them to “react” within pre-defined time bounds.
The said “reaction” may be understood as simply outputting the results
of a basic computation, but may also mean engaging in complex inter-
actions with the surrounding environment. Although these strict tem-
poral requirements advocate the use of simple and predictable hardware
architectures that allow for the computation of tight upper-bounds on
the software response time, meanwhile most of these embedded systems
steadily demand for more and more computational performance, which
weighs in favor of specialized, complex, and optimized multi-core and
many-core processors on which the execution of the application can be
parallelized. However, it is not straightforward how event-based embed-
ded applications can be structured in order to take advantage and fully
exploit the parallelization opportunities and achieve higher performance
and energy-efficient computing. The P-SOCRATES project envisions the
necessity to bring together next-generation many-core accelerators from
the embedded computing domain with the programming models and
techniques from the high-performance computing domain, supporting
this with real-time methodologies to provide timing predictability.
This paper gives an overview of the system model and software stack
proposed in the P-SOCRATES project to facilitate the deployment and
execution of parallel applications on many-core infrastructures, while
preserving the time-predictability of the execution required by real-time
practices to upper-bound the response time of the embedded application.

1 Introduction

Traditionally, High Performance Computing (HPC) has been the focus of special-
ized industries and specific groups within academia as it demands analytics and
simulation applications that require large amounts of data to be processed. Sim-
ilarly, researchers and industry in the embedded computing (EC) domain have

2 V. Nélis et al.

focused mainly on specific systems with specialized and fixed set of function-
alities for which timing requirements prevailed over performance requirements.
Today, both the HPC and EC domains are broadening their initial focus to
other application areas due to the ever-increasing availability of more powerful
processing platforms, but therefore they need affordable and scalable software
solutions [9, 19].

The need for energy-efficiency (in the HPC domain) and flexibility (in the
embedded computing domain), that come along with Moore’s law greedy demand
for performance and the advancements in the semiconductor technology, have
progressively paved the way for the introduction of many-core systems — i.e.,
multi-core chips containing a high number of cores (tens to hundreds) — in both
domains.

Today, many-core computing fabrics are being integrated together with gen-
eral purpose multi-core processors to provide a heterogeneous architectural har-
ness that eases the integration of previously hard-wired accelerators into more
flexible software solutions. The HPC computing domain has seen the emergence
of accelerated heterogeneous architectures, most notably multi-core processors
integrated with General Purpose Graphic Processing Units (GPGPU) [21, 22].
Examples of many-core architectures in the HPC domain include the Intel MIC [10]
and Intel Xeon Phi [11] (features 60 cores).

Similarly, the real-time embedded domain has seen the emergence of the
STMicroelectronics P2012/STHORM [1] processor, which includes a dual-core
ARM-A9 CPU coupled with a many-core processor (the STHORM fabric); and
the Kalray MPPA (Multi-Purpose Processor Array) [12], which includes four
quad-core CPUs coupled with a many-core processor. One can also cite the
Parallela from Epiphany and the Keystone II from Texas Instrument. In most
cases, the many-core fabric acts as a processing accelerator [20].

The introduction of such platforms has set up the basic environment that
allowed for the deployment of new types of applications sharing objectives and
requirements from both the EC and HPC domains. For such applications, the
correctness of the result depends on both performance and real-time require-
ments, and the failure to meet those is critical to the functioning of the system.
Real-time Complex Event Processing (CEP) systems6 [13] are an example of
such applications; they challenge the performance capabilities by crossing the
boundaries between the two domains.

This research. This work presents an overview of the framework — i.e., the
software stack and computation model — proposed by the P-SOCRATES project
consortium to parallelize applications on a many-core architecture while provid-
ing guarantees on their response times. Although the framework will be ported to
different hardware architectures, we focus here on the Kalray MPPA platform to
illustrate the proposed methodology. A detailed description of this platform can
be found in [2, ?] and we provide below a brief summary of its main architectural
features.

6 A real-time CEP system is a system in which the data coming from multiple event
streams are correlated in order to extract and provide meaningful information.

P-SOCRATES 3

2 Overview of the Kalray MPPA-256 architecture

The Kalray MPPA many-core chip features a total of 288 identical Very Long
Instruction Word (VLIW) cores on a single die. More precisely, it is composed
of 256 user cores referred to as Processing Elements (PEs) and dedicated to
the execution of the user applications and 32 system cores referred to as Re-
source Managers (RM) and dedicated to the management of the software and
processing resources. The cores are organized in 16 compute clusters and 4 I/O
subsystems. In Figure 1, the 16 inner nodes (blue boxes) correspond to the 16
compute clusters holding 17 cores each: 16 PEs and 1 RM. Then, there are 4
I/O subsystems located at the periphery of the chip, each holding 4 RMs.

Fig. 1. Overview of the Kalray MPPA platform.

2.1 The I/O subsystems architecture

The 4 I/O subsystems (also denoted as IOS) are referenced as the North, South,
East, and West IOS. They are responsible for all communications with elements
outside the Kalray MPPA processor. Each IOS contains 4 RM cores, which
operate as controllers for the MPPA clusters. Each of these quad-core (i) runs

4 V. Nélis et al.

a RTEMS operating system, (ii) is connected to a shared 16-banked parallel
memory of 512 KB, (iii) has its own private instruction cache of 32 KB and (iv)
share a data cache of 128 KB, which ensures data coherency between the cores.
Any program is started on the I/O cores, which are then responsible to properly
offloading computation to the compute clusters via the NoC. Note that the IOS
also implement various standard interfaces such as DDR3 channels; PCIe Gen3
X8; NoC eXpress interfaces (NoCX), etc.

2.2 The Network-on-chip (NoC)

The NoC holds a key role in the performance of the Kalray MPPA processor,
especially when different clusters need to exchange messages at run-time. The
16 compute clusters and the 4 IOS are connected by two explicitly addressed
NoC — the data NoC (D-NoC)7 and the control NoC (C-NoC)8 — with bi-
directional links providing a full duplex bandwidth between two adjacent nodes.
The two NoC are identical with respect to the nodes, their 2D-wrapped-around
torus topology, and the wormhole route encoding. However, they differ at their
device interfaces by the amount of packet buffering in routers and by the flow
regulation at the source available on the D-NoC.

2.3 The compute clusters architecture

Each compute cluster and IOS owns a private address space, while communica-
tion and synchronization between them is ensured by the D-NoC and the C-NoC.
We recall that each cluster contains 16 PE and one RM core.

The cores. Every core is equipped with private instruction and data L1 caches;
runs nodeOS and communicates with other cores in the cluster through the
shared memory. The RM core is in charge of (i) scheduling the threads on the
PEs; (ii) managing the communication between the clusters and (iii) managing
the communication between the clusters and the main memory.

The shared memory. The shared memory (SMEM) has a total capacity of
2 MB and comprises 16-banked independent memory of 128 kB per bank, en-
abling low latency access. A direct memory access (DMA) engine is responsible
for transferring data between the shared memory and the NoC or within the
shared memory. A Debug Support Unit (DSU) is also available.

3 Application architecture

In the P-SOCRATES view, the application comprises all the software parts of
the systems that operate at the user-level and that have been explicitly defined

7 The D-NoC is optimized for bulk data transfers.
8 The C-NoC is optimized for small messages at low latency.

P-SOCRATES 5

by the user. The application is the software implementation (i.e., the code) of
the functionality that the system must deliver to the end-user. It is organized as
a collection of real-time tasks.

A real-time (RT) task is a recurrent activity that is a part of the overall
system functionality to be delivered to the end-user. Every RT task is imple-
mented and rendered parallelizable using OpenMP 4.0, the de facto standard
parallel programming model used in shared memory-based architectures such as
the Kalray MPPA. OpenMP version 4.0 has evolved from previous versions to
consider very sophisticated types of dynamic, fine-grained and irregular paral-
lelism.

An RT task is characterized by a software procedure that must carry out a
specific operation such as processing data, computing a specific value, sampling
a sensor, etc. It is also characterized by a few (user-defined or computed) pa-
rameters related to its timing behavior such as its worst-case execution time,
the frequency of its activation (aka period), the time frame in which it must
complete (aka its deadline), etc. In P-SOCRATES, every RT task comprises a
collection of task regions whose inter-dependencies are captured and modeled by
a graph called the extended task dependency graph (eTDG).

A task region is defined at run-time by the syntactic boundaries of an openMP
task construct. For example:

#pragma omp task

{

// The brackets identify the boundaries of the task region

}

Since the task regions are defined in the code through the openMP task
constructs, we will henceforth refer to them as openMP tasks.

An openMP task part (or simply, a task part) is a non-pre-emptible (at least
from the OpenMP view of the world) portion of an openMP task. Specifically,
consecutive task scheduling points (TSP) such as the beginning/end of a task
construct, the synchronization directives, etc., identify the boundaries of an
openMP task part. In the plain OpenMP task scheduler a running openMP task
can be suspended at each TSP (not between any two TSPs), and the thread pre-
viously running that openMP task can be re-scheduled to a different openMP
task (subject to the task scheduling constraints).

4 Overview of the P-SOCRATES software stack

Figure 2 gives an overview of the P-SOCRATES runtime methodology. The fol-
lowing explanation is organized as a list of bullet-points that traces the execution
of a real-time task (using Figure 2 as reference), from its initial partial execu-
tion on the IOS to its offload onto the accelerator, explaining along the way the
cluster assignment, the openMP task dependency checks, the mapping to the
OS threads and the scheduling of the threads on the cores.

6 V. Nélis et al.

Fig. 2. Illustration of the software stack. Note that all the components depicted outside
of the box in the top-left corner are part of a compute cluster.

1 On the IOS side

As illustrated in the box in the top-left corner of Figure 2, all the real-time
tasks start their execution on the IOS to which they have been assigned and are
scheduled on that quad-core by a partitioned or global scheduling algorithm. The
RT tasks do not migrate from one IOS to another at run-time. In this example we
have depicted four real-time tasks RT1, RT2, RT3 and RT4, all running on the
same IOS. Note that each IOS runs on Linux as we envision a fully open-source
software stack.

As mentioned in the previous section, each RT task is modeled as a graph
of openMP tasks. Some of these openMP tasks will be executed “locally” on
the IOS to which their RT task has been assigned while others will be offloaded
onto the accelerator, i.e. the many-core fabric. It will be written explicitly in the
RT task’s code (through the mppa spawn() routine) which parts of the code,
i.e. which of its openMP tasks, will be executed on the IOS and which ones will
be sent to the accelerator. Therefore, each RT task can be seen as a collection
of logical segments, where each segment is a collection of openMP tasks that
execute either locally or on the accelerator. Although we have drawn only tasks
composed of three consecutive segments (one local – one to be offloaded – one
local), RT tasks can actually comprise an arbitrary number of segment, each
containing an arbitrary number of openMP tasks.

2 Offloading openMP tasks to the accelerator

P-SOCRATES 7

Each time an openMP task is sent to the accelerator, a scheduler must select
the cluster on which the openMP task will execute. This assignment will first be
done via a simple bin-packing strategy such as next-fit, first-fit, etc., but later in
the project, more elaborated techniques will be investigated in order to optimize,
for example, the memory traffic between clusters and between the clusters and
the main memory. As a first step, we will also impose that all the openMP tasks
issued from the same RT task can only be offloaded to the same cluster in order
to avoid the need for inter-cluster synchronization mechanism and potentially
reduce the communication traffic between clusters.

3 The task dependency graph

In Figure 2, consider that all the openMP tasks of the offloaded segment of
RT1 have been sent to cluster 1. When a segment is offloaded to a cluster of
the many-core, the essential openMP task dependency information is captured
within a streamlined data structure hosted in the on-cluster shared memory.
This data structure is a graph of openMP tasks called the task dependency
graph (TDG), whose edges represent the inter-dependencies between them.

4 The runtime queues

The cluster also defines and maintains a ready-queue and a waiting-queue
for that real-time task RT1. As seen in Figure 2, the offloaded segment of RT1
comprises 9 openMP tasks whose dependencies are captured by the TDG stored
in the shared memory of the cluster. Among these 9 openMP tasks, three are
ready to execute as they have no predecessor in their dependency graph while
the remaining six must wait not to violate their precedence constraints.

5 The openMP runtime library/environment

At runtime, upon reaching an openMP task scheduling point like a task cre-
ation/completion/synchronization point, an OpenMP runtime library/environment
(RTE) is responsible for updating the dependency graph and flagging the next
openMP task[s] that become now ready to execute as a result of this update,
i.e. all their predecessor nodes in the graph have finished their execution. Those
openMP tasks that became ready are moved from the waiting queue to the ready
queue, thereby indicating to the system that they are ready to be mapped to
the OS threads.

There are multiple run-time libraries for the openMP programming model
and in P-SOCRATES we have evaluated two of them, namely Nanos++ (that
comes with OmpSs) and Libgomp (that comes with GCC). Nanos++ only sup-
ports OpenMP 4.0 while Libgomp has versions for OpenMP 4.0 and 3.0. The
difference between the versions 3.0 and 4.0 of openMP is that the 4.0 introduces
and provides support to handle dependencies between the openMP tasks. As
the Kalray MPPA only supports Libgomp 3.0 and so cannot handle the depen-
dencies, we will extend this Kalray-supported Libgomp 3.0 run-time library to
incorporate mechanisms that handle dependencies.

8 V. Nélis et al.

6 The openMP tasks to OS threads mapping

In each cluster to which an openMP task of an RT task is assigned, there is
for that RT task and thus for all its openMP tasks, a pool of 16 OS threads (one
thread per PE) dedicated to their execution. The OpenMP run-time environ-
ment decides which ready openMP task is executed by which thread respecting
the run-after dependencies among openMP tasks as defined in the TDG. This
mapping between the OpenMP tasks and the threads will consider the poten-
tial inter-thread conflicts when accessing the on-cluster shared memory. Such an
effect will be incorporated latter in the overall timing analysis of the RT tasks.

Our initial idea was to run the mapper on a dedicated PE but we are currently
considering running it in a more distributed fashion. Note that the scheduler (see
next bullet-point) could also benefit from running on a dedicated core as it would
allow a higher runtime complexity and thus a higher precision when taking the
scheduling decisions. This is because scheduling decisions may be based on heavy
computations if for example, the objective is to minimize the traffic between the
cores and the memory at runtime.

The OpenMP runtime environment internally holds the required data struc-
tures to dispatch the openMP tasks to the available “workers” and to properly
synchronize. A worker is an openMP thread and those are the entities that are
actually mapped to the OS threads, which we simply refer to as threads. For
simplicity, we have overlooked in Figure 2 this additional conceptual layer of
openMP threads and pretended that the openMP tasks are the entities to be
mapped directly to the OS threads by the RTE.

We have struggled to keep the implementation of such infrastructure as
lightweight as possible, to reduce to a minimum the library overhead and its final
impact on parallelization effectiveness. In particular, data dependence checking
is known to be among the principal contributors to this overhead. We are thus
designing a lightweight lookup mechanism to support this feature at a low cost.
Parallel updates to a simple look-up table are synchronized among multiple
openMP threads. The look-up table placement leverages the multi-banked na-
ture of the on-cluster shared memory to minimize the probability of conflicts.

7 The scheduling of the OS threads on the PEs

While the OpenMP tasks-to-threads mapping is entirely managed within the
OpenMP RTE, as we mentioned in 1 multiple RT tasks can be assigned to the
same cluster and thus their 16 assigned OS threads may compete for the same
cores. The scheduling of these threads is managed within the RTOS, Erika. To
minimize the overheads for OpenMP to RTOS interaction, we have also designed
a minimal support layer for fork-join parallelism, which tightly integrates OS
threads and OpenMP threads.

As RTOS for the many-core fabric we have chosen Erika Enterprise [5–7],
a free and open-source RTOS certified for the automotive market. This RTOS
has a very small footprint (2KB) and already implements several scheduling
algorithms known in the real-time literature. Thus, it is a very good candidate

P-SOCRATES 9

for our software stack. Within P-SOCRATES, we will port the RTOS onto the
Kalray architecture.

As a first step, the scheduling algorithm that we will implement will be sim-
ple: the 16 threads of every RT tasks are indexed from 1 to 16 and thread
number k will be executed on PE number k. That is, we will implement parti-
tioned scheduling where a thread, say k, cannot migrate from one PE to another
at run-time. In fact, it cannot even execute on a PE j 6= k. Note that this
partitioned scheduling paradigm may lead to an important waste of processing
resources as it is possible for a PE to be idle while other threads await their
respective PEs to finish their current workload. Later in the project, we intend
to extend the scheduling to global in order to overcome this limitation.

The scheduler is priority-based. Every RT task is assigned a constant priority
level, which is passed on to the openMP tasks and ultimately to the threads exe-
cuting those tasks. We are considering implementing different scheduling policies,
starting with a fixed priority algorithm and then extend it to dynamic priorities
such as EDF. Note that Rate Monotonic (RM) and other priority assignments
that have good performance on a single core system may not be suitable for the
case under consideration for different reasons. First, a well-known constraining
factor on the achievable utilization of RM and EDF is given by Dhall’s effect[4].
Therefore hybrid schedulers and priority assignments which are not uniquely
based on the rate (or the deadline) of each task may achieve better performance
than classic solutions. Second, the overhead related to pre-emptions and migra-
tions need to be properly considered before adopting a preemptive scheduler,
and/or when enforcing a particular schedule. To this end, we will investigate
more refined models such as “limited-preemptive” scheduling solutions which re-
duce the cache-related overhead without affecting the overall schedulability [16,
15] as well as more dynamic techniques which try to balance those same effects
against the load (e.g. work-stealing approaches [14, 8, 17]).

On an orthogonal dimension, the accesses to main memory for delivering
fresh data to the cluster needs to be taken into account whenever a new task is
scheduled. Access to main memory represents a significant bottleneck for data-
intensive applications that perform a limited number of operations to large sets
of data. This has a significant impact on the schedulability, so that properly
scheduling memory and communication bandwidth could result in a greater in-
crease in the systems schedulability than overly focusing on the scheduling of the
processing elements, as long as the applications programming model is amenable
to this. We will therefore also investigate and design memory-aware schedulers
that jointly consider the allocation of processing and memory bandwidth inside
each cluster. One of the options to evaluate will be using a predictable execution
model (PREM) [18] that divides the execution of each task between a mem-
ory phase, when all data and instructions are fetched from shared memory to
the local memory of each PE, and an execution phase, where each PE executes
without conflicts on the shared bus. We will investigate in the tradeoffs obtained
against the requirements imposed to the program code.

10 V. Nélis et al.

As a final remark, note that we do not make any restrictive assumption
on the semantics of the supported OpenMP programs. Thus, it is allowed to
dynamically create new tasks, possibly within conditional execution patterns, as
shown by 8 in Figure 2. These newly created openMP task are directly handled
by the openMP RTE (the TDG and the queues are updated accordingly).

5 Conclusion

This paper aimed at presenting an overview of the framework that is being
developed within the EU project P-SOCRATES. More precisely, we introduced
the software stack that we envision and that will enable applications to run in
parallel, by using a parallel programming model from the HPC world, on a many-
core architecture coming from the embedded computing world. We consider the
unification of these two worlds as a necessity as modern applications have started
sharing requirements from both. Many applications today have high-performance
requirements as they have to deliver results requiring huge amount of data to be
processed, and real-time requirements as they must carry out such computations
in pre-defined time bounds. So far, the project has always received very positive
and constructive feedback and the outcome of the first round of reviews was
very positive as well. Many technical questions are still open today, and we
foresee to open many more as we progress in the development/adaptation of the
P-SOCRATES techniques and tools.

Acknowledgment

This work was partially supported by National Funds through FCT (Portuguese
Foundation for Science and Technology) and by ERDF (European Regional De-
velopment Fund) through COMPETE (Operational Programme ’Thematic Fac-
tors of Competitiveness’), within project(s) FCOMP-01-0124-FEDER-037281
(CISTER), and by the European Union, under the Seventh Framework Pro-
gramme (FP7/2007-2013), grant agreement n. 611016 (P-SOCRATES).

References

1. Luca Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. P2012: building
an ecosystem for a scalable, modular and high-efficiency embedded computing
accelerator. In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 983–987, 2012.

2. B.D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne, P.G.
de Massas, F. Jacquet, S. Jones, N.M. Chaisemartin, F. Riss, and T. Strudel. A
clustered manycore processor architecture for embedded and accelerated applica-
tions. In High Performance Extreme Computing Conference (HPEC), 2013 IEEE,
pages 1–6, Sept 2013.

P-SOCRATES 11

3. Benot Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager, Clment
Lger, Benjamin Orgogozo, Jrme Reybert, and Thierry Strudel. A distributed run-
time environment for the kalray mppa-256 integrated manycore processor. Procedia
Computer Science, 18(0):1654 – 1663, 2013. 2013 International Conference on
Computational Science.

4. S. K. Dhall and C. L. Liu. On a real-time scheduling problem. In Operations
Research, volume 26(1), pages 127–140, 1978.

5. Evidence Srl. Erika Enterprise. Available at http://erika.tuxfamily.org/

drupal/.
6. P. Gai, E. Bini, G. Lipari, M. Di Natale, and Abeni L. Architecture for a portable

open source real-time kernal environment. In 2nd Real-time Linux workshop, 2000.
7. P. Gai, F. Esposito, R. Schiavi, M. Di Natale, C. Diglio, M. Pagano, C. Camicia,

and L. Carmignani. Towards an open source framework for small engine controls
development. In SAE/JSAE 2014 Small Engine Technology Conference & Exhibi-
tion, 2014.

8. Ricardo Garibay-Mart́ınez, Luis Lino Ferreira, Cláudio Maia, and Luis Miguel
Pinho. Towards transparent parallel/distributed support for real-time embedded
applications. In 8th IEEE International Symposium on Industrial Embedded Sys-
tems, 2013.

9. S. Girbal, M. Moretó, A. Grasset, J. Abella, E. Quiñones, F.J. Cazorla, and
S. Yehia. The next convergence: High-performance and mission-critical markets.
In 1st Workshop on High-performance and Real-time Embedded Systems (HiRES),
2013.

10. Intel Corporation. Intel Many Integrated Core (MIC) Architec-
ture, last access Aug 2014. Available at http://www.intel.com/

content/www/us/en/architecture-and-technology/many-integratedcore/

intel-many-integrated-core-architecture.html.
11. Intel Corporation. Intel Xeon Phi, last access Aug 2014. Available at http://www.

intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.
12. Kalray Corporation. Kalray MPPA-256, last access Aug 2014. Available at http:

//www.kalray.eu/products/mppa-manycore/.
13. D.C. Luckham. The power of events: An introduction to complex event processing

in distributed enterprise systems. In Addison-Wesley Longman Publishing Co. Inc.,
2001.

14. Cláudio Maia, Luis Miguel Nogueira, and Luis Miguel Pinho. Scheduling parallel
real-time tasks using a fixed-priority work-stealing algorithm on multiprocessors.
In 8th IEEE International Symposium on Industrial Embedded Systems, 2013.

15. José Marinho, Vincent Nélis, Stefan M. Petters, Marko Bertogna, and Robert
Davis. Limited pre-emptive global fixed task priority. In 34th IEEE Real-Time
Systems Symposium, 2013.

16. José Marinho, Vincent Nélis, Stefan M. Petters, and Isabelle Puaut. Preemption
delay analysis for floating non-preemptive region scheduling. In Design, Automa-
tion and Test in Europe Conference and Exhibition, pages 497–502, 2012.

17. Luis Miguel Nogueira, Luis Miguel Pinho, José Fonseca, and Cláudio Maia. On
the use of work-stealing strategies in real-time systems. In High-performance and
Real-time Embedded Systems (HiRES), 2013.

18. R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. In Proceedings of
the 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
2011.

12 V. Nélis et al.

19. L.M. Pinho, E. Quiñones, M. Bertogna, A. Marongiu, J. Pereira-Carlos,
C. Scordino, and M. Ramponi. P-socrates: A parallel software framework for time-
critical many-core systems. In Proceedings of the 17th Euromicro Conference on
Digital System Design (DSD), 2014.

20. L.M. Pinho, E. Quiñones, M. Bertogna, A. Marongiu, J. Pereira-Carlos,
C. Scordino, and M. Ramponi. Time criticality challenge in the presence of paral-
lelised execution. In 2nd Workshop on High-performance and Real-time Embedded
Systems (HiRES), 2014.

21. L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Han-
rahan. Larrabee: A many-core x86 architecture for visual computing. In ACM
SIGGRAPH 2008 papers, volume 27(3), pages 1–15, 2008.

22. H. Wong, A. Bracy, E. Schuchman, T.M. Aamodt, J.D. Collins, P.H. Wang,
G. Chinya, A. Khandelwal-Groen, H. Jiang, and H. Wang. Pangaea: A tightly-
coupled IA32 heterogeneous chip multiprocessor. In Proceedings of the 17th ACM
International Conference on Parallel Architectures and Compilation Techniques,
pages 52–61, 2008.

