

A Service-Oriented Cloud-Based Management
System for the Internet-of-Drones

Conference Paper

*CISTER Research Centre

CISTER-TR-170305

2017/04/26

Anis Koubâa*

Basit Qureshi

Mohamed-Foued Sriti

Yasir Javed

Eduardo Tovar*

Conference Paper CISTER-TR-170305 A Service-Oriented Cloud-Based Management System for the ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

A Service-Oriented Cloud-Based Management System for the Internet-of-Drones

Anis Koubâa*, Basit Qureshi, Mohamed-Foued Sriti, Yasir Javed, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aska@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Deploying drones over the Cloud is an emerging research area motivated by the emergence of Cloud Robotics and
the Internet-of-Drones (IoD) paradigms. This paper contributes to IoD and to the deployment of drones over the
cloud. It presents, Dronemap Planner, an innovative service-oriented cloud based drone management system that
provides access to drones through web services (SOAP and REST), schedule missions and promotes collaboration
between drones. A modular cloud proxy server was developed; it acts as a moderator between drones and users.
Communication between drones, users and the Dronemap Planner cloud is provided through the MAVLink
protocol, which is supported by commodity drones. To demonstrate the effective- ness of Dronemap Planner, we
implemented and validated it using simulated and real MAVLink-enabled drones, and deployed it on a public cloud
server. Experimental results show that Dronemap Planner is efficient in virtualizing the access to drones over the
Internet, and provides developers with appropriate APIs to easily program drones 19 applications.

A Service-Oriented Cloud-Based Management System for the

Internet-of-Drones

Anis Koubâa ∗∗‡, Basit Qureshi ∗∗, Mohamed-Foued Sriti ‖, Yasir Javed ∗∗¶, Eduardo Tovar ‡

∗∗Prince Sultan University, Saudi Arabia.
‖ Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.

†† King Saud University, Riyadh, Saudi Arabia.
‡ CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal.

akoubaa@coins-lab.org, qureshi@psu.edu.sa, mfsriti@ccis.imamu.edu.sa,

yasir.javed@coins-lab.org, emt@isep.ipp.pt

Abstract—Deploying drones over the Cloud is an emerging
research area motivated by the emergence of Cloud Robotics and
the Internet-of-Drones (IoD) paradigms. This paper contributes
to IoD and to the deployment of drones over the cloud. It
presents, Dronemap Planner, an innovative service-oriented cloud
based drone management system that provides access to drones
through web services (SOAP and REST), schedule missions and
promotes collaboration between drones. A modular cloud proxy
server was developed; it acts as a moderator between drones and
users. Communication between drones, users and the Dronemap
Planner cloud is provided through the MAVLink protocol, which
is supported by commodity drones. To demonstrate the effective-
ness of Dronemap Planner, we implemented and validated it using
simulated and real MAVLink-enabled drones, and deployed it on
a public cloud server. Experimental results show that Dronemap
Planner is efficient in virtualizing the access to drones over the
Internet, and provides developers with appropriate APIs to easily
program drones’ applications.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming increas-

ingly popular. Although these have been around for already

a few years, while more recently application developers and

researchers are realizing the potential of these flying robots

in applications such as remote sensing, smart cities, surveil-

lance, disaster management and recovery, patrolling, aerial

survey, border security etc. to name a few. Although these

low cost UAVs can be utilized in many beneficial ways, the

strictly limited processing capabilities as well as the low on-

board storage raise several challenges. In fact, low-cost and

battery-powered UAVs are unable to cope efficiently with

the requirements of computation demanding applications (e.g.,

on-board image processing) encompassing real-time data and

reliability constraints. Furthermore, with the limitation of the

communication range of wireless-based drones, even when

using telemetry systems (with range up to 5 Km), it is not

possible to manage drones’ mission in large environments such

as at the scale of a city, or a country. In this paper, we propose

a solution to this problem by integrating drones with the cloud

and the Internet-of-Things (IoT).

In the context of the Cloud Robotics [1], [2], coined by

James Kuffner [3], several works since 2010 attempted to

integrate robots with the cloud through the Internet [4], [5],

[6], [7]. In [4], the author proposed one of the first papers that

specified the concept of Robot as a Service (RaaS). Yinong et

al. proposed a cloud framework for interacting with robots in

the area of service-oriented computing. In [5], the authors pro-

posed the DAvinCi system for offloading computation from

robots to a cloud-based distributed computing system based

on the Apache Hadoop, but they did not address reliability

and real-time control. In [6], the European project consortium

proposed to build a World Wide Web for Robots for sharing

knowledge about actions, objects, and environments between

robots, and prototypes were implemented for service robots.

In [7], the author proposed a SOAP-based service-oriented

architecture that virtualizes robotic hardware and software

resources, and exposes them as services through the Web.

In this paper, we specifically address the use of drones over

the Internet and we define the concept of Internet of Drones

(IoD). The objective is to develop new IoT applications by

leveraging cloud computing, web technologies, and service-

oriented architecture (SOA). We outline two main benefits

from integrating drones with IoT and cloud: (1) Virtualiza-

tion: the cloud infrastructure helps virtualizing UAV resources

through abstract interfaces. (2) Computation offloading: the

cloud plays the role of a remote brain for the UAVs by

providing storage and computation services. This approach

overcomes the computing and storage resources’ limitations

of the UAVs, as intensive computation is not performed on-

board, but rather offloaded to the cloud. As such, the UAV will

typically act as a mobile sensor and actuator decoupled from

heavy computations. In this paper, we particularly address the

virtualization aspect of this integration.

The main contributions of this paper are as follows. Firstly,

we specify our vision to the concept of Internet-of-Drones

(IoD), its requirements, challenges, and importance (Section

2). Secondly, we propose an architecture for the IoD with

cloud integration and present a software architecture for a

cloud-based management of drones connected through the

Internet (Section 3). Thirdly, we demonstrate the feasibility

and effectiveness of Dronemap Planner in handling drones’s

mission using several use cases involving single and multiple

drones missions’ control over the Internet (Section 4).

II. RELATED WORKS

There have been a few attempts to integrate drones with the

cloud and IoT. In [8], Gharibi et. al presented a conceptual

model for the Internet-of-Drones. The proposed architecture

covers three major networks: air traffic control network, cel-

lular network and Internet. The layered architecture provides

generic services for different UAV applications, namely deliv-

ery, surveillance, search and rescue. The paper did not present

any implementation or realization of this architecture and only

outlined general concepts of the IoD. In our paper, we present

both an architecture for IoD and validate it through a real

implementation and experimentation.

Apvrille et. al [9] presented a model of a drone usage in

natural disaster recovery. The objective is to help rescuers in

finding victims after a disaster. The proposed system mainly

addressed the development of onboard autonomous drone

missions based on image processing rather than controlling

the drone over the Internet or offloading computation to the

cloud.

In [10], the authors proposed a SOA model for collaborative

UAVs. A mapping between cloud computing resources and

UAVs’ resources was presented. Furthermore, essential ser-

vices and customized services were proposed. The paper only

provides a high-level description of the system architecture,

components and services without any specific details on their

implementation.

In [11], the same authors extended their previous work [10]

and designed a RESTful web services model by following a

Resource-Oriented Architecture (ROA) approach to represent

the resources and services of UAVs. A small prototype was

implemented on an Adruino board that emulates a UAV and its

resources. However, the experimental prototype is very limited

as it does not demonstrate a sufficient proof of concept on real

drones, but on a simple Arduino board. Thus, the feasibility

of the approach was not effectively demonstrated.

In [12], an experimental testbed for an emulated Arduino

UAV system was used, and several sensors were used (includ-

ing temperature and humidity, ultrasonic for distance measure-

ments). RESTful web services were defined and implemented

for manipulating each type of sensor through a Web inter-

face. The authors evaluated the performance of their system.

However, the experimental system remains limited in terms

of validating the scalability issues, and also the experimental

setup only applies to a small local network. In our paper,

we consider real drones communicating with the MAVLink

protocol [13] to validate our architecture.

III. INTERNET-OF-DRONES

The Internet of Drones (IoD) can be defined an architecture

for providing control and access between drones and users

over the Internet. In fact, Drones are increasingly becoming

commodity items widely available off the shelf, thus allowing

its use by any user to fly various missions using multiple

drones in a controlled airspace. Whereas technology is helping

the miniaturization of a UAV’s onboard components including

processors, sensors, storage as well as improving the battery

life, the limitations of these components hinder the perfor-

mance and lower the expectations. IoD provides a vehicle

for coupling of Internet of Things as well as cloud robotics

technologies to allow remote access and control of drones as

well as the seamlessly scalable computation off-loading and

remote storage capabilities of the Cloud.

There are various challenges associated with the implemen-

tation of IoD. Reliable point-to-point communications, mission

control, seamless wireless connectivity, effective utilization of

onboard resources are just a few of the concerns. Furthermore,

Quality of Service (QoS) stands-up as a crucial issue that

must be considered in the design of the IoD. Security is also

an important challenge as access to drones’ resources must

be authenticated and secured. In addition, the IoD system

must be immune to attacks like drone impersonation, flooding,

sniffing, etc. Another important aspect is to hide the underlying

technical information from the user which is possible by using

a service-oriented approach, typically implementing SOAP or

REST Web services [14]. Users do not need to be technically

savvy in order to program or develop missions, rather the

web services based system would provide easy access to on

board resources through various APIs. In this paper, Dronemap

Planner provides a solution to seamlessly accessing drones

resources over the Internet and control their mission.

The main objectives of an IoD management system, like the

Dronemap Planner that we propose in this paper, include:

• to provide seamless access to and real-time control and

monitoring of drones for end-users

• to offload extensive computations from drones to the

cloud

• to schedule dynamically the missions of multiple drones

• to provide collaborative framework for multiple drones

• and to provide cloud-based programming APIs for devel-

opers to develop drones’ applications through the cloud.

To motivate the need for IoD and in particular for the

Dronemap Planner cloud-based system, let us consider the

following illustrative scenario: a team of multiple autonomous

UAVs deployed in an outdoor environment in their depot

waiting for the execution of certain missions. A user behind

the cloud defines a mission (e.g. visiting a set of waypoints)

and requests its execution. The user may either select one or

more virtual UAVs from the list of available UAVs registered

in the cloud, or may send his request to the cloud to auto-select

one or more UAVs to execute the mission. Each virtual UAV

is mapped to a physical UAV by the cloud using a service-

oriented approach, typically implementing SOAP or REST

Web services [14]. Once the mission request is received, the

selected UAVs execute the mission and report in real-time the

data of interest to the cloud layer, which in turn will store,

process and forward synthesized results to the user.

Another use case is when the user selects locations of

interest to visit on the map and sends them to the drone.

By default, the drone will execute the mission by visiting

the locations according to their sequence number. However,

this might be not the optimal way to visit the waypoint. The

problem becomes even more complex when there is a need to

optimally assign multiple locations to multiple drones.

So, a cloud-based system will definitely help in offloading

such extensive computation from the drone to optimize the

mission execution, and thus extending the energy lifetime of

the drone.

IV. DRONEMAP PLANNER ARCHITECTURE

A. General System Architecture

Figure 1 presents the architecture of Dronemap addressing

the above requirements.

HDFS!

Big Data Tools !C
lo

u
d

 In
te

rfa
c

e
s
!

W
e

b
 S

e
rv

ic
e

s
!

Applications!

C
lo

u
d

 P
la

tf
o
rm

 f
o
r

S
to

ra
g

e
 a

n
d

P

ro
c
e
s
s
in

g
 L

a
y
e
r!

Data Analytics Apps!

Data Collector!

UAV Control!

UAV Status
Monitor !

UAV Services
Management!

Network !
Dispatcher !

U
A

V
 C

lo
u
d

 L
a
y
e
r!

Web Services ! Network Interfaces!

Hardware !

ROS !

C
lo

u
d

 In
te

rfa
c

e
s
!

W
e

b
 S

e
rv

ic
e

s
!

Applications!

U
A

V
 In

te
rfa

c
e

s
!

Applications !

ROS !

C
lo

u
d

 In
te

rfa
c
e
s
!

!

Hardware!

MAVLink

Fig. 1. DroneMap System Architecture: Abstraction Layers

The following layers are considered.

The UAV Layer: The UAV represents a set of resources

exposed as services to end-users. The UAV has several layers

of abstractions. On top of the hardware, ROS and MAVLink

both provide two different ways for hardware resources ab-

straction. Robot Operating System (ROS) is one of the widely

used middleware to develop robotics applications. On the

other hand, MAVLink is a communication protocol built

over different transport protocols (i.e. UDP, TCP, Telemetry,

USB) that allow to exchange pre-defined messages between

the drones and ground stations, which provide a high-level

interface for applications developers to control and monitor

drones without having to interact with hardware. These two

alternatives allow software developers to focus more on the

high-level development without having to deal with hardware

issues.

Cloud Services Layer: Three components types are de-

fined:

(1) Storage components: They provide storage services for

streams of data originated from UAVs. Each UAVs envi-

ronment variables, localization parameters, mission informa-

tion, and transmitted data streams including sensor data and

images with time-stamps are stored in the cloud either in

regular SQL database or in a distributed file system (i.e.

HDFS, NoSQL database such as HBase), depending on the

applications requirements. Storage in distributed file systems

helps to perform large-scale batch processing on stored data

using tools like Hadoop Map/Reduce. There are two types of

data processing on cloud computing infrastructures: (i.) Real-

time stream processing: the cloud processes incoming streams

of data for detecting possible critical events or threats that

require immediate action or performs dynamic computation

in a distributed environment. (ii.) Batch processing: Incoming

data is stored in the HDFS distributed file system for increased

reliability as well as post-processing using a distributed par-

allel computing approach. Batch processing can be used to

look for particular events into the log file, for example, how

many intruders detected in unauthorized area over a certain

period of time. The cloud services layer implements a cluster

of compute nodes running Hadoop HDFS.

(2) Computation components: Various computation inten-

sive algorithms are deployed in the cloud. Image processing

libraries process stored data available in HBase to detect

possible event. In addition, Map/Reduce jobs running on the

Yarn cluster allow applications to run in parallel reducing the

processing time, therefore improving performance. Addition-

ally Data Analytics algorithms can be executed on the stored

set of large scale data.

(3) Interface components: We used two types of interfaces:

(i.) Network interfaces that implement network sockets and

Websockets interfaces on the server side. They listen to

JSON serialized messages sent from UAVs. In particular,

Websockets is the most appropriate protocol to reliably handle

streaming applications. In the context of Dronemap Planner,

MAVLink messages are received from the drones through

network sockets (UDP or TCP), and then forwarded to the

client application through Websockets. The reason is that

Websockets are supported by all programming languages (e.g.

Java, Python, C++) including Web technologies. The use

of UDP or TCP sockets for streaming to the client will

induce more restrictions to the development of Web clients

applications. (ii.) The web services interfaces allow clients to

control the missions of the drones and their parameters. Both

SOAP and REST web services are used to provide the end-

users and clients applications different alternatives to control

and monitor the drones through invocation of Web services.

While network interfaces are used to mostly handle continuous

streams, Web services are used for sending control commands

to the drones and getting information from the cloud.

Client Layer: It provides interfaces for both end-users and

drones’ applications developers. For end-users, the client layer

runs dronemap client side Web applications, which provide

interfaces to the cloud services layer as well as the UAV layer.

Users have access to registering multiple UAVs, defining and

modifying mission parameters and decision making based on

data analysis provided by the cloud. The application allows

users to monitor and control the UAVs and their missions

remotely. Front-end interfaces provide the functionalities to the

user to connect/disconnect, use available physical UAVs and

their services, configure and control a mission and monitor the

parameters of UAVs. For developers, the client layer provides

several APIs for different programming languages to easily

develop drones’ applications and interact with their drones.

B. Software Architecture

In this section, we present the Dronemap Planner software

architecture. We adopted a modular component-based software

promoting, where components are loosely coupled and each

component implements a specific behavior of the application.

In our architecture, we refer to agent as a drone, user or a

cloud.

1) Architecture Components: Figure 2 shows the compo-

nent diagram of the software architecture.

Fig. 2. Dronemap Planner Software Architecture: Component Diagram

The software system is decomposed into five main subsys-

tems (or layers), each of which contains a set of components.

These subsystems are:

• Communication: This subsystem represents the basic

building block for network communications between the

drones, users and the cloud. There are two main compo-

nents, namely (i.) Network sockets and (ii.) Websockets.

On the one hand, Network sockets allow agents (drones,

users, and cloud) to exchange JSON serialized messages

between each other through the network interface using

sockets. The use of JSON message format is beneficial

for interaction between heterogeneous systems as it is

platform-independent and less verbose than XML. On the

other hand, Websockets interfaces are used to handle data

streaming between the cloud and the user applications.

As explained above, we opted for the use of Websockets

technology because it is supported by different program-

ming languages including Web technologies.

• Proxy: This layer acts on top of the communication

layer and incorporates all the protocol-related operations

including message parsing, dispatching, and processing.

This layer supports the MAVLink protocol. This com-

munication protocol is the de-facto standard for the

communication between ground stations and drones. The

MAVLink protocol is based on binary serialization of

messages and operates on different transport protocols,

namely, UDP, TCP and serial. The MAVProxy is re-

sponsible for (i.) processing MAVLink related messages

received from the drones, (ii.) dispatching messages to

users through the Websockets protocol, (iii.) updating the

information of drones objects of the Cloud Manager.

It is multi-threaded server that was designed to effectively

handle MAVLink data streams and messages. At the

reception of a MAVLink message, a new thread will be

created to process that individual message and extract

related information, depending on its message type.

• Cloud: The cloud layer is responsible for managing

all the computing, storage and networking resources of

Dronemap Planner. It is composed of four components,

namely (i.) Cloud Manager, (ii.) Storage, (iii.) Web Ser-

vices components and (iv.) Cognitive intelligence. Central

the cloud layer is the Cloud Manager component,

which orchestrates all the processes in Dronemap Planner

and links all other components together. It uses the

interfaces provided by MAVProxy and ROSLinkProxy

components, in addition to the storage component. On the

other hand, it provides interfaces to the Drone and Users

components, so that they do have access to MAVProxy,

ROSLinkProxy and Storage components. The main

role of the Storage component is to provide inter-

faces to store data in different storage media including

SQL/NoSQL databases and distributed file storage, i.e.

HDFS. Different type of data needs to be stored, retrieved

and accessed. For example, SQL databases may be used

to store information about users, and their credentials, or

also information about drones and their missions. NoSQL

databases (e.g. MongoDB) are used for more unstructured

data such as data collected from the drones’s sensors for

further analysis. HDFS storage can be used to store data

that requires further batch processing using distributed

computing techniques, like Map/Reduce. For example,

data related to drones’ missions can be dumped from

SQL or NoSQL databases to HDFS to process it either

with batch processing system like Map/Reduce or real-

time processing systems like Storm, and extract useful

information for dumped data.

The Cognitive Engine (CE) component aims at per-

forming computations on cloud data to reason, plan and

solve problems using artificial intelligence techniques.

For example, the CE component may include algorithms

to assign multiple targets locations to visit to multiple

drones or to a single drone to optimize their missions.

This is known as an instance or the typical traveling

salesman problem (TSP). Another example would be

to process received images or sensor data from drones

using real-time processing systems (e.g. Apache Storm)

to detect possible events or threats. In general, the CE

component will contain intelligent applications to provide

smart functionalities and reasoning.

The Web services (WS) component is the main inter-

face between the Dronemap Planner cloud and the client

applications (i.e. users). It provides platform-independent

interfaces to end-users and leverages the use the service-

oriented architecture (SOA) paradigm. Both SOAP and

REST Web services are defined. The REST API was

developed to allow developed accessing cloud public

resources through simple http requests. The SOAP API

was designed for a more formal and structured service-

orientation to for remote procedure invocation, which is

basically used to send commands to the drone from the

client application. There has been long discussions about

the pros and cons of REST and SOAP web services

and the reader may refer to [14] for more details. In

our architecture, we opted for providing both types of

Web services as interfaces with end-users for increased

flexibility.

• Drone: The Drone subsystem contains all information

related to drones and actions that could be performed

on them. The Drone component represent resource in

the Dronemap Planner cloud. This resource is basically

accessed by client applications through Web services. In

addition, the MAVAction component represents all the

MAVLink protocol actions that could be executed on the

drone including taking-off, landing, waypoint navigation,

getting waypoints list, changing operation mode, etc. The

Drone component maintains the status of the drone,

which is updated whenever a new MAVLink message is

received. In addition it provides an interface to access

and modify the parameters of a drone. Note that the

cloud manager maintains a list of drones into a map data

structure, as mentioned above.

• User: The User subsystem contains information about

users that access the dronemap Planner cloud. Each user

should be registered to the Dronemap Planner cloud to

have access to drones based on his profiles and privileges.

A user might be able to control a single drone, or multiple

drones or all drones based on his privileges. The mapping

between drones and users is made through the Cloud

Manager during the registration of the user to the system,

and based on approval of the cloud administrator. There

are different possible strategies of mapping between users

and drones, namely: (i.) Single User / Single Drone,

where one user is allowed to access and control a single

physical drone, (ii.) Single User/Multiple drones, where

one user is allowed to access and control multiple physi-

cal drones, (iii.) Single User / Virtual Drone(s), where

one user is not allowed to control a physical drone,

but sends its request to the cloud, which will decide

on which drone(s) to execute the mission of the user.

Each user should have an access key that allows him

to access a certain drone resource over the cloud or

to develop applications for a particular drone resource.

The access to drone resources on the cloud is given to

the users either through SOAP and REST Web services

to execute command, or through Websockets to receive

drones’ MAVLink data streams.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation

study to demonstrate the effectiveness and performance of

Dronemap Planner in meeting the objectives for Internet-of-

Drones.

A. Drone Mission over the Web

We used Dronemap Planner cloud to control and monitor

drones over the Internet, in particular through the Web. This is

possible thanks to the Web services and Websockets interfaces

provided by Dronemap planner.

1) Dronemap Planner Cloud Deployment: Dronemap Plan-

ner was deployed into a DreamCompute cloud instance pro-

vided by Dreamhost service provider. It is also possible to

deploy it in any other cloud or public IP server like Amazon

AWS or Azure. We used a minimal instance of the Dream-

Compute with 80 GB of storage, 512 MB or RAM, and 1

Virtual CPU. It is possible to extend the specification of the

instance but was sufficient for our experimental study. Once

Dronemap Planner is launched all of its services are available

and accessible through its public IP address and corresponding

port numbers.

2) Drone Configuration: We used low-cost quadcopters

with Ardupilot autopilot, which natively supports the

MAVLink protocol. Without loss of generality, any drone/air-

craft with MAVLink support and WiFi Internet connection is

compatible with Dronemap Planner. For a drone to be able

to be controlled over Dronemap Planner, it is required that

it streams its MAVLink messages to the cloud, which will

be intercepted and processed by MAVProxy. We changed the

network configuration of the drone so that it connects to a WiFi

router and streams its MAVLink messages to the Dronemap

Planner.

3) Web-based Ground Station: Figure 3 presents the list

of active drones for an administrator user. It can be observed

that five actives drones are shown in the interface giving the

user with the choice to select to control and monitor any of

the available drones. Each drone is characterized by its IP

address, port number, and MAVLink System ID. In addition,

the physical address of each drone is shown based on its

GPS coordinates. Google Geolocation Web Services API were

used to determine the location addressed based on the GPS

coordinates.

Figure 4 depicts the Dronemap Web graphical user interface.

The web interface contains all information about the drone,

including altitude, air/ground speeds, heading, battery level,

location address based on GPS coordinates, and GPS fix

status. These information are received through the JavaScript

Websockets client that connects to the Websockets server of

the MAVProxy. As mentioned above, this ensures a reliable bi-

directional communication between the Web ground station of

MAVLink streams and the MAVProxy through the Websockets

protocol. A comprehensive JavaScript/Ajax library was devel-

oped to parse and process incoming MAVLink messages and

update the Web interface in real-time. In what concerns control

Fig. 3. List of Drones on Web Ground Station

Fig. 4. Dronemap Web-based Ground Station

commands, the Web ground station allows the user to change

the flight mode, arm/disarm the drone, take-off and landing,

navigate to a waypoint in a guided mode, load and save a

mission, execute a mission in autonomous mode, and return

to launch. A mission refers to visiting a set of waypoints. The

Web ground station allows to add and remove waypoints to a

mission and save it to the drone, through the Dronemap Plan-

ner. All these control actions are performed through the SOAP

Web services interface through remote method invocation. For

example, to take-off, a Web service client invokes the take-off

method of the Dronemap Cloud Manager Web services called

MAVLinkControllerService.

This allows any developer to access Dronemap cloud re-

sources through the Web service using any programming

language as it will be illustrated in the next section.

It has to be noted that current browsers do not allow

to define Web service clients using JavaScript for security

reasons. This is a known issues that prevents from directly

invoking Web services methods through client-side scripting.

To overcome this problem, we developed an intermediate PHP

SOAP client that invokes the SOAP Web services of the

Dronemap Cloud Manager. As such, the parameters of the

remote methods are sent from the browser in JavaScript using

a typical Ajax GET request to the PHP SOAP client page,

which prepares the corresponding SOAP message using the

received parameters, invokes the Web service and return the

result to the browser through Ajax response.

The Web ground station allows to define missions for the

drones in real-time, change the mission dynamically by adding

and/or removing waypoints as required, navigate to a particular

waypoint in Guided mode.

B. Drone Client Programming API over the Cloud

The advantage of the cloud-based drones’ missions control

is to allow developers to develop applications and interact with

drones leveraging the use of cloud web services. In fact, most

programming languages fully support SOAP and REST web

services and provide appropriate API to interact with.

In that sense, we demonstrate in this section how simple

would be the programming of drones through cloud web

services API. This definitely helps in providing pragmatic ed-

ucational tools for teaching and learning drones’ programming

for students at undergraduate or even high-school levels, with

no prior background on drones, robots or MAVLink is needed

to develop programs. The program below defines a minimal

mission for a drone written in Java using the drone client API

developed to interact with the drones through the Dronemap

Planner cloud. The DroneClient UML class diagram is

presented in Figure 5. A similar API could be developed for

other programming languages like Python.

In Line 3, a new DroneClient object is created speci-

fying the IP address of the Dronemap Planner server. In Line

4, the drone client object attempts to connect to a drone with

a system ID equal to 1. The connection is successful if the

client is able to connect to all web services and Websockets

servers, and a drone with the specified system ID exists. If the

drone exists, the mission will be executed. Lines from 5-15

define a new mission that includes changing the flight mode

to guided, arming the drone, taking-off for an altitude of 20.3

meters, going to a pre-defined location, and finally returning

to launch. The program above is rather illustrative and more

sophisticated event-driven programs cloud be written based on

the API.

1 p u b l i c s t a t i c vo i d main (String []args){
2 Gson gson = new Gson () ;

3 DroneClient drone =

4 new DroneClient (” 1 9 2 . 1 6 8 . 1 . 1 0 2 ”) ;

5 i f (drone .connect (1)){
6 System .out .println (drone .getDroneHostID (1))←֓

;

7 drone .flightMode (Config . ←֓
MAVLINK_SET_MODE_GUIDED) ;

8 Thread .sleep (5 0 0 0) ;

9 drone .arm () ;

10 Thread .sleep (5 0 0 0) ;

11 drone .takeoff (2 0 . 3) ;

12 Thread .sleep (1 0 0 0 0) ;

13 Location3D location = new Location3D←֓
(2 4 . 7 3 4 8 4 0 , 46 . 698421 , 2 5 . 0) ;

14 drone .goToGoal (gson .toJson (location)) ;

15 Thread .sleep (4 0 0 0 0) ;

16 drone .flightMode (Config . ←֓
MAVLINK_SET_MODE_RTL) ;

17 }
18 }

Listing 1. Sample Drone Client Mission Control Java Program

Fig. 5. DroneClient UML Class Diagram

VI. CONCLUSIONS

In this paper, we defined the concept of Internet-of-Drones

and illustrated it through Dronemap Planner, a cloud-based

management system for drones over the Internet. We discussed

the challenges and requirements to build the Internet-of-

Drones, and we proposed a modular system and software

architecture for the management of drones’ missions. The

experimental study demonstrated through a proof-of-concept

prototype a Web-based control of drones over the Internet and

presented a simple API to develop drones applications through

the cloud.

We believe that this work represents a major step towards

enabling Internet-of-Drones. However, many challenges still

need to be addressed as future work. First, security is a

very important aspect to investigate. In fact, the MAVLink

protocol is not secured and can be hacked quite easily. It is

crucial to design secure mechanisms for authentication and

encryption of MAVLink data streams to avoid harmful attacks

through the cloud. Another challenge is monitoring the QoS of

drone control over the Internet. It is needed to investigate the

impact of wireless communication perturbation on the quality

of drones’ management over the network.

ACKNOWLEDGMENTS

This work is supported by the Dronemap project entitled

“DroneMap: A Cloud Robotics System for Unmanned Aerial

Vehicles in Surveillance Applications” under the grant number

35-157 from King AbdulAziz City for Science and Technology

(KACST).

In addition, the authors would like to thank the Robotics

and Internet of Things (RIoT) Unit at Center of Excellence

of Prince Sultan University for their support to this work.

Furthermore, the authors thank Gaitech Robotics in China for

their support to this work.

REFERENCES

[1] R. Chaari, F. Ellouze, A. Koubaa, B. Qureshi, N. Pereira, H. Youssef,
and E. Tovar, “Cyber-physical systems clouds: A survey,” Computer

Networks, vol. 108, pp. 260 – 278, 2016.
[2] B. Qureshi and A. Koubaa, “Five Traits of Performance Enhancement

Using Cloud Robotics: A Survey,” Procedia Computer Science, vol. 37,
pp. 220 – 227, 2014.

[3] J. Kuffner, “Cloud-enabled robots,” 2010.
[4] Y. Chen, Z. Du, and M. Garcia-Acosta, “Robot as a service in cloud

computing,” in Service Oriented System Engineering (SOSE), 2010 Fifth

IEEE International Symposium on, pp. 151–158, June 2010.
[5] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.

Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pp. 3084–3089, May
2010.

[6] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“RoboEarth,” Robotics Automation Magazine, IEEE, vol. 18, pp. 69–
82, June 2011.

[7] A. Koubaa, Architecture of Computing Systems – ARCS 2014: 27th

International Conference, Lubeck, Germany, February 25-28, 2014. Pro-

ceedings, ch. A Service-Oriented Architecture for Virtualizing Robots
in Robot-as-a-Service Clouds, pp. 196–208. Springer International
Publishing, 2014.

[8] M. Gharibi, R. Boutaba, and S. L. Waslander, “Internet of drones,” IEEE

Access, vol. 4, pp. 1148–1162, 2016.
[9] L. Apvrille, T. Tanzi, and J.-L. Dugelay, “Autonomous drones for

assisting rescue services within the context of natural disasters,” in
General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth

URSI, pp. 1–4, IEEE, 2014.
[10] S. Mahmoud and N. Mohamed, “Collaborative uavs cloud,” in Un-

manned Aircraft Systems (ICUAS), 2014 International Conference on,
pp. 365–373, May 2014.

[11] S. Mahmoud and N. Mohamed, “Broker architecture for collaborative
uavs cloud computing,” in Collaboration Technologies and Systems

(CTS), 2015 International Conference on, pp. 212–219, June 2015.
[12] S. Mahmoud, N. Mohamed, and J. Al-Jaroodi, “Integrating uavs into

the cloud using the concept of the web of things,” Journal of Robotics,
vol. 2015, September 2015.

[13] “The MAVLINK Protocol, website:
http://qgroundcontrol.org/mavlink/start.”
http://qgroundcontrol.org/mavlink/start.

[14] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. ”big”’ web services: Making the right architectural decision,” in
Proceedings of the 17th International Conference on World Wide Web,
WWW ’08, (New York, NY, USA), pp. 805–814, ACM, 2008.

