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Abstract 

In this paper, we introduce a Multicore Response Time Analysis (MRTA) framework. This framework is extensible to 
different multicore architectures, with various types and arrangements of local memory, and different arbitration 
policies for the common interconnects. We instantiate the framework for single level local data and instruction 
memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO, 
Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a 
general approach to timing verification for multicore systems that is parametric in the hardware configuration and 
so can be used at the architectural design stage to compare the guaranteed levels of performance that can be 
obtained with different hardware configurations. The MRTA framework decouples response time analysis from a 
reliance on context independent WCET values. Instead, the analysis formulates response times directly from the 
demands on different hardware resources. 
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ABSTRACT

In this paper, we introduce a Multicore Response Time Analysis
(MRTA) framework. This framework is extensible to different
multicore architectures, with various types and arrangements of
local memory, and different arbitration policies for the common
interconnects. We instantiate the framework for single level local
data and instruction memories (cache or scratchpads), for a variety
of memory bus arbitration policies, including: Round-Robin,
FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account
for DRAM refreshes. The MRTA framework provides a general
approach to timing verification for multicore systems that is
parametric in the hardware configuration and so can be used at the
architectural design stage to compare the guaranteed levels of
performance that can be obtained with different hardware
configurations. The MRTA framework decouples response time
analysis from a reliance on context independent WCET values.
Instead, the analysis formulates response times directly from the
demands on different hardware resources.

1. INTRODUCTION
Effective analysis of the worst-case timing behaviour of systems

built on multicore architectures is essential if these high
performance platforms are to be deployed in critical real-time
embedded systems used in the automotive and aerospace
industries. We identify four different approaches to solving the
problem of determining timing correctness.

With single core systems, a traditional two-step approach is
typically used. This consists of timing analysis which determines
the context-independent worst-case execution time (WCET) of
each task, followed by schedulability analysis, which uses task
WCETs and information about the processor scheduling policy to
determine if each task can be guaranteed to meet its deadline.
When local memory (e.g. cache) is present, then this approach can
be augmented by analysis of Cache Related Pre-emption Delays
(CRPD) [4], or by partitioning the cache to avoid CRPD
altogether. Both approaches are effective and result in tight upper
bounds on task response times [5].

With a multicore system, the situation is more complex since
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WCETs are strongly dependent on the amount of cross-core
interference on shared hardware resources such as main memory,
L2-caches, and common interconnects, due to tasks running on
other cores. The uncertainty and variability in this cross-core
interference renders the traditional two-step process ineffective for
many multicore processors. For example, on the Freescale P4080,
the latency of a read operation varies from 40 to 600 cycles
depending on the total number of cores running and the number of
competing tasks [32]. Similarly, a 14 times slowdown has been
reported [35] due to interference on the L2-cache for tasks running
on Intel Core 2 Quad processors.

At the other extreme is a fully integrated approach. This
involves considering the precise interleaving of instructions
originating from different cores [19]; however, such an approach
suffers from potentially insurmountable problems of combinatorial
complexity, due to the proliferation of different path combinations,
as well as different release times and schedules.

An alternative approach is based on temporal isolation [14].
The idea here is to statically partition the use of shared resources,
e.g. space partitioning of cache and DRAM banks, time
partitioning of bus access, so that context-independent WCET
values can be used and the traditional two-step process applied.
This approach raises a further challenge, how to partition the
resources to obtain schedulability [36]. Techniques which seek to
limit the worst-case cross-core interference, for example by using
TDMA arbitration on the memory bus or by limiting the amount
of contention by suspending execution on certain cores [32], can
have a significant detrimental effect on performance, effectively
negating the performance benefits of using a multicore system
altogether. We note that TDMA is rarely if ever used as a
bus-arbitration policy in real multicore processors, since it is not
work-conserving and so wastes significant bandwidth. This
impacts both worst-case and average-case performance; essential
for application areas such as telecommunications, which have a
major influence on processor design.

The final approach is the one presented in this paper, based on
explicit interference modelling. We explore the premise that due to
the strong interdependencies between timing analysis and
schedulability analysis on multicore systems, they need to be
considered together. In our approach, we omit the notion of
WCET per se and instead directly target the calculation of task
response times.

In this work, we use execution traces to model the behaviour of
tasks. Traces provide a simple yet expressive way to model task
behaviour. Note that relying on execution traces does not pose a
fundamental limitation to our approach as all required
performance quantities can also be derived using static
analysis [28, 17, 1] as within the traditional context-independent
timing analysis; however, traces enable a near-trivial static cache



analysis and so allow us to focus on response time analysis.
The main performance metrics are the processor demand and

the memory demand of each task. The latter quantity feeds into
analysis of the arbitration policy used by the common
interconnect, enabling us to upper bound the total memory access
delays which may occur during the response time of the task. By
computing the overall processor demand and memory demand
over a relatively long interval of time (i.e. the task response time),
as opposed to summing the worst case over many short intervals
(e.g. individual memory accesses), we are able to obtain much
tighter response time bounds. The Multicore Response Time
Analysis framework (MRTA) that we present is extensible to
different types and arrangements of local memory, and different
arbitration policies for the common interconnect. In this paper, we
instantiate the MRTA framework assuming the local memories
used for instructions and data are single-level and either cache,
scratchpad, or not present. Further, we assume that the memory
bus arbitration policy may be TDMA, FIFO, Round-Robin, or
Fixed-Priority (based on task priorities), or Processor-Priority. We
also account for the effects of DRAM refresh [6, 11]. The general
approach embodied in the MRTA framework is extensible to more
complex, multi-level memory hierarchies, and other sources of
interference. It provides a general timing verification framework
that is parametric in the hardware configuration (common
interconnect, local memories, number of cores etc.) and so can be
used at the architectural design stage to compare the guaranteed
levels of performance that can be obtained with different hardware
configurations, and also during the development and integration
stages to verify the timing behaviour of a specific system.

While the specific hardware models and their mathematical
representations used in this paper cannot capture all of the
interference and complexity of actual hardware, they serve as a
valid starting point. They include the dominant sources of
interference and represent current architectures reasonably well.

2. RELATED WORK
In 2007, Rosen et al. [37] proposed an implementation

in which TDMA slots on the bus are statically allocated to cores.
This technique relies on the availability of a user-programmable
table-driven bus arbiter, which is typically not available in real
hardware, and on knowledge at design time, of the characteristics
of the entire workload that executes on each core. Chattopadhyay
et al. [15] and Kelter et al. [22] proposed an analysis which takes
into account a shared bus and instruction cache, assuming separate
buses and memories for both code and data (uncommon in real
hardware) and TDMA bus arbitration. The method has a limited
applicability as it does not address data accesses to memory.

In 2010, Schranzhofer et al. [39] developed a framework for
analysing the worst-case response time of real-time tasks on a
multi core with TDMA arbitration. This was followed by work on
resource adaptive arbiters [40]. They proposed a task model in
which tasks consist of sequences of super-blocks, themselves
divided into phases that represent implicit communication
(fetching or writing of data from/to memory), computation
(processing the data), or both. Contrary to the technique presented
here, their approach requires major program intervention and
compiler assistance to prefetch data.

Also in 2010, Lv et al. [30] proposed a method to model request
patterns and the memory bus using timed automata. Their method
handles instruction accesses only and may suffer from state-space
explosion when applied to data accesses. A method employing
timed automata was proposed by Gustavsson et al. [19] in which
the WCET is obtained by proving special predicates through
model checking. This approach allows for a detailed system
modelling but is also prone to the state-space explosion problem.
In 2014, Kelter et al. [23] analysed the maximum bus arbitration

delays for multiprocessor systems sharing a TDMA bus and using
both (private) L1 and (shared) L2 instruction and data caches.

Pellizzoni et al. [34] compute an upper bound on the contention
delay incurred by periodic tasks, for systems comprising any
number of cores and peripheral buses sharing a single main
memory. Their method does not cater for non-periodic tasks and
does not apply to systems with shared caches. In addition it relies
on accurate profiling of cache utilization, suitable assignment of
the TDMA time-slots to the tasks’ super-blocks, and imposes a
restriction on where the tasks can be pre-empted.

Schliecker et al. [38] proposed a method that employs a general
event-based model to estimate the maximum load on a shared
resource. This approach makes very few assumptions about the
task model and is thus quite generally applicable. However, it only
supports a single unspecified work-conserving bus arbiter.

Paolieri et al. [33] proposed a hardware platform that enforces a
constant upper bound on the latency of each access to a shared
resource. This approach enables the analysis of tasks in isolation
since the interference on other tasks can be conservatively
accounted for using this bound. Similarly, the PTARM [29]
enforces constant latencies for all instructions, including loads and
stores. However, both cases represent customized hardware.

Kim et al. [24] presented a model to upper bound the memory
interference delay caused by concurrent accesses to a shared
DRAM main memory. Their work differs from this paper in that
they do not assume a unique shared bus to access the main
memory and they primarily focus on the contention at the DRAM
controller by assuming a fully partitioned private and shared cache
model. (For shared caches they assume that the extra number of
requests generated due to cache line evictions at runtime is given).

Yun et al. [42] proposed a software-based memory throttling
mechanism to explicitly limit the memory request rate of each
core and thereby control the memory interference. They also
developed analytical solutions to compute proper throttling
parameters that satisfy schedulability of critical tasks while
minimising the performance impact of throttling.

In 2015, Dasari et al. [16] proposed a general framework to
compute the maximum interference caused by the shared memory
bus and its impact on the execution time of the tasks running on
the cores. The method in [16] is more complex than that proposed
in this paper, and may be more accurate when it estimates the
delay due to the shared bus, but it does not take cache-related
effects into account (by assuming partitioned caches), which
makes it less generic than the framework proposed here.

Regarding shared caches, Yan and Zhang [41] addressed the
problem of computing the WCET of tasks assuming
direct-mapped, shared L2 instruction caches on multicores. The
applicability of the approach is unfortunately limited as it makes
very restrictive assumptions such as (1) data caches are perfect,
i.e. all accesses are hits, and (2) data references from different
threads will not interfere with each other in the shared L2 cache.
Li et al. [27] proposed a method to estimate the worst-case
response time of concurrent programs running on multicores with
shared L2 caches, assuming set-associative instruction caches
using the LRU replacement policy. Their work was later
extended [15] by adding a TDMA bus analysis technique to bound
the memory access delay.

3. SYSTEM MODEL
In this paper, we provide a theoretical framework that can be

instantiated for a range of different multicore architectures with
different types of memory hierarchy and different arbitration
policies for the common interconnect. Our aim is to create a
flexible, adaptable, and generic analysis framework wherein a
large number of common multicore architecture designs can be
modeled and analysed. In this paper inevitably we can only cover



a limited number of types of local memory, bus, and global
memory behaviour. We select common approaches to model the
different hardware components and integrate them into an
extensible framework.

3.1 Multicore Architectural Model
We model a generic multicore platform with ℓ

timing-compositional cores P1, . . . Pℓ as depicted in Figure 1. By
timing-compositional cores we mean cores where it is safe to
separately account for delays from different sources, such as
computation on a given core and interference on a shared bus [20].
The set of cores is defined as P. Each core has a local memory
which is connected via a shared bus to a global memory and IO
interface. We assume constant delays dmain to retrieve data from
global memory under the assumption of an immediate bus access,
i.e., no wait-cycles or contention on the bus. We assume atomic
bus transactions, i.e., no split transactions, which furthermore are
not re-ordered, and non-preemptable busy waiting on the
processor for requests to be serviced. Further, we assume that bus
access may be given to cores for one access at a time. The types of
the memories and the bus policy are parameters that can be
instantiated to model different multicore systems. In this paper, we
omit a consideration of delays due to cache coherence and
synchronization, and we assume write-through caches only.
Write-back caches are discussed in technical report [2].

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem

Core

Loc Mem

. . .

. . .

memory
global

IO/

Figure 1: Multicore Platform. A set of ℓ processors with local

memories connected via a common bus to a global memory.

3.2 Task Model
We assume a set of n sporadic tasks {τ1, . . . , τn}, each task τi

has a minimum period or inter-arrival time Ti and a deadline Di.
Deadlines are assumed to be constrained, hence Di ≤ Ti.

We assume that the tasks are statically partitioned to the set of
ℓ identical cores {P1, . . . , Pℓ}, and scheduled on each core using
fixed-priority pre-emptive scheduling. The set of tasks assigned to
core Px is denoted by Γx.

The index of each task is unique and thus provides a global
priority order, with τ1 having the highest priority and τn the
lowest. The global priority of each task translates to a local
priority order on each core which is used for scheduling purposes.
We use hp(i) (lp(i)) to denote the set of tasks with higher (lower)
priority than that of task τi, and we use hep(i) (lep(i)) to denote the
set of tasks with higher or equal (lower or equal) priority to task τi.

We initially assume that the tasks are independent, in so far as
they do not share mutually exclusive software resources (discussed
in the technical report [2]); nevertheless, the tasks compete for
hardware resources such as the processor, memory, and the bus.

The execution of task τi is modelled using a set of traces Oi,
where each trace o = [ι1, . . . ιk] is an ordered list of instructions.
For ease of notation, we treat the ordered list of instructions as a
multi-set, whenever we can abstract away from the specific order.
We distinguish three types of instructions it:

it =



















r[mda] read data from memory block mda

w[mda] write data to memory block mda

e execute

(1)

An instruction ι is a triple consisting of the instruction’s memory
address min, its execution time ∆ without memory delays, i.e.,
assuming a perfect local memory, and the instruction type it:

ι = (min,∆, it) (2)

The set of memory blocks is defined as M. Mda denotes the data
memory blocks, Min the instruction memory blocks. We assume
that data and instruction memory are disjoint, i.e,Min ∩Mda = ∅.

The use of traces to model a task’s behaviour is unusual as the
number of traces is exponential in the number of control-flow
branches. Despite this obvious drawback, traces provide a simple
yet expressive way to model task behaviour. They enable a
near-trivial static cache analysis and a simple multicore simulation
to evaluate the accuracy of the timing verification framework.
However, most importantly, traces show that the worst-case
execution behaviour of a task τi on a multicore system is not
uniquely defined. From the viewpoint of a task scheduled on the
same core, τi may have the highest impact when it uses the core
for the longest possible time interval, whereas the impact on tasks
scheduled on any other core may be maximized when τi produces
the largest number of bus accesses. These two cases may well
correspond to different execution traces. As a remedy for the
exponential number of traces, the complexity can be reduced by
(i) computing a synthetic worst-case trace or (ii) by deriving the
set of Pareto optimal traces that maximize the task’s impact
according to a pre-defined cost function (see [28]). We can also
completely resort to static analysis to derive upper bounds on the
performance metrics. Static analyses provide independent upper
bounds on the different performance quantities. This strongly
reduces the computational complexity, but may lead to pessimism.
An evaluation of this trade-off is future work.

4. MEMORY MODELLING
In this section we show how the effects of a local memory can

be modelled via a MEM function which describes the number of
accesses due to a task which are passed to the next level of the
memory hierarchy, in this case main memory. The MEM function
is instantiated for both cache and scratchpads. We model the effect
of a (local) memory using a function of the form:

MEM: O→ N × 22N × 2N (3)

where MEM(o) = (MDo,UCBo,ECBo) computes, for a trace o,
the number of bus accesses i.e., the number of memory accesses
which cannot be served by the local memory alone (denoted as

memory demand MD), UCBo which denotes a multiset
containing, for each program point in trace o, the set of Useful
Cache Blocks (UCBs) [25], which may need to be reloaded when
trace o is pre-empted at that program point, and the set of Evicting
Cache Blocks (ECBs) which is the set of all cache blocks accessed
by trace o which may evict memory blocks of other tasks. The
value MD does not just cover cache misses, but also has to account
for write accesses. In the case of write-through caches, each write
access will cause a bus access, irrespective of whether or not the
memory block is present in cache.

The number of bus accesses MD assumes non-preemptive
execution. With pre-emptive execution and caches, more than MD
memory accesses can contribute to the bus contention due to cache
eviction. In this paper, we make use of the CRPD analysis for
fixed-priority pre-emptive scheduling introduced in [4].

We now derive instantiations of the function MEM(o) for a
trace o = [ι1, . . . , ιk] for instruction memories and data memories
for systems (i) without cache, (ii) with scratchpads, and (iii) with
direct-mapped or LRU caches. In the following, the superscripts
indicate data (da) or instruction memory (in), the subscripts the
type of memory, i.e., uncached (nc), scratchpad (sp), or caches (ca).



4.1 Uncached
Considering instruction memory, the number of bus accesses for

a system with no cache is given by the number of instructions k in
the trace. The set of UCBs and ECBs are empty. Pre-emption has
no effect on the local memory, since none exists.

MEMin
nc(o) = (k, ∅, ∅) (4)

Considering data memory, we have to account for the number of
data accesses, irrespective of read or write access. The number of
accesses is thus equal to the number of data access instructions.

MEMda
nc(o) =

(

∣

∣

∣

∣

{

ιi|ιi ∈ o ∧ ιi = (_, _, r/w[mda])
}

∣

∣

∣

∣

, ∅, ∅

)

(5)

4.2 Scratchpads
A scratchpad memory is defined using a function SPM: M →

{true, f alse}, which returns true for memory blocks that are stored
in the scratchpad. For ease of presentation, we assume a static a
write-through scratchpad configuration, which does not change at
runtime. An extension to dynamic scratchpads and the write-back
policy is straight-forward, but beyond the scope of this paper.

Each memory access to a memory block which is not stored in
the scratchpad causes an additional bus access.

MEMin
sp(o) =

(

∣

∣

∣

∣

{

min|(min, _, _) ∈ o ∧ ¬SPM(min)
}

∣

∣

∣

∣

, ∅, ∅

)

(6)

Further, in the case of write accesses, even if a memory block is
stored in the scratchpad, that access also contributes to the bus
contention as we assume a write-through policy.

MEMda
sp(o) =

(

∣

∣

∣

∣

{

mda|
(

(_, _, r(mda)) ∈ o ∧ ¬SPM(mda)
)

∨ (_, _,w(mda)) ∈ o
}

∣

∣

∣

∣

, ∅, ∅

)

(7)

The sets of UCBs and ECBs are empty as no pre-emption overhead
is assumed with static scratchpad memory. Dynamic scratchpad
management is discussed in the technical report [2].

4.3 Caches
We assume a function Hit : I × M → {true, f alse}, which

classifies each memory access at each instruction as a cache hit or
a cache miss. This function can be derived using cache simulation
of the trace starting with an empty cache or by using traditional
cache analysis [17], where each unclassified memory access is
considered a cache miss. This means that we upper bound the
number of cache misses. For each possible pre-emption point ι on
trace o, the set of UCBs is derived using the corresponding
analysis described in Altmeyer’s thesis [1], Chapter 5, Section 4.
It is sufficient to only store the cache sets a useful memory blocks

maps to, instead of the useful memory blocks. The multiset UCBo

then contains, for each program point ι in trace o, the set of UCBs

at that program point, i.e, UCBo =
⋃

ι∈o UCBι. The set of ECBs is
the set of all cache sets of memory blocks on trace o.

MEMin
ca(o) =

(

∣

∣

∣

∣

{

min|ιi = (min, _, _) ∈ o ∧ ¬Hit(min, ιi)
}

∣

∣

∣

∣

,UCB
in

o ,ECBin
o

)

(8)

Since we assume a write-through policy, write accesses contribute
to the cache contention and have to be treated accordingly.

MEMda
ca(o) =

(

∣

∣

∣

∣

{

mda|
(

ιi = (_, _, r(mda)
)

∈ o ∧ ¬Hit(mda, ιi)
)

∨ (_, _,w(mda)) ∈ o
}

∣

∣

∣

∣

,UCB
da

o ,ECBda
o

)

(9)

4.4 Memory Combinations
To allow different combinations of local memories, for example

scratchpad memory for instructions and an LRU cache for data,

we define the combination of instruction memory MEMin and data

memory MEMda as follows

MEM(o) =
(

MDin
o +MDda

o ,UCB
in

o ∪ UCB
da

o ,ECBin
o ∪ ECBda

o

)

(10)

with MEMin(o) =
(

MDin
o ,UCB

in

o ,ECBin
o

)

being the result for the

instruction memory and MEMda(o) =
(

MDda
o ,UCB

da

o ,ECBda
o

)

for

the data memory.

5. BUS MODELLING
In this section we show how the memory bus delays experienced

by a task can be modelled via a BUS function of the form:

BUS: N × P × N→ N (11)

where BUS(i, x, t) determines an upper bound on the number of
bus accesses that can delay task τi on processor Px during a time
interval of length t. This abstraction covers a variety of bus
arbitration policies, including Round-Robin, FIFO, Fixed-Priority,
and Processor-Priority, all of which are work-conserving, and also
TDMA which is not work-conserving.

We now introduce the mathematical representations of the
delays incurred under these arbitration policies. We note that the
framework is extensible to a wide variety of different policies. The
only constraints we place on instantiations of the BUS(i, x, t)
function is that they are monotonically non-decreasing in t.

Let τi be the task of interest, and x the index of the processor Px

on which it executes. Other task indices are represented by j, k etc.,
while y, z are used for processor indices.

Let S x
i
(t) denote an upper bound on the total number of bus

accesses due to τi and all higher priority tasks that run on
processor Px during an interval of length t. Let A

y

j
(t) be an upper

bound on the total number of bus accesses due to all tasks of
priority j or higher executing on some processor Py , Px during
an interval of length t. (Note, j may not necessarily be the priority
of a task allocated to processor Py).

As memory bus requests are typically non-preemptive, one
lower priority1 memory request may block a higher priority one,
since the global, shared memory may have just received a lower
priority request before the higher priority one arrives. To account
for these blocking accesses, we use L

y

j
(t) which denotes an upper

bound on the total number of bus accesses due to all tasks of
priority lower than j executing on some other processor Py , Px

during an interval of length t. In Section 6 we show how the values
of S x

i
(t), A

y

j
(t) and L

y

j
(t) are computed and explain why S x

i
(t) and

A
y

j
(t) are subtly different and hence require distinct notation.

In the following equations for the BUS(i, x, t) function, we
account for blocking due to one non-preemptive access from lower
priority tasks running on the same core Px as task τi (i.e. +1 in the
equations). This holds because such blocking can only occur at the
start of the the priority level-i (processor) busy period.

For a Fixed-Priority bus with memory accesses inheriting the
priority of the task that generates them, we have:

BUS(i, x, t) = S x
i (t) +

∑

∀y,x

A
y

i
(t) +min

















S x
i (t),

∑

y,x

L
y

i
(t)

















+ 1 (12)

1Here we mean priorities on the bus, which are not necessarily the
same as task priorities.



The term min
(

S x
i
(t),

∑

y,x L
y

i
(t)

)

upper bounds the blocking due to

tasks of lower priority than τi running on other cores.
For a Processor-Priority bus with memory accesses inheriting the

priority of the core rather than the task, we have:

BUS(i, x, t) = S x
i (t)+

∑

y∈HP(x)

Ay
n(t)+min

















S x
i (t),

∑

y∈LP(x)

Ay
n(t)

















+1 (13)

where HP(x) (LP(x)) is the set of processors with higher (lower)
priority than that of Px, and n is the index of the task with the
lowest priority. The term A

y
n(t) thus captures the interference of all

tasks running on processor y, independent of their priority, and the

term min
(

S x
i
(t),

∑

y,x A
y
n(t)

)

upper bounds the blocking due to tasks

running on processors with priority lower than that of Px.
For a FIFO bus, we assume that all accesses generated on the

other processors may be serviced ahead of the last access of τi,
hence we have:

BUS(i, x, t) = S x
i (t) +

∑

∀y,x

Ay
n(t) + 1 (14)

Note accesses from other cores do not contribute blocking since
we already pessimistically account for all these accesses in the
summation term.

For a Round-Robin bus with a cycle consisting of an equal
number of slots v per processor, we have:

BUS(i, x, t) = S x
i (t) +

∑

∀y,x

min(Ay
n(t), v · S x

i (t)) + 1 (15)

The worst-case situation occurs when each access in S x
i
(t) is

delayed by each core Py , Px for v slots. Interference by core Py

is limited to the number of accesses from core Py. Again, as we
already account for all accesses from all other cores, there is no
separate contribution to blocking. Note unlike TDMA,
Round-Robin moves to the next slot immediately if a processor
has no access pending.

For a TDMA bus with v adjacent slots per core in a cycle of
length ℓ · v, we have:

BUS(i, x, t) = S x
i (t) + ((ℓ − 1) · v) · S x

i (t) + 1 (16)

Since TDMA is not work-conserving, the worst case corresponds to
each access in S x

i
(t) just missing a slot for processor Px and hence

having to wait at most ((ℓ−1)·v+1) slots to be serviced. Effectively,
there is additional interference from the (ℓ− 1) · v slots reserved for
other processors on each access, irrespective of whether these slots
are used or not. As all accesses due to higher priority tasks on
Px may be serviced prior to the last access of task τi we require
S x

i
(t) accesses in total to be serviced for Px. Note that when v = 1,

Equation (16) simplifies to BUS(i, x, t) = ℓ · S x
i
(t) + 1.

It is interesting to note that while TDMA provides more
predictable behaviour, this is at a cost of significantly worse
guaranteed performance over long time intervals (e.g. the response
time of a task) due to the fact that it is not work-conserving.
Effectively, this means that the memory accesses of a task may
suffer additional interference due to empty slots on the bus.
Nevertheless, Round-Robin behaves like TDMA when all other
cores create a large number of competing memory accesses.

We note that the equal number of slots per core for
Round-Robin and TDMA, and the grouping of slots per core are
simplifying assumptions to exemplify how TDMA and
Round-Robin buses can be analysed. An analysis for more
complex configurations is reserved for future work.

6. RESPONSE TIME ANALYSIS
In this section, we present the centre point of our timing

verification framework: interference-aware Multicore Response

Time Analysis (MRTA). This analysis integrates the processor and
memory demands of the task of interest and higher priority tasks
running on the same processor, including CRPD. It also accounts
for the cross-core interference on the memory bus due to tasks
running on the other processors.

A task set is deemed schedulable, if for each task τi, the response
time Ri is less than or equal to its deadline Di:

∀i : Ri ≤ Di ⇒ schedulable

The traditional response time calculation [7] [21] for
fixed-priority pre-emptive scheduling on a uniprocessor is based
on an upper bound on the WCET of each task τi, denoted by Ci.
By contrast, our MRTA framework dissects the individual
components (processor and memory demands) that contribute to
the WCET bound and re-assembles them at the level of the
worst-case response time. It thus avoids the over-approximation
inherent in using context-independent WCET bounds.

In the following, we assume that τi is the task of interest whose
schedulability we are checking, and Px is the processor on which it
runs. Recall that there is a unique global ordering of task priorities
even though the scheduling is partitioned with a fixed-priority pre-
emptive scheduler on each processor.

6.1 Interference on the Core
We compute the maximal processor demand PDi for each task τi

as follows:

PDi = max
o∈Oi

∑

(_,∆,_)∈o

∆ (17)

where ∆ is the execution time of an instruction without memory
delays. Task τi suffers interference IPROC(i, x, t) on its core Px due
to tasks of higher priority running on the same core within a time
interval of length t starting from the critical instant:

IPROC(i, x, t) =
∑

j∈Γx∧ j∈hp(i)

⌈

t

T j

⌉

PD j (18)

6.2 Interference on the local memory
Local memory improves a task’s execution time by reducing the

number of accesses to main memory The memory demand of a
trace gives the number of accesses that go to main memory and
hence the bus, despite the presence of the local memory. The
maximal memory demand MDi of a task τi is defined by the
maximum number of bus accesses of any of its traces:

MDi = max
o∈Oi

{

MD
∣

∣

∣MEM(o) = (MD, _, _)
}

(19)

Note that the maximal memory demand refers to the demand of the
combined instruction and data memory as defined in Equation (10).

The memory demand MDi is derived assuming non-preemptive
execution, i.e. that the task runs to completion without interference
on the local memory. The sets of UCBs and ECBs are used to
compute the additional overhead due to pre-emption. In the
computation of this overhead, we use the sets of UCBs per trace o
to preserve precision,

UCBo = UCB with MEM(o) = (_,UCB, _) (20)

and derive the maximal set of ECBs per task τi as the union of the
ECBs on all traces.

ECBi =
⋃

o∈Oi

{

ECB
∣

∣

∣MEM(o) = (_, _,ECB)
}

(21)

We use γi, j,x (with j ∈ hp(i)) to denote the overhead (additional
accesses) due to a pre-emption of task τi by task τ j on core Px. We
use the ECB-Union [3] approach as an exemplar of CRPD



analysis, as it provides a reasonably precise bound on the
pre-emption overhead with low complexity. Other techniques [4]
[26] could also be integrated into this framework, but we omit the
explanation due to space constraints. The ECB-Union approach
considers the UCBs of the pre-empted task per pre-emption point
and assumes that the pre-empting task τ j has itself already been
pre-empted by all tasks with higher priority on the same processor
Px. This nested pre-emption of the pre-empting task is represented
by the union of the ECBs of all tasks with higher or equal priority
than task τ j (see [4] for a detailed description).

γi, j,x =

max
k∈hep(i)∩lp( j)∧k∈Γx
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(22)

6.3 Interference on the Bus
We now compute the number of accesses that compete for the

bus during a time interval of length t, equating to the worst-case
response time of the task of interest τi. We use S x

i
(t) to denote an

upper bound on the total number of bus accesses that can occur
due to tasks running on processor Px during that time. Since lower
priority tasks cannot execute on Px during the response time of
task τi (a priority level-i processor busy period), the only
contribution from those tasks is a single blocking access as
discussed in Section 5. The maximum delay is computed
assuming task τi is released simultaneously with all higher priority
tasks that run on Px, and subsequent releases of those tasks occur
as soon as possible, while also assuming that the maximum
possible number of preemptions occur.

S x
i (t) =

∑

k∈Γx∧k∈hep(i)

⌈

t

Tk

⌉

(

MDk + γi,k,x

)

(23)

MDk denotes the memory demand of task τk and γi,k,x accounts for
the pre-emption costs on core Px due to jobs of task τk.

We use A
y

j
(t) to denote an upper bound on the total number of

bus accesses due to all tasks of priority j or higher executing on
processor Py , Px during an interval of length t. A special case is
A

y
n(t): since τn is the lowest priority task, this term includes

accesses due to all tasks running on processor Py. In contrast to
the derivation of S x

i
(t), for A

y
n(t) we can make no assumptions

about the synchronisation or otherwise of tasks on processor Py

with respect to the release of task τi on processor Px. The value of
A

y

j
(t) is therefore obtained by assuming for each task, that the first

job executes as late as possible, i.e. just prior to its worst-case
response time, while the next and subsequent jobs execute as early
as possible. We assume that the first interfering job of a task τk has
all of its memory accesses as late as possible during its execution,
while for subsequent jobs the opposite is true, with execution and
memory accesses occurring as early as possible after release of the
job. This treatment is similar to the concept of carry-in
interference used in the analysis of global multiprocessor
fixed-priority scheduling [10], and is illustrated in Figure 2.

Rk Tk

t

Memory
accesses

Execution

Figure 2: Illustration of the carry-in interference analysis.

The number of complete jobs of task τk contributing accesses in
an interval of length t on processor y is given by:

N
y

j,k
(t) =

⌊

t + Rk − (MDk + γ j,k,y) · dmain

Tk

⌋

(24)

Note the term (MDk + γ j,k,y) · dmain represents the time for the
memory accesses. Hence the total number of accesses possible in
an interval of length t due to task τk and its cache related
preemption effects is given by:

W
y

j,k
(t) = N

y

j,k
(t) · (MDk + γ j,k,y)+

min
(

MDk + γ j,k,y,



















t + Rk − (MDk + γ j,k,y) · dmain − N
y

j,k
(t) · Tk

dmain



















)

(25)

Hence we have:

A
y

j
(t) =

∑

k∈Γy∧k∈hep( j)

W
y

j,k
(t) (26)

The value of L
y

j
(t) is obtained in a similar way to A

y

j
, but considering

accesses with lower priority than j:

L
y

j
(t) =

∑

k∈Γy∧k∈lp( j)

W
y

n,k
(t) (27)

We note that the carry-in interference has not been accounted for
in [24] Equation (5) and (6), resulting in potentially optimistic
bounds on the number of competing memory requests in [24].

The number of accesses on the cores are used as input to the BUS
function (see Section 5), which we use to derive the maximum bus
delay that task τi on processor Px can experience during a time
interval of length t,

IBUS(i, x, t) = BUS(i, x, t) · dmain (28)

where dmain is the bus access latency to the global memory.

6.4 Global Memory
So far we have assumed a global memory with a constant access

latency dmain. Global memory is usually realized based on
dynamic random-access memory (DRAM), which needs to be
refreshed periodically. Now, we show how to relax the
constant-latency assumption to take into account delays imposed
by refreshes. We assume a DRAM controller with a First Come
First Served (FCFS) scheduling policy so that memory accesses
cannot be reordered within the controller. Further, we assume a
closed-page policy to minimize the effect of the memory access
history on access latencies. We consider two refresh
strategies [31]: distributed refresh where the controller refreshes
each row at a different time, at regular intervals, and burst refresh
where all rows are refreshed immediately one after another.

Under burst refresh, an upper bound on the maximum number of
refreshes within an interval of length t in which m memory accesses
occur is given by:

DRAMburst(t,m) =

⌈

t

Trefresh

⌉

· #rows (29)

where #rows is the number of rows in the DRAM module, and
Trefresh is the interval at which each row needs to be refreshed.
Trefresh is usually 64 ms for DDR2 and DDR3 modules.

Under distributed refresh, the upper bound is:

DRAMdist(t,m) = min

(

m,

⌈

t · #rows

Trefresh

⌉)

(30)

This is the case, since at most one memory access can be delayed by
each of the refreshes, whereas under burst refresh, a single memory
access can be delayed by #rows many refreshes.

As the number of memory accesses within t is equal to the
number of BUS accesses, we can bound the interference due to
DRAM refreshes of task τi on core Px as follows:

IDRAM(i, x, t) = DRAM(t,BUS((i, x, t)) · drefresh (31)

where drefresh is the refresh latency.



6.5 Multicore Response Time Analysis
The response time Ri of task τi is given by the smallest solution

to the following recurrence relation:

Ri = PDi + IPROC(i, x,Ri) + IBUS(i, x,Ri) + IDRAM(i, x,Ri) (32)

where IPROC(i, x,Ri) is the interference due to processor demand
from higher priority tasks running on the same processor assuming
no misses on the local memory (see Equation (18)), IBUS(i, x,Ri)
is the delay due to bus accesses from tasks running on all cores
including MDi (see Equation (28)), and IDRAM(i, x,Ri) is the delay
due to DRAM refreshes (see Equation (31)).

Since the response time of each task can depend on the response
times of other tasks via the functions (26) and (27) describing
memory accesses A

y

j
(t) and L

y

j
(t), we use an outer loop around a

set of fixed-point iterations to compute the response times of all
the tasks, and deal with an apparent circular dependency. Iteration
starts with ∀i : Ri = PDi + MDi · dmain and ends when all the
response times have converged (i.e. no response time changes
w.r.t. the previous iteration), or the response time of a task exceeds
its deadline in which case that task is unschedulable. See

Algorithm 1 Response Time Computation

1: function MultiCoreRTA
2: ∀i : R0

i
= 0

3: ∀i : R1
i
= PDi +MDi · dmain

4: l = 1
5: while ∃i : Rl

i
, Rl−1

i
∧ ∀i : Rl

i
≤ Di do

6: for all i do

7: R
l,0
i
= Rl−1

i

8: R
l,1
i
= Rl

i

9: k = 1
10: while : R

l,k

i
, R

l,k−1
i
∧ R

l,k

i
≤ Di do

11: R
l,k+1
i
= PDi + IPROC(i, x,Rl,k

i
)

12: +IBUS(i, x,Rl,k

i
) + IDRAM(i, x,Rl,k

i
)

13: k = k + 1
14: end while

15: end for

16: Rl+1
i
= R

l,k

i

17: l = l + 1
18: end while

19: if ∀i : Rl
i
≤ Di then return schedulable

20: else return not schedulable
21: end if

22: end function

Algorithm 1 for a pseudo-code algorithm of the response time
calculation. Since the response time Ri of a task τi is
monotonically increasing w.r.t. increases in the response time of
any other task, convergence or exceeding a deadline is guaranteed
in a bounded number of iterations.

We note that the analysis is sustainable [8] with respect to the
processor PD j and memory demands MD j of each task, since
values that are smaller than the upper bounds used in the analysis
cannot result in a larger response time. This sustainability extends
to traces; if any trace of task execution results in practice in a
lower processor or memory demand than that considered by the
analysis, then this also cannot result in an increase in the response
time. Similarly, a decrease in the set of UCBs or ECBs such that
they are a subset of those considered by the analysis cannot
increase the worst-case response time.

Note that the definitions of MDi, PDi and ECBi completely
decouple the traces from the response time analysis. This comes at
the cost of possible pessimism, but strongly reduces the
complexity of the analysis. Different traces may maximize
different parameters, meaning that the combination of the

parameters in this way may represent a synthetic worst-case that
cannot occur in practice.

An alternative solution is to define a multicore response time
analysis that is parametric in the execution traces. In the extreme,
completely expanding the analysis to explore every combination of
traces from different tasks would be intractable. However, as a first
step in this direction, response times could be computed for each
individual trace of the task of interest τi, using combined traces
for all other tasks. The maximum such response time would then
provide an improved upper bound.

6.6 Extensions
Above, we instantiated the Multicore Response Time Analysis

(MRTA) framework for relatively simple task and multicore
architectural models. In the technical report [2], we briefly discuss
extensions including: RTOS and interrupts, dynamic scratchpad
management, sharing software resources, open systems and
incremental verification, write-back cache policies and multi-level
caches. The presented analysis framework is not fine-tuned to
specific hardware features or execution scenarios such as burst
accesses, since this counteracts its extensibility and generality.

7. EXPERIMENTAL EVALUATION
In this section we describe the results of an experimental

evaluation using the MRTA framework 2 . For the evaluation, we
use the Mälardalen benchmark suite [18] to provide traces. We
model a multicore systems based on an ARM Cortex A5
multicore3 as a reference architecture to provide a cache
configuration and memory and bus latencies. As this work is
intended to provide an overview of our generic and extensible
framework, we do not model all details of the specific multicore
architecture. A case study comparing measurements on a real
hardware with the computed bounds is future work.

ICache DCache

ARMv7

ICache DCache

ARMv7

ICache DCache

ARMv7

ICache DCache

ARMv7

memory
global

IO/

Figure 3: Multicore Architecture Case Study: m = 4 cores with

local caches connected via a common bus to a global memory.

The reference architecture depicted in Figure 3 is configured as
follows: It has 4 ARMv7 cores connected to the global memory/IO
over a shared bus assuming a Round-Robin arbitration policy and a
core frequency of 200MHz. Each core has separate instruction and
data caches, with 256 cache sets each and a block size of 32Bytes.
The global memory latency dmain and the DRAM refresh latency
drefresh are both 5 cycles. The DRAM refresh period Trefresh is 64 ms.
We assume the DRAM implements the distributed refresh strategy
(see Section 6.4).

We examine derivatives of the reference configuration assuming
the different bus arbitration policies presented in Section 5 and a
hypothetical perfect bus which eliminates all bus interference if
the bus utilization is ≤ 1. We compare the reference configuration
with two alternative architectures: The first, referred to as
full-isolation architecture implements complete spatial and
temporal isolation. The local caches are partitioned with an equal

2The software is available on demand.
3http://www.arm.com/products/processors/cortex-a/
cortex-a5.php



partition size for each task and the bus uses a TDMA arbitration
policy. All other parameters remain the same as in the reference
architecture. The performance on the isolation architecture
corresponds to the traditional two-step approach to timing
verification with context-independent WCETs. The second
alternative, referred to as uncached architecture, assumes no
local caches except for a buffer of size 1, and uses Round-Robin
bus arbitration. All other parameters are again the same as the
reference configuration.

The traces for the benchmarks were generated using the gem5
instruction set simulator [13] and contain statically linked library
calls. As the benchmark code corresponds to independent tasks,
no data is shared between the tasks. Table 1 shows information for
a representative selection of the 39 benchmark programs used to
provide traces including the total number of instructions (which is
equal to the processor demand), the number of read/write
operations, the memory demand, and the maximum number of
UCBs and ECBs on the reference multicore architecture.
Complete information for all benchmarks can be found in Table 1
of the technical report [2] . Each benchmark is assigned only one
trace, which is sufficient due to the simple structure of the
benchmark suite: The benchmarks are either single-path or
worst-case input is provided. Despite the rather simple structure of
the benchmarks, the tasks show a strong variation in processor and
memory demand. As all benchmarks exhibit only one trace, the
worst-case processor and memory demand coincide. Evaluation of
more complex tasks including evaluation of the trade off between
pessimism of independent upper bounds and the computational
complexity of explicit traces remains as future work.

We identify three main sources of over-approximation of our
multicore response time analysis framework: The number of
memory accesses on the same core cannot be precisely estimated
due to imprecison in the pre-emption cost analysis. The
interference due to bus accesses may be pessimistic as not all tasks
running on another core can simultaneously access the bus. The
DRAM refreshes are assumed too frequently if the number of
main memory accesses is over-approximated. A sophisticated
evaluation of the precision of our analysis requires measurements
on a real architecture, which we cannot yet provide. However, the
different architecture configurations provide an estimate of the
influence of the different sources of pessimism. The reference
architecture with a perfect bus eliminates any pessimism due to
bus interference and DRAM accesses. Only the pessimism of the
pre-emption cost analysis remains, which has been quantified
in [3]. The full-isolation architecture removes all pessimism due to
the bus interference and the pre-emption costs, and thus only
suffers from the pessimism in the DRAM analysis.

We evaluated the guaranteed performance of the various
configurations as computed using the MRTA framework on a large
number of randomly generated task sets. The task set parameters
were as follows:
• The default task set size was 32, with 8 tasks per core.
• Each task was randomly assigned a trace from Table 1.
• The base WCET per task τi, needed solely to set the task

periods and deadline, was defined as

Ci = PDi +MDi · dmain+

DRAM(PDi +MDi · dmain,MDi) · drefresh

Ci denotes the execution time of the task without any
interference from any other task.
• The task utilizations were generated using UUnifast [12]

with an equal utilization assumed for each core.
• Task periods were set based on task utilization and base

WCET, i.e., Ti = Ci/Ui.
• Task deadlines were implicit.
• Priorities were assigned in deadline monotonic order.

Name # Instr. (PD) Read/Write MD UCB ECB

adpcm_enc 628795 124168 38729 155 346
bsort100 272715 1305613 25464 31 135
compress 8793 3358 993 74 174
fdct 5923 3098 1088 67 193
lms 3023813 373874 120821 150 276
nsichneu 8648 4841 1582 397 589
petrinet 2272 1206 438 160 250
statemate 62188 51792 13360 117 235

Table 1: Benchmark traces

We note that the processor utilization is often not the limiting factor
on a multicore system, but the memory utilization, defined as:

UBUS =
∑

i

MDi · dmain

Ti

(33)

Only if UBUS ≤ 1, can the tasks be scheduled.
The utilization per core was varied from 0.025 to 0.975 in steps

of 0.025. For each utilization value, 1000 tasksets were generated
and the schedulability was determined for each architectural
configuration. Figure 4 shows the number of schedulable task sets
plotted against the core utilization (computed using the base
WCETs) and Figure 5 against the bus utilization UBUS.
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Figure 4: Number of schedulable task sets vs. core utilization
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Figure 5: Number of schedulable task sets vs. bus utilization

Most traces from Table 1 have a high memory demand, which
results in a high number of bus accesses even at low core
utilizations. Consequently, most task sets are not schedulable even
with a perfect bus. The fixed-priority bus (green line) where the
memory accesses inherit the task priority shows the best
performance, followed by Round-Robin (dark blue line) and then
TDMA (pink line). The full-isolation architecture (light blue)
implementing TDMA and cache partitioning on the local caches
performs nearly as well as the TDMA architecture, which
indicates that the increased execution times due to cache
partitioning only have a minor impact in this case. Note for
TDMA and Round-Robin, we assume a cycle with 2 slots per
processor. The FIFO bus shows the lowest performance, similar to
that of an uncached architecture, which uses Round-Robin. The
worst-case arrival pattern for a FIFO bus (black line) assumes that
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Figure 6: Weighted schedulability; varying bus latency (in

cycles).
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Figure 8: Weighted schedulability; varying DRAM refresh

latency (in cycles).

each potentially co-running task has issued bus requests just
before the release of the task of interest, which results in a very
pessimistic bus contention and response times. The analysis for
the Processor-Priority bus (dark green line) only assumes that
co-running tasks assigned to a processor of higher priority have
issued requests, which explains the improved performance
compared to the FIFO bus. We note that the task set generation
does not optimize the task assignment with respect to the
Processor-Priority bus. Such an optimization could greatly
improve the relative performance of this policy by assigning tasks
with shorter deadlines to a processor with higher priority.

The difference between the Fixed-Priority and
Round-Robin/TDMA shows the MRTA framework is able to
guarantee good performance even if the bus policy does not
provide a tightly bounded bus latency for single accesses (as is the
case for TDMA and Round-Robin).

Figures 4 and 5 only show the results for different bus policies
and three cache configuration (uncached, partitioned and
unconstrained cache usage). In the following, we examine how
other parameters including: the main memory latency the number

of cores, and the DRAM refresh latency impact schedulability. We
use the weighted schedulability measure [9], to show how
schedulability varies with these parameters.

As the memory demand of the benchmark traces is high, the bus
latency dmain has a tremendous impact on overall schedulability
(see Figure 6). The bus latency affects all bus policies similarly.

By increasing the number of cores, the number of tasks also
increases (assuming a fixed number of tasks per core) and so does
the bus utilization. The performance of all configurations
decreases (see Figure 7) as fewer task sets are deemed
schedulable, irrespective of the bus policy.

As might be expected, longer DRAM refresh latencies have a
significant detrimental effect on schedulability for all
configurations, see Figure 8.

8. CONCLUSIONS
In this paper, we introduced a Multicore Response Time

Analysis (MRTA) framework. This framework is extensible to
different multicore architectures, with various types and
arrangements of local memory, and different arbitration policies
for the common interconnects. In this initial paper, we instantiated
the MRTA framework assuming single level local data and
instruction memories (cache or scratchpads), and for a variety of
memory bus arbitration policies, including: Round-Robin, FIFO,
Fixed-Priority, Processor-Priority, and TDMA.

The MRTA framework provides a general approach to timing
verification for multicore systems that is parametric in the
hardware configuration (common interconnect, local memories,
number of cores etc.) and so can be used both at the architectural
design stage to compare the guaranteed levels of performance
obtained with different hardware configurations, and also during
development to verify the timing behaviour of a specific system.

The MRTA framework decouples response time analysis from a
reliance on context independent WCET values. Instead, the
analysis formulates response times directly from the demands on
different hardware resources. Such a separation of concerns trades
different sources of pessimism. The simplifications used to make
the analysis tractable are unable to take advantage of overlaps
between processing and memory demands; however, this
compromise is set against substantial gains acquired by
considering the worst-case behaviour of resources, such as the
memory bus, over long durations equating to task response times,
rather than summing the worst case over short durations such as a
single accesses, as is the case with the traditional two-step
approach using context-independent WCETs.

While the initial instantiation of the MRTA framework given in
this paper cannot capture every source of interference or delay
exhibited in actual multicore processors, it captures the most
significant effects. Importantly, the framework can be: (i)
extended to incorporate effects due to other hardware resources,
and different scheduling / resource access policies, (ii) refined to
provide tighter analysis for those elements instantiated in this
paper, (iii) tailored to better model the implementation of actual
multicore processors.

Our evaluation used the MRTA framework to model and
analyse a generic multicore processor based on information about
the ARM Cortex A5, with software from the Mälardalen
benchmark suite used as code for the tasks in our case study. Our
results show that while a full-isolation isolation architecture may
be preferable with the traditional two-step approach to timing
verification, the MRTA framework can leverage the substantial
performance improvements that can be obtained by using dynamic
policies such as the Fixed-Priority bus arbitration based on task
priorities. The technical report [2] discusses a variety of ways in
which the framework can be extended. In future we aim to explore
these avenues, extending our work by instantiating the analysis for



more complex behaviours and architectures, as well as to global
and semi-partitioned scheduling policies. We also plan to run
detailed (cycle accurate) simulations of the multicore architectures
to examine the effectiveness of the MRTA framework compared to
observed behaviour.
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[35] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and
F. J. Cazorla. On the evaluation of the impact of shared resources in
multithreaded COTS processors in time-critical environments. ACM
TACO, 8(4):34, 2012.

[36] J. Reineke and J. Doerfert. Architecture-parametric timing analysis.
In RTAS, pages 189–200, April 2014.

[37] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access
optimization for predictable implementation of real-time applications
on multiprocessor systems-on-chip. In RTSS, pages 49–60, Dec. 2007.

[38] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared
resource load for the performance analysis of multiprocessor systems.
In DAC, pages 759–764, June 2010.

[39] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for
TDMA arbitration in resource sharing systems. In RTAS, pages 215–
224, April 2010.

[40] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and
M. Caccamo. Timing analysis for resource access interference on
adaptive resource arbiters. In RTAS, pages 213–222, April 2011.

[41] J. Yan and W. Zhang. WCET analysis for multi-core processors with
shared L2 instruction caches. In RTAS, pages 80–89, April 2008.

[42] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In ECRTS, pages 299–308, July 2012.


