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A Framework for the Transparent Replication
of Real-Time Applications

Abstract

Computer control systems are used in a wide range of application domains, such as
factory automation, process control, robotics, automotive systems, etc. The development
of such applications is a complex task, often requiring the integration of fault tolerance
and real-time properties. The use of Commercial-Off-The-Shelf (COTS) components
presents a significant new challenge, since these components do not usually support fault
tolerance mechanisms. Moreover, the use of the pre-emptive fixed priority
computational model in these applications presents significant problems, due to the
increased difficulty in managing the determinism of replicated application components.
Therefore, current computer control applications are becoming more complex to develop
and maintain, since they are required to implement the mechanisms needed to support
replication and distribution.

The main research objective of this thesis is to develop a transparent and generic
framework to support the replication of multitasking applications, considering the use of
COTS components. The target of such framework is to allow the development of
applications focusing on the requirements of the controlled system, and abstracting from
the low-level details of replication and distribution mechanisms.

In this thesis, a framework for the development of fault-tolerant real-time applications
is proposed, based on the transparent replication of application components. The main
focus is given to the support of Ada 95 applications conforming to the Ravenscar profile.
The proposed framework provides a set of generic task interaction objects, which are
used as the basic building blocks of the application. These objects provide the usual task
interaction mechanisms used in hard real-time applications, and allow applications to be
developed without considering replication and distribution issues.

The communication support for the replication of software components is provided by
a set of atomic multicast and consolidation protocols, guaranteeing fault-tolerant
real-time communication in CAN networks. These protocols maintain the predictability
of CAN message transfers in spite of the CAN inconsistent message transfer,
considering the possible occurrence of either bus or nodes’ network interface errors.

A prototype was also developed to assess the expressiveness of the Ravenscar profile
for the development of fault-tolerant real-time systems, considering the proposed generic
and transparent approach.

Keywords: Real-Time Systems, Fault-Tolerant Systems, COTS, Ada 95, CAN Networks.





Uma Infra-Estrutura para a Replicação Transparente
de Aplicações de Tempo-Real

Resumo

Os sistemas de controlo por computador são utilizados num largo espectro de
aplicações, tais como automação industrial, controlo de processos, robótica, sistemas
automóveis, etc. O desenvolvimento destas aplicações é uma tarefa complexa, devido à
necessidade de integrar os requisitos de tempo-real e tolerância a falhas. A utilização de
componentes de uso genérico apresenta um novo desafio, pela ausência de suporte a
mecanismos de tolerância a falhas. Também a utilização do modelo computacional
preemptivo por prioridades fixas, introduz problemas adicionais, devido à dificuldade
acrescida de gerir o determinismo dos componentes replicados das aplicações. É assim
que as aplicações de controlo por computador são cada vez mais complexas para
desenvolver e manter, porque é necessário que implementem directamente os
mecanismos necessários ao suporte de replicação e distribuição.

O principal objectivo desta tese é o de desenvolver uma infra-estrutura transparente e
genérica para suportar a replicação de aplicações multitarefa, considerando a utilização
de componentes de uso genérico. O objectivo desta infra-estrutura é permitir que o
desenvolvimento das aplicações seja focalizado nos requisitos apresentados pelo sistema
controlado, abstraindo-se dos mecanismos de baixo nível de suporte à replicação e
distribuição.

Neste tese, é proposta uma infra-estrutura para o desenvolvimento de aplicações de
tempo-real e tolerantes a falhas, baseado na replicação transparente de componentes da
aplicação. O foco principal é dado ao suporte a aplicações Ada 95, em conformidade
com o perfil Ravenscar. A infra-estrutura proposta disponibiliza um conjunto de objectos
para interacção entre tarefas, que são usados como blocos básicos para o
desenvolvimento das aplicações. Estes objectos implementam os mecanismos de
interacção entre tarefas normalmente utilizados em aplicações de tempo-real crítico, e
permitem um desenvolvimento das aplicações sem a necessidade de serem considerados
os detalhes de replicação e distribuição.

O suporte de comunicações para a replicação dos componentes da aplicação é
disponibilizado por um conjunto de protocolos para difusão atómica e para consolidação
de réplicas, garantindo comunicação de tempo-real e tolerante a falhas em redes CAN.
Estes protocolos mantêm a previsibilidade das comunicações em CAN, apesar das
inconsistências na transmissão de mensagens, considerando a possível ocorrência de
erros tanto no barramento como nas interfaces de rede dos nós.

Um protótipo foi também desenvolvido para avaliar a expressividade do perfil
Ravenscar para o desenvolvimento de sistemas de tempo-real e tolerantes a falhas,
considerando a abordagem genérica e transparente proposta.

Palavras-chave: Sistemas de Tempo-Real, Sistemas Tolerantes a Falhas, Componentes
de uso Genérico, Ada 95, Redes CAN.





Une Infrastructure Logicielle pour la Réplication
Transparente d’Applications Temps-Réel

Résumé

Les systèmes de contrôle-commande sont utilisés dans une grande plage de domaines
d’application, tels que l’Automatique Industrielle, le Contrôle de Processus, la
Robotique, etc. Le développement de ce type d’applications est une tâche complexe,
conséquence du besoin d’intégration des propriétés à la fois de tolérance aux fautes et de
temps-réel. L’utilisation de matériel sur étagère, c’est-à-dire du matériel à large diffusion
non conçu pour un domaine d’applications particulier, présente un défi supplémentaire,
car ce type de matériel ne possède pas de mécanismes particuliers pour la tolérance aux
fautes. En plus, l’utilisation du modèle préemptif à priorités fixes pose des problèmes
supplémentaires, dus aux difficultés de gestion de la réplication de ses composants et de
son déterminisme. En conséquence, le développement de ce type d’applications devient
de plus en plus complexe, car des mécanismes de distribution et de réplication doivent
être intégrés dans le logiciel applicatif.

Le principal objectif de cette thèse est celui de développer une infrastructure logicielle
générique pour la réplication transparente d’applications multitâche, en considérant
l’utilisation du matériel sur étagère. La cible majeure de cette infrastructure est de
permettre la focalisation du développement sur les besoins du système contrôlé, en
créant une abstraction sur les détails concernant la réplication et la distribution.

Dans cette thèse, une infrastructure logicielle, basée sur la réplication transparente des
composants applicatifs, est proposée pour le développement d’applications temps-réel
tolérantes aux fautes. La cible principale de cette infrastructure est le développement
d’applications Ada 95, en accord avec le profil Ravenscar. L’infrastructure proposée
fournie un ensemble d’objets génériques utilisés pour la construction d’applications. Ces
objets fournissent les mécanismes traditionnels pour l’interaction de tâches dans des
systèmes temps-réel strict, permettant le développement d’applications, sans que les
questions de réplication et de distribution soient prises en compte.

La réplication de composants est supportée par un ensemble de protocoles de
diffusion atomique et de consolidation de données, qui garantissent la communication
temps-réel et tolérante aux fautes. Ces protocoles garantissent la prévisibilité du transfert
de messages, malgré les inconsistances du réseau CAN.

Un prototype a été développé pour évaluer l’aptitude du profil Ravenscar pour le
développement des systèmes temps-réel tolérants aux fautes, en considérant l’approche
transparente et générique proposée.

Mots-clés: Systèmes Temps-Réel, Systèmes Tolérants aux Fautes, Matériel sur Etagère,
Ada 95, Réseaux CAN.
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Chapter 1

Overview

1.1. Introduction

Computer control systems are used in a wide range of application domains. They can be
found in areas such as factory automation, process control, robotics, automotive systems,
avionics and space applications. In all of these applications, computers are used to
control the surrounding environment, and they are expected to react to external stimuli
according to the requirements of the controlled environment. As the majority of the
targeted application domains present timing requirements, their correct behaviour is
expected both in the value and timing domains. Therefore, these systems are also
considered as being real-time systems, where the correctness of the system depends not
only on the logical result of computation, but also on the time at which the results are
produced (Stankovic, 1988).

Furthermore, computer systems are increasingly expected to perform correctly even in
the presence of malfunctioning components. They are required to provide a service in
accordance with the specified behaviour in spite of faults, in order to provide fault
tolerance to the supported applications (Laprie, 1992). It is thus essential the integration
of both the fault tolerance and the real-time requirements of the supported applications in
the development of computer control systems.

Currently, Commercial Off-The-Shelf (COTS) components are progressively being
considered for the development of computer control systems. Using COTS components
as the systems’ building blocks provides a cost-effective solution, and at the same time
allows for an easy upgrade and maintenance of the system. However, the use of COTS
components implies that specialised hardware will not be used to guarantee fault-tolerant
and real-time behaviour. As COTS hardware and software do not usually provide the
confidence level required by fault-tolerant real-time applications, these requirements
must be guaranteed by a software-based fault tolerance approach. This implies that the
application of COTS technology to computer control problems is not a simple
engineering task.

The recent trend for incorporating pre-emptive multitasking applications in
application areas with the above mentioned requirements, increases the complexity of
application development. Traditionally, fault-tolerant real-time applications were
supported by cyclic executives, providing determinism guarantees (concerning real-time
and fault tolerance properties). Nevertheless, using a pre-emptive model increases the
system flexibility and decreases development costs (Locke, 1992). Therefore, it is
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essential to provide applications with the necessary support for the development of
pre-emptive multitasking computer control applications, whilst guaranteeing the required
fault tolerance and real-time properties of the controlled system.

These requirements can be guaranteed by providing application redundancy through
the replication of application software in a distributed context. Consequently, this
requires replication management mechanisms, supported by appropriate communication
protocols providing the consistent multicast of information and consolidation of
replicated components. However, these mechanisms usually increase the complexity of
the application development, since they are directly implemented within the application.
A transparent and generic programming model must be devised, allowing applications to
be developed without simultaneously considering both the system requirements and the
distribution and replication issues.

1.2. Research Context

A computer control system (Figure 1.1) is usually constituted by three subsystems
(Kopetz, 1997): the computer system, the controlled system, and a supervision and
management system (a human operator or some higher-level computer system). The
computer system interacts with the controlled system through input/output devices,
which allow the computer system to acquire the state of the controlled environment
(sensors) and to change its state (actuators). It interacts with the supervision and
management system either through a local console, or through some network interface.

Computer
System

Control
Application

Sensors/
ActuatorsControlled

System

Supervision and
Management

System

Figure 1.1. Computer control system

The computer system can be constituted by several applications, which control the
required behaviour of the controlled system. These applications must also provide the
fault tolerance and the real-time properties required by the controlled system.

Often the computer system is required to perform multiple concurrent actions, since
the controlled system is inherently concurrent. Therefore, applications are constituted by
several tasks (processing units), which may communicate with each other using some
form of inter-task interaction mechanisms.

Figure 1.2 presents the example of a simple computer control application, constituted
by four tasks, implementing a simple control loop between a sensor and an actuator. The
Sensor task is responsible for reading the value of the sensor and passing it to the
Controller task, which in turn performs the control algorithm. An Actuator task is then
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responsible for the actual writing of the output. The Alarm task is responsible for some
type of notification in case the Controller task signals an abnormal condition.

ControllerSensor Actuator

Alarm
Tasks Task interaction

mechanisms

Figure 1.2. Computer control application

A common characteristic among computer control applications is their real-time
behaviour. This behaviour is specified in compliance with the system timing
requirements. The computer system must process the inputs from the environment and
provide the adequate output within an upper-bounded time interval, which is dictated by
the requirements of the controlled system. For instance, in Figure 1.2, it is expected that
the Actuator task outputs the result of the control algorithm, within a time interval
related to the arrival of the Sensor input. This time interval is imposed by the controlled
system.

The simplest architecture that can be considered for a computer control system is
represented in Figure 1.3. In this type of architecture (centralised), there is only one
single computer unit, which has all the necessary capabilities to interact with the
environment (the controlled system), thus all input/output capabilities. It also supports
all the applications required for the correct behaviour of the system.

Computer
SystemApplication A

Application B

Sensors/
ActuatorsControlled

System

Figure 1.3. Centralised computer system

However, there are many advantages in using a distributed system instead of a
centralised one. In such distributed architecture (Figure 1.4), a broadcast communication
network is used as a replacement for the point-to-point links (between the
sensors/actuators and the computer system). Additionally, application processing is no
longer performed by a single computer unit, but by several units (nodes), interconnected
via the same network.

By providing a distributed architecture to the development of computer systems, the
overall throughput of the system can be increased, as more processing power is available
for the applications. Furthermore, specialised hardware (e.g. specific sensor/actuator
interfaces, human-machine interfaces, etc) can be used to interface the real-time
computer system with the environment, while general-purpose nodes can be used for the
processing activities.
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Application A

Application B

Broadcast
Network Sensors/

Actuators

Computer System
Node

Figure 1.4. Distributed computer system

By using a distributed environment, it is also possible to provide redundancy to the
computer control application, increasing the reliability of the system, since application
components can be replicated and thus single points of failure can be avoided in the
system (Figure 1.5). Using this approach, the broadcast network is also responsible for
supporting the communication mechanisms related to the redundancy management.

Centralised computer control systems can also benefit from distributed architectures,
since redundancy can be provided to the computer control application. One or more
nodes can execute replicas of all (or some) of the tasks of the original node. Either all or
some of the nodes are responsible for the interaction with the controlled system.

Application A

Network

Application A Replica

Application B

Application B Replica

Figure 1.5. Redundancy in a distributed system

Whichever the means to achieve redundancy, a real-time communication network
must be used to provide communication between the nodes, in order that consensus
between them can be achieved within an upper-bounded time interval. The Controller
Area Network (CAN) (ISO, 1993) is a field-level broadcast network, suitable for
computer control systems. Studies are available on how to guarantee real-time
requirements of CAN messages, thus providing pre-run-time schedulability conditions to
guarantee the real-time requirements of the system. However, temporary network
inaccessibility (Rufino and Veríssimo, 1995) and inconsistent message delivery (Rufino
et al., 1998) present impairments to guarantee fault-tolerant communication. Therefore,
communication services providing fault tolerance properties must be developed, to
guarantee that replicated components of the application observe the same consistent state
of the controlled system, whilst guaranteeing predictability of message transfers.

Concerning the development of computer control applications, it is necessary to
consider both the real-time and fault tolerance requirements of the controlled system,
and, at the same time, the complexity of the mechanisms required to support replication
and distribution. Such applications would become easier to develop and maintain if a
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transparent and generic development approach were provided, hiding from the
application the details of replication and distribution.

The use of the pre-emptive fixed priority computational model increases the
complexity associated to the development of computer control applications.
Traditionally, a scheduling table comprising the sequence of task executions is
determined off-line (cyclic-executive model). Therefore, the programming model for the
development of these applications is simpler, not requiring complex task interaction
mechanisms, because it fixes the sequence of tasks’ executions. By using the
pre-emptive fixed priority model of computation, the system flexibility is increased, and
the design effort is decreased. However, mechanisms for task interaction become more
complex, since there is no fixed pattern for the sequence of tasks’ executions.

The Ada 95 (ISO/IEC, 1995) language allows the development of applications using
the pre-emptive fixed priority model, and is widely used in the domain of fault-tolerant
real-time systems. Nevertheless, its multitasking mechanisms are rarely used, since they
are considered to be too complex to be analysable and introduce inefficiencies and
non-determinism in the supported applications. The Ada 95 Ravenscar profile (Burns,
1997) defines a subset of the language’s multitasking mechanisms, considered suitable
for the development of efficient and deterministic real-time applications. It allows
multitasking pre-emptive applications to be considered for the development of
fault-tolerant real-time systems, whilst providing efficient and deterministic applications.
Nevertheless, it is considered that further studies are necessary for its use in replicated
and distributed systems (Wellings, 2000). The interaction between multitasking
pre-emptive software and replication introduces new problems that must be considered,
particularly for the case of a transparent and generic approach.

1.3. Research Objective

Considering the presented context, it is important to provide a generic and transparent
programming model for the development of computer control applications. The goal is
to decrease the complexity of application development, by precluding the need for the
simultaneous consideration of system requirements and interaction between multitasking
and replication/distribution. This programming model must be supported by the
appropriate communication mechanisms, guaranteeing that messages are consistently
delivered to the application replicas, and also that replicated outputs are consolidated
according to pre-defined rules.

Therefore, the main objective of this thesis is to propose such a programming model
for the development of pre-emptive multitasking applications on top of Commercial
Off-The-Shelf components. The central proposition of this thesis is that pre-emptive
fixed priority applications can be built using a generic and transparent programming
model, without having to simultaneously consider the system requirements and the
interaction between multitasking and replication/distribution issues.

This can be accomplished by means of providing a transparent support for the
replication of software components, allowing Ravenscar applications with different
structures and configurations to be developed, and considering a close integration
between the programming mechanisms and the underlying communication
infrastructure.
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1.4. Research Contributions

Considering the above mentioned research objective, the main contributions of this
thesis are:

- A transparent framework for the development of replicated Ravenscar
applications.
This thesis proposes a generic and transparent framework for the development
of replicated software components (Pinho and Vasques, 2000), based on the use
of generic inter-task interaction objects (Pinho et al., 2001a; Pinho et al.,
2001b). The use of these objects allows applications to be developed without
considering replication and distribution issues in the programming phase.
Afterwards, these generic objects can be instantiated with application-specific
configuration issues, only introducing the replication and distribution
mechanisms in a later configuration phase.

- Fault-tolerant real-time communication mechanisms in CAN networks.
In this thesis the communication support for the replication of the software
components is also considered. Therefore, this thesis proposes a set of atomic
multicast and consolidation protocols for CAN networks (Pinho et al., 2000b;
Pinho and Vasques, 2001b; Pinho and Vasques, 2001d). In order to guarantee
the real-time behaviour of the supported applications, a set of pre-run-time
schedulability conditions is devised (Pinho and Vasques, 2001a; Pinho and
Vasques, 2001c), enabling the off-line timing analysis of the network, even in
the presence of errors (either caused by the bus or the nodes’ network interface)
(Pinho et al., 2000a).

The prototype implementation of the proposed framework is also described. This
prototype was used to assess the expressiveness of the Ravenscar profile for the
development of fault-tolerant real-time systems, considering the proposed generic and
transparent approach.

1.5. Thesis Organisation

This thesis is structured as follows. Chapter 2 provides an overview of the system
architecture used as the support for the development of the replication management and
communication mechanisms. Some basic definitions are presented, together with the
fault tolerance and real-time requirements imposed by the targeted application domains.

Chapter 3 presents a survey of relevant related work in the field of fault-tolerant
real-time systems. It presents an overview of relevant system architectures developed to
support these systems, and also some previous relevant work in the areas of
software-based fault tolerance and real-time schedulability analysis. This chapter also
provides a survey of the technologies addressed in this thesis, namely the Ravenscar
profile of the Ada 95 language and the Controller Area Network.

Chapters 4 and 5 present the main research contributions of this thesis. Chapter 4
proposes a framework supporting the replication of software components. It explains
how replication is achieved in applications, and how these applications can be
configured to address their real-time and fault tolerance requirements. Afterwards, the
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repository of generic objects for task interaction available to applications is presented,
together with the underlying software layer, intended to support these objects.

Chapter 5 presents how fault-tolerant real-time communication in CAN networks is
achieved. The problem of inconsistency in CAN message deliveries is addressed through
a set of atomic multicast and consolidate protocols for fault-tolerant real-time
communication in CAN. A set of pre-run-time schedulability conditions is also
presented, enabling the timing analysis of the supported real-time communication
streams.

Finally, Chapter 6 presents the prototype implementation of the proposed framework,
based on the mechanisms and protocols proposed in Chapters 4 and 5. The goal of this
implementation was the assessment of the expressiveness of the Ravenscar profile for
the implementation of the proposed approach.

This thesis concludes with Chapter 7, which summarises the presented contributions
and identifies topics for further research. An Annex is also provided, presenting a study
addressing the behaviour of CAN networks in the presence of either bus or nodes’
network interface errors.





Chapter 2

Definition of the System Architecture

2.1. Introduction

The main purpose of the DEAR-COTS (Distributed Embedded ARchitecture using
Commercial Off-The-Shelf components) project1 is the specification of an architecture
based on the use of COTS components, intended for the development of computer
control systems. The project addresses several issues, at the communication and
programming levels, such as: the impact of real-time and fault tolerance requirements on
the communication architecture, distributed fault-tolerant concurrent applications and the
real-time support environment.

The generic DEAR-COTS architecture (Veríssimo et al., 2000b), allows the
integration in the same system of applications with different real-time and fault tolerance
requirements, whilst guaranteeing the requirements imposed by the more stringent
applications.

The research presented in this thesis was performed within the DEAR-COTS Hard
Real-Time Subsystem (Pinho and Vasques, 2000). The goal was to provide
DEAR-COTS with a generic and transparent framework, intended for the development
of fault-tolerant real-time applications.

This chapter presents the DEAR-COTS architecture, and how it can be used to
develop fault-tolerant real-time applications. The remainder of the chapter is structured
as follows. Section 2.2 provides the basic concepts and definitions in the areas of
real-time and fault tolerance, which are of relevance for the definition of the system
architecture.

Section 2.3 presents some of the requirements commonly found in computer control
systems, which were considered in the development of the DEAR-COTS architecture.
The architecture itself is presented in Section 2.4. Finally, Section 2.5 presents the main
guidelines for the development of fault-tolerant real-time applications, using the
DEAR-COTS Hard Real-Time Subsystem.

                                                          
1 Project DEAR-COTS (Leader: Paulo Veríssimo) is funded by the FCT as project
PRAXIS/P/EEI/14187/1998. The project members are: the University of Lisbon, the University of Porto, the
Polytechnic Institute of Porto, and the Technical University of Lisbon.
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2.2. Definitions

2.2.1. Real-Time Definitions

When the correctness of the system depends not only on the logical result of the
computation, but also on the time at which the results are produced, the system is
classified as a real-time system (Stankovic, 1988). Such kind of systems must process
inputs from the environment and provide the adequate outputs within an upper-bounded
time interval (relative deadline), which is dictated by the requirements of the controlled
system.

It is therefore necessary to analyse its timing behaviour, comparing the worst-case
response time (WCRT) of the application tasks with the relative deadline required by the
controlled system. The worst-case response time of an application task is defined as the
time interval between the arrival of a request from the controlled system and the
completion of the required processing (Joseph and Pandya, 1986). The relative deadline
can be defined as the maximum time interval between the arrival of the request and the
completion of the related processing. It is obvious that, in order to guarantee the timing
requirements of the controlled system, the worst-case response time of the application
tasks must be smaller or equal to the associated relative deadline. In this case, the system
is considered to be schedulable. Schedulability analysis is thus defined as the process to
assess if the responsiveness of the system is sufficient to guarantee the required timing
bounds.

Applications tasks may have different types of timing requirements, depending on the
consequences of not being completed before their deadlines (Burns, 1991). When the
benefit of the action to be performed by the task is zero or negative if it is performed
after the deadline, the task is defined as hard real-time. If missing the deadline does not
imply compromising the integrity of the system, the task can be defined as a soft
real-time task. It is important to note that applications may have a set of tasks with
different timing requirements. Nevertheless, if the application contains at least one hard
real-time task, the application is defined as being a hard real-time application.

2.2.2. Fault Tolerance Definitions

Fault tolerance is defined as the ability of a system to provide a service complying with
the specification in spite of faults (Laprie, 1992). It is one of the means to achieve
dependability in computer systems, that is, the property of a computer system such that
reliance can justifiably be placed on the service it delivers.

A fault can be defined as a potential source of system malfunction. It can be caused
by some external interference with the system (e.g. electro-magnetic interference), or it
can exist in the system itself (e.g. a design fault in the application software). A fault by
itself may not produce an incorrect behaviour of the system, since it may remain silent.
An error only occurs when the effect of a fault is observed. If the error propagates
through the boundaries of the system, it causes a failure. These notions are not
self-contained, since a failure in a component produces a fault of the system that
contains the component, or in other components that interact with it (Laprie, 1992).
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Therefore, the objective of providing fault tolerance is to preclude the failure of the
system in the presence of faults, caused by the failure of one of its components.

The simplest assumption that can be made on the failure modes of a component is that
it only fails by stopping to produce results (Powell et al., 1988). In such case, the
component is assumed to be fail-silent. The less restrictive assumption is that a
component can exhibit arbitrary (or Byzantine) failures. In this case, the component is
assumed to be fail-uncontrolled, and can fail by not producing any result, by producing
an incorrect result, by producing a result too early or too late, or by unexpectedly
producing a result.

One of the approaches to guarantee the fault tolerance requirements of computer
control applications is by error compensation. This is achieved by providing some form
of redundancy, replicating some of the system components, in order to detect errors by
some form of voting between replicas. A usual example is Triple Modular Redundancy
(TMR), where a component is constituted by three replicas, and the output of the
component is the result of the comparison of the individual replicas’ outputs. However,
this approach does not provide tolerance to software design faults, which must be
addressed by means of design diversity.

2.3. Requirements

2.3.1. Real-Time Requirements

Since there is the need to guarantee that the timing requirements of the controlled system
are met, it is necessary to analyse the response time of the application tasks, in order to
compare them with the defined set of timing requirements. In hard real-time computer
control applications it is necessary to guarantee a priori that deadlines are met.
Therefore, some sort of off-line analysis must be performed, to determine the worst-case
response time of application tasks and to make the comparison with the system imposed
deadlines, guaranteeing the schedulability of the task set before execution. This
pre-run-time schedulability analysis requires a priori knowledge of the tasks'
characteristics, which fortunately is possible in most of computer control applications.

In the controlled system, different devices may require different application
behaviours. Some devices require specific time intervals to be kept between consecutive
sampling, while others may sporadically require immediate processing. Consequently,
applications are required to support tasks with different behaviours: periodic or sporadic.
A periodic task is cyclically released with a defined time interval between release
requests, while a sporadic task is released in response to some change of state in the
environment.

A periodic task is characterised by its period (time interval between consecutive
arrivals), its worst-case execution time (maximum time to execute the task program per
period, without considering the existence of other tasks) and its relative deadline
(maximum duration for the response to be performed, related to the instant of the initial
release request). For the case of a sporadic task, since their release is usually requested
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by some event, the minimum time interval between requests is used instead of the
period.

time

Task τ2

t1 t2 t3

Task executing Input arrival Clock

Time-
triggered

Event-
triggered

Task τ1

Figure 2.1. Time-triggered vs. event-triggered

Therefore, it is necessary to support both the event-triggered and the time-triggered
model for task activation. In the event-triggered model, tasks are released when a state
change of the system is detected (sporadic tasks). Conversely, time-triggered tasks are
initiated at predefined points in time (periodic tasks). By allowing the simultaneous
execution of both sporadic and periodic tasks, applications are not restricted to just a
specific model. For instance, in Figure 2.1, task τ1 follows the time-triggered model,
since although the external event occurs at instant t2, the task only becomes ready for
execution by the passage of time (clock) at instant t3. On the other hand, task τ2 follows
the event-triggered model, as it becomes ready for execution when the event occurs.

Since it is expected that tasks often need to share information and to synchronise, the
application is also required to allow tasks to interact with each other. Thus, it is
necessary to provide mechanisms allowing tasks to interact without compromising the
integrity of the data.

τ1τ1 τ2τ1τx
τ1τ1τy

Network
Interface

Other nodes
trying to

communicate

Other tasks
trying to

communicate

Node 1 Node 2

Figure 2.2. Distributed interaction

Additionally, as real-time applications can also be distributed over the system nodes,
there will be real-time tasks interacting through the network (Figure 2.2). It is obvious
that, in order to guarantee the real-time requirements of the application, a network with
real-time characteristics must also be used. Furthermore, the response time of the
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messages depends not only on the scheduling of tasks in its node, but also on the
scheduling of messages in the network. As there could be several messages queued to be
transferred, the response time analysis of the task set must consider the interference of
the overall message scheduling.

In Figure 2.2, when task τ1 in node 1 sends a message to task τ2 in node 2, the transfer
of this message will suffer interference from other messages in the network, sent by
other tasks in the system. Moreover, also the scheduling of task τ2 may suffer
interference from the scheduling of messages in the network, if its release is dependent
on the arrival of the message. Therefore, in order to allow the schedulability analysis of
this distributed model the schedulability analysis of the communication network must be
integrated with the schedulability analysis of the processing tasks.

2.3.2. Fault Tolerance Requirements

In computer control applications, unexpected failures of the system must be avoided,
since value or timing requirements would not be met. It is clear that applications must
rely on specific mechanisms to tolerate faults in its components, precluding the failure of
the application. These mechanisms must allow applications to tailor their behaviour in
the presence of faulty components. The controlled system may allow applications to be
designed in order to provide a fail-safe behaviour, thus to correctly and gracefully
shutdown when the required level of fault tolerance can no longer be provided. Or it may
require that a functioning system is maintained (even if in a degraded mode), until the
faulty components can be repaired (or replaced) to restore the required system
capabilities.

This implies that it is necessary to provide continuous and adequate service to the
controlled system, in order to increase the confidence level put in the controlling system.
The use of COTS components presents new difficulties, since it generally implies
fail-uncontrolled components, as they usually do not have the required self-checking
mechanisms (Powell, 1994). The assumption of fail-silent components simplifies the
implementation of the fault tolerance mechanisms, however, achieving fail-silent
behaviour is only possible with the use of self-checking techniques, increasing the
system cost and complexity. So, software-based fault tolerance mechanisms must also
address components with fail-uncontrolled behaviour.

Network
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Task B
Replica

Task A
Replica

OS

Hardware

OS

Hardware

OS

Hardware

Diversity can also
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OS and Hardware
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Redundancy
should also be

provided at the
Network level

Figure 2.3. Redundancy with dissimilar task sets in a distributed system

These requirements can be guaranteed by providing redundancy through the
replication of application software on different nodes within a redundant distributed
system (Figure 2.3). Consequently, this requires support for replication of application
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components, with the consistent dissemination of data to replicated components. It is
necessary to manage the replicated components and to provide the appropriate
communication protocols with consistent multicast of information and consolidation of
replicated components. Fail-uncontrolled components require the use of active
replication (Powell, 1994), since masking the failure of a component requires the
replication of such component in other nodes, with some form of consolidation between
the components’ outputs, in order to give the illusion of a single component.
Consequently, the computer system must be able to manage this component replication,
guaranteeing that whenever a component fails, appropriate actions are performed in
order to preclude the failure of the system.

A broadcast network must be provided for interconnection with the controlled system
and between the processing nodes. As the network is a single point of failure, it should
also be replicated. By distributing the system elements, tolerance to temporary and
permanent external faults can be provided, due to some geographic distribution of the
system. In order to tolerate common mode faults in the system, diversity in the COTS
components may also be required (operating system and hardware platform).

Dissimilar replicated task sets can be provided in each node, thus providing different
execution environments, tolerating temporary design faults (Powell, 1994). Furthermore,
it also increases the system flexibility, as nodes are not just copies of each other,
allowing for a more flexible design of real-time applications. Note that this approach
embodies both distribution motivated fault tolerance (implementing fault tolerance in a
distributed environment) and fault tolerance motivated distribution (implementing
distribution to achieve fault tolerance), approaches that although similar present different
requirements (Powell, 1994).

However, when replicated components are provided, it is necessary to guarantee the
consistency of all replicas, that is, replicated components behave as a single fault-free
component. It must be guaranteed that all replicas work with the same input values and
that they all vote on the final output. Moreover, the different processing speed in
replicated nodes can cause different replicas to respond to the same inputs in different
order, providing inconsistent results if inputs are non-commutative. It is therefore
necessary that replicas present a deterministic behaviour (Poledna, 1994).

There are a number of aspects related with fault tolerance that may interfere with the
real-time performance of the system. By providing replicated software components, it is
necessary to include replication management and fault-tolerant communication in the
timing analysis models. It is also necessary to consider the intervals of time in which
nodes can be disconnected of the network due to temporary periods of error recovery.

When distribution is used, there is also the need for fault-tolerant and time-bounded
communication services. Messages must be correctly and orderly delivered according to
their timing requirements. Therefore, the full integration of the communication
infrastructure with the application fault tolerance mechanisms is required, in order to
obtain the desired level of confidence in the system.

2.3.3. Genericity and Transparency Requirements

Although with similar requirements, computer control applications have several different
structures and configurations. Thus, any solution for building fault-tolerant real-time
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applications must be generic, in order to allow the development of these different kinds
of applications. It is essential to allow tailoring applications to meet their specific
real-time and fault tolerance requirements.

As presented, the targeted applications may require different type of computational
models, encompassing both time-triggered and event-triggered requirements. Moreover,
as the introduction of replication in the system also introduces overheads, applications
may want to provide lower degrees of replication to less critical components, in order to
increase the system’s efficiency. These applications must not be restricted to a particular
configuration, since it is necessary to encompass different structures, ranging from a
redundant centralised system to a completely redundant distributed system.

Since developing computer control applications on top of COTS components is a
difficult task (further complicated with the incorporation of the pre-emptive model), it is
necessary to transparently deal with replication and distribution issues. Application
development must abstract from the low-level implementation details of distribution and
replication, focusing on the requirements of the controlled system.

Hence, a set of generic mechanisms must be provided, which can be parameterised
with both application-specific data and application-specific configuration (distribution
and replication). These mechanisms will be the basic building blocks of
distributed/replicated real-time applications, providing a higher level of abstraction to
developers and maximising the capability to reuse components and mechanisms in
different applications.

2.3.4. Interconnectivity Requirements

Currently, computer control systems demand for more flexibility and interconnectivity
capabilities, while guaranteeing the requirements of the supported real-time applications.
The integration of hard real-time applications, whose requirements have to be
guaranteed, with soft real-time applications, where a more flexible approach can be used,
is also a current requirement in computer control applications. There is the need to
integrate applications with less stringent fault tolerance and real-time requirements with
the hard real-time computer control applications, in order to allow the interoperability of
the computer control system with higher-level systems (e.g. supervision/management).

The interconnection mechanisms must be carefully designed, guaranteeing that
failures in less critical components do not interfere with the guarantees provided to hard
real-time applications. Thus, mechanisms for memory partitioning must be provided, and
also the integrity of data transferred from the different applications must be guaranteed
by appropriate inter-communication mechanisms.

2.4. The DEAR-COTS Architecture

A DEAR-COTS system (Figure 2.4) is built using distributed processing nodes,
where distributed hard real-time and soft real-time applications may coexist. Each
DEAR-COTS node can be constituted by several different subsystems, within which
applications with different requirements will be executed. A DEAR-COTS node is
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characterised by the subsystems it is composed of. There are essentially three basic node
types: Hard real-time nodes (H), Soft real-time nodes (S) and Gateway nodes (H/S).

Wide Area Network
General purpose

S
Node

Controller Area Network
Real-Time

Sensors/
Actuators

S
Node

H/S
Node

H
Node

H
Node DEAR-COTS

Gateway

Figure 2.4. A generic DEAR-COTS system

Hard real-time nodes are those where only the Hard Real-Time Subsystem (HRTS)
exists. Therefore, they will be exclusively used to support hard real-time applications,
which are at the core of the computer control system. Soft real-time nodes only include
the Soft Real-Time Subsystem (SRTS), providing the execution environment for the
remote supervision and remote management of applications.

A Gateway node integrates both subsystems, with two distinct and well-defined
execution environments. The idea is to allow hard real-time components, executing in
the HRTS, to interact in a controlled manner with soft real-time components, executing
in the SRTS.

In order to support distributed/replicated applications, a fault-tolerant and real-time
communication infrastructure based on the Controller Area Network (CAN) (ISO, 1993)
is provided to the set of H and H/S nodes. As there is the need to interconnect these
nodes with the upper levels of the system (e.g. for remote access, remote supervision
and/or remote management), there is a general-purpose network interconnecting H/S and
S nodes.

In the DEAR-COTS architecture, the Timely Computing Base (TCB) model
(Veríssimo et al., 2000a) is used as a reference model to deal with the heterogeneity of
system components and of the environment, with respect to timing properties. The TCB
model deals with the problem of implementing applications with real-time requirements
in environments that are unpredictable or unreliable.

This model requires systems to be constructed with a small control part, a TCB
module, to protect resources with respect to timeliness and to provide basic time related
services to applications. Applications can use the TCB to achieve different levels of
timing guarantees, even in an environment with soft real-time behaviour as the Soft
Real-Time Subsystem. Additionally, the supported hard real-time applications can use
the TCB services to be aware of their timing behaviour, preserving the reliability of the
system. The reasoning is that the TCB module is built as a small control module,
therefore it can be built with greater coverage of failure assumptions (Veríssimo et al.,
2000a).
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2.5. Fault-Tolerant Real-Time Applications in DEAR-COTS

In the set of H and H/S nodes, the Hard Real-Time Subsystem (HRTS) (Pinho and
Vasques, 2000) is intended for the transparent distribution and replication of real-time
applications. Since real-time guarantees must be provided, applications have guaranteed
execution resources, including processing power, memory and communication
infrastructure. This is the main reason for the need of a separated real-time
communication network for the HRTS, where messages are transmitted and processed in
a bounded time interval.

A multitasking environment is provided to support the real-time applications, with
services for task communication and synchronisation (including replication and
distribution support). Applications’ timing requirements are guaranteed through the use
of current off-line schedulability analysis techniques (e.g., the well-known Response
Time Analysis (Joseph and Pandya, 1986; Audsley et al., 1993)).

To ensure the desired level of fault tolerance to the supported real-time applications,
specific components of these applications may be replicated. This replication model
supports the active replication of software (Figure 2.5) with dissimilar replicated task
sets in each node. The goal is to tolerate faults in the COTS components underlying the
application. In order to tolerate common mode faults in the system, COTS components
diversity is also considered (operating system and hardware platform).

τ1

Replica Manager

Communication Manager

τ1‘ τ2 τ2’

τ3 τ3‘

HRTS
Support
Software

Figure 2.5. Replicated hard real-time application

However, using diverse operating systems has to be carefully considered, since in
order to guarantee a transparent approach, the programming environment in each node
must be the same. This can be achieved by using operating systems with a standard
programming interface or by using a programming language that abstracts from the
operating system details. DEAR-COTS considers the use of the Ada 95 (ISO/IEC, 1995)
language in the replicated hard real-time applications, namely the Ravenscar profile
(Burns, 1997), which is a restricted profile of the language tasking model suitable for the
development of efficient and deterministic real-time applications. This solution provides
the same programming model in all nodes, whilst diversity can be provided by using
different compilers and runtimes (Yeh, 1995).

The DEAR-COTS architecture does not address tolerance to application design faults.
Nevertheless, by providing different execution environments in each node, the tolerance
to temporary design faults is increased. Temporary design faults can be tolerated due to
the differences in the replicas’ execution environment (Powell, 1994), since nodes are
considered independent from the point of view of failures. Moreover, dissimilar
replicated task sets in each node also increase the system flexibility, as nodes are not just
copies of each other, allowing for a more flexible design of real-time applications.
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The HRTS Support Software provides the distribution support (including both the
application distribution itself and the replica management) to hard real-time applications.
The goal of the Replica Manager layer is to support hard real-time application objects
required for interaction between distributed and replicated tasks. The Communication
Manager layer is responsible for the adequate communication services, providing a
fault-tolerant and real-time transfer of data.

2.5.1. The Timely Computing Base in the HRTS

In the generic model of DEAR-COTS, the TCB can be used to guarantee the timing
requirements of soft real-time applications, or to increase coverage of timing faults at the
Hard Real-Time Subsystem (Figure 2.6). The different approaches can be combined in
any form, in each particular instantiation of the architecture.

HRTS Sup. Soft.

TCBHRTS Support Software

TCB

HRTS Support Software

TCB

Soft Real-Time Subsystem

(a) (b) (c)

Hard Real-Time
Applications

Figure 2.6. The Timely Computing Base in the HRTS

In the first approach (Figure 2.6a), the TCB is used as an additional hard real-time
application, to deal with the timing requirements of soft real-time applications executing
in the SRTS of the system. In this approach, the Support Software sees the TCB as any
other hard real-time application.

The second approach (Figure 2.6b) is to use the TCB as a timing error detector at the
hard real-time applications level. That is, tasks in the HRTS may use the services of a
TCB to detect timing errors, thus increasing the failure assumption coverage of the
application. In this approach, the TCB would serve as a second independent level of fault
tolerance. However, to the Support Software, it would also appear as one hard real-time
application.

The third approach (Figure 2.6c) is to use the TCB to increase the reliability of the
Support Software itself. In this approach, Support Software tasks use the TCB to detect
their own timing errors. This solution increases the system reliability, since it is possible
to detect both Support Software tasks’ overruns and incorrect communication requests.

2.5.2. Error Detection and Recovery

On the occurrence of faults, they will be masked by component replication, providing
the required fault-tolerant behaviour. However, in the case of permanent (or intermittent)
faults, the system can no longer provide the same level of fault tolerance as it was
designed to. Therefore, recovery actions must be executed.
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Three different approaches are considered in instantiated DEAR-COTS systems. First,
the occurrence of faults may require that only the higher levels of the system are
notified, and no action is taken. Second, it is possible to design applications in order to
provide a fail-safe system, thus to correctly shutdown when the required level of fault
tolerance can not be provided. Finally, applications may attempt to maintain a
functioning system in a degraded mode, until the faulty components can be repaired (or
replaced) to restore the required system capabilities.

Integrating new components in active systems is not an easy task, as these newly
created components are in an “amnesia” state (Powell, 1994), i.e., they have no
knowledge of the system state. This implies that, prior to their activation, their state must
be brought to be consistent with the replicas that continued execution. However, this
state is very application specific, meaning that this transfer cannot be easily performed in
a generic or transparent approach (Powell, 1991; Rushby, 1996; Bondavalli et al., 1998).
Moreover, the efficient transfer of this internal state is highly dependent of the properties
of applications, namely data-flow dependencies among tasks and the way that internal
task state data is replaced by data external to the task (Rushby, 1996).

Error recovery and state restoration is still an open issue in the DEAR-COTS
architecture. It is considered that an efficient and reliable mechanism can only be
obtained with some knowledge of the semantics and data-flow properties of applications,
therefore cannot be provided by the Support Software itself and application level
mechanisms must be used (Figure 2.7). Nonetheless, it is considered that error detection
and recovery actions must be supported.

Consequently, the Support Software of the HRTS provides mechanisms for
applications to be notified of error detection (in order to take actions to recover from
them) and component’s shutdown or silence mechanisms can be used to prevent
components that are performing incorrectly to contaminate the application.

HRTS Support Software

Hard Real-Time
Applications

Soft Real-Time Subsystem

Error Recovery
Mechanisms

Figure 2.7. Error recovery mechanisms

Error detection in the HRTS may take two complementary forms: by detection of
errors in the communication protocols and in the consolidation of replicated values by
the Support Software, or by the use of the TCB. The Support Software may also be used
to notify applications and/or to disseminate the error detection through the real-time
network. The TCB can be used to detect the occurrence of timing errors in the HRTS
(using approach c) of Figure 2.6), in order, for instance, to silence the node so that the
network is not contaminated (Veríssimo et al., 2000a).
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2.5.3. Relationship with the Research Objectives

The goal of this thesis is to propose a generic and transparent programming model for
the development of pre-emptive multitasking applications on top of Commercial
Off-The-Shelf components. The DEAR-COTS Hard Real-Time Subsystem (HRTS) is
considered to be suitable for the development of such programming model. Therefore,
this goal is accomplished by providing the HRTS with:

- A transparent framework for the development of replicated Ravenscar
applications.
In the HRTS, replicated Ravenscar applications are supported through the
active replication of their components. It is therefore necessary to provide a
transparent programming model, abstracting the development of applications
from the distribution/replication details, focusing on the requirements of the
controlled system. This programming model must be generic, in order to allow
applications with different structures and configurations to be developed.

- Fault-tolerant real-time communication mechanisms in CAN networks.
In the HRTS, a CAN network is provided as the communication infrastructure,
both for the interconnection with the controlled system and for the management
of replicated application components. This communication infrastructure must
guarantee the consistent state of replicated applications, while at the same time
preserving CAN real-time characteristics. This infrastructure must provide the
appropriate atomic multicast and consolidation protocols, in order to guarantee
the fault tolerance and real-time properties of message streams.

2.6. Summary

This chapter presented an overview of the system architecture used to support the
research presented in this thesis. Basic definitions of the real-time and fault tolerance
issues addressed in this thesis are presented, in order to allow a better comprehension of
the system architecture. The requirements that were considered in the development of
the architecture are then presented. In addition to the real-time and fault tolerance
requirements, the issues of genericity, transparency and interconnectivity are also
considered, as a more flexible programming environment must be provided for the
development of current applications.

The DEAR-COTS architecture is then briefly presented, focusing on how it is suitable
to support the development of fault-tolerant real-time applications. In DEAR-COTS, the
Hard Real-Time Subsystem is intended for the development of fault-tolerant real-time
applications. Within this subsystem a replication model is provided, supporting the
active replication of software with dissimilar replicated task sets in each node.

Finally, the relationship between the DEAR-COTS architecture and the research
objective of this thesis is emphasised, clarifying how the proposed framework is
accomplished within the DEAR-COTS Hard Real-Time Subsystem.



Chapter 3

Analysis of Previous Relevant Work

3.1. Introduction

The DEAR-COTS Hard Real-Time Subsystem (HRTS) is intended for the development
of fault-tolerant real-time applications in a COTS-based architecture. It is thus essential
to address the problems common to the development of such systems, and consider the
existent methodologies and mechanisms for providing fault tolerance and real-time
properties to computer control applications. Moreover, as the HRTS is based on
replicating Ravenscar applications on top of a CAN network, it is also necessary to
survey these technologies, and to study the impairments to their use.

The remaining of the chapter is structured as follows. Section 3.2 presents a survey of
fault-tolerant real-time systems, presenting relevant architectures that provide non
application-specific environments for the design of fault-tolerant real-time applications.
A special focus is given to software-based fault tolerance techniques, since they are
essential for providing fault tolerance to COTS-based architectures. Replica determinism
is also given a special emphasis, since real-time applications inherently lead to timing
non-determinism.

Afterwards, Section 3.3 presents relevant approaches for the schedulability analysis of
real-time applications. The use of the response time analysis technique allows
determining the worst-case response time of application tasks in the pre-emptive fixed
priority computational model, thus providing a means to determine if the deadlines
imposed by the controlled system can be guaranteed.

Section 3.4 presents an overview of the Controller Area Network (CAN) (ISO, 1993),
which is used as the communication infrastructure for the replication and distribution of
fault-tolerant real-time applications in the DEAR-COTS HRTS. The focus of the
overview will be on the real-time behaviour of CAN message transfers, and on
impairments that CAN presents for fault-tolerant communication. The problem of
inconsistency in CAN message transfers is presented, and it is discussed how this
problem precludes CAN from being used in a replication environment, without
providing further mechanisms.

Finally, Section 3.5 provides a brief description of the Ada 95 language (ISO/IEC,
1995), with a special focus on its use to build fault-tolerant real-time applications. A
small overview of its concurrency model is provided, being the main focus given to the
Ravenscar profile (Burns, 1997), which is a restricted profile of the language suitable for
the development of efficient and deterministic real-time applications.
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3.2. Fault-Tolerant Real-Time Systems

A considerable research effort has been devoted to the design and validation of
fault-tolerant real-time systems. The most significant examples are Delta-4 (Powell,
1991), MARS (Kopetz et al., 1989) and GUARDS (Powell, 2001), as these architectures
intend to provide non application-specific environments to the design of fault-tolerant
real-time applications. However, the integration of COTS components with the required
fault tolerance and real-time properties is considered difficult, since the efficient
implementation of fault-tolerant communication and replication management
mechanisms is not supported by most COTS components.

The Delta-4 project aimed to develop an open, dependable architecture for large
distributed real-time systems. In Delta-4, nodes are split in two different subsystems: the
host, which is a COTS component, and the Network Attachment Controller (NAC),
which is a fail-silent component making use of specialised self-checking hardware. The
need to target systems with more stringent timing requirements led to the specification of
the eXtended Performance Architecture (XPA) (Barrett et al., 1990). XPA systems are
constituted by a set of distributed homogeneous nodes, connected by a LAN network
with real-time properties, where the host is also considered to be fail-silent. However,
contrarily to the NAC, the fail-silent behaviour of hosts is achieved through the use of
soft fail-silent techniques, where fail-silence behaviour is achieved through software
management of replicated processors.

MARS is a fault-tolerant distributed real-time system intended to support process
control applications. The architecture consists of one or more clusters, which are
distributed systems composed of single board computers, called components, connected
by a real-time network. All the components maintain a global time base, allowing them
to synchronise their actions and to use a time-triggered approach. In MARS, both node
and network schedules are determined off-line and stored in a static schedule table.
Components are devised as fail-silent, through the use of self-checking hardware,
running in dual active redundancy, and of two redundant real-time networks where
messages are sent in duplicate. There was no intention to use COTS components, which
consequently led to a very specialised and costly architecture.

The GUARDS project intended to develop a generic architecture, substantially based
on the use of COTS components, in order to minimise the development time and costs
associated with critical real-time applications. The architecture is based on
software-based fault tolerance mechanisms, in order to cope with the unreliability in the
underlying COTS components. This difficulty to provide fault tolerance mechanisms led
to the development of a two level replication approach. The architecture is constituted by
a set of channels, each one containing replicated hosts interconnected by a shared
memory scheme. These channels are interconnected by the Interchannel Communication
Network (ICN), which is based on unidirectional serial links interconnecting channels.
Therefore, it is difficult to use this interconnection scheme when more than a few
channels are involved. Moreover, the ICN has to be scheduled in a static off-line
table-driven approach, leading to an increased burden in the analysis and to the difficulty
of changes in the application design. Nevertheless, since channel replication is only
motivated by fault tolerance, it is not foreseen the need for systems with more than 3 or 4
channels. Furthermore, this architecture is targeted to safety- or mission-critical systems
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(in the domains of railway, nuclear and space applications), that require a greater level of
dependability and a more restrictive set of failure assumptions (Laprie, 1992).

3.2.1. Software-Based Fault Tolerance

Fundamental for a COTS-based fault-tolerant architecture is the issue of software-based
fault tolerance. As previously discussed, there is no specialised hardware with
self-checking properties, thus it is up to the software to manage replication and fault
tolerance. The group abstraction can be used to implement replica management
(Guerraoui and Schiper, 1997). In this approach, a fault-tolerant service is implemented
by co-ordinating a group of replicated software components (Figure 3.1). The idea is to
manage the group in order to mask failures of some of its members. Inter-replica
co-ordination gives the illusion to other software components that the group is a single
(fault-free) software component (Powell, 1991).

Output
Voting

Replicated
Component

Group

Figure 3.1. Active replication of software components

Three main replication approaches are addressed in the literature: active replication
(presented in Figure 3.1), primary-backup (passive) replication and semi-active
replication (Powell, 1991). In active replication, all replicas process the same inputs,
keeping their internal state synchronised and voting all on the same outputs. In the
primary-backup approach only one replica (the primary) is responsible for processing the
inputs. In the semi-active replication, one of the replicas (the leader) co-ordinates the
non-deterministic decisions. If fail-silent replicas are assumed, then any of the three
approaches can be used. Otherwise, in the absence of the fail-silent assumption, incorrect
service delivery can only be detected by active replication, because it is required that all
replicas output some value, in order to perform some form of voting. Therefore, active
replication is the most adequate technique when fail-uncontrolled components are
considered (Powell, 1991). The use of COTS components generally implies
fail-uncontrolled replicas (as these components usually do not have the required
self-checking mechanisms), so it becomes necessary to use active replication techniques.

As real-time applications are based on time-dependent mechanisms, the different
processing speed in replicated nodes can cause different task interleaving. Consequently,
different replicas (even if correct) can process the same inputs in different order,
providing inconsistent results if inputs are non-commutative. That is the problem of
replica determinism in distributed real-time systems (Poledna, 1994).

For instance, in Figure 3.2, task τ1 is specified to send a message to task τ2. As both
tasks are replicated in nodes 1 and 2, task τ1 in node 1 will send a message to task τ2 in
node 1, while task τ1 in node 2 will send the message to task τ2 in node 2. However, a
slightly different execution pattern (e.g. caused by a small clock difference) causes task
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τ1 to be slightly delayed in node 2, and at instant t2 (the arrival of the input that releases
task τ2) task τ1 is pre-empted before being able to send the message. As in node 1 task τ1

has already sent the message (instant t1), while in node 2 task τ1 will only send the
message at instant t4, when task τ2 receives the message (instant t3) in node 2 it will
receive a previous version of the message (or no message at all). Thus, even with both
tasks executing correctly, replicated tasks τ2 will no longer be consistent.

timet1 t2 t3 t4

Node 2

Node 1

Task τ1

Completion of task execution Input arrival

Send
Message

Receive
Message

Send ReceiveTask τ2

Figure 3.2. Timing non-determinism

Determinism can be achieved by forbidding the applications to use non-deterministic
timing mechanisms. As a consequence, the use of multitasking would not be possible,
since task synchronisation and communication mechanisms inherently lead to timing
non-determinism. This is the approach taken by both MARS and Delta-4. The former by
using a static time-driven scheduling that guarantees the same execution behaviour in
every replica. The latter by restricting replicas to behave as state-machines (Schneider,
1990) when active replication is used.

Guaranteeing that replicas take the same scheduling decisions by performing an
agreement in every scheduling decision, allows for the use of non-deterministic
mechanisms. This imposes the modification of the underlying scheduling mechanisms,
leading to a huge overhead in the system since agreement decisions must be made at
every dispatching point. This is the approach followed by previous systems, such as
SIFT (Melliar-Smith and Schwartz, 1982) or MAFT (Keickhafer et al., 1988), both
architectures for fault-tolerant real–time systems with restricted tasking models.
However, the former incurred overheads up to 80% (Pradhan, 1996), while the latter was
supported by dedicated replication management hardware (Keickhafer et al., 1988).

3.2.2. The Timed Messages Concept

The use of the timed messages concept, independently developed in (Barrett et al., 1995)
and in (Poledna, 1998) and then integrated in (Poledna et al., 2000), allows a restricted
model of multitasking to be used, while at the same time minimises the need for
agreement mechanisms. This approach is based on preventing replicated tasks from
using different inputs, by delaying the use of a message until it can be proven (using
global knowledge) that such message is available to all replicas.
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This is the approach used in the GUARDS architecture in order to guarantee the
deterministic behaviour of replicated real-time transactions (Wellings et al., 1998).
However, in the GUARDS approach this mechanism is explicitly used in the application
design and implementation, thus forcing system developers to simultaneously deal with
both system requirements and replication issues.

Timed messages are based on the global knowledge of the release time (the instant
when the task becomes ready for execution) and the worst-case response times of tasks
(if approximately synchronised clocks are used). Therefore, it is possible, using this
global knowledge, for tasks to read the latest version of a value that it is known to be
available in all replicas.

In this approach, messages are associated with a validity time. This validity time is
defined as the instant where the message value becomes valid 

2. A value becomes valid
when it is known that all replicas of the writer task have already written the value. Such
validity time is defined as (Poledna et al., 2000):
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where mk(v) is the validity time of message mk, W is the maximum worst-case response
time of all replicated writer tasks, ∆ is the worst-case delivery time of the message and ε
is the maximum clock difference in the system. Note that all these values are known
prior to execution.

In order to guarantee that replicated tasks read the same value, it is necessary to store
several versions of the same message. Reader tasks must read the version that has the
maximum validity time older than the task release time (Poledna et al., 2000):
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where trj is the release time of the reader task and n is the number of different versions
received of message mk. The release time of a task is not known prior to execution, but
can be globally known in the system. For a periodic task, its release time is the same in
all the replicas. For sporadic tasks released by other tasks, its release time can be
determined as:

iij Btrtr += (3.3)

where tri and Bi are the release time and the best-case execution time of the releasing
task, respectively. Sporadic tasks that are released by external events must also have a
common release time. This common time must be agreed upon all the replicas.

Figure 3.3 presents the same example as in Figure 3.2, but using the timed messages
concept. As it can be seen, since message versions have an associated valid time, when
replicated tasks τ2 receive the message they will both receive version [n-1] of the
message, thus will remain consistent. Version [n] of the message will only become valid
after a delay equal to the worst-case response time of task τ1 ( W(τ1 ) ).

                                                          
2 Note that this is not the usual meaning of validity. In this case it is a not to use before rather than a not to use
after.
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Task τ1
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tr (task τ1)
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Figure 3.3. Execution of timed messages

As it is necessary to store several versions of the same message, there is the need to
determine off-line the required number of versions to keep. This number depends on the
relative ratio of reader tasks’ response time and writer tasks’ periods. In (Poledna et al.,
2000) the non-deterministic send rate (NDSR(mk,τi )) of message mk is defined as the
number of versions of mk that become valid during the worst-case response time of
reader task τi :
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where TS(mk) is the set of tasks that send message mk, and Pj is the period of task τj.
Then, the number of message versions that must be available (MVersions(mk)) can be
determined as:
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where TR(mk) is the set of all tasks that read message mk. Therefore, the maximum
number of message versions that must be available can be upper bounded, since it is
known which are the tasks that read or write each message, and which are their periods
and their worst-case response times.

Poledna et al. (Poledna et al., 2000) also provides optimisations to these equations,
taking advantage of worst- and best-case response times of internal computations of a
task. However, for clarity reasons only the simpler optimisations were presented here.
The analysis can easily be extended to incorporate those optimisations if the required
values are available in the application.

3.2.3. Replication Support

Even using the timed messages concept for replica determinism, the existence of
replication and/or distribution implies that further mechanisms must be implemented in
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order to support replica consistency. The active replication technique implies that
replicas must process the same set of inputs, in the same order (Guerraoui and Schiper,
1997). Furthermore, replication management must support some form of output
consolidation, in order to give the illusion to other software components that the group
of replicas is a single component (Powell, 1991).

Therefore, active replication requires the communication infrastructure to provide
atomic multicast protocols and mechanisms to consolidate replicated components. An
atomic multicast has the following properties (Hadzilacos and Toueg, 1993):

- Validity: If a correct component broadcasts a message m, then all correct
components deliver m.

- Agreement: If a correct component delivers a message m, then all correct
components deliver m.

- Integrity: For any message m, every correct component delivers m at most once,
and only if m was previously broadcast by sender(m);

- Total Order: If correct components p and q both deliver message m and m’, then
p delivers m before m’ if and only if q delivers m before m’.

These properties guarantee that all messages sent by correct components are delivered
only once to all of the intended recipients, and in the same order.

Consolidation of replicated outputs requires a mechanism to allow components to
agree on a common value. If an underlying atomic multicast protocol is used to
disseminate each of the outputs, the consolidation mechanisms needs just to guarantee
the following properties (based on the consensus agreement (Hadzilacos and Toueg,
1993)):

- Validity: If all components that propose a value propose v, then all correct
components decide v;

- Agreement: If a correct component decides v, then all correct components
decide v.

The integrity property (Hadzilacos and Toueg, 1993) (which states that the value
decided must be present in the set of proposed values) is not considered, as it precludes
decisions on values different than those proposed, like average or median functions.

3.3. Schedulability Analysis of Real-Time Applications

In order to allow the comprehension of the difficulties associated with the
development of applications conforming to the pre-emptive fixed-priority model, this
section provides a brief overview of current state-of-the-art schedulability analysis for
guaranteeing the real-time requirements of the system. In the considered analysis (the
response time analysis approach (Joseph and Pandya, 1986; Audsley et al., 1993)), these
requirements are guaranteed by checking, before run-time, that the scheduling of the
application task set is feasible. This is accomplished by calculating the worst-case
response time of each task, verifying if it is smaller than the associated deadline.  The
advantages of response time analysis is its precision (often exact or nearly exact) and
great flexibility in choice of process models. It is also applicable to other type of
resources (such as CAN networks).

In the pre-emptive fixed-priority model, an application is constituted by a set of
concurrent processing units (tasks) which may be periodic or sporadic. Each task can
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only be released by one event, but may be released an unbounded number of times. A
periodic task is released by the runtime (temporal invocation), while a sporadic task can
be released either by another task or by the environment.

A periodic task is characterised by its period (time interval between consecutive
requests), its worst-case execution time (maximum time that it takes to execute per
period, without considering the existence of other tasks) and its relative deadline
(maximum duration for the response to be performed, related to the instant of the
release). For the case of a sporadic task, as it is usually released by some event, a
minimum time interval between requests is usually considered to allow schedulability
analysis to be performed.

In the fixed priority pre-emptive model, priorities are off-line allocated to the system
tasks and, at any instant, the task with the greatest priority that is ready to run is assigned
to the processor. Note that although a task may be released at a specific instant, its start
of execution can be delayed, if the processor is currently executing a task with a priority
greater or equal than the priority of the released task.

Several different priority assignment approaches exist. The Rate Monotonic (RM)
approach (Liu and Layland, 1973) assigns to the tasks a priority level based on their
periods (the smaller the period the higher the priority). However, when considering
sporadic tasks (that can have a large minimum inter-arrival time with stringent deadline,
e.g. an alarm), it is not reasonable to base their priorities in the minimum inter-arrival
time. Therefore, the Deadline Monotonic (DM) priority assignment (Leung and
Whitehead, 1982), which gives the tasks a priority level based on their deadlines (the
smaller the deadline the higher the priority), can be used.

time

priority

t1 t2 t3 t4

Task τ1

Task executing Task pre-empted

Completion of task execution Input arrival

Task τ2

Task τ3

Task delayed

Figure 3.4. Pre-emptive fixed priority model

Figure 3.4 presents an example of a pre-emptive fixed priority model. In this example
three tasks compete for the node processor. From instant zero until instant t1 task τ2 is
allocated to the processor, as it is the only task ready for execution. At instant t1 some
event (either interrupt or clock-based) causes task τ3 to be ready for execution. As this
task has higher priority than task τ2, it will pre-empt this last task. At instant t2, task τ3

finishes its execution, thus it allows task τ2 to resume execution. At instant t3, an event
causes task τ1 to be ready for execution. However, as this task has lower priority than the
one executing, its execution will be delayed until instant t4, when task τ2 finishes
execution. This behaviour differs from the traditional cyclic executive model, where a
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table of sequence of task executions is off-line determined, and execution is carried
statically following the scheduling table.

3.3.1. Single Node Scheduling

The schedulability analysis considers the existence of a set of tasks, which may be
periodic or sporadic. A task is defined as:

),,( iiii DTC=τ (3.6)

where τi defines a task i, with a worst-case execution time of Ci and a periodicity of
arrival defined by Ti (for the case of a sporadic task, Ti refers to the minimum
inter-arrival time). Di is the relative deadline of the task.

Joseph and Pandya (Joseph and Pandya, 1986) proved that the worst-case response
time of a task occurs when all tasks are simultaneously released at their maximum rate.
This simultaneous release is referred to as the critical instant. The response time is thus
given by (Joseph and Pandya, 1986; Audsely et al., 1993):

iii ICR += (3.7)

where Ii is the maximum interference that task i can experience from higher-priority
tasks.  During the interval [0,Ri ), that is the time interval from the instant when task i is
released and the time instant of its worst-case response time, the number of releases of a
task j is:
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where the ceiling function (  ) produces the smallest integer greater than the result of its
parameter. Each release of a higher-priority task j will interfere with task i by Cj. Hence:
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The interference that task i will suffer from all higher-priority tasks can then be
determined (hp(i) is the set of tasks with higher priority than task i):
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Therefore, by replacing equation (3.10) in equation (3.7) the worst-case response time
of task i is:
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This equation is mutually dependent, since Ri appears in both sides of the equation. In
order to solve this dependency, a recurrence relationship may be used (Audsley et al.,
1993):
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This recursion ends when Ri
n+1 equals Ri

n, or when it exceeds Di (in this case the task
is not schedulable), since it can be shown that the series is either convergent or
monotonically increasing (Audsley et al., 1993).
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Figure 3.5. Task response time

Figure 3.5 presents an example of the task response time evaluation. In this example
three tasks compete for the node processor. In order to determine the worst-case
response time of the three tasks, it is considered that they are all released at the same
time (critical instant).

Since task τ3 is the higher priority task it will execute without being delayed, and its
worst-case response time (WCRT) is equal to its worst-case execution time (WCET):

33 CR = (3.13)

Task τ2, on the other hand, will suffer the interference of one occurrence of task τ3,
thus its WCRT will be equal to its WCET plus the WCET of task τ3:
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Finally, task τ1 will suffer interference both form task τ2 and from task τ3. Since the
period of task τ3 is inferior the WCRT of task τ1, it will execute twice during task τ1

execution.
Therefore, task τ1 WCRT becomes:
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In a real-time application is important to allow tasks to interact with each other.
However, when a higher priority task pretends to access a resource that is currently
being used by a lower priority task (for instance a semaphore), it will be blocked. In
Figure 3.6, when task τ3 tries to access a shared resource it becomes blocked, since this
resource is currently being used by task τ1. This means that, during this interval, the
effective priority of the lower-priority task is greater than the priority of the
higher-priority task (priority inversion). As the low priority task may be pre-empted by
any number of medium priority tasks (task τ2 pre-empts task τ1, and further blocks task
τ3), the duration of the priority inversion may be unbounded. It is thus necessary to upper
bound the duration of the maximum blocking that each task may suffer.

time

priority

Task τ3
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Task τ1

Task executing Task in resource

Completion of task execution Input arrival

Task τ2
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Figure 3.6. Blocking example

In (Audsley et al., 1993) the response time analysis was also extended to incorporate
blocking introduced by task interaction. Equation (3.11) is then updated by:
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where Bi represents the maximum blocking time that task i can suffer. Determining Bi

depends on the particular protocol that is used for managing priority inversion. The
Priority Ceiling Protocol (Sha et al., 1990) is one of the protocols proposed to
upper-bound priority inversion periods, which also precludes deadlocks and blocking
chains. In this approach, resources are also assigned a priority (ceiling priority), which
must be equal or higher than the priority of any task that can use the resource.

The maximum priority inversion period that task i can suffer is equal to the longest
time interval of any lower priority task accessing a resource with a ceiling priority equal
or higher than the priority of task i. This allows to bound the blocking time as (Burns and
Wellings, 1995b):
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where lp(i) is the set of tasks with a lower priority than task i, res(i) is the set of
resources with a ceiling priority greater than the priority of task i, and CS(τj , r) is the
worst-case execution time of task j while blocking resource r.
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3.3.2. Distributed Scheduling

Analysing tasks and messages’ response times in distributed systems must also be
considered. However, as the arrival patterns of tasks and messages are mutually
dependent, an appropriate analysis must be used. Consider the example presented in
Figure 3.7. The task in node 1 is a periodic task that always sends a message to the
receiving task in node 2. Consequently both the message and the receiving task in node 2
inherit the period of the sending task. The figure represents two consecutive executions
of the transaction. In the first execution of the sending task, it suffers interference from
higher-priority tasks (or blocking from lower-priority tasks) and thus it is delayed. The
same happens with the message sent, since it has to wait for the completion of transfer of
other messages. As in the second execution of the sending task, it does not suffer any
delay, the message will inherit the jitter (variability in the release of the task) of the
sending task. Furthermore, the receiving task in node 2 will inherit the jitter of the
message (both caused by the sending task and by the interference in the message itself).

time
Period (T)

Node 2

Node 1

Task Message

Network

Jitter
(J)

Task/Message delayed

Period (T) Inherited
Jitter

Jitter

Period (T) Inherited
Jitter

Figure 3.7. Distributed transaction

Therefore, it is possible to realise that the schedulability analysis of the messages in
the network is dependent on the release jitter of the sending task, and the schedulability
analysis of the receiving task is dependent on the message jitter. It is necessary to
consider a holistic approach, where both analyses are integrated.

Tindell and Clark (Tindell and Clark, 1994) addressed this issue, considering a time
division multiple access (TDMA) network with real-time properties. The devised
solution is based on the fact that both schedulability analysis equations of the node and
of the network are monotonic. A recurrent solution was provided (similar to the solution
used to determine tasks response times). In the first iteration, the inherited release jitter
of both the tasks and the messages is considered to be zero. In each iteration, the
inherited release jitter is set according to the response time result of the previous
iteration. This solution can thus be used to determine the overall response times of the
system, if the network schedulability analysis equations are also monotonic. As it will be
presented in the following section, the same reasoning can be applied to the CAN
network, which is the real-time network used in the DEAR-COTS architecture.
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3.4. The Controller Area Network

The Controller Area Network (CAN) (ISO, 1993) was originally developed to be used in
road vehicles to interconnect microprocessor-based components. It is also considered for
the automated manufacturing and distributed process control environments (Zuberi and
Shin, 1997), and is being used as the communication interface in proprietary
architectures, such as DeviceNet (Rockwell, 1997). Several studies on how to guarantee
the real-time requirements of messages in CAN networks are available, e.g. (Tindell et
al., 1995), providing the necessary pre-run-time schedulability analysis equations for the
timing analysis of the supported traffic.

The CAN protocol implements a priority-based bus, with a carrier sense multiple
access with collision avoidance (CSMA/CA) medium access control (MAC), where bus
signals can take two different states: recessive bits (idle bus), and dominant bits (which
always overwrite recessive bits). The collision resolution mechanism works as follows:
when the bus becomes idle, every node with pending messages will start to transmit. If a
node transmitting a recessive bit reads a dominant one, it means that there was a
collision with a higher-priority message, and consequently the transmission is aborted.
The highest-priority message being transmitted (the one with most leading dominant
bits) will proceed without perceiving any collision, and thus will be successfully
transmitted. Nodes that loose the arbitration phase will automatically retry the
transmission of requested messages.

There are 4 types of frames that can be transferred in a CAN network. Two are used
during the normal operation of the CAN network: the Data Frame, which is used to send
local data and the Remote Frame, which is used to request remote data. The other two
are used to signal an abnormal state of the CAN network: the Error Frame signals the
detection of an error and the Overload Frame signals that a node is not ready to transmit
data.

Data
(0,...,8) × 8 bits

CRC Sequence
15 bits

EOF
7 bits

SOF
1 bit

Control
3 bits

ACK Delimiter
1 bit

ACK
1 bit

CRC Delimiter
1 bit

Identifier
11 (or 29) bits

DLC
4 bits

Figure 3.8. Structure of a CAN Data Frame

Figure 3.8 shows the structure of a Data Frame (specific fields: SOF, Identifier,
Control, DLC, CRC and EOF are described in (ISO, 1993)). A Remote Frame has the
same structure (without data field) and identifier of the remotely requested Data Frame.
The structure of both the Error and the Overload Frames will be presented in the
following subsection.

At the physical layer, frames are transmitted using the NRZ (Non Returning to Zero)
coding technique, with the insertion of stuff bits. That is, whenever there are more than
five equal consecutive bits (up to the end of the CRC Field), there is the insertion of an
opposite bit in the frame. This opposite bit will be detected and removed by the physical
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layer at the receiving side. This bit stuffing technique ensures that, in the normal
behaviour, there will never be more than 5 consecutive equal bits on the bus.

3.4.1. Error Detection and Recovery Mechanisms

In the CAN protocol, all the nodes continuously monitor every frame being transmitted
on the bus, to detect any transmission error. The node that first detects an error, starts the
transmission of an Error Frame (which starts with 6 consecutive dominant bits). The
transmission of an Error Frame is an efficient way for the CAN protocol to tolerate
transient failures (e.g. due to electromagnetic interference).

This Error Frame transmission is immediate, pre-empting the ongoing transmission
and avoiding the reception of invalid frames by the other nodes. As a consequence, all
the receiving nodes know that the frame being transmitted has an error. Thus, the
transmitting node will automatically retry the transmission of the message.

An Error Frame has the following structure:
- 6-12 consecutive dominant bits (Error Flag). The node that first detects the

error starts transmitting the Error Flag and hopefully every node will also
recognise such error at the same instant. However, there is the possibility that
other nodes only recognise the bit stuffing error induced by the Error Flag. In
this case, such nodes will start transmitting Error Frames and the Error Flag will
be 12 bits long;

- 8 consecutive recessive bits (Error Delimiter) which signal the end of the Error
Frame.

Sending Error Frames is a very interesting mechanism to ensure that every node sees
the same global state of the network (state coherence). However, it is possible that a
failure in a node induces the transmission of consecutive error frames, blocking all the
ongoing communications.

To solve this problem, CAN controllers have two error counters (for transmitting and
receiving errors, respectively) to isolate erratic nodes. For instance, if a node is
consecutively signalling errors in every Data/Remote Frame (e.g., due to a circuitry
failure), there is a time bound after which the node cannot signal any more error with
active Error Flags.

The values of these counters, which determine the operating state of the node, are
increased or decreased (at different rates) as a function of the type of the detected error.
These error counters acts as self-surveillance mechanisms, which disconnect faulty
nodes (fault-confinement techniques).

Therefore, CAN controllers may operate in three different modes:
1) Error-active, which is the normal operating mode.
2) Error-passive, where the node is still able to transfer/receive messages, but it

must wait some time before initiating a transmission (automatically decreasing
the transmission priority) and the error signalling is performed with passive
Error Flags (6 consecutive recessive bits). When in this operating mode, the
node can no longer interfere with frames transmitted by other nodes.

3) Bus-Off, where the node is not able to transfer/receive messages.
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3.4.2. Response Time Analysis of CAN Networks

In order to guarantee the real-time requirements of messages transferred by CAN
networks, it is necessary to evaluate their worst-case response time. In (Tindell et al.,
1995) the authors address in detail the response time analysis of CAN networks. The
analysis assumes fixed priorities for message streams (since access to the medium is
based on the fixed identifiers, which must be assigned to message streams according to
their priority) and a non-preemptive model (since lower-priority messages being
transmitted cannot be pre-empted by pending higher-priority messages). The
schedulability analysis of (Audsley et al., 1993) presented in Section 3.3 is then adapted
to the case of scheduling messages in a CAN network.

The analysis assumes a network with n message streams defined as:

),,,( mmmmm DJTCS = (3.18)

where Sm defines a message stream m characterised by a unique identifier. A message
stream is a temporal sequence of messages concerning, for instance, the remote reading
of a specific process variable. Cm is the longest message duration of stream Sm and Tm is
the periodicity of its requests. Jm is the jitter of the queuing of a message of stream Sm.
Finally, Dm is the relative deadline of a message; that is, the maximum time interval
between the instant when the message request is placed in the outgoing queue and the
instant when the message must be completely transmitted.

The worst-case response time of a queued message, measured from the arrival of the
message request to its complete transmission, is:

mmmm CIJR ++= (3.19)

The schedulability of the message stream set is guaranteed if every message has a
response time smaller than its deadline. The term Im represents the worst-case queuing
delay (longest time interval between the arrival of the message request and the start of its
transmission).

The message duration of stream Sm (Cm) can be evaluated considering that for each
Data Frame there is a Data Field plus 44 overhead bits. Additionally, it must be
considered the overhead concerning bit stuffing and inter-frame spacing (3 bits of
minimum spacing between two consecutive frames). Bit stuffing mechanisms are only
applied to 34 bits of the overhead and to the 0..8 byte Data Field (it excludes the CRC
delimiter, ACK and EOF). Therefore, the duration of a CAN message is given by:
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where n is the number of data bytes in the message and τbit is the duration of a bit
transmission.

The Deadline Monotonic (DM) priority assignment (Leung and Whitehead, 1982) can
be directly implemented in a CAN network, by setting the identifier field of each
message stream according to the DM rule. Therefore, the worst-case queuing delay of a
message of stream Sm is (Tindell et al., 1995):
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where hp(m) is the set of message streams with higher-priority than Sm.
Bm is the worst-case blocking factor, which is equal to the longest duration of a lower

priority message, since a message can be blocked at most once in the access to the
shared resource (the network):
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where lp(m) is the set of message streams with lower-priority than message stream Sm.
As in node schedulability analysis, equation (3.21) embodies a mutual dependency,

since Im appears in both sides of the equation, meaning that it can be solved with a
recurrent relationship.

The main difference between the non-preemptive and pre-emptive models is that, in
equation (3.21), contrarily to the pre-emptive case (equation (3.10)), the actual
transmission time of message m (Cm) is not considered during the recurrent analysis of
interference. This is due to the fact that in the non-preemptive case a message being
transmitted cannot be pre-empted by higher-priority messages.

Note that these schedulability analysis equations are also monotonic, thus they can be
used in the holistic approach presented in Section 3.3.2, making it possible to determine
the overall response times of the system.

3.4.3. Network Load

The computation of the network load is a single measurement based on the
characteristics of the message streams. Such network load can be evaluated as follows:
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3.4.4. Inaccessibility Analysis of CAN Networks

The use of CAN networks to support fault-tolerant real-time applications requires not
only time-bounded transmission services, but also a minimum level of confidence on the
continuity of service. Such continuity of service is not fully guaranteed in CAN
networks, since they may be disturbed by temporary periods of network inaccessibility
(periods during which nodes cannot communicate with each other, due to the existence
of on-going error detection mechanisms).

Considering the existent error recovery mechanisms, the longest network
inaccessibility (Rufino and Veríssimo, 1995) results from a Form Error (incorrect
structure of the frame) detected at the end of the EOF delimiter. Such network
inaccessibility is:

IFSerrorMAXina CCCt ++= (3.24)
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where Cerror and CIFS are the duration of an Error Frame and the Inter-Frame Spacing
(two consecutive frames must be separated by at least 3 recessive bits), respectively, and
CMAX is the longest duration of a CAN message.

In the presence of multiple bus errors, two different scenarios can be considered
(Rufino and Veríssimo, 1995):

- A burst of successive bit errors, where only the first one corresponds to a bit
corruption in a Data Frame. The others will just disturb Error Frames being
transmitted in response to the first error.

- A longer network inaccessibility results from considering that bus errors are
sufficiently apart to interfere with n Data Frames. This results in n failed
attempts to transmit a Data Frame.

The network inaccessibility resulting from this second scenario is:

( )IFSerrorMAXinan CCCnt ++×=_ (3.25)

In addition to the frame error detection mechanisms, CAN controllers have two error
counters to isolate erratic transceivers, preventing them from interfering with the normal
bus operation (see Section 3.4.1). The values of these counters are increased or
decreased (at different rates), as a function of the detected error.

In the case of an erratic transmitter, the maximum number of transmission errors
(leading to the transmission of Active Error Frames) is given by:
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where ect is the error count threshold, and ∆tx is the increase of the counter at each
detected transmission error. As ect=127 and ∆tx=8, then 16 consecutive active Error
Frames will be transmitted before a failed transmitter enters into the Error-Passive state.

For the case of a receiver, the maximum number of receiving errors (leading to the
transmission of active Error Frames) is given by:
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where ∆rx1 and ∆rx2 are used according to the detected error (ISO, 1993). As ∆rx1=8 and
∆rx2=1, then 15 Active Error Frames will be transmitted before a failed receiver enters
into the Error-Passive state.

Although the time interval during which an erratic transceiver can interfere with the
normal behaviour of the network is upper-bounded, an erratic transceiver will only stop
transmitting Active Error Frames when its error count reaches the Error-Passive
threshold. Hence, it can cause up to 16 failed transmissions in the network.

3.4.5. Inconsistencies in Messages’ Transfer

In spite of the extensive error detection and recovery mechanisms in CAN networks,
there are some known reliability problems (Rufino et al., 1998) that can lead to an
inconsistent state of the supported applications. This misbehaviour is a consequence of
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different error detection mechanisms at the transmitter and receiver sides. A message is
valid for the transmitter if there is no error until the end of the transmitted frame. If the
message is corrupted, a retransmission is triggered according to its priority. For the
receiver, a message is valid if there is no error until the last but one bit of the received
frame, being the value of the last bit treated as 'do not care'. Thus, a dominant value in
the last bit does not lead to an error, in spite of violating the CAN rule stating that the
last 7 bits of a frame are all recessive.

In Figure 3.9, the Sender node transmits a frame to Receivers A and B. Receiver B
detects a bit error in the last but one bit of the frame. Therefore, it rejects the frame and
sends an Error Frame (requesting the frame retransmission) starting in the following bit
(last bit of the frame). As for receivers the last bit of a frame is a ‘do not care’ bit,
Receiver A will not detect this error and will accept the frame. However, as the
transmitter re-schedules the frame, Receiver A will have an inconsistent message
duplicate. The use of sequence numbers in messages can easily solve this problem, but it
does not prevent messages from being received in different order, not guaranteeing total
order of atomic multicasts.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame for
retransmission

‘Do not care’ bit
Receiver accepts

 the frame

At this moment, Receiver A has accepted the frame, while
Receiver B has rejected it

- If the sender retransmits the frame, then Receiver B will
have it, while Receiver A will have a duplicate frame
(inconsistent message duplicate)

- If the sender fails before the retransmission, then
Receiver B will never have the frame
(inconsistent message omission)r dSender

d dReceiver B

Receiver B signals the Error,
starting an Error Frame in the
last bit of the frame

Figure 3.9. Inconsistency in CAN

On the other hand, if the Sender fails before being able to successfully retransmit the
frame, then Receiver B will never receive the frame, although Receiver A has delivered
it. This situation causes an inconsistent message omission, which is a more difficult
problem to solve.

In (Rufino et al., 1998), the probability of message omission and/or duplicates is
evaluated, in a reference period of one hour, for a 32 node CAN network, with a network
load of approximately 90%. Bit error rates ranging from 10-4 to 10-6 were used, and node
failures per hour of 10-3 and 10-4 were considered. For inconsistent message duplicates
the results obtained ranged from 2.87 x 101 to 2.84 x 103 duplicates per hour, while for
inconsistent message omissions the results ranged from 3.98 x 10-9 to 2.94 x 10-6

omissions per hour.
These values show that for fault-tolerant real-time communications, CAN built-in

error recovery mechanisms are not sufficient, since the use of CAN networks to support
fault-tolerant real-time applications requires not only time-bounded transmission, but
also the guarantee of consistency for the supported applications.  Therefore, additional
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mechanisms must be provided to ensure fault-tolerant real-time communication in CAN
networks.

Furthermore, from the requirements imposed to the communication infrastructure in
order to support active replication (Section 3.2.3), it can be perceived that CAN
networks do not support atomic multicast properties. CAN error detection and recovery
mechanisms ensure the Validity property, since when the sender is correct, all correct
nodes will receive the message. Note that the network can be referred as a fail-consistent
bus (Powell, 1992), since there is no possibility for different nodes to receive the
message with different values. CAN error detection and recovery mechanisms are not,
however, sufficient to guarantee the Agreement and Integrity properties (Rufino et al.,
1998). In fact, it is possible for a correct node to receive a message not received by some
other correct node (inconsistent message omission), and it is also possible that some
node receives the same message more than once (inconsistent message duplicate). Total
Order is also not guaranteed, since new messages can be interleaved with
retransmissions of failed messages, causing different nodes to receive the messages in
different order.

The problem of inconsistent messages in CAN networks has been given some
research in the last few years. In (Rufino et al., 1998), a set of fault-tolerant broadcast
protocols is proposed, solving the message omission and duplicate problems. In this set
of protocols, atomic multicast is addressed by the TOTCAN protocol. This protocol is
based on the transmission of a second data-free message (ACCEPT message), to signal
that the sender is still correct, meaning that the related message can be delivered.

The transmission of the ACCEPT message is performed using a lower layer protocol
(EDCAN), which is based on the retransmission of messages by every node in the
system (that has correctly received the message). When a node receives a retransmission
of the ACCEPT message, it will retransmit it again (even if it already has retransmitted
the original ACCEPT), and multiple retransmissions will occur in normal operation even
if no error occurs. Therefore, such protocols do not take full advantage of the CAN
synchronous properties, producing a great run-time overhead under normal operation.

Another approach presented in the literature is to use a hardware-based solution
(Kaiser and Livani, 1999) to prevent message inconsistencies. This approach is based on
a hardware error detector, which automatically retransmits messages that could
potentially be omitted in some nodes. This detector (SHARE) detects the bit pattern that
occurs in an inconsistent message failure, and automatically retransmits the received
frame, even if the transmitter handles this failure.

Although this hardware-based approach solves the inconsistent message omission
problem of CAN, it does not provide solution to total order, as duplicates may occur
(furthermore, inconsistent message omissions are transformed in inconsistent message
duplicates). In order to achieve order, it is necessary to complement this mechanism with
an off-line analysis approach (Livani and Kaiser, 1999).

In this analysis, messages must be separated in hard real-time and soft real-time. Only
hard real-time messages have guaranteed worst-case response time inferior to the
deadline, but it is necessary to use fixed time slots, off-line adjusting these messages to
never compete for the bus, thus causing an increased burden in the analysis of the
system.
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3.5. The Ada 95 Language

The Ada language (ANSI, 1983; ISO, 1987) was designed for the development of
embedded systems software, in order to replace multiple languages used at the United
States Department of Defence. The Ada 95 language revision (ISO/IEC, 1995) brought a
more open and extensible language without losing the inherent integrity of Ada 83,
addressing the limitations of Ada 83 (Sha and Goodenough, 1990) for hard real-time
systems programming. The need to target a broad range of applications led to the
specification of a core language (self-contained) and the provision of extra annexes
targeting special domains. Since in this work the interest is in the 1995 standard, from
now on the term Ada will be used instead of Ada 95.

In Ada, concurrency is supported in the core of the language, through the
specification of tasking constructs and of a new mechanism for task interaction: the
protected object. In an Ada program there can be a number of concurrent processing
units (termed tasks), each one with its own flow of control. These tasks are related to the
POSIX notion of threads (IEEE, 1995), since all tasks in an Ada program share the same
resources (memory area, files, etc).

The new task interaction model based on protected objects was one of the major
changes introduced in the language revision (Intermetrics, 1995). A protected object is a
passive object, which exports a set of protected operations. These operations provide
mutual exclusion to tasks accessing the object data. Therefore, they can be used to
provide a more efficient solution to build asynchronous communication and mutual
exclusion mechanisms than the Ada 83 Rendezvous mechanism. The clearly
data-oriented view brought by the protected object fits in naturally with the general spirit
of the object-oriented paradigm.

The specification of the object exports the subprograms that can be used to access the
object data: procedures, functions and entries. A procedure can access the private data
with exclusive read/write access, while a function can only read it. A protected entry also
has read/write exclusive access like a procedure, but it also specifies a barrier condition,
that must be true before the task is allowed to proceed. For each entry there is a queue,
where the calling tasks wait for the condition to become true.

3.5.1. Ada Support for Real-Time

Although part of the support that Ada provides to real-time systems is through the
facilities provided in the core language (such as concurrency), many of the important
features of Ada (concerning real-time) are provided in the Real-Time Systems and
Systems Programming annexes.

The Real-Time Systems (RTS) annex provides the language with the necessary
capabilities for schedulability analysis, namely the support of the Priority Ceiling
Protocol in the access to protected objects, priority queuing and First-In-First-Out
(FIFO) queuing within priorities. Since the goal of the language revision was to support
a broad range of application domains, the language’s scheduling model was removed
from the core of the language and provided through the RTS annex (Intermetrics, 1995).

The RTS annex supplies the capabilities to associate priorities to Ada tasks and
protected objects (ceiling priority), either at creation time or (for the case of tasks)
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dynamically during execution. In spite of the provision for supporting different
scheduling models, the RTS annex only specifies one scheduling model. A dispatching
policy must exist, defining tasks to execute until they are blocked
(FIFO_Within_Priorities). This also implies the need for the ceiling locking policy for
protected object locking, that is, each protected object has an associated ceiling priority
equal or greater than the priority of the highest priority task that can use the object. This
locking policy is based on the Immediate Ceiling Priority Protocol (Rajkumar et al.,
1995), which is an implementation variant of the Priority Ceiling Protocol presented in
Section 3.3, thus it provides bounded priority inversion in the access to protected objects.
When a task executes an operation on a protected object that has a higher priority than
the caller, the calling task will inherit this higher value as its active priority, but only
during the execution of the protected operation. A policy for task queuing based on the
task priority is also available, establishing priority as the criterion for task selection
instead of order of arrival.

Furthermore, the RTS annex specifies a monotonic and accurate timing capability,
mechanisms for synchronous and asynchronous task control and also tasking restrictions
that, for instance, can impose a maximum number of tasks, no asynchronous control or
no dynamic priorities.

An implementation providing the Real-Time System annex must also provide the
Systems Programming annex. This annex specifies the access to machine code, interrupt
handling and packages for general task identification and attributes. The existence of
Ada mechanisms to specify the exact size and layout of user data types and its simple
interface with other languages simplify the task of hardware interfacing.

3.5.2. Ada Support for Fault Tolerance

Although targeted to application domains where fault tolerance is required, the language
does not provide direct support for fault tolerance mechanisms, except for the exception
mechanism, which is a powerful tool that has been often used to provide higher-level
mechanisms for software fault tolerance. Note that software fault tolerance refers to the
tolerance of software faults, not to software-based fault tolerance where software is used
to tolerate faults in the underlying components.

Software fault tolerance has been a topic of research on Ada in the last few years. A
number of approaches have been proposed (e.g., atomic actions (Wellings and Burns,
1997), recovery blocks (Rogers and Wellings, 1999) and transactions (Kienzle, 2001)),
providing an extensive number of mechanisms for software fault tolerance in Ada 95.

Work is also being done in the integration of fault tolerance and distribution in Ada.
Ada provides a Distributed Systems annex, which defines the model of distribution of
Ada applications. A distributed application is seen as a set of program components that
are distributed on the system nodes, communicating through the network. These
components are called partitions (ISO/IEC, 1995). Interconnection between partitions is
performed through well-defined interfaces, with specific rules defining how partitions
can interact. In (Wellings and Burns, 1996) and (Burns and Wellings, 1998) the use of
replication within the partition model is evaluated, and some replication mechanisms,
which must be explicitly used by the application, are provided. Wolf (Wolf and
Strohmeier, 1999) presents some issues regarding replica implementation within the
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same partition model. Replica determinism is initially assumed and later extended to
non-deterministic replicas. This approach is based on the extension of the run-time
support to implement transparent replication of partitions.

ReplicAda (Heras-Quirós et al., 1997) presents another fault-tolerant implementation
using the Ada Distributed Systems annex. It is based on a layer under the Partition
Communication Subsystem that presents a transparent view to the programmer, hiding
all the replication issues. This approach assumes replica determinism, mainly through
the use of the Ada Restriction pragma. Drago (Miranda et al., 1996) is another Ada
extension intended for distributed fault-tolerant applications programming. The approach
is based on enriching the language with new constructs, providing mechanisms for
explicitly supporting the group abstraction in distributed systems.

However, the partition model of Ada does not allow flexibility in the configuration of
the system, since partitions are simultaneously the unit of replication and distribution,
not being possible to de-couple these roles. It is not possible to allocate a partition to one
node, and one of its replicas distributed through several nodes.

3.5.3. The Ravenscar Profile

The Ada 95 programming language is widely used in the areas of critical hard real-time
systems. Nevertheless, while the language provides a broad set of programming
constructs, the multitasking mechanisms are rarely used, since they are considered to be
too complex to be analysable, thus difficult to be certified. Therefore, a subset of the
language multitasking mechanisms was defined (the Ravenscar Profile (Burns, 1997)), in
order to reduce the size and overhead of Ada applications, and to allow applications to
be certified concerning its real-time and fault tolerance properties.

The profile restricts the language use by removing mechanisms that are considered to
be non-deterministic or which introduce high overhead. Even with these restrictions,
applications may be built using the pre-emptive fixed priority computational model.
Applications conforming to the Ravenscar profile consist in a set of tasks, with all
interactions between these tasks performed through the use of protected objects.

Protected objects are only used to provide access to shared resources and to release
sporadic tasks. The Profile does not support dynamic creation either of tasks or of
protected objects, task termination, alteration of task priorities and the select statement.
It also imposes that applications use the available Ceiling Locking mechanism for
protected objects, and the FIFO Within Priorities dispatching mechanism. These
restrictions force applications to be developed with the pre-emptive fixed priority model
of computation, allowing the use of the schedulability analysis approach presented in
Section 3.3.

Figures 3.10 to 3.12 present possible templates for developing Ravenscar applications
(based on (Dobbing and Burns, 1998)). In Figure 3.10 a template for a periodic task is
presented. The task body is a simple infinite loop containing a delay until statement at
the beginning, in order to block the task until the release time is reached. In each
iteration, a new release time for the next iteration is determined. The time type used is
the one provided by the Real-Time Systems annex, since it is the only one allowed by
the profile. The infinite loop never terminates, since the profile forbids task termination.
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1:  task body Periodic is
2:     Start: Ada.Real_Time.Time := ...;
3:     Period: Ada.Real_Time.Time_Span := ...;
4:  begin
  -- Initialisation Code

5:     loop
6:        delay until Start;
          -- Task Code
7:        Start := Start + Period;
8:     end loop;
9:  end Periodic;

Figure 3.10. Periodic task template

1:  protected Release_object is
2:     entry Wait(D: out Task_Data);
3:  procedure Release(D: Task_Data);
4:  private
5:  Data: Task_Data;
6:  Released: Boolean := false;
7:  end Release_object;

8:  protected body Release_object is
9:  entry Wait(D: out Task_Data) when Released = true is
10:  begin
11: D := Data;
12: Released := false;
13:  end Wait;
14:  procedure Release(D: Task_Data) is
15:  begin
16:     Data := D;
17:     Released := true;
18:  end Release;
19: end Release_object;

20: task body Sporadic is
21:    data: Task_Data;
22: begin
       -- Initialisation Code
23:    loop
24:       Release_object.Wait(data);
          -- Task Code
25:  end loop;
26: end Periodic;

Figure 3.11. Sporadic task template

A sporadic task (Figure 3.11) also has an infinite loop, but with the blocking
statement being provided by a call to an entry of a protected object. This protected object
must only be used to release a single task, but it allows the transfer of data between the
releasing and the released task. It is also possible to use the Suspension_Object
mechanism defined in the Real-Time Systems annex for the release of sporadic tasks,
when no data is to be transferred.
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In the profile model, tasks share data asynchronously through the use of a protected
object (Figure 3.12), which only exports procedures and functions in its interface (that is,
no entries). The reason is that protected entries are only to be used for the release of
sporadic tasks.

1:  protected Shared_data_object is
2:  procedure Write(D: Obj_Data);
3:  function Read return Obj_Data;
4:  private
5:  Data: Obj_Data;
6:  end Shared_data_object;

7:  protected Shared_data_object is
8:  procedure Write(D: Obj_Data) is
9:  begin
10: Data := D;
11:  end Write;
12:  function Read return Obj_Data is
13:  begin
14:  return Data;
15:  end Write;
16: end Shared_data_object;

Figure 3.12. Shared data template

The Ravenscar profile allows the use of the pre-emptive fixed priority computational
model in critical applications, as it is demonstrated by available studies (Lundqvist and
Asplund, 1999; Audsley et al., 2000) and implementations (Puente et al., 2000; Aonix,
1998). Moreover, a commercial implementation of the Profile (Raven (Aonix, 1998)) is
certifiable under the Avionics Standard DO178B (RTCA, 1992), being already in use in
some applications (Wellings, 2000).

Nevertheless, it is considered that further studies are necessary for the use of the
profile in replicated and distributed systems (Wellings, 2000). The interaction between
multitasking pre-emptive software and replication introduces new problems, which must
be considered, particularly for the case of a transparent and generic approach. The
restrictions of the Ravenscar profile make difficult the implementation of an efficient
support for replicated or distributed programming, which may result on an increased
application complexity (Audsley and Wellings, 2000). Therefore, any environment for
transparent replication using the Ravenscar profile must be simple to implement and use,
but at the same time must provide the capabilities required by the fault-tolerant real-time
applications.

3.6. Summary

This chapter presented a survey of relevant work related to the development of
fault-tolerant real-time systems. This survey is strictly necessary as the background for
the remaining chapters of this thesis.

Initially, a survey of fault-tolerant real-time systems is given, focusing on the issue of
software-based fault tolerance mechanisms. Afterwards, the response time analysis
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approach for the schedulability analysis of real-time applications is presented,
demonstrating how real-time guarantees can be provided to applications.

A survey of the Controller Area Network is also presented, since it is the network
used as the communication infrastructure in the DEAR-COTS architecture for the
replication and distribution of fault-tolerant real-time applications. A brief survey of the
main characteristics of the network is provided, focusing on its real-time behaviour and
on its impairments for fault-tolerant communication. The problems of real-time
behaviour in the presence of network and transceiver errors and inconsistencies in
message transfers are identified, and some discussion on existent solutions is provided.

Finally, a brief description of the Ada 95 language is presented, with a special
emphasis on its support for fault-tolerant real-time systems. A small introduction to the
concurrency model of the language is presented, together with some discussion on its
support for real-time and fault-tolerant systems. A description of the Ravenscar profile is
also provided, describing how it can be used for the development of hard real-time
applications.





Chapter 4

Replication Management Framework

4.1. Introduction

The DEAR-COTS Hard Real-Time Subsystem (HRTS) provides a framework to support
distributed fault-tolerant hard real-time applications. It supports the active replication of
software with dissimilar replicated task sets in each node. The HRTS provides a
transparent programming model that allows applications to be developed focusing on the
requirements of the controlled system, thus abstracting from the distribution/replication
details. This model provides a generic solution, allowing applications with different
structures and configurations to be developed.

This chapter presents this framework, intended for the support of replicated software
components. The framework is based on the structuring of applications in software
components, which can then be replicated, and on a repository of generic task interaction
objects that hide from the application the details of replication and distribution.

This chapter is largely drawn from (Pinho et al., 2001a), and is structured as follows.
Section 4.2 explains how applications can be replicated, and how these applications can
be configured according to their real-time and fault tolerance requirements. The
proposed approach relies on the definition of a suitable replication unit (the component),
which is an abstraction that is used for system configuration, without imposing
restrictions on how applications are structured. Therefore, applications are provided with
a generic and flexible mechanism for replication configuration, that is independent of
their distribution requirements.

Afterwards, Section 4.3 presents the replication framework. This framework is based
on a repository of generic task interaction objects that are used in the development of
fault-tolerant real-time applications. The repository is used during the design and the
configuration phases, and provides a set of generic objects with different capabilities.
These objects are supported by a middleware, responsible for the replication and
distribution management mechanisms, that also shields the repository from changes in
the lower-level communication infrastructure, and minimises the effort needed for the
creation of new objects.

Section 4.4 describes the available task interaction objects. These objects provide an
object model to application tasks interaction, and hide from the application tasks the
low-level mechanisms for replication and distribution. During application development,
simple resources (objects) are available for sharing data between tasks and for releasing
tasks, not implementing any distribution or replication management. The appropriate
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distributed/replicated resources replace these simple resources in the configuration
phase. This allows applications to be implemented abstracting from the
distribution/replication details, and afterwards configured and allocated throughout the
system nodes.

Section 4.5 describes the underlying software layer responsible for the processing of
the replication and distribution mechanisms and for the interconnection with the
communication infrastructure.

4.2. Replication Model

Although the goal is to transparently manage distribution and replication, it is considered
that a completely transparent use of the replication/distribution mechanisms may
introduce unnecessary overheads. Therefore, during application development the use of
replication or distribution is not considered (transparent approach). Later, in a
configuration phase, the system developer configures the application replication and
allocates the tasks in the distributed system.

The hindrance of this approach is that, as the application is not aware of the possible
distribution and replication, complex applications could be built relying heavily on task
interaction. This would cause a more inefficient implementation. However, the model for
tasks, where task interaction is minimised, precludes such complex applications. Tasks
are designed as small processing units, which, in each invocation, read inputs, carry out
the processing, and output the results. The goal is to minimise task interaction, in order
to improve the system’s efficiency.

In order to allow the use of the response time analysis (Joseph Pandya, 1986; Audsley
et al., 1993), each task is released only by one invocation event, but can be released an
unbounded number of times. A periodic task is released by the runtime (temporal
invocation), while a sporadic task can be released either by another task or by the
environment. After being released, a task cannot suspend itself or be blocked while
accessing remote data (remote blocking).

Tasks are allowed to communicate with each other using interaction objects, either
Shared Data objects or Release Event objects (which can also carry data). Shared Data
objects are used for asynchronous data communication between tasks, while Release
Event objects are used for the release of sporadic tasks. This task interaction model,
although simple, maps the usual model found in hard real-time systems.

Note that, in the HRTS, remote blocking is avoided by preventing tasks from reading
remote data. Hence, when sharing data between tasks configured to reside in different
nodes, the Shared Data object must be replicated in these nodes. It is important to
guarantee that tasks in different nodes must have the same consistent view of the data.
This is accomplished by multicasting all data changes to all replicas. This multicasting
must guarantee that all replicas receive the same set of data change requests in the same
order, thus atomic multicasts must be used.



Replication Management Framework

49

4.2.1. Replication Unit

As there is the goal of fault tolerance through replication, it is important to define the
replication unit. If the application were defined as the replication unit, in order to
replicate part of the application all of its tasks would have to be replicated, unnecessarily
increasing the processing load. If the task were the replication unit, each task output
would have to be consolidated, unnecessarily increasing the inter-task communication
load. The Ada language includes the partition concept (ISO/IEC, 1995), providing a
more flexible approach, since the distribution and replication unit is a part of the
application. However, it forces the replication unit to be also the distribution unit,
precluding replicas to be configured as distributed components.

Thus, using any of these solutions as the replication unit would be very restrictive. It
is necessary to devise a new replication unit, de-coupling the roles of distribution and
replication units. Therefore, the notion of component is introduced. Applications are
divided in components, each one being a set of tasks and resources that interact to
perform a common job. The component can include tasks and resources from several
nodes, or it can be located in just one node. In each node, several components may
coexist. This component is just a configuration abstraction, which is used to structure
replication units, and to allow system configuration. The degree of replication is defined
as n-replicated component.

C1

C1’

C2’C2

τ1 τ1’ τ2’τ2

τ3 τ4 τ4’τ3’

Figure 4.1. Replicated hard real-time application

As an example, Figure 4.1 shows a real-time application with 4 tasks (τ1, τ2, τ3 and
τ4). The application is divided in two different components (C1 and C2), which are
replicated (C1’ and C2’). Component C1 encompasses tasks τ1 (in node 1) and τ2 (in node
2). Its replica encompasses tasks τ1’ (in node 3) and τ2’ (in node 5). Component C2

encompasses tasks τ3 (in node 2) and τ4 (in node 3), while its replica encompasses tasks
τ3’ (in node 4) and τ4’ (in node 5). Note that, although the example presents only
2-replicated components, in order to tolerate fail-uncontrolled behaviour of the replicas,
it is necessary to use 2*f+1 replicas to tolerate f faults (thus 3-replicated components to
tolerate a single fault).

A similar concept is the capsule defined in the Delta-4 architecture (Powell, 1991). As
with the DEAR-COTS component, a Delta-4 capsule is the unit of replication,
embodying a set of tasks (referred to as threads) and objects. However, a capsule has its
own thread scheduling and separate memory space, and is also the unit of distribution.
Thus, the Delta-4 concept of capsule is more related to Unix processes, while the
presented component is a more lightweight concept, as HRTS components do not have
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an implementation counterpart. It is just an abstraction that is used to allow system
configuration.

The component concept does not impose restrictions on how applications are
structured. Although it is considered that tasks joined in the same component are
somehow related, it is the system developer role to decide the component structure of the
system. This decision can be taken on the basis of patterns of task interactions or tasks’
related roles.

4.2.2. Component Failure Assumptions

The component is the unit of replication, therefore a component is a unit of
fault-containment. Faults in one task may cause the failure of one component. However,
if a component fails, by producing an incorrect value (or not producing any value), the
group of replicated components will not fail since the output consolidation will mask the
failed component. This means that, in the model of replication, the internal outputs of
tasks (task interaction within a component) do not need to be agreed. The output
consolidation is only needed when the result is made available to other components or to
the controlled system.

On the other hand, a more severe fault in a component can spread to the other parts of
the application in the same node, since there is no separate memory spaces inside the
application. In such case, other application components in the node may also fail, but
component replication will mask such failure.

Separate memory spaces for applications is not forcibly required, depending on the
support provided by the operating system. It is however advocated that, in order to
provide the required fault tolerance level, an operating system that allows the use of
separated memory spaces should be used. Note that, in order to increase the
effectiveness of the fault tolerance mechanisms, the DEAR-COTS Support Software
should also reside in a separate memory space.

The replication/distribution mechanisms are essential to the correct behaviour of the
system. It is therefore important to prevent errors in the framework’s software. If
software faults occur in just one node, they can be masked due to the node replication, or
the node can be made silent by using the TCB (Veríssimo et al., 2000a). If a greater
reliability in the development of this software is considered necessary, other approaches
like diversity or validation should be used.

As active replication is used, there is the need to guarantee replica determinism, i.e.,
that replicated tasks execute with the same data and timing-related decisions are the
same in each replica. This determinism can be achieved restricting the application from
using non-deterministic timing mechanisms. In this case, the use of multitasking would
not be possible, since task synchronisation and communication mechanisms inherently
lead to timing non-determinism. Guaranteeing that replicas take the same scheduling
decisions, by performing an agreement in every scheduling decision, allows for the use
of non-deterministic mechanisms. However, it imposes the modification of the
underlying scheduling mechanisms and leads to a huge overhead on the system, since
agreement must be made at every dispatching point.

The use of timed messages (Poledna et al., 2000) allows a restricted model of
multitasking to be used and eliminates the need for agreement between the internal tasks
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of each component. With timed messages, agreement is only needed to guarantee that all
replicated components work with the same input values and that they all vote on the final
output. The use of timed messages implies the use of appropriate clock synchronisation
protocols, since clock deviations must be upper-bounded.

4.2.3. Component Flexibility

By creating components, it is possible to define the replication degree of specific parts of
the real-time application, according to the reliability of its components. However, by
replicating components, efficiency decreases due to the increase of the number of tasks
and exchanged messages. Hence, it is possible to trade failure assumption coverage for
efficiency and vice-versa. Although efficiency should not be regarded as the goal for a
fault-tolerant hard real-time system, it can be increased by decreasing the redundancy
degree.

As can be seen in Figure 4.2, several possibilities exist for the configuration of an
application. The top part of the figure shows the configuration presented in Figure 4.1,
while the bottom part presents a different configuration, where the application is divided
in three components and only component C2 is replicated. The lighter colour is used for
the replication-related additions to the system. The double arrows indicate
communication between different components, thus communication with consolidated
data.

C1

C3

Sensor

C2’

C2

Actuator

C1 C2

C1’ C2’

Sensor’

Sensor

Actuator

τ1 τ2 τ3 τ4

τ1’ τ2’ τ3’ τ4’

τ1

τ2 τ3

τ2’ τ3’
τ4

Figure 4.2. Examples of application configuration

Note that the second solution is more efficient, as there are only two more tasks than
strictly needed by the application and the number of message exchanges is much smaller.
However, the fault coverage of both the sensor and components C1 and C3 (and the
nodes where they execute) must be higher than in the previous solution, as they are not
replicated.

Although not shown in the previous figures, a component can have more than one
input task (task that receives data or events from outside the component) and more than
one output task (task that output results to other components or to the environment).
Component tasks that are not input nor output tasks are named internal tasks.
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4.3. Framework Structure

The support to this replication model is provided in a twofold way. First, an underlying
software layer (the Communication Manager (Pinho and Vasques, 2001c)) provides the
appropriate communication protocols. This Communication Manager provides a group
communication interface, including the needed communication mechanisms for
replication and distribution. It provides protocols for atomic multicast and for replicated
data consolidation. Nevertheless, group communication technology by itself is too
low-level to allow complex fault-tolerant applications, and a lot of extra functionality
has to be added to applications to guarantee their fault tolerance and performance
requirements (Johnson et al., 2000). Thus, there is the need for an extra abstraction
between the application and the group communication mechanisms.

The DEAR-COTS architecture provides such extra abstraction by means of a
repository of task interaction objects (Figure 4.3). These objects provide a transparent
interface, by which application tasks are not aware of replication and distribution issues.
Their run-time execution is supported by the Replica Manager, which is a software layer
underlying the application. This layer is also responsible for the interface to the
communication mechanisms provided by the Communication Manager. Together, these
two software layers constitute the HRTS Support Software, a middleware layer between
the application and the COTS components.

Object
Repository

Generic
Objects

Replica Manager

Application

Instantiated
Objects

Application-level
Mechanisms

Communication Manager

Support
Software

Figure 4.3. Framework structure

The Object Repository is used during the design and configuration phases, and
provides a set of generic objects with different capabilities. These generic objects are
instantiated with the appropriate data types and incorporated into the application. They
are responsible for hiding from the application the details of the lower-level calls to the
support software. This allows applications to focus on the requirements of the controlled
system rather than on the distribution/replication mechanisms.

The Object Repository does not use an object-oriented approach, as there is no
provision for run-time polymorphism and no code inheritance between objects.
However, as an object-based approach, it possesses several advantages:

- it allows objects with the same interface to be replaced in the pre-run-time
configuration phase;

- it allows the transparent wrapping of replication and distribution mechanisms;
- it eases the modularity and decomposition of the system.
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This approach also allows the addition and reuse of new objects. If other generic task
interaction objects are later realised to be important, they can be incorporated in the
Object Repository (and thus made available to new applications) as long as they follow
the same approach as those currently available.

In order to simplify the upgrade of the Object Repository, the Replica Manager layer
is responsible for performing the main processing of the provided mechanisms, and the
generic objects in the repository just provide the transparency and object model to the
applications.

The Replica Manager is also responsible for the consistency of the replicated
components. It provides the required mechanisms for supporting both the task interaction
objects and the applications (recording periodic tasks’ release times and allowing
applications to change the state of applications components). The Replica Manager also
shields the Object Repository generic objects from changes in the Communication
Manager structure, either due to network changes, or due to the use of a different
communication layer.

4.3.1. Guaranteeing Replica Determinism

In the model of replication, the internal outputs of tasks (task interaction within a
component) do not need to be consolidated. The output consolidation is only needed
when the result is made available to other components or to the controlled system.
However, it is necessary to provide deterministic execution of replicated components
(since active replication is used).

The use of the timed messages concept (Poledna et al., 2000) allows the use of the
pre-emptive multitasking model and eliminates the need for agreement between the
internal tasks of each component. The use of the timed message concept is transparently
managed by the task interaction objects, when it is required.

Release Event objects do not need to use timed messages, since there is a synchronous
interaction between the releasing and released tasks. It is known that all the replicas of
the released task will also be released by the equivalent event in the replicated
component. The same happens if a Shared Data object is used only by tasks that have a
precedence relation (Poledna et al., 2000), e.g. through offsets.

When an application is configured in such a way that a Shared Data object is used in
a replicated component, it is necessary to keep several versions of the written value, each
one associated with its validity time. When a task reads the value, it must read the most
recent value that has a validity time older than the release time of the task. Therefore it is
necessary to maintain a record of tasks’ release times. This is the responsibility of the
Replica Manager layer. For periodic tasks, the layer simply stores the task release time,
each time it is released. The release time of sporadic tasks released by other tasks, is
determined by adding the release time of the releasing task with its best-case response
time (tasks released by external events are considered in Sections 4.4.4 and 4.4.5).

When distributed computations are involved, it is not possible for the Replica
Manager in the destination node to determine sporadic tasks’ release times, or for objects
to determine messages’ validity times, since these are based on the release time of the
source task. Therefore, these are determined at the source and transmitted together with
the actual release event or data message.
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4.4. Object Repository

In the HRTS, tasks communicate with each other by using Shared Data and Release
Event objects. The Object Repository provides a set of generic objects (Figure 4.4),
which are instantiated by the application with the appropriate application-related data
types.

Although multiple objects are available, with different capabilities and goals, during
application development only three different object types are available in the repository:
Shared Data, Release Event and Release Event with Data objects, without any
distribution or replication capabilities, since at this stage the system is not yet
configured.

Shared Data Object

1: when write(data):
2: Obj_Data := data

3: when read:
4: return Obj_Data

Release Event Object

5: when wait:
6: Task_Suspend

7: when release:
8: Suspended_Task_Resume

Release Event with Data Object

9: when wait:
10: Task_Suspend
11: return Obj_Data

12: when release(data):
13: Obj_Data := data
14: Suspended_Task_Resume

Figure 4.4. Specification of development available objects

These objects have a well-defined interface. Tasks may write and read a Shared Data
object and wait in or release a Release Event object. Note that Release Event objects are
to be used in a one-way communication, thus a task can only have one of two different
roles (wait or release). Release Event and Release Event with Data objects have a similar
interface; the only difference is that with the latter it is also possible to transfer data.

At system configuration time, the application is distributed over the nodes of the
system and some of its components are also replicated. Thus, some (or all) of the used
objects must be replaced by similar ones with extra capabilities. That is, with distribution
and/or replication capabilities.
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4.4.1. Simple Program Example

In order to exemplify how the task interaction mechanisms can be used, a simple
example is presented. Later on, in Section 4.4.6, the same example is used to
demonstrate how applications can be replicated and distributed and how they are
affected by the configuration phase.

Release Event
with Data Controller

Release
Event

Wait

Release

Sensor
Shared
Data

WaitRelease
Actuator

Write Read

Alarm

Figure 4.5. Application example

Figure 4.5 presents the structure of the application example. The application is
constituted by four tasks, which provide a simple control loop between a sensor and an
actuator. The Sensor task is a periodic task, responsible for reading the value of the
sensor and passing it to the Controller task, which performs the control algorithm. A
periodic Actuator task is then responsible for the actual writing of the output. The Alarm
task is responsible for some type of notification if the Controller task signals an
abnormal condition. Note that the purpose is to exemplify how the interaction objects
can be used and not to indicate how applications should be structured. Therefore, the
structuring of tasks as periodic or sporadic is provided for demonstration purposes only.

The Sensor task interacts with the Controller task through a Release Event with Data
object, in order to simultaneously release the Controller task and forward it the device
data. The Controller task performs the control algorithm, and then uses a Shared Data
object to make the control data available to the Actuator task. If an abnormal situation is
detected, the Controller task releases the Alarm task, using a Release Event object.

Figures 4.6 and 4.7 present a possible implementation of the application using the
Ada 95 language. Figure 4.6 presents the declaration of the needed repository objects.
Note that, at this phase, there is no consideration of replication and distribution issues.
However, due to the necessity of storing the release time of periodic tasks, these tasks
must use an available Replica Manager interface (Figure 4.7, lines 7 and 32) to request
their periodic execution (this situation is further detailed in Section 4.5.3).

1: package Device_Event is new
 Object_Repository.Release_Event_With_Data(Device_Data);

2: Device_Event_Obj: Device_Event.Release_Event_With_Data_Obj;
3: package Control_Shared_Data is new

Object_Repository.Shared_Data(Control_Data);
4: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;
5: package Alarm_Event is new Object_Repository.Release_Event;
6: Alarm_Obj: Alarm_Event.Release_Event_Obj;

Figure 4.6. Application program: object specifications
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1: task body Sensor is
2: Start: Ada.Real_Time.Time := ...;
3: Period: Ada.Real_Time.Time_Span := ...;
4: Dev_Data: Device_Data;
5: begin
6: loop
7: Replica_Manager.Request_Periodic(Start);

8: Read_Some_Device(Dev_Data);
9: Device_Event_Obj.Release(Dev_Data);

10: Start := Start + Period;
11: end loop;
12: end Sensor;

13: task body Controller is
14: Dev_Data: Device_Data;
15: Ctrl_Data: Control_Data;
16: begin
17: loop
18: Device_Event_Obj.Wait(Dev_Data);

19: Ctrl_Data := Do_Some_Processing(Dev_Data);
20: Control_Data_Obj.Write(Ctrl_Data);

21: if Some_Test(Ctrl_Data) then
22: Alarm_Obj.Release;
23: end if;

     
24: end loop;
25: end Controller;

26: task body Actuator is
27: Start: Ada.Real_Time.Time := ...;
28: Period: Ada.Real_Time.Time_Span := ...;
29: Ctrl_Data: Control_Data;
30: begin
31: loop
32: Replica_Manager.Request_Periodic(Start);

33: Ctrl_Data := Control_Data_Obj.Read;
34: Actuate(Ctrl_Data);

35: Start := Start + Period;
36: end loop;
37: end Actuator;

38: task body Alarm is
39: begin
40: loop
41: Alarm_Obj.Wait;

42: Some_Notification;
43: end loop;
44: end Alarm;

Figure 4.7. Application program: task specifications
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For the interaction between the Sensor and Controller tasks, a Release Event with
Data object is created (Figure 4.6, lines 1 and 2) by instantiating a generic package with
the appropriate data type and by declaring an instance of the object. The Sensor task uses
this object (Figure 4.7, line 9) to release the Controller task (Figure 4.7, line 18).

For the interaction between Controller and Actuator tasks a similar approach is used,
but with a Shared Data object (created in Figure 4.6, lines 3 and 4). The Controller task
writes to the object (Figure 4.7, line 20), while the Actuator task performs the related
read (Figure 4.7, line 33).

Finally, a Release Event object is declared in Figure 4.6 (lines 5 and 6), for the
interaction between Controller (release in Figure 4.7, line 22) and Alarm (wait in Figure
4.7, line 41) tasks.

Application tasks use these objects, through their well-defined interfaces. The goal is
to avoid modification of tasks after the configuration phase, only different objects will be
used.

4.4.2. Interaction Internal to a Component

The interaction between tasks belonging to the same component (Figure 4.8) does not
require consolidation between replicas of the component. However, it may require the
use of distributed mechanisms (if the component is spread through several nodes) or the
use of timed messages (if the component is replicated).

τ1 τ2

τ1 τ2

(a) (b)

Figure 4.8. Internal interaction: distributed (a) or deterministic (b)

In the case of Release Events objects, as it is a synchronous one-way interaction, there
is no need to support the timed messages mechanism. However, it is necessary to change
the specification for the Release Event objects (Figure 4.4), even for the case of
non-distributed interaction, as the Replica Manager must store the release time of the
sporadic task if the component is replicated. Therefore, in the Deterministic Release
Event object (Figure 4.9), the release interface requests the release to the Replica
Manager, and a private_release interface is used by the Replica Manager to release the
task.

Note that for the case of a non-replicated component it is not necessary to use this
object, since storing tasks’ release times is only required when the component interacts
with a group of replicated components (see Section 4.4.3).

If releasing and released tasks are allocated to different nodes in the system, there is
the need for a mechanism to release tasks in other nodes. This is performed by replacing
the simple Release Event object by two objects (Figure 4.10) that work together to
perform the same action (proxy model).
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Release Event Object

1: when wait:
2: Task_Suspend

3: when release:
4: Replica_Manager.Request_Release_Event

5: when private_release:
6: Suspended_Task_Resume

Release Event with Data Object

6: when wait:
7: Task_Suspend
8: return Obj_Data

9: when release(data):
10: Obj_Data := data
11: Replica_Manager.Request_Release_Event

12: when private_release:
13: Suspended_Task_Resume

Figure 4.9. Deterministic Release Event objects

Release Event Proxy Object

1: when release:
2: Replica_Manager.Forward_Release_Event

Release Event Receive Object

3: when wait:
4: Task_Suspend

5: when private_release:
6: Suspended_Task_Resume

Release Event with Data Proxy Object

7: when release(data):
8: Replica_Manager.Forward_Release_Event(data)

Release Event with Data Receive Object

9: when wait:
10: Task_Suspend
11: return Obj_Data

12: when private_release(data):
13: Obj_Data := data
14: Suspended_Task_Resume

Figure 4.10. Distributed Release Event objects
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Therefore, in the releasing task side, the Release Event Proxy object is responsible for
forwarding the event to the corresponding Release Event Receive object in the other
node. The equivalent pair of objects is also available for the case of the Release Event
with Data object. The Proxy object has only the release interface, which requests the
Replica Manager to forward the request to the other node. The Receive object has the
corresponding wait interface, and it also provides a private_release to be used by the
Replica Manager when a request arrives. The release time of the task being released is
determined at the source by the Replica Manager (using the available information about
the releasing task) and is forwarded to the destination node.

1: when write (data):
2: tval := Replica_Manager.Request_Validity_Time(Writing_Task)
3: DataBuffer := DataBuffer ∪ (data,tval)

4: when read:
5: newest_data := null
6: tval := 0
7: trel := Replica_Manager.Request_Release_Time(Reading_Task)
8: for all i in Data_Buffer loop
9: if tval(i) < trel and tval(i)> tval then
10: newest_data := Data(i)
11: tval := tval(i)
12: end if
13: end loop
14: return newest_data

Figure 4.11. Deterministic Shared Data object

For the case of the Shared Data object, three situations are identified, concerning the
need to support replica determinism, to support distribution (when the object is used by
tasks in different nodes) or both. For the first case, the Repository provides a generic
object, the Deterministic Shared Data object (Figure 4.11) with the same interface of the
Shared Data object, but with extra functionalities related to the support of timed
messages. This object no longer holds a single data element, but a buffer of elements.
Associated with each element, the object also records the related validity time. The write
interface, as well as adding the element to the buffer, requests the related validity time
from the Replica Manager layer. The read interface requests from the Replica Manager
the release time of the reading task, and chooses from the buffer the newest value that is
older than this release time.

1: when write (data):
2: Replica_Manager.Request_Dissemination(Data)

3: when read:
4: return Obj_Data

5: when private_write (data):
6: Obj_Data := data

Figure 4.12. Distributed Shared Data object
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When a Shared Data object is used by tasks allocated to different nodes in the system
(distribution requirements), it must be locally replicated in all those nodes (in order to
avoid remote reading). Therefore, every write to the object must be atomically multicast
to all objects. Note that this is a second level replication, which is independent of
component replication.

As a consequence, the Distributed Shared Data object (Figure 4.12) provides a single
data element, and the read interface is the same as in the simplest form of the object.
However, the write interface is different, as it no longer updates the value in the object.
It simply requests the Replica Manager to disseminate that value (using the
communication mechanisms provided by the Communication Manager 

3
 ). Additionally,

there is a third interface (private_write), which is used by the Replica Manager to update
the value when it is delivered.

1: when write (data):
2: tval := Replica_Manager.Request_Validity_Time(Writing_Task)
3: Replica_Manager.Request_Dissemination(Data,tval)

4: when read:
5: newest_data := null
6: tval := 0
7: trel := Replica_Manager.Request_Release_Time(Reading_Task)
8: for all i in Data_Buffer loop
9: if tval(i) < trel and tval(i)> tval then
10: newest_data := Data(i)
11: tval := tval(i)
12: end if
13: end loop
14: return newest_data

15: when private_write (data,tval):

16: DataBuffer := DataBuffer ∪ (data,tval)

Figure 4.13. Deterministic Distributed Shared Data object

The third situation is when an object is simultaneously used by tasks in different
nodes (distribution requirements) and it requires deterministic execution (replication
requirements). The Deterministic Distributed Shared Data object (Figure 4.13) has the
buffer and validity times of the Deterministic object, and its write interface must also
request the validity time of the value.

However, as the Distributed object, it does not add the value to the buffer, but request
its dissemination by the Replica Manager. A further interface (private_write) is also
available, enabling the Replica Manager to update the value when it is delivered by the
atomic multicast mechanism. The read interface is the same as the one in the
Deterministic object.

                                                          
3 The Communication Manager provides different atomic multicast mechanisms, for different assumptions and
behaviours in case of faults. The actual mechanism used is configuration dependent.
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4.4.3. Interaction Between Groups

When tasks belonging to different components interact (Figure 4.14), there is the need to
consolidate values or events between the component replicas. As a set of replicated
components is defined as a group, this type of interaction is defined as inter-group,
instead of inter-component.

G1

(a)

G1G1G2

(b)

G1G1G2
G1G1G1

(c)

G1G1G1 G2

Figure 4.14. Inter-Group interaction: 1-to-many (a), many-to-many (b) or many-to-1 (c)

In the case where a group is releasing a task in another group (Figure 4.15), the
Replica Manager must consolidate the release proposals from the replicas. If a release
with data is requested, this data must also be consolidated. A similar approach to the
Distributed Release Event is used.

Inter-Group Release Event Proxy Object

1: when release:
2: Replica_Manager.Propose_Release_Event

Inter-Group Release Event Receive Object

3: when wait:
4: Task_Suspend

5: when private_release:
6: Suspended_Task_Resume

Inter-Group Release Event with Data Proxy Object

7: when release(data):
8: Replica_Manager.Propose_Release_Event(data)

Inter-Group Release Event with Data Receive Object

9: when wait:
10: Task_Suspend
11: return Obj_Data

12: when private_release(data):
13: Obj_Data := data
14: Suspended_Task_Resume

Figure 4.15. Inter-Group Release Event objects

When a task requests a release in another group, the Inter-Group Release Event Proxy
object forwards this request to the Replica Manager. In the other side, tasks wait in the
corresponding Receive object, which is released by the Replica Manager.
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The Replica Manager is also responsible for determining the release time of the
sporadic task being released. However, this is simplified due to the properties of the
Communication Manager, which guarantees a common delivery time of consolidated
values in every node (Pinho and Vasques, 2001c). This common time can be taken as the
release time of the sporadic task.

If the releasing task is in a non-replicated component, it is not necessary to propose
the release, but only to request it. The Replica Manager is responsible for detecting such
cases and for bypassing the regular behaviour, in order to optimise the system.

For the case of the Shared Data objects, the Inter-Group Shared Data object (Figure
4.16) is responsible for transparently managing the consolidation of the value being
written, and at the same time for maintaining the deterministic behaviour by determining
its validity time. This approach is similar to that used for the Deterministic Distributed
object, except that the Replica Manager is requested to propose a value and not to
disseminate it. Also, it is not necessary to request the validity time of the message at the
source, since, as in the case of the Inter-Group Release Event, the common delivery time
of the Communication Manager can be used for the validity time of the data being
written.

1: when write (data):
2: Replica_Manager.Propose_Value(Data)

3: when read:
4: newest_data := null
5: tval := 0
6: trel := Replica_Manager.Request_Release_Time(Reading_Task)
7: for all i in Data_Buffer loop
8: if tval(i) < trel and tval(i)> tval then
9: newest_data := Data(i)
10: tval := tval(i)
11: end if
12: end loop
13: return newest_data

14: when private_write (data,tval):

15: DataBuffer := DataBuffer ∪ (data,tval)

Figure 4.16. Inter-Group Shared Data object

Two special cases must be considered for the Inter-Group Shared Data object. The
first case is when the writer task is in a non-replicated component and thus it is not
necessary to propose a value, but only to disseminate it. The second case is when the
reader task is in a non-replicated component and thus it is not necessary to determine a
data validity time, as there is no reader replication. Once more, the Replica Manager is
responsible for detecting such cases and for bypassing the regular behaviour.

4.4.4. Interaction with the Soft Real-Time Subsystem

The interconnection between the HRTS and the SRTS must be supported by appropriate
mechanisms for the transfer of information between both subsystems. Data being
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transferred from the HRTS to the SRTS does not present a major problem, since it is
assumed that this information has a higher reliability level, as it is considered that hard
real-time applications have been designed to achieve higher reliability levels.
Nevertheless, if this data comes from replicated components, the appropriate
consolidation must be performed.

Conversely, the reliability of the data from the SRTS may not be high enough to be
directly used in the system. If possibly erroneous values are expected, the received data
must be filtered. As the definition of what it is erroneous is application-specific (since it
depends on the semantics and not just on the syntax), a generic mechanism cannot be
used. Additionally, if the data is to be provided to replicated components, it must be
disseminated using the appropriate mechanisms (e.g., atomic multicasts).

Additionally, mechanisms for the communication between both subsystems are
expected to depend on the actual platform of a particular instance of the architecture
(mainly on its operating system). Therefore it is not possible to implement a generic
mechanism for such purpose, and a model for such interconnection is provided. Figure
4.17 presents this model for the case of data received from the SRTS (data sent to the
SRTS is similar, just flows in the opposite direction). The application has to supply a
specific interconnection task, which reads the value from the HRTS/SRTS interface,
performs the necessary filtering, and interacts with the rest of the system through one of
the available objects (it can write to a shared data object, or release a sporadic task).

SRTS

HRTS

Instantiated
Object

Incoming
Data

Oper. System
Specific

Application
Specific

Figure 4.17. Model of interconnection with the SRTS

Note that, if fault tolerance is to be achieved, the interconnection with the Soft
Real-Time Subsystem should also be replicated. In order to achieve deterministic
execution, every external interaction with the system must have a common time
reference. As a consequence, it is necessary that the interface task is a component by
itself, in order to interact with the remaining system with consolidated values and times
(data validity time and/or sporadic task release time).

4.4.5. Interaction with the Controlled System

Interconnection with the controlled system is performed through the use of sensors and
actuators, connected to specific nodes. As the interconnection with these sensors and
actuators is application and platform specific, the model for this interconnection is the
same as in the interconnection with the SRTS, where application tasks are responsible
for interconnecting with the devices, and inserting their value (or event) in the system.
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Note that output actuator agreement may be made either in the computational system
or by mechanical or electronic voting on the result. In the first case, it means that there is
a single task responsible for interconnecting with a single actuator. Thus, the system
relies on the reliability of both the task (and the node where it is allocated) and the
actuator. Although the architecture itself does not forbid such configuration, it is
considered that it implies assumptions not provided by COTS components. Voting
outside the computational system provides much better coverage of the COTS
components failure assumptions (fail-uncontrolled). The way that such agreement is
made outside the computational system is, however, outside of the scope of the generic
architecture.

4.4.6. Configured Application Example

Section 4.4.1 presented a simple application to exemplify how the Object Repository
could be used during the development phase. The same example is re-visited in this
section, in order to exemplify how distributed/replicated applications are modified by the
configuration phase.

Release Event
with Data

Wait
Release
Event

WaitRelease

Sensor

(τ1)

Release

Intra-Component
Communication

Inter-Group
Communication

Component
C2

Component
C1

Controller

(τ2)
Alarm

(τ4)

Shared
Data

Actuator

(τ3)

Write

Component
C3

Read

Figure 4.18. Application configuration

Figure 4.18 presents the configuration of the application. As noted in Section 4.4.5,
since tasks Sensor and Actuator interact with the controlled system, they must be
configured as components. Therefore, component C1 is constituted by task Sensor (τ1)
and component C3 by task Actuator (τ3). Component C2 encompasses tasks Controller
(τ2) and Alarm (τ4). For the purpose of this example, a simplified replication is
considered. Obviously, in order to tolerate fail-uncontrolled behaviour of the replicas, it
would be necessary to use 2*f+1 replicas to tolerate f faults.

Figure 4.19 presents the allocation of the application tasks over the HRTS nodes.
Node 1 is configured with components C1 and C2, while node 2 is configured with a
replica of component C1, with component C3 and with a task of a replica of component
C2. Finally, node 3 is configured with the other task of the replica of component C2, and
with a replica of component C3.
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C1’

τ1 τ2’

τ2
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Figure 4.19. Node configuration

Figure 4.20 presents the program configured to execute in node 1. The Release Event
with Data object of Figure 4.7 (Section 4.4.1) is replaced by its Inter-Group equivalent
(lines 1 and 2), since tasks Sensor and Controller are in different components. The same
occurs with the Shared Data object between Controller and Actuator tasks. The Release
Event object used for the interaction between Controller and Alarm tasks is replaced by a
Deterministic Release Event object, since it is related to an intra-component interaction
and, as it is replicated, the release time of the Alarm task must also be recorded. Note
that application tasks are not changed since the new objects have the same interface as
the ones in Section 4.4.1. The program in this node does not provide the Actuator task,
since no replica of component C3 is allocated to the node.

1: package Device_Event is new
 Object_Repository.Inter_Group.Release_Event_With_Data(
 Device_Data);
2: Device_Event_Obj: Device_Event.Release_Event_With_Data_Obj;

3: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(Control_Data);

4: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Deterministic_Release_Event;

6: Alarm_Obj: Alarm_Event.Release_Event_Obj;

7: task Sensor; -- no changes

20: task Controller; -- no changes

-- no Task Actuator

47: task Alarm; -- no changes

Figure 4.20. Node 1 program

Figure 4.21 presents the program for node 2. In this node there is no Alarm task, and
as the replica of component C2 is spread between nodes 2 and 3, a Distributed Release
Event Proxy object is used. In node 3 (Figure 4.22) the counterpart Receive object is
used. As in this latter node there is only the Actuator and Alarm tasks, it is not necessary
to create any object responsible for the interaction between Sensor and Controller tasks.
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1: package Device_Event is new
  Object_Repository.Inter_Group.Release_Event_With_Data(

 Device_Data);
2: Device_Event_Obj: Device_Event.Release_Event_With_Data_Obj;

3: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(Control_Data);

4: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Distributed_Release_Event;

6: Alarm_Obj: Alarm_Event.Proxy_Release_Event_Obj;

7: task Sensor;  -- no changes

20: task Controller;  -- no changes

36: task Actuator;  -- no changes

-- no Task Alarm

Figure 4.21. Node 2 program

1: package Control_Shared_Data is new
Object_Repository.Inter_Group.Shared_Data(

  Control_Data);
2: Control_Data_Obj: Control_Shared_Data.Shared_Data_Obj;

5: package Alarm_Event is new
Object_Repository.Intra_Comp.Distributed_Release_Event;

6: Alarm_Obj: Alarm_Event.Receive_Release_Event_Obj;

-- no Task Sensor

-- no Task Controller

36: task Actuator; -- no changes

47: task Alarm; -- no changes

Figure 4.22. Node 3 program

4.5. HRTS Replica Manager

The Replica Manager layer (Figure 4.23) is intended to support the proposed task
interaction objects implementing the main processing of the replication and distribution
mechanisms.

The Property Recorder module is the database of the Replica Manager. It records both
the structure and information of tasks and components. Repository objects use this
module to query and/or change the release times of tasks, when a deterministic
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behaviour is required. This module is also used by the Replication Support and
Application Support modules, to query and record tasks’ release times and application
configuration information.

Application

Replica
Manager

Replication
Support

Property
Recorder

Application-level
Mechanisms

Communication Manager

Application
Support

Error
Manager

Figure 4.23. Replica Manager structure

The Replication Support module provides the required mechanisms for supporting
replicated task interaction. It also interfaces the repository objects with the
communication subsystem, thus it also receives/sends data values and events both
from/to the objects and from/to the Communication Manager.

The Application Support module provides applications executing in the HRTS with
the required support for the recording of periodic tasks’ release times and for allowing
components to be shutdown, silenced or activated.

The Error Manager module keeps a record of detected errors in the node (and in the
system, if configured to disseminate error detection). This module also provides
mechanisms for notification of errors, which can be used by applications error recovery
procedures.

4.5.1. Property Recorder Module

The Property Recorder module is responsible for storing all the information (Table 4.1)
needed to guarantee the correct behaviour of the replication/distribution framework. In
this module, two different categories of information are stored. The application
configuration information, which is off-line knowledge, and is constituted by the
component structure, task information and network information. This type of
information is similar in every node, since it is related to the global knowledge of the
supported applications, which is off-line knowledge.

The application execution information cannot be defined off-line, since it is
constituted by the tasks’ release times and the state of the application components
(active, silenced, shutdown). The Property Recorder at each node only stores the
information related to the components and tasks that execute in the node. The
Replication Support module is responsible for, when necessary, forwarding such local
information to the other nodes.
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Table 4.1. Application information

Component Structure: Task and object identifiers of each component

Task Information: Worst- and best-case execution time (may include internal
computations)

Application
Configuration

Network Information: Message streams worst-case delivery time

Component Structure: Component stateApplication
Execution

Task Information: Release time of tasks

Table 4.2 presents the interface provided by the Property Recorder. This interface is
used by the repository objects (Section 4.4) and also by the Replication Support and
Application Support modules of the Replica Manager. Note that there are two different
interfaces to record the release time of a task. The first one is to be used when both
released and releasing tasks are in the same node, thus the Property Recorder has the
necessary information to determine the release time (release time and best-case
execution time of the releasing task).

Table 4.2. Property Recorder interface

Query_Released_Task(Obj_Id)

Query_Component_Replication_Degree(Comp_Id)

Query_Component_Id (Task_Id)

Query_Component_Id (Obj_Id)

Query_Group(Obj_Id)

Query_Source_Group(Obj_Id)

Application
Configuration

Query_Dest_Groups(Obj_Id)

Query_Message_Validity_Time(Task,Msg)

Record_Task_Release_Time(Task_Id)

Record_Task_Release_Time(Task_Id, Time)

Query_Task_Release_Time(Task_Id)

Query_Component_State(Comp_Id)

Application
Execution

Record_Component_State(Comp_Id, State)

When distributed release events are used, this information is only available at the
source node, in spite of the release time being required at the destination node.
Therefore, Query_Task_Release_Time is used at the source node to determine the release
time of the task. Such release time is then sent through the network, in order to be stored
at the destination node, using the second Record_Task_Release_Time interface.
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Moreover, for the case of activating a component, the Application Support module also
needs to record the release time of the periodic tasks, also requiring the second interface.

4.5.2. Replication Support Module

The Replication Support module is the core of the Replica Manager layer. This module
is responsible for implementing the replication and distribution mechanisms, and also for
the interconnection with the communication subsystem through the interface provided by
the Communication Manager.

This interface allows the atomic multicast of messages to destination groups, the
notification of message reception, and also the atomic multicasting of messages within
the same group. Using a group communication interface to the communication
subsystem allows an easier management of component replication, and also simplifies
the necessary adaptations, if the communication subsystem or the Communication
Manager are changed.

This group communication interface is specified in terms of Groups and Group
Objects. Several different calls can be made to the same group, referring to different
interaction objects. Therefore, this interface specifies which group is being addressed
and, inside the group, which object is being addressed. Table 4.3 presents the syntax of
the calls that can be made to the interface, and also the syntax of the necessary handler to
receive messages.

Table 4.3. Communication Manager interface

Multicast(Message, Sender_Group_Id, Receiver_Group_Array,

                Receiver_Obj_Id)

To the
Communication
Manager

Consolidated_Multicast(Message,Sender_Group,Receiver_Group_Array,

                                        Receiver_Obj_Id)

From the
Communication
Manager

Receive(Message, From_Group, To_Group, To_Obj, Deliver_Time)

The Multicast call allows the atomic multicast of a message to a set of groups,
without requiring any type of consolidation from the communication system. The
Consolidated_Multicast call is to be used when consolidation is required between the
replicas of the sending component.

Messages between distributed elements within the same replica can use the Multicast
call, using the same group for Sender and Receiver groups. Note that using a multicast
call the same message can be sent or proposed to a set of groups. This is necessary, since
the same interaction object can be used by a set of components, thus, when replication is
considered, by a set of groups. It is expected that most of the time the writing group will
also be one of the receiving groups, if the same object is used for reading and writing in
a component. If it is to be sent or proposed to a single group, then a
Receiver_Group_Array with a cardinality of one can be used.
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Concerning the support to the interaction objects, when a release event is requested
(Figure 4.24) it is necessary to record the release time of the released task. When a
release event is to be forwarded (Figure 4.24), it is necessary to obtain from the Property
Recorder the release time of the sporadic task being released, as such value must be sent
together with the event message. When data is to be disseminated inside a component
(Figure 4.25), its validity time must also be disseminated if the source component is
replicated (lines 5 to 8).

1: when Request_Release_Event
2: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
3: Property_Recorder.Record_Task_Release_Time(Task_Id)
4: Object(Obj_Id).private_release

5: when Forward_Release_Event
6: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
7: Message := Msg_Type(Event) ∪

  Property_Recorder.Query_Task_Release_Time(Task_Id)
8: This_Group := Property_Recorder.Query_Group(Obj_Id)
9: Communication_Manager.Multicast( Message, This_Group,

       This_Group, Obj_Id)

10: when Forward_Release_Event(data)
11: Task_Id := Property_Recorder.Query_Released_Task(Obj_Id)
12: Message := Msg_Type(Event) ∪ data ∪

  Property_Recorder.Query_Task_Release_Time(Task_Id)
13: This_Group := Property_Recorder.Query_Group(Obj_Id)
14: Communication_Manager.Multicast( Message, This_Group,
      This_Group, Obj_Id)

Figure 4.24. Support for Intra-Component Release Events

1: when Request_Dissemination(Data)

2: Message := Msg_Type(Data) ∪ Data
3: This_Group := Property_Recorder.Query_Group(Obj_Id)
4: Communication_Manager.Multicast( Message, This_Group,

 This_Group, Obj_Id)

5: when Request_Dissemination(Data, tval)

6: Message := Msg_Type(Data_and_Validity) ∪ Data ∪ tval
7: This_Group := Property_Recorder.Query_Group(Obj_Id)
8: Communication_Manager.Multicast( Message, This_Group,
 This_Group, Obj_Id)

Figure 4.25. Support for Intra-Component data dissemination

To propose release events or data values (Figures 4.26 and 4.27), it is necessary to
query the Property Recorder to obtain source and destination group identifiers.
Moreover, if the source component is replicated, it is necessary to use the
Consolidated_Multicast interface to consolidate the outputs from the different replicas.
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1: when Propose_Release_Event
2: comp := Property_Recorder.Query_Component_Id(Obj_Id)

3: if Property_Recorder.Query_Component_State(comp)
 not Silenced then
4: Message := Msg_Type(Event)
5: Source_Group :=
 Property_Recorder.Query_Source_Group(Obj_Id)
6: Dest_Groups :=
 Property_Recorder.Query_Dest_Groups(Obj_Id)
7: degree :=

Property_Recorder.Query_Comp_Replication_Degree(comp)

8: if degree = 1 then
9: Communication_Manager.Multicast( Message,

Source_Group,
Dest_Groups,
Obj_Id)

10: else
11: Communication_Manager.Consolidated_Multicast(

Message,
Source_Group,
Dest_Groups,
Obj_Id)

12: end if
13: end if

14: when Propose_Release_Event(data)
15: comp := Property_Recorder.Query_Component_Id(Obj_Id)

16: if Property_Recorder.Query_Component_State(comp)
not Silenced then

17: Message := Msg_Type(Event_Data) ∪ data
18: Source_Group :=
 Property_Recorder.Query_Source_Group(Obj_Id)
19: Dest_Groups :=
 Property_Recorder.Query_Dest_Groups(Obj_Id)
20: degree :=

Property_Recorder.Query_Comp_Replication_Degree(comp)

21: if degree = 1 then
22: Communication_Manager.Multicast( Message,

Source_Group,
      Dest_Groups,

Obj_Id)
23: else
24: Communication_Manager.Consolidated_Multicast(

Message,
Source_Group,
Dest_Groups,
Obj_Id)

25: end if
26: end if

Figure 4.26. Support for Inter-Group Release Events
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1: when Propose_Value(data)
2: comp := Property_Recorder.Query_Component_Id(Obj_Id)

3: if Property_Recorder.Query_Component_State(comp)
not Silenced then

4: Message := Msg_Type(Data) ∪ data
5: Source_Group :=
 Property_Recorder.Query_Source_Group(Obj_Id)
6: Dest_Groups :=
 Property_Recorder.Query_Dest_Groups(Obj_Id)
7: degree :=

  Property_Recorder.Query_Comp_Replication_Degree(comp)

8: if degree = 1 then
9: Communication_Manager.Multicast( Message,

Source_Group,
Dest_Groups,
Obj_Id)

10: else
11: Communication_Manager.Consolidated_Multicast(

Message,
Source_Group,
Dest_Groups,
Obj_Id)

12: end if
13: end if

Figure 4.27. Support for Inter-Group data dissemination

Note that both the support for inter-group release events and data dissemination query
the Property Recorder module, in order to avoid communication if the component is
silenced.

The Replica Manager, in order to be notified of a message reception and its associated
delivery (or consolidation) time, must use the Receive handler (Figure 4.28). The
Communication Manager protocols guarantee that the timestamp is the same in all the
receiving nodes (Pinho and Vasques, 2001c). Small differences may occur, due to the
different interleaving of the low-level communication handlers and also due to different
clock values, but such differences are upper-bounded.

Note that, although the message may have been sent (or proposed) to a set of groups,
the Receive handler receives messages to a single group. Messages sent to a set of groups
have already been consolidated (if needed) and are individually delivered to each group
by the Communication Manager.

This Receive handler is also used to prevent sporadic tasks from being released, if the
related component has been shutdown (lines 23 and 30). Note that it is not necessary to
prevent the release of sporadic tasks internal to a component, since, by preventing the
release of both sporadic tasks released by other components and periodic tasks within the
component, internal sporadic tasks will not be released.
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1: when Receive(Message, Obj_Id, tdeliver)
2: if Intra_Component (Obj_Id) then -- internal to a group
3: case Msg_Type(Message) is
4: Event =>
5: Task_Id := Property_Recorder.Query_Released(Obj_Id)
6: Property_Recorder.Record_Task_Release_Time(Task_Id,

Released_Time(Message))
7: Object(Obj_Id).private_release
8: Event_Data =>
9: Task_Id := Property_Recorder.Query_Released(Obj_Id)
10: Property_Recorder.Record_Task_Release_Time( Task_Id,

Released_Time(Message))
11: Object(Obj_Id).private_release(Data(Message))
12: Data =>
13: Object(Obj_Id).private_write(Data(Message))
14: Data_and_Validity =>
15: Object(Obj_Id).private_write(Data(Message),

Validity_Time(Message))
16: end case
17: else
18: case Msg_Type(Message) is
19: Event =>
20: Task_Id := Property_Recorder.Query_Released(Obj_Id)
21: Property_Recorder.Record_Task_Release_Time(Task_Id,

tdeliver)
22: comp :=

Property_Recorder.Query_Comp_Id(Released_Task)
23: if Property_Recorder.Query_Component_State(comp)

not Shutdown then
24: Object(Obj_Id).private_release
25: end if
26: Event_Data =>
27: Task_Id := Property_Recorder.Query_Released(Obj_Id)
28: Property_Recorder.Record_Task_Release_Time(Task_Id,

tdeliver)
29: comp :=

Property_Recorder.Query_Comp_Id(Released_Task)
30: if Property_Recorder.Query_Component_State(comp)

not Shutdown then
31: Object(Obj_Id).private_release(Data(Message))
32: end if
33: Data =>
34: comp := Property_Recorder.Query_Component_Id(Obj_Id)
35: degree :=

 Property_Recorder.Query_Comp_Replicat_Degree(comp)
36: if degree = 1 then
37: Object(Obj_Id).private_write(Data(Message))
38: else
39: Object(Obj_Id).private_write(Data(Message),

Validity_Time(Message))
40: end if
41: end case
42: end if

Figure 4.28. Receive handler specification
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4.5.3. Application Support Module

The Application Support module provides some support to applications executing in the
HRTS. As periodic tasks are not released by the support software, but by the operating
system, there is the need for an appropriate interface (Figure 4.29). Also, the support
software needs to record the release time of periodic tasks and to prevent them from
being released if the related component has been shutdown. A solution to this problem is
to restrict the application to use a Support Software interface to the operating system, in
order to request its next release.

1: when Request_Periodic(next_release_time)
2: Property_Recorder.Record_Task_Release_Time(This_Task,

               next_release_time)
3: comp := Property_Recorder.Query_Component_Id(This_Task)
4: if Property_Recorder.Query_Component_State(comp)
 not Shutdown then
5: OS_Specific_Release(This_Task,next_release_time)
6: else
7: Task_Suspend
8: next_release_time := 
 Property_Recorder.Query_Task_Release_Time(This_Task)
9: OS_Specific_Release(This_Task,next_release_time)
10: end if

Figure 4.29. Periodic task support

This interface records the release time of the task and only schedules it for execution
if the component has not been shutdown. If the component has been shutdown, the task
is suspended and will not be released again. Only after restarting the component, the task
will be re-activated, the Property Recorder will be queried about its new release time,
and the task is re-scheduled. Note that the application must be aware that
next_release_time may have changed since the last execution of the task.

1: when Shutdown_Component(Comp_Id)
2: Property_Recorder.Record_Component_State(Comp_Id, Shutdown)

3: when Silence_Component(Comp_Id)
4: Property_Recorder.Record_Component_State(Comp_Id, Silenced)

5: when Start_Component(Comp_Id,
  Tasks_Release_Times[Task_Id, Release_time])

6: for all Task_Id in Tasks_Release_Times loop
7: Property_Recorder.Record_Task_Release_Time(Task_Id,

                    Release_Time)
8: Wakeup_Task (Task_Id)
9: end loop
10: Property_Recorder.Record_Component_State(Comp_Id, Active)

Figure 4.30. Reconfiguration support
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Finally, there is the possibility to reconfigure the system (Figure 4.30), either due to
mode changes, or due to error recovery situations. The reconfiguration support allows
components to be shutdown, silenced and/or activated. In this last case, it is necessary to
provide new release times for the component tasks, which are stored in the Property
Recorder before restoring the suspended tasks. The Replication Support module uses this
configuration information to prevent the release of the components’ tasks or their
interaction with other components.

4.5.4. Error Manager Module

The goal of the Error Manager module is to record (and possibly notify) errors occurring
in the communication and consolidation of values. It also provides mechanisms by
which application or system error recovery methods can be notified of error detection in
order to take actions to shutdown or silence components. Table 4.4 presents the
interfaces provided by such module.

Table 4.4. Error Manager interface

From the Communication
Manager

Record_Error(Error_Information)

Query_Error_InformationTo Application Error
Recovery procedures

Error_Notification

As the Communication Manager is responsible for the atomic multicasts and for the
consolidation of replicated components’ outputs, it is up to this layer to detect possible
errors in the system. It notifies the Error Manager module, which, in addition to storing
the error information, may execute two (non-exclusive) actions: it can notify an
application-level error recovery module; or it can disseminate this error detection
throughout the system. This error information is related to the detectable errors in the
communication system and on the consolidation of replicated outputs.

In the consolidation phase, component errors may be detected if a component has not
proposed a value (omission fault) or the proposed value was rejected by the decide 

4

function of the Communication Manager Consolidate protocol (Pinho and Vasques,
2001c). Consolidation-related errors may occur when the Consolidate protocol is unable
to consolidate values, due to the violation of the failure assumptions. Although this
should never happen, it is important to define the actions to be taken in the case of
incorrect failure assumptions.

Communication-related errors occur when an error is detected in the network. As the
Communication Manager is targeted to the Controller Area Network (CAN) (ISO,
1993), the possible errors in the network are inconsistent message duplicates and
omissions (Rufino et al., 1998). Although these are tolerated by the provided Atomic
Multicast protocols (Pinho and Vasques, 2001c), they indicate network problems, which

                                                          
4 The decide function is application-specific, having the possibility of rejecting proposed values.
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may bring down the system. Moreover, the occurrence of inconsistent message
omissions indicates that there was, at least, one node crash.

In addition to recording errors, the module can perform two different actions. One
action is to disseminate the error detection throughout the system. Therefore, if the
Support Software is configured for dissemination, the module can request from the
Communication Manager a specific message to be sent to the other Error Managers in
the system. The module may also interact with an application or system error recovery
module to notify the error detection. This can be performed either by periodically
querying the Error Manager module, or by requesting the notification of a sporadic task.
Error recovery mechanisms can use it to reconfigure the system.

4.6. Summary

This chapter presented the framework provided by the DEAR-COTS Hard Real-Time
Subsystem for the support of replicated software components. This support relies on the
structuring of applications in software components, which can then be replicated, and on
a repository of generic task interaction objects that are used by fault-tolerant real-time
applications.

The Object Repository is used during the development and configuration phases, and
provides a set of generic objects with different capabilities. These objects provide the
generic and transparent approach, thus are responsible for hiding from the application
the low-level mechanisms for replication and distribution support. This allows
applications to focus on the requirements of the controlled system rather than on the
distribution/replication details.

The provided objects are supported by a middleware layer (the Replica Manager),
which both shields the repository from changes in the lower-level communication
mechanisms, and reduces the effort necessary for the creation of new task interaction
generic objects.



Chapter 5

Fault-Tolerant Real-Time Communication

5.1. Introduction

In the DEAR-COTS Hard Real-Time Subsystem (HRTS), the communication
infrastructure is responsible for guaranteeing timely and consistent multicast of
information and for the consolidation of replicated components’ outputs. The HRTS
framework provides a software layer (the Communication Manager), which is the
responsible for such mechanisms. This chapter presents this software layer, where, in
order to address the problem of inconsistency in CAN message deliveries, a set of
atomic multicast and consolidation protocols is proposed. Such set of protocols explores
the CAN synchronous properties to minimise its run-time overhead. The model provided
for the evaluation of the message streams’ response time demonstrates that the real-time
capabilities of CAN are preserved, since predictability of message transfers is
guaranteed.

The chapter is largely drawn from (Pinho and Vasques, 2001a) and is structured as
follows. Section 5.2 presents the requirements and failure assumptions imposed by the
HRTS, for fault-tolerant real-time communication. The types of message exchanges
required by the replication model of the framework are identified, and the failure
assumptions are presented and justified.

The Communication Manager layer is then described in Section 5.3, with a special
focus on the proposed set of atomic multicast and consolidation protocols. This layer
presents a group communication interface to the higher levels of the framework,
providing the required communication support. A set of atomic multicast protocols, with
different failure assumptions, is provided, allowing the guarantee of consistency in CAN
message transfers with a minimum overhead. Consolidation of replicated messages is
achieved through the use of a protocol that does not require extra overhead.  Message
fragmentation and concatenation is also provided by means of a protocol that uses a
range of consecutive CAN identifiers for each stream requiring fragmentation.

In Section 5.4 a set of pre-run-time schedulability conditions is presented, enabling
the timing analysis of the supported communication protocols. These conditions are use
to determine the delays required for the proper behaviour of the proposed protocols, and
also the worst- and best-case response times of each message stream. Therefore, the
proposed protocols guarantee consistency of CAN communication, whilst maintaining
the real-time properties of CAN message transfers.
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For a better understanding of these protocols, a numerical example is presented in
Section 5.5. This example presents a strategy for the identification of which protocols to
use according to the application configuration, and demonstrates that the protocols
provide a suitable solution for the use of CAN as the communication infrastructure of the
DEAR-COTS HRTS.

Finally, Section 5.6 presents a comparison with other approaches for atomic multicast
in CAN that also rely on the software management of CAN inconsistencies. It is shown
that the proposed approach minimises the overhead of protocol-related messages. This
overhead, although still large, is the strictly necessary to cope with inconsistent message
omissions using a software-based approach.

5.2. Communication Requirements

As the HRTS replication model considers the existence of active replication, there is the
need to guarantee that replicas execute deterministically, that is, replicated tasks execute
with the same data and timing-related decisions are the same in each replica (Powell,
1991). In order to provide deterministic execution of the replicated components, it must
be guaranteed that all messages sent by correct components are delivered to all their
recipients. Moreover, there must also be an all-or-none guarantee in the case of a
message sent by an incorrect component: either all correct components deliver that
message, or none of them deliver it. Furthermore, there is the need to agree in the order
by which messages are delivered, and to consolidate messages from replicated
components’ outputs.

From the replication model presented in the previous chapter, it is clear that four types
of message exchanges must be supported: 1-to-1, 1-to-many, many-to-1 and
many-to-many.

For 1-to-1 communication (communication from a non-replicated component to
another non-replicated component, or communication internal to a component) there is
only the need for a reliable multicast, since order issues are not relevant, as there are no
replicated receivers. However, when a result is to be disseminated to a group of
replicated components (1-to-many communication), atomic multicast protocols
(Hadzilacos and Toueg, 1993) must be used to guarantee that replicated receivers get the
same information, in the same order.

When a group of replicated components receives a message from another group of
replicated components (many-to-many communication), an agreement must be
performed. If an underlying atomic multicast mechanism is used to disseminate each
value, then it is guaranteed that every receiver will have the same input values, and in the
same order. The agreement decision can then be performed by a simple Consolidate
protocol, which decides on one of the received values (or on some value computed from
them).

The case of communication from a group of replicated components to a single
component (many-to-1 communication) is a simplified version of the previous one. The
receiving component has only to decide from the set of received inputs. The same
Consolidate protocol can be used, but using only a reliable multicast from the replicated
transmitters to the single receiver (since there are no order requirements).
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5.2.1. Failure Assumptions

A synchronous distributed system is considered, where a fixed number of components
exchange information through a synchronous communication channel. The use of a
real-time network (CAN), together with the use of appropriate schedulability analysis
techniques (Tindell et al., 1995), allows the system to be considered synchronous.

In the assumed network model, temporary failures are a consequence of either bus
errors or network interface (transceiver) errors. Such network failures have the following
semantics:

- Bus error bursts never affect more than nbus transmissions during an interval of
analysis Tbus. This means that, even for the case of multiple sources of errors,
the time interval during which the network is inaccessible is upper-bounded.

- Transceivers either behave correctly or crash after a given number of failures
(ntransc), during an interval of analysis Ttransc.  This behaviour is guaranteed by
the CAN protocol, since in the case of multiple errors, the node goes first into
the Error-Passive state and then into the Bus-Off state.

- Multicasts fail either by inconsistent message omissions, or inconsistent
message duplicates. All other errors are detected (and failed messages
retransmitted) by the CAN built-in error detection and recovery mechanisms,
with a sufficiently high probability (ISO, 1993).

- A single message can be disturbed by at most kdup duplicates. As the probability
of an inconsistent message duplicate is approximately 10-4 (the transmission of
2.87 x 107 messages per hour results in, at most, 2.84 x 103 duplicate messages
(Rufino et al., 1998)), it is not foreseen the necessity of kdup being considered
greater than 2.

- During a time interval T, greater than the worst-case delivery time of any
message, at most one single inconsistent message omission occurs in the
network. Considering the existence of 3.98 x 10-9 to 2.94 x 10-6 inconsistent
message omissions per hour (Rufino et al., 1998), the occurrence of a second
omission error in a period T of, at most, several seconds has an extremely low
probability.

- There are no permanent medium faults, such as the partitioning of the network.
This type of faults must be masked by appropriate network redundancy
schemes.

As the goal of the provided protocols is only to tolerate network-related faults, nodes
are assumed to be fail-silent in what concerns communications, that is, it is assumed that
all communication requests performed by any node are correct. It is also considered that
protocol software does not fail by producing incorrect messages (either value or timing
faults). These assumptions may be quite restrictive when considering other fault models,
such as network partitioning, network interface controllers permanent faults or incorrect
message requests, which may cause the network to become unreachable or messages to
be incorrectly delivered.

A study performed in order to evaluate the behaviour of CAN networks in the
presence of either bus or network interface errors (presented in the Annex) has
demonstrated that CAN networks are not resilient to network interface permanent (or
intermittent) faults. A faulty network interface can cause a sequence of (at the most) 16
erroneous messages, causing the network to become unreachable for all nodes for a large
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period. Therefore, it is considered that more stringent failure assumptions can only be
covered through the use of network redundancy approaches, with the provision of
special-purpose hardware and/or software with memory protection schemes, in order to
provide a fail-silent behaviour of the node.

Although it is not a goal of this work to discuss how network redundancy could be
achieved in DEAR-COTS, two different approaches are considered to be of significance.
The first one is to provide only the replication of the physical medium, through the use
of schemes based on (Rufino et al., 1999), and using the TCB to achieve fail-silent
behaviour of the node, by precluding faulty nodes from sending incorrect
communication requests. This approach can tolerate the partitioning of the network, but
it can not preclude faulty nodes from contaminating the network.

Another more complex approach is to use a scheme similar to the one presented in
(Hilmer et al., 1998), where redundant communication channels are provided, with
redundant network interfaces in each node. In this approach, also the HRTS Support
Software could be replicated (using memory separation schemes). Detection of
communication failures, and redundancy management can be performed by specialised
hardware, however this would defeat the COTS-based approach of DEAR-COTS. It is
considered that the software management of network redundancy is the best approach for
DEAR-COTS, such as in the soft fail-silent node of Delta-4 (Powell, 1991).

5.3. Communication Manager

The structure of the proposed Communication Manager intended to support fault-tolerant
real-time communication in CAN networks is presented in Figure 5.1.

Filtering

2M 2M-GDIMDUnrel.

RxTx

Multicast Consolidate

Fragmentation

Configuration

Interface
Layer

Atomic Multicast
Layer

Figure 5.1. Communication Manager structure

The Filtering module allows that only nodes registered to receive a particular message
stream will process messages related to that stream, decreasing the number of messages
in error situations. The Atomic Multicast layer provides a set of multicast protocols, with
different failure assumptions and different behaviours in the case of errors. These
protocols range from an unreliable one, to a protocol that guarantees delivery even in the
presence of inconsistent message omissions.

The Interface layer provides a group abstraction to the upper layers, in order to
abstract them from the implementation of communication protocols and from
membership and location issues. Consolidation of replicated components is provided in
the Consolidate module. By using atomic multicasts, it is guaranteed that every
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replicated component receives the same set of messages in the same order. Therefore, it
is only required the existence of a consolidation protocol at the receiver side.

Fragmentation and concatenation of messages is also provided in this layer, after
atomic multicast delivery of messages. The used approach is by allocating a range of
consecutive CAN identifiers for each message stream requiring fragmentation. These
fragments are concatenated at the receiver side.

The Configuration module is responsible for storing all the information required for
the correct functioning of the protocols. This information concerns the particular
identifiers a node is registered to receive, which particular atomic multicast protocol to
use when a multicast request is received, the fragment information and the information
required to consolidate replicated messages.

As the goal of this work is to support hard real-time applications, the Communication
Manager considers the existence of a fixed set of processing units, and thus, the full set
of message streams and their characteristics (periodicity, size, and replication) are
previously known. This off-line knowledge is required in order to allow the use of
state-of-the-art response time analysis to provide real-time guarantees to the supported
applications.

Although a group communication interface is provided to the upper layers, a group
communication approach is not considered at the communication layer level. This allows
not to burden the CAN identifier field with source and destination information,
particularly since CAN multicast capabilities already provide location transparency.
Nevertheless, a group communication support is provided to the upper levels, so that
these upper layers are only loosely dependent of the communication infrastructure used.
This latter interface allows the atomic multicast of messages to destination groups, the
notification of message reception, and also the atomic multicasting of messages within
the same group. Using a group communication interface to the communication
subsystem, allows an easier management of component replication, and also simplifies
the necessary adaptations, if the communication subsystem or the Communication
Manager are changed.

5.3.1. Communication Manager Interface

The Interface layer provides the group abstraction to the upper layer (Replica Manager).
This group communication interface is specified in terms of Groups and Group Objects.
Several different calls can be made to the same group, referring to different interaction
objects. Therefore, this interface specifies which group is being addressed and, inside the
group, which object is being addressed (the triple <Sender_Group, Receiver_Groups,
Obj_Id> is referred as the Message Address). Table 5.1 presents the interface provided
by the layer.

The Multicast call allows the Replica Manager to request the atomic multicasting of a
message to a set of groups, without requiring any type of consolidation from the
communication system. The Consolidated_Multicast call is to be used when
consolidation is required between the replicas of the sending component. Since the
protocol for consolidation of replicated messages is only required at the receiver side
(see Section 5.3.4), at the transmitter side there is no need for a special mechanism.
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Table 5.1. Communication Manager interface

Multicast(Message, Message Address)From the Replica
Manager

Consolidated_Multicast(Message, Message Address)

Receive(Message, From_Group, To_Group, To_Obj, Deliver_Time)To the Replica
Manager

Record_Error(Error_Information)

Deliver(Message_Id, Message, Deliver_Time)From the Atomic
Multicast  Layer

Error_Notification(Message_Id, Error_Type)

To the Atomic
Multicast  Layer

Protocol.Atomic_Multicast(Id, Data)

Figure 5.2 presents the specification of the Multicast call. It queries the Configuration
module to map the Message Address to the corresponding CAN identifier range (since
transmitting a message may require transmitting several low-level CAN frames), and
also queries the multicast protocol to use. Afterwards, the appropriate atomic multicast is
requested.

1: when Multicast(Message, Sender_Group, Receiver_Group _Array,
Receiver_Obj_Id):

2: Msg_Id_Range :=
Configuration.Query_Message_Identifier_Range(

Sender_Group,
Receiver_Group _Array,
Receiver_Obj_Id)

3: for Id in Msg_Id_Range loop
4: Data := fragment_message(Message, fragment_number)
5: prot := Configuration.Query_Message_Protocol(Id)
6: case prot is
7: Unrel => Unreliable.atomic_multicast(Id, Data)
9: IMD   => IMD.atomic_multicast(Id, Data)
11: 2M    => 2M.atomic_multicast(Id, Data)
13: 2M_GD => 2M_GD.atomic_multicast(Id, Data)
15: end case
16: end loop

Figure 5.2. Multicast specification

Figure 5.3 presents the specification of the Consolidated_Multicast call. This
interface simply forwards the request to the Multicast interface, since, at the sender side
there is no difference between a consolidated multicast and a simple multicast.
Consolidation of the results from replicated components is necessary only on the
receiver side. Since component structure is off-line knowledge, the receiver side can
query the Configuration module to know which messages are to be consolidated.
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1: when Consolidated_Multicast(Message, Sender_Group,
Receiver_Group _Array,
Receiver_Obj_Id):

2: Multicast( Message, Sender_Group, Receiver_Group _Array,
  Receiver_Obj_Id):

Figure 5.3. Consolidated Multicast specification

The Replica Manager, in order to be notified of a message reception and its associated
delivery (or consolidation) time, uses the Receive handler that the Interface layer
provides. When a message is delivered by the atomic multicasts or the consolidate
protocols, the interface layer delivers such message individually to each group.
Furthermore, the messages contain a timestamp (their delivery instant) which is then
used by the Replica Manager for inter-group messages’ management. Small differences
may exist in this timestamp between different nodes, due to the different interleaving of
the low-level communication handlers and also due to different clock values, but such
differences are upper bounded.

The Record_Error interface is used by the Communication Manager to notify the
Replica Manager of detected errors by the atomic multicast and consolidate protocols.
When the consolidate protocol detects a lost message, or a rejected value, it notifies the
upper Replica Manager layer. When the atomic multicast protocols detect inconsistent
message omissions or duplicates, the interface layer is notified using the
Error_Notification call, which is then forward to the Replica Manager.

The Protocol.Atomic_Multicast interface is used to request the sending of a multicast.
Since the protocol to use is recorded in the Configuration module, the Interface layer
requests the multicast directly to the related protocol (Figure 5.2).

5.3.2. Configuration Module

The Configuration module provides a database of off-line known information (Table 5.2)
about the message streams of the system. It stores information about the mapping
between the Message Address and CAN message identifiers (and vice-versa), and
information about which protocols the messages use, together with the necessary
information concerning the protocol-related delays (Sections 5.3.3 to 5.3.5).

Table 5.2. Message streams information

Message Address to CAN Identifier range (and vice-versa)

Message Address to Protocol

Protocol-related delays

Message Information

Identifiers to receive

Consolidation Information Replicated Components Messages
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The Interface layer uses this information to decide which particular multicast to use
when a transmission is requested. In order to allow fragmentation and consolidation of
messages, this module also stores the information on which streams are subject to
fragmentation, and the range of identifiers necessary. In order to allow the consolidation
of replicated components’ messages the module also stores the information about which
messages are replicated outputs.

The Configuration module also stores the information of the particular identifiers that
are to be received by the node. The Filtering module uses this information to query if the
node is registered to process a particular message identifier, thus filtering the received
messages.

5.3.3. Atomic Multicasts

The Atomic Multicast module provides several protocols, with different failure
assumptions and different behaviours in the case of errors. The IMD (Inconsistent
Message Duplicate) protocol provides an atomic multicast that just addresses the
inconsistent message duplicate problem. The 2M (Two Messages) protocol provides an
atomic multicast addressing both inconsistent message duplicates and omissions, where
messages are not delivered in an error situation. Finally, the 2M-GD (Guaranteed
Delivery) protocol is an improvement of the 2M protocol, which guarantees message
delivery, if at least one node has correctly received it. The Unreliable protocol is a
simple multicast protocol that does not provide any guarantees.

Protocol Information
3 bits

LSB

Figure 5.4. Identifier field

The proposed atomic multicast protocols use the less significant bits of the frame
identifier (Figure 5.4) to carry protocol information, identifying the type of each
particular message (Table 5.3) without interfering with the message criticality (defined
by the most significant bits of the frame identifier).

These atomic multicast protocols provide the system developer with the possibility of
trading efficiency for reliability, since they can be simultaneously used in the same
system. The IMD protocol uses less bandwidth, but it does not cover the inconsistent
omission failure assumption. On the other side, the use of protocols with higher
assumption coverage (e.g. the 2M protocol) introduces extra overheads in the system.
Hence, streams with higher criticality may use protocols with higher assumption
coverage, while streams with lower criticality may use protocols with lower overhead.

Knowing that CAN frames are simultaneously received in every node, the atomic
multicast properties are guaranteed by delaying the delivery of a received frame for a
specific (bounded) time. The approach is similar to the ∆-protocols (Cristian et al.,
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1995), where, in order to obtain order, message delivery is delayed during a specific time
(∆). The difference is that, in the proposed approach delivery delays are evaluated on a
stream by stream basis, increasing the system throughput, as messages are delayed
according to their worst-case response times. It is assumed that clocks are approximately
synchronised by the use of an appropriate protocol (Rodrigues et al., 1998), guaranteeing
both the deterministic execution of replicated components (Poledna et al., 2000) and the
correct evaluation of the delivery delays.

Table 5.3. Protocol information

Protocol Bits Message Type

0 0 0 Data Msg.

0 0 1 Confirmation Msg.

0 1 0

2M-GD
Protocol

Retrans. Msg.

0 1 1 Data Msg.

1 0 0 Confirmation Msg.

1 0 1

2M Protocol

Abort Msg.

1 1 0 IMD Protocol

1 1 1 Unreliable Protocol

5.3.3.1. IMD Protocol

The IMD protocol (Figures 5.5 and 5.6) provides an atomic multicast that just addresses
the inconsistent message duplicate problem. In order to guarantee that duplicates are
correctly managed, every node when receiving a message marks it as unstable, tagging it
with a tdeliver stamp (current time plus a δdeliver delay). In Figure 5.7, all receivers of the
message, delay the respective delivery until tdeliver.

1: when atomic_multicast (id, data):
2: send (id, data)

3: when sent_confirmed (id, data):  -- if the node also receives
-- the message

4: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
5: tdeliver(id) := clock + δdeliver(id)

6: deliver:
7: for all id in receivedMsgSet loop
8: if tdeliver(id) < clock then
9: deliver( receivedMsgSet(id) )
10: end if
11: end loop

Figure 5.5. IMD protocol specification: transmitter
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1: when receive (id, data):
2: if id ∉ receivedMsgSet then 
3: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
4: state(id) := unstable
5: end if

6: tdeliver(id) := clock + δdeliver(id)

7: deliver:
8: for all id in receivedMsgSet loop
9: if state(id) = unstable and tdeliver(id) < clock then
10: deliver( receivedMsgSet(id) )
11: end if
12: end loop

Figure 5.6. IMD protocol specification: receiver

However, if a duplicate is received before tdeliver (Figure 5.8), the duplicate is
discarded and tdeliver is updated (since in a node not receiving the original message tdeliver

refers to the duplicate). Therefore, it is guaranteed that every receiver will deliver the
message with the same timestamp. For the transmitter (if it also delivers the message), as
the CAN controller will only acknowledge the transmission when every node has
received it correctly (no more retransmissions), there will be no duplicates. Thus, the
transmitter can deliver the message after its δdeliver.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

δdeliver

Deliver

Figure 5.7. IMD protocol in an error-free situation

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Automatic
Retransmission

δdeliver Deliver

δdeliver

Duplicated
Messages

Error detected and
signalled by Receiver 3 but

not by Receivers 1 and 2

Figure 5.8. Inconsistent message duplicate
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5.3.3.2. 2M Protocol

The 2M protocol (Figures 5.9 and 5.10) addresses both inconsistent message duplicates
and inconsistent message omissions, guaranteeing that either all or none of the receivers
will deliver the message. For the latter, not delivering a message is equivalent to a
transmitting node crash before sending the message.

1: when atomic_multicast (id, data):
2: send (id, message, data)
3: send (id, confirmation)

4: when sent_confirmed (id, message, data): -- if also receives

5: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
6: state(id) := confirmed
7: tdeliver(id) := clock + δdeliver(id)

8: deliver:
9: for all id in receivedMsgSet loop
10: if state(id) = confirmed

and tdeliver(id) < clock then
11: deliver( receivedMsgSet(id) )
12: end if
13: end loop

Figure 5.9. 2M protocol specification: transmitter

1: when receive (id, type, data):
2: if type = message then
3: if id ∉ receivedMsgSet then
4: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
5: state(id) := unstable
6: end if

7: tdeliver(id) := clock + δdeliver(id) -- duplicate update
8: tconfirm(id) := clock + δconfirm(id)
9: elsif type = confirmation then
10: state(id) := confirmed
11: elsif type = abort then
12: if id ∈ receivedMsgSet then
13: receivedMsgSet := receivedMsgSet – msg(id)
14: end if
15: end if

16: deliver:
17: for all id in receivedMsgSet loop
18: if state(id) = confirmed and tdeliver(id) < clock then
19: deliver( receivedMsgSet(id) )
20: elsif state(id) = unstable and tconfirm(id) < clock then
21: send (id, abort)
22: receivedMsgSet := receivedMsgSet – msg(id)
23: end if
24: end loop

Figure 5.10. 2M protocol specification: receiver
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In the 2M protocol, a node wanting to send an atomic multicast (Figure 5.9) transmits
the data message, followed by a confirmation message, which carries no data. A
receiving node before delivering the message, must receive both the message and its
confirmation (Figure 5.11).

When a message is received (Figure 5.10), the node marks it as unstable, tagging it
with tconfirm and tdeliver stamps. A node receiving a duplicate message discards it, but
updates both tconfirm and tdeliver. As the data message has higher priority than the related
confirmation (Table 5.3), then all duplicates will be received before the confirmation.
Duplicate confirmation messages will always be sent before any abort (confirmation
messages have higher priority than related abort messages), thus they will confirm an
already confirmed message.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message
Confirmation

δconfirm

δdeliver

Deliver

Figure 5.11. 2M protocol in an error-free situation

If a node does not receive the confirmation before tconfirm it multicasts the related abort
frame (Figures 5.12 and 5.13 present this situation for the case of inconsistent message
and inconsistent confirmation situations, respectively). This implies that several aborts
can be simultaneously sent (at most one from each consumer node). A message is only
delivered if the node does not receive any related abort frame, until after tdeliver (a node
receiving the message, but not the confirmation, does not know if the transmitter has
failed while sending the message, or while sending the confirmation).

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

δconfirm

δdeliver

Abort

Transmitter fails before
retransmiting

Receiver 3 signals
the error

Figure 5.12. Inconsistent message omission while sending the message

The advantage of the 2M protocol is that in a fault-free execution behaviour there is
only one extra frame (without data) per multicast. More protocol related messages in the
bus will only be transferred in the case of an inconsistency error (low probability). Note
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that the transmission of an abort only occurs in the case of a previous failure of the
transmitter. Therefore, from the failure assumptions presented in Section 5.2.1 (there is
no second inconsistent message omission in the same period T), this abort will be free of
inconsistent message omissions.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message
Confirmation

δconfirm

δdeliver

Abort

Transmitter fails before
retransmiting

Receiver 3 signals
the error

Figure 5.13. Inconsistent message omission while sending the confirmation

The transmitter can automatically confirm the message (Figure 5.9), since if it does
not fail, every node will correctly deliver the message and the confirmation. The
situation is the same as for the IMD protocol, since if the transmitter remains correct and
delivers the message, then it will retransmit any failed message.

5.3.3.3.  2M-GD Protocol

The 2M protocol can be modified to guarantee the delivery of a transmitted message to
all nodes, if it is correctly received by at least one node. In the 2M-GD protocol (Figures
5.14 and 5.15), nodes receiving the message but not the confirmation retransmit the
message (instead of an abort). This protocol is however less efficient than the 2M
protocol (in error situations), since messages are retransmitted with the data field.

1: when atomic_multicast (id, data):
2: send (id, message, data)
3: send (id, confirmation)

4: when sent_confirmed (id, message, data):

5: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
6: state(id) := confirmed
7: tdeliver(id) := clock + δdeliver(id)

8: deliver:
9: for all id in receivedMsgSet loop
10: if state(id) = confirmed and tdeliver(id) < clock then
11: deliver( receivedMsgSet(id) )
12: end if
13: end loop

Figure 5.14. 2M-GD protocol specification: transmitter
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1: when receive (id, type, data):
2: if type = message then
3: if id ∉ receivedMsgSet then
4: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
5: state(id) := unstable
6: end if

7: tdeliver(id) := clock + δdeliver(id)
8: tconfirm(id) := clock + δconfirm(id)
9: elsif type = confirmation then
10: state(id) := confirmed
11: elsif type = retransmission then

12: if id ∉ receivedMsgSet then
13: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
14: end if
15: state(id) := confirmed
16: tdeliver(id) := clock + δdeliver_after_error(id)
17: end if

18: deliver:
19: for all id in receivedMsgSet loop
20: if state(id) = confirmed and tdeliver(id) < clock then
21: deliver( receivedMsgSet(id) )
22: elsif state(id) = unstable and tconfirm(id) < clock then
23: send (id, retransmission, data)
24: end if
25: end loop

26: when sent_confirmed (id, retrans, data): -- if retransmitted
27: state(id) := confirmed
28: tdeliver(id) := clock + δdeliver_after_error(id)

Figure 5.15. 2M-GD protocol specification: receiver

To guarantee order of delivery, it is necessary to use a tdeliver_after_error stamp to solve
inconsistent retransmission duplicates. When a protocol retransmission is received
(Figures 5.16 and 5.17), the node tags it with tdeliver_after_error to delay the delivery of the
message, until it can guarantee that no duplicates of the retransmission will be received.
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Receiver 2

Receiver 3

Message

δconfirm

Protocol
Retransmission

Deliver

δdeliver_after_error

Figure 5.16. Inconsistent message omission while sending the message
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δdeliver_after_error

Transmitter
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Receiver 2
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Message Confirmation

δconfirm

Protocol
Retransmission

Deliver

Figure 5.17. Inconsistent message omission while sending the confirmation

5.3.4. Message Fragmentation

The Fragmentation module is necessary to deal with message streams with more than 8
byte messages (CAN’s limit). It provides a mechanism by which messages can be
fragmented at the transmitter side, and afterwards concatenated at the receiver side.

Taking advantage of the fact that for hard real-time applications there is a fixed set of
message streams with fixed data size, the proposed approach allocates a range of CAN
identifiers for each message stream requiring fragmentation. For instance, if a specific
message stream requires 7 fragments to transfer a data unit, these fragments will have
the identifier range from Base+0 to Base+6. The resulting fragments are treated as
independent messages by the atomic multicast protocols. In order to ease the task of
determining the worst-case response time of fragmented messages, fragments are sent
from the lowest to the highest identifier, thus from the highest to the lowest priority.

1: when multicast_delivered (id, data):
2: if FragSet(id) = ∅ then

3: tabort(id) := clock + δabort(id)
4: state(id) := concatenating
5: end if

6: FragSet(id) := FragSet(id) ∪ data
7: count(id) := count(id) + 1
8: if count(id) = Frags then    -- Frags is the
 -- number of fragments
9: deliver( FragSet(id) )
11: end if

12: abort:
13: if state(id) = concatenating and tabort(id) < clock then
14: abort(id)
15: end if

Figure 5.18. Concatenate protocol specification: receiver

At the receiver side it is necessary to concatenate the fragments to obtain the data
unit. The Fragmentation module provides a Concatenate protocol (Figure 5.18), built on
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top of the atomic multicast protocols, which is responsible for concatenating the received
fragments.

Since the identifier range provides fragment information, it is easy for the protocol to
simply concatenate the fragments, after being delivered by the atomic multicast layer.
The data unit is delivered to the upper layers after receiving all the fragments (Figure
5.19).

time

δabort

Concatenate
Fragment 1 Fragment 3Fragment 2

Figure 5.19. Concatenate in error free situation

However, if the transmitter crashes in the middle of the transmission, only a subset of
the fragments will be received. Therefore, it is necessary to abort the delivery, if all the
fragments are not received before a specific time (δabort) (Figure 5.20).

time

δabort

Abort
Fragment 1

Failed
Fragment

Failed
Fragment

Figure 5.20. Concatenate in error situation

Note that, even if the message is to be transmitted using the 2M or 2M-GD protocol, it
is sufficient to send all but the last fragment using the IMD protocol. The reason is that,
in the case of an inconsistent message omission no more fragments will be transmitted,
and thus the message will be automatically aborted. Therefore, streams that use either
the 2M or 2M-GD atomic multicast protocols, and that require fragmentation, may have
smaller overheads.

5.3.5. Replica Consolidation

The Consolidate module is built on top of the atomic multicast protocols. By using
atomic multicasts, it is guaranteed that every replica of a replicated component receives
the same set of messages in the same order. The Consolidate protocol (Figure 5.21)
delays the decide phase, until it knows that it has received the full set of messages
(Figure 5.22), or until a specific time (δdecide) has elapsed (Figure 5.23).

In an error-free situation, the protocol will receive the full set of messages from the
replicated components, and thus will perform the consolidation at the instant of arrival of
the last message. Note that by using the underlying atomic multicast protocols, each
receiver knows that all receivers have correctly and orderly received the set of messages.
Thus it can correctly assume that all receivers will take the instant of arrival of the last
message as the delivery instant of the consolidated multicast.
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1: when multicast_delivered (id, data):
2: if inputSet(id) = ∅ then

3: tdecide(id) := clock + δdecide(id)
4: state(id) := unstable
5: end if

6: inputSet(id) := inputSet(id) ∪ data
7: count(id) := count(id) + 1
8: if count(id) = N then -- N is the number of replicas
9: decide( inputSet(id) )
10: end if

11: decide:
12: if state(id) = unstable and tdecide(id) < clock then
13: decide( inputSet(id) )
14: end if

Figure 5.21. Consolidate protocol specification: receiver

time

δdecide

Decide
Deliver 1 Deliver 3Deliver 2

Figure 5.22. Consolidate in error free situation

If some of the messages are lost (Figure 5.23), the protocol will wait until tdecide to
perform the decision phase, since it can assume that all of the receivers have lost the
same message (due to the atomic multicast protocols). Note that this decision delay is
dependent on the worst-case response time of the sender tasks (see Section 5.4.6).

time

δdecide

Decide
Deliver 1 Deliver 3

Failed
Message

Figure 5.23. Consolidate in error situation

Note that this protocol can be used to implement the many-to-1 and many-to-many
communication. In the particular case of many-to-1 communication, there is no need to
solve the inconsistent message omission problem, since just one node will deliver the
message. However, it is still necessary to address the inconsistent message duplicate
problem, as the receiving node may have duplicate messages. Thus, in this case it is
sufficient to use the IMD protocol as the underlying atomic multicast protocol.
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5.3.6. Guaranteeing Communication Properties

Considering that a correct node is a node that does not fail while a multicast is in
progress, atomic multicast properties (Section 3.2.3) are guaranteed by the proposed
protocols, since:

- Validity: As the CAN built-in mechanisms guarantee that any message will be
automatically retransmitted, in the case of either a network or a receiving node
error, then the Validity property is guaranteed.

- Agreement: For the IMD protocol, if the transmitter does not fail, the CAN
built-in mechanisms guarantee that every correct node will receive the message.
Thus, they will all deliver it. For the 2M protocol, a correct node only delivers a
data message after receiving the related confirmation message and knowing that
it will not receive any abort from other correct nodes. Therefore it knows that
all correct nodes will also deliver the message. In the 2M-GD protocol the
behaviour is the same, except in error situations, where if a correct node
receives the message it will retransmit it, thus every correct node will receive
and deliver it.

- Integrity: As the delivery of the message is delayed, duplicates are discarded
and the Integrity property is guaranteed. On the other hand, the CAN built-in
mechanisms guarantee that a message is from the actual sender, since a bit error
in the identifier field is detected with a sufficiently high probability (ISO,
1993).

- Total Order: The CAN network guarantees that correct messages are received
in the same order by all the receiving nodes. However, the existence of
duplicates and omissions may preclude messages from being orderly delivered.
The use of the tdeliver (and tdeliver_after_error) parameter guarantees the total order of
message delivery.

The Consolidate protocol must guarantee the Agreement property of consolidation.
However, this property is only necessary for the case of many-to-many communication.
In this case, by using an atomic multicast protocol to disseminate the proposed values
and by using the tdecide parameter, it is guaranteed that all replicated receiving
components have the same set of proposed values, and in the same order. Therefore they
will all decide on the same value. As for the Validity property, it only depends on the
decide function used, not on the Consolidate protocol itself.

5.4. Response Time Analysis

In order to guarantee the real-time requirements of applications it is necessary to
previously analyse the response time of the proposed protocols. Since the presented
atomic multicast protocols are based on delaying the delivery and consolidation phases,
the response time analysis is constrained by the evaluation of these delays. Moreover,
the response time analysis of CAN networks (Sections 3.4.2 and 3.4.3) must be
integrated with the temporary periods of network inaccessibility (Section 3.4.4).

Some (or all) of the message streams in the system may involve the exchange of extra
messages in the network, either from errors (duplicate messages) or from
protocol-related messages (confirmation, abort and retransmission messages), which
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must also be integrated in the response time analysis. Extra messages related to a
message stream Sm are referred respectively has Sm

dup
 , Sm

conf, Sm
ab

 and Sm
retrans.

This analysis does not consider execution delays caused by protocol execution in each
node. However, these can easily be integrated, since they can be bounded through the
use of the same response time analysis (Audsley et al., 1993) as for the application
software.

5.4.1. Integrating Network Inaccessibility in the Response Time Analysis

In order to integrate the inaccessibility analysis in the response time analysis of CAN
networks, the maximum inaccessibility time Ina(Im) interfering with the transmission of
a message of stream Sm must be added to equation (3.21):
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where Ina(m) is a consequence of both bus errors (Inabus) and transceiver errors
(Inatransc):
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The maximum number of errors (nerrors) that can interfere with the transmission of
message m (considering the existence of n errors in a period T) is given by:
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Hence, according to the considered failure assumptions (a maximum of nbus errors
during a time interval Tbus), the inaccessibility due to bus errors is (tina is given by
equation (3.24)):
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The maximum inaccessibility due to an erratic transceiver is a consequence of 16
consecutive errors (as a node with an erratic transceiver will go into the Error-Passive
state after 16 consecutive errors). Therefore, the maximum inaccessibility due to
transceiver errors is:

inatransc tIna ×= 16 (5.5)

As a duplicate message is a consequence of a retransmission (due to an inconsistently
failed message) the duration of its transmission is also included in the Ina(Im) term.

The network load considering periods of temporary network inaccessibility is given
by:
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Consequently, embodying equation (5.6) in equation (3.23) the overall network load
is:
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5.4.2. Response Time Analysis of the IMD Protocol

The IMD protocol delay (δdeliver) is used to guarantee that a message is only delivered
when it is known that there will be no more duplicates. As the receiving node must
evaluate such delay based on local information, it must take the arrival instant as its time
reference. It must delay the delivery until the time it takes to completely retransmit a
failed message. In the presence of a duplicate message (Figure 5.24), δdeliver is reset.

Message

Transmitter

Receiver 1

Receiver 2

Receiver 3

Automatic
Retransmission

δdeliver Deliver

δdeliver

Duplicated
Message

WIMD

Rm

Cm

Figure 5.24. IMD protocol with one duplicate message

Thus, δdeliver must be greater or equal to the worst-case response time of the duplicate
message.  This response time is equivalent to the worst-case response time of the
original message, as it has the same priority. However, as the transmitter immediately
tries to retransmit the failed frame, this retransmission will not suffer any blocking:

0=∧= dup
m

dup
mdeliver BRδ (5.8)

The worst-case delivery time for message stream Sm must consider the delay
introduced by duplicates (considering the possible existence of kdup duplicates):

deliverdupm
IMD

m kRW δ*)1( ++= (5.9)

The best-case delivery time considers that the message is transmitted with its
best-case response time, that is, there is no interference or blocking and no duplicates are
transmitted:

deliverm
IMD
m CB δ+= (5.10)
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5.4.3. Response Time Analysis of the 2M Protocol

For the 2M protocol, it is considered that both the message and the confirmation are put
in the transmission queue atomically. By using the CAN identifier field to transfer
protocol information (Table 5.3), it is possible to guarantee that there is no order
inversion. In the 2M (and 2M-GD) protocol assigning to the confirmation message a
lower priority than its related data message guarantees that the confirmation will only be
transmitted after the data message (the same occurs with the relation between
abort/retransmissions and confirmations). Therefore, the request for transmission of both
the data and confirmation messages can be atomically performed, reducing the
worst-case response time of the related message stream.

Transmitter
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Receiver 2

Receiver 3

Message

Confirmation

δconfirm

δdeliver

Abort

W2M

∆node Rm
abort

Rm
conf

Cm
∆node

Figure 5.25. 2M protocol with confirm omission

Therefore, as the message has a higher priority than the confirmation it will be
scheduled ahead. Thus, the confirmation will not suffer any blocking from lower-priority
messages and, as the arrival instant of the message is taken as the time reference, the
confirmation will not suffer interference from the related message (Figure 5.25).

Thus, δconfirm must be set to, at least:

0=∧−= conf
mm

conf
mconfirm BCRδ  (5.11)

Although disturbances may lead to the duplication of confirmation messages, the
Ina(Im) term of equation (5.1) already integrates these duplicates in the evaluation of the
response time of the confirmation message.

The δdeliver interval must be determined considering that every receiver must wait until
it is known that it will not receive any abort message. These abort messages will be sent
by the nodes that do not receive the confirmation message before δconfirm (Figure 5.25).
This means that the response time of the node itself (∆node) to generate an abort message
request must also be considered:

abort
mnodeconfirmdeliver R+∆+= δδ (5.12)

Note that several abort messages may be transmitted in the network, related to the
same omission error. However, to determine the δdeliver bound it is only necessary to
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consider the first one to be transmitted, thus to consider the smaller ∆node of all receiving
nodes. The possible existence of several aborts in the network in case of error must be
properly considered for the interference caused in the response-time of lower-priority
messages.

δconfirm

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Confirmation

δdeliver

Abort

W2M

Rm
abort

Rm

∆node

Duplicate

δconfirm

Figure 5.26. 2M protocol with message duplicate followed by confirm omission

The worst-case delivery time of message stream Sm is when a message is transmitted
with its worst-case response time with possible duplicates (Figure 5.26), thus resetting
both δconfirm and δdeliver.

Hence, the worst-case delivery time must consider an extra δconfirm for each assumed
duplicate message:

deliverconfirmdupm
M

m kRW δδ ++= *2 (5.13)

The best-case delivery time considers the best-case response time of the message and
that there are no duplicates or omissions:

deliverm
M

m CB δ+=2 (5.14)

5.4.4. Response Time Analysis of the 2M-GD Protocol

The 2M-GD protocol has a similar behaviour to the 2M protocol. For δconfirm and δdeliver it
is only necessary to replace the worst-case response time of the abort message (Rm

abort)
in equation (5.12) with the worst-case response time of the retransmitted message (which
is equal to the worst-case response time of the original message). Multiple
retransmissions need also to be considered for the response time evaluation of
lower-priority messages.
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Figure 5.27. 2M-GD protocol with message omission followed by transmitter failure

However, an extra delay δdeliver_after_error must also be determined (Figure 5.27), since a
receiving node cannot guarantee that other nodes have correctly received the
retransmitted message (due to inconsistent retransmission duplicates). Thus, a similar
approach to the IMD protocol is followed, delaying the delivery until all duplicates are
correctly received. Hence, δdeliver_after_error is equal to the worst-case response time of a
duplicated retransmission message:

0__ =∧= retrans
m

retrans
merrorafterdeliver BRδ  (5.15)

The worst-case delivery time of the 2M-GD protocol is then evaluated considering
that an inconsistent message omission occurs, and retransmissions are needed. Duplicate
retransmission messages must be considered, since it must be guaranteed that every node
delivers the message at the same time (once again, this response time is determined
without blocking, since duplicates are immediately re-scheduled).

However, the existence of multiple retransmissions must also be considered (Figure
5.28). A node receiving a second retransmission will consider it as a duplicate
retransmission, and will reset δdeliver_after_error.
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Figure 5.28. 2M-GD Protocol with retransmissions
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Therefore, the worst-case response time must consider the maximum number of
retransmissions (nm

rec is the number of receivers of message stream Sm):

errorafterdeliverdup
rec
mdeliverconfirmdupm

GDM
m knkRW __
2 *)(* δδδ ++++=−  (5.16)

The best-case delivery time is similar as for the 2M protocol:

deliverm
GDM

m CB δ+=−2 (5.17)

5.4.5. Response time Analysis of the Concatenate protocol

The Concatenate protocol has to delay the abort phase (δabort), until it knows that it will
not receive any further fragments. This delay is dependent on the worst-case delivery
time of the fragments (considering the delivery by the atomic multicast layer). Therefore,
δabort may be determined assuming the best-case delivery time for the highest-priority
fragment, and the worst-case delivery time for the lowest-priority fragment (Figure
5.29):

)()( mhpfmlpfabort BW −=δ (5.18)

where lpf(m) and hpf(m) are, respectively, the lowest-priority and the highest-priority
fragment of a message stream Sm.

Transmitter
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Higher-priority
Fragment

Deliver

Wlpf

Bhpf

Lower-priority
Fragment

δabort

Figure 5.29. Concatenate in error free situation.

The worst-case delivery time of the Concatenate protocol is then evaluated by
considering that the worst-case response time of the lowest-priority fragment already
considers the interference of the higher-priority fragments. Note that, a lost fragment
implies that the sending node has crashed (if not, it would have retransmitted the
fragment). Thus, in this case, the message will be aborted (Figure 5.30).

Therefore, the worst-case delivery time of the Concatenate protocol is equal to the
worst-case delivery time of the lowest-priority fragment:

)(mlpf
concat

m WW = (5.19)
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Figure 5.30. Concatenate in error situation

For the best-case delivery time of the Concatenate protocol, it is necessary to consider
the best-case delivery time of the lowest-priority fragment (last fragment to be
transmitted, thus also the last to be delivered), related to the beginning of the
transmission of the set of fragments (thus considering the actual transmission time (Cm)
of the other fragments):
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where frag’(m) is the set of fragments of a message belonging to a message stream Sm,
excluding the fragment with the lowest-priority.

5.4.6. Response Time Analysis of the Consolidate Protocol

The Consolidate protocol follows an approach similar to the previous Concatenate
protocol, delaying the decide phase (δdecide) until it knows that it will not receive any
further messages. This delay is dependent on the worst-case delivery time of the
replicated messages (considering the delivery by the atomic multicast protocols),
referred to an initial time reference common to all sending nodes. This common time
reference must be the release time of the sending tasks. Therefore, the worst-case
delivery time of the messages must also consider the worst-case response time of the
related sending tasks.

If the replicated tasks are periodic, then their release time is common in all the nodes
(with a small jitter, as clocks are just approximately synchronised). If these tasks are
sporadically released by external events, then their release time must be also agreed
between the different replicas (to guarantee deterministic execution). Thus, this agreed
time instant can be considered as the reference for the worst-case response time of the
replicated messages. If replicated tasks are sporadically released by other tasks, then
their release time may vary between replicated components. In this case, it is necessary
to consider the release time of the initial task with a common release time, and determine
the worst-case response time of the sending task related to that initial time reference.

Knowing the worst-case delivery time for each replicated message, an upper bound
for δdecide may be determined assuming the best-case delivery time for the first message
to arrive, and the worst-case delivery time for the last message to arrive (Figure 5.31):
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where Wi
com is the worst-case delivery time of message i and Bi

com is the best-case
delivery time of message i, both considering a common time reference, and rep(m) is the
set of replicated messages of a particular message stream Sm. ε is the maximum clock
deviation.
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Figure 5.31. Consolidate in error free situation.

The best-case delivery time of the consolidated message can be determined,
considering that all messages are received with their best-case delivery time. Therefore,
the best-case delivery time of the consolidated message is:
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The worst-case delivery time depends on the assumed failure assumptions. In an error
free situation (Figure 5.31) the worst-case delivery time would be:
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However, if some of the replicated messages are not delivered (due to inconsistent
message omissions or failed sending tasks), the protocol will wait δdecide from the arrival
of the first message. Figure 5.32 presents such situation, where the message from
Transmitter 1 is lost. Since the receiver uses the arrival instant of the first message as the
time reference, δdecide will be added to the arrival instant of the second message delivered
by the atomic multicast protocol.

Therefore, considering that f replicated messages are not delivered, the worst-case
delivery time of the consolidated message is:
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where rep’(m) is the set of replicated messages, excluding the f messages with the
smaller worst-case delivery time.
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Figure 5.32. Consolidate with one lost message

5.4.7. Integrating Communication Overheads in the Response Time Analysis

The response time analysis of CAN networks must be updated to integrate the overheads
concerning confirmation messages and possible aborts or retransmissions of message
streams that use the 2M or 2M-GD protocols.

Therefore, the worst-case queuing delay (equation (5.1)) must be updated to consider
periods of interference from higher-priority message streams using atomic multicast
protocols:
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Cj
extra is the interference caused by the confirmation message, which is:
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Additionally, max{extra_msgj} accounts for the aborts or retransmissions in the
network, due to inconsistent message omissions. As it is assumed the existence of a
single inconsistent message omission during a period T (greater than the largest
worst-case delivery time), each receiver of message stream Sj will transmit, at most, one
abort/retransmission due to inconsistent message omissions, that is:
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where  nj
rec is the number of receivers of message stream Sj.
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The Ina(Im) term (equation (5.25)) integrates the periods of network inaccessibility
caused by errors in frame transmission, therefore it already includes the retransmissions
of inconsistently failed messages (that is, duplicates).

Considering the network utilisation, equation (5.7) must be also updated. For each
message stream transmitted with the 2M or 2M-GD protocol, an extra confirmation
message must be considered (Cm

extra, equation (5.26)). Also, it must be considered the
maximum number of extra messages related to inconsistent message omissions, per
period of analysis T:
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Note that these equations maintain the properties of CAN schedulability analysis.
Therefore, they can be used in the holistic approach (Tindell and Clark, 1994) presented
in Chapter 3, allowing determining the overall response times of the system.

5.5. Numerical Example

In order to clarify the use of the presented model, a simple example is used. In this
example (Figure 5.33) a system where a distributed hard real-time application executes
is considered. The system is constituted by four nodes, connected by a CAN network at a
rate of 1 Mbit/sec. The application is constituted by four tasks (τ1..τ4), which are spread
over the nodes. As component replication is also used, then some of these tasks are also
replicated. In this simple application, each task outputs its results to the following task.

C1

C2’’

C3’
C3

τ1 τ2’’

τ2’ τ4
τ4’τ3’

C2’
τ2 τ3      

C2

τ3’’

C3’’

τ4’’

Application  Configuration

CAN

τ1 τ2 τ3 τ4

Application Structure

M1 M3 , M4 , M5

Messages

M2

Node 1 Node 2 Node 3 Node 4

Figure 5.33. Application example

The application is divided in three components: component C1 encompasses task τ1,
component C2 encompasses τ2 and τ3, and finally component C3 is just τ4. Components
C2 and C3 are replicated in three replicas, while component C1 is not replicated.

Table 5.4 presents each task’s characteristics, while Table 5.5 presents the
characteristics of the necessary message streams (all values are in milliseconds). Note
that messages from τ2 to τ3 and τ2’ to τ3’ are internal to the node, since they are
intra-component, and both tasks are in the same node. Since message stream S1 is a
1-to-many communication, the 2M-GD protocol is used in order to guarantee that every
replica of task τ2 delivers the message. Therefore, there will be an extra confirmation
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message with the same period of message stream S1, but without data. Since it is
considered that an inconsistent message omission may occur, then it is also necessary to
account for 3 possible retransmissions (one from each receiving node).

Table 5.4. Tasks’ characteristics

Task Type WCET Period Comp. Nodes

τ1 Periodic 2 5 C1 1
τ2 Periodic 2 10 C2 1,2,3
τ3 Sporadic 3 10 C2 1,2,4
τ4 Periodic 4 15 C3 2,3,4

Table 5.5. Messages streams’ characteristics

Stream Bytes Period From To Prot.

S1 4 5 τ1 τ2,τ2’,τ2’’ 2M-GD

S2 8 10 τ2’’ τ3’’ IMD

S3 6 10 τ3 τ4,τ4’,τ4’’ 2M

S4 6 10 τ3’ τ4,τ4’,τ4’’ 2M

S5 6 10 τ3’’ τ4,τ4’,τ4’’ 2M

Message stream S2 is internal to a component (although the component is spread
between nodes 3 and 4), and it is a 1-to-1 communication. In this case, it is sufficient to
use the IMD protocol, since only duplicates are to concern. Message streams S3 to S5 are
messages from replicated τ3 to replicated τ4, needing consolidation in every replica of τ4.
As this consolidation will mask node failures of the senders, then it is sufficient to use to
2M protocol for the transmission of messages. Therefore there will be an extra
confirmation message for each message sent (and possible abort messages).

The following assumptions are considered:
- a maximum of 2 message faults in each 10 ms time interval, resulting from a bit

error rate of approximately 10-4, which is an expectable range for bit error rates
in aggressive environments;

- one inconsistent message omission during the period of analysis;
- one duplicate in the transmission of a message (kdup = 1);
- a ∆node equal to 100 µS and a maximum deviation between clocks (ε ) of 100 µS.

The goal of this example is to analyse the responsiveness of the proposed protocols,
for both the response time and the delivery time of messages. Response time is
considered as the time interval between requesting a message transfer until the message
is fully received at the receiver side. Delivery time is considered as the time interval
between requesting a message transfer until the message is delivered to the upper layers
of the receiver. If multicast protocols are not used, these times are equivalent, as it can
be assumed that messages are delivered when they are correctly received.

Table 5.6 presents the response time for each message stream and the network load
when multicast protocols are not used (the Unreliable protocol is used instead of
IMD/2M/2M-GD protocols). Rm

NP represents the worst-case response time (NP: no
protocols), P is the periodicity and Cm is the actual time taken to transmit a message. U is
the network utilisation.
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Table 5.6. Message streams’ response time without protocols

Stream P Cm Rm
NP

S1 5 0.089 0.519

S2 10 0.127 0.630

S3 10 0.108 0.741

S4 10 0.108 0.852

S5 10 0.108 0.852

U 6.590 %

As it can be seen, the worst-case response time of messages is considerably greater
than their actual transmission time. Although interference from higher-priority messages
is one of the factors leading to such difference, the main factor is the network bit error
rate. For instance, a message of stream S1 in an error-free environment would have a
worst-case response time of 0.219 ms. The possible existence of errors in the network
more than duplicates its worst-case response time, even when multicast protocols are not
used.

Table 5.7. Protocol-related delays

Stream Prot. δconfirm δdeliver δdel_aft_er

S1 2M-GD 0.350 0.969 0.389

S2 IMD - 0.848 -

S3 2M 0.901 2.013 -

S4 2M 1.065 2.341 -

S5 2M 1.229 2.558 -

Table 5.8. Message streams’ delivery time considering protocols

Stream Prot. Rm
MP Wm Bm Wm/Rm

MP

S1 2M-GD 0.519 3.394 1.058 6.54

S2 IMD 0.959 2.655 0.975 2.77

S3 2M 1.070 3.984 2.121 3.72

S4 2M 1.234 4.640 2.449 3.76

S5 2M 1.287 5.074 2.666 3.94

U 9.09 %

Tables 5.7 and 5.8 present the messages’ delays and delivery times considering the
use of the proposed multicast protocols. Rm

MP represents the worst-case response time of
a message stream when multicast protocols (MP) are considered. Wm and Bm are,
respectively, the worst- and best-case delivery time for message stream Sm.

As it can be seen in Table 5.8, the worst-case delivery time is greater than the related
worst-case response time, because apart from the multicast-related introduced delays, it
is assumed that each message may be disturbed by one duplicate. For instance, the
worst-case delivery time for message stream S5 is not only given by the message stream
response time plus its δdeliver, but also by summing an extra δconfirm due to a message
duplicate.
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The last column of Table 5.8, presents the ratio worst-case delivery time/worst-case
response time, when considering the use of multicast protocols. It is obvious that the
IMD protocol is the one that introduces smaller delays (message stream S2), while the
2M-GD protocol is the one with the higher delays (message stream S1). Therefore, the
system developer can use this reasoning to balance reliability vs. efficiency in the
system. Moreover, the multicast protocols increase network utilisation less than 50%,
since multicast-related retransmissions only occur in inconsistent message omission
situations. Although this network load increase is still large, it is much smaller than in
other approaches, and it is the strictly necessary to cope with inconsistent message
omissions using a software-based approach.

Since messages from replicated tasks τ3 to replicated tasks τ4 need to be consolidated,
it is necessary to determine the δdecide parameter of the Consolidate protocol. As stated, it
is necessary to find the worst-case and best-case delivery time for each one of the
message streams (S3 to S5). However, these delivery times must refer to a common time
base. Thus, it is necessary to determine the best-case and worst-case response time of
replicated tasks τ3. This task is a sporadic task released by τ2. Hence, its response time is
dependent of the response time of τ2.

These response times can be easily determined using the analysis presented in
(Audsley et al., 1993). However, replicated component C2’’ is spread over nodes 3 and
4. Thus, in order to determine the worst-case and best-case response times of τ3’’ it is
necessary to consider the delivery time of message stream S2.

Table 5.9. Consolidation

Task WCRT BCRT Stream Wcom Bcom

τ3 5 5 S3 8.984 7.121

τ3’ 9 7 S4 13.64 9.449

τ3’’ 7.655 5.975 S5 12.729 8.641

Table 5.9 presents the best-case and worst-case response time of replicated tasks τ3,
and the associated worst-case and best-case delivery time of messages streams S3 to S5

(all referring to the common release time of task τ2). Therefore (from equation (5.21)):

δdecide = 13.64 – 7.121 + 0.1 = 6.619 ms (5.29)

The worst-case response time of the consolidation (from the time that the first
message is scheduled for transmission) is determined assuming that all messages but one
are delivered at their worst-case delivery time, and the other is not delivered. In this case
(assuming that the message not delivered is the one with the lower worst-case response
time (S3)), the message from stream S4 will arrive with its worst-case response time of
4.640, which summed to the δdecide gives a worst-case consolidation time of:

Wdecide = RM4 + δdecide   = 11.259 ms (5.30)

Although the delay introduced in the system by this type of consolidation, the
advantage is that no extra overhead is introduced in the network, preserving at the same
time the predictability of the system. As one of the main goals of the proposed multicast



Fault-Tolerant Real-Time Communication

108

protocols is to provide fault tolerant CAN communication, whilst preserving CAN’s
real-time characteristics (thus allowing the off-line analysis of messages’ response
times), such goal is achieved as the predictability of message transfers is guaranteed.

5.6. Comparison with Similar Approaches

In (Rufino et al., 1998), a similar approach for providing fault-tolerant broadcast
protocols is proposed, solving the message omission and duplicate problems. The
RELCAN protocol is similar to the 2M-GD protocol, being based on the transmission of
a second data-free message (CONFIRM message), to signal that the sender is still
correct. If this confirm message does not arrive before a specific timeout, the message is
retransmitted. However, this retransmission is performed using a lower layer protocol
(EDCAN), which is based on the retransmission of messages by every node in the
system (that has correctly received the message). When a node receives a retransmission,
it will retransmit it again (even if it already has retransmitted the original message). This
behaviour leads to a huge number of messages in the network. Although the authors
refer the possibility of several identical messages being clustered in the bus (all
transmitted at the same time), this situation can not always be assumed. It is possible that
some of these messages are not simultaneously transmitted, since sender nodes have
distinct processing delays. Therefore, the worst-case response time grows exponentially
with the number of nodes in the network, which is not the case for the 2M-GD protocol.

In the RELCAN protocol, the transmission request of the CONFIRM message is only
made after receiving information from the CAN controller that the data message has
already been sent. This two-phase approach is necessary to guarantee that there is no
order inversion, that is, the CONFIRM message is only sent after the related data
message. In the 2M (and 2M-GD) protocol this non-inversion guarantee is provided by
giving to the confirmation message a lower priority than its related data message.
Therefore, the request for transmission of both the data and confirmation messages can
be atomically performed, reducing the worst-case response time of the related message
stream.

One of the disadvantages of the RELCAN protocol is that it does not provide total
order (thus it cannot be used to achieve atomic multicasts). When a data message is
received, it is immediately delivered, meaning that in the presence of inconsistent
message errors the order is not preserved. In (Rufino et al., 1998), total order is
addressed by the TOTCAN protocol. This protocol is also based on a two-phase
approach, but the transmission of an ACCEPT message (similar to the CONFIRM
message) is performed using the EDCAN protocol. Since multiple retransmissions will
occur in normal operation, even if no error occurs, the TOTCAN protocol incurs a higher
overhead, increasing significantly the network utilisation. For instance, when
transmitting a fault-free message in a network with four nodes, in addition to the
message there will be the ACCEPT message plus three retransmissions. Therefore, in the
best-case (data message with 8 bytes), the overhead is approximately 150%, compared
with the 40% of the 2M protocol. In case of sender failure it does not deliver the message
(it guarantees that the message is delivered by all or none of the recipients as the 2M
protocol).
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5.7. Summary

This chapter presented the proposed set of atomic multicast and consolidation protocols,
upon which the CAN fault-tolerant real-time communication is guaranteed. In the
proposed approach, atomic multicasts are guaranteed through the transmission of just an
extra message (without data) for each message that must tolerate inconsistent message
omissions. Only in case of an inconsistent message omission (low probability) there will
be more protocol-related retransmissions. Inconsistent message duplicates are solved
with a protocol that does not require extra transmissions, guaranteeing total order.
Moreover, atomic multicast properties are achieved without more overheads than the
strictly needed for a reliable multicast. Consolidation of replicated inputs is also
provided through the use of a consolidate protocol, built on top of the multicast
protocols.

These protocols explore the CAN synchronous properties to minimise their run-time
overhead, and thus to provide a consistent and timely service to the supported
applications. The model and assumptions of these protocols for the evaluation of the
message streams’ response time are also presented, demonstrating that the real-time
capabilities of CAN are preserved, since predictability of message transfers is
guaranteed.





Chapter 6

Lessons Learnt from the
Framework Implementation

6.1. Introduction

This thesis provides a generic and transparent framework for the development of
fault-tolerant real-time applications conforming to the Ravenscar profile. However, it is
also necessary to assess if the Ravenscar profile is expressive enough for the
implementation of the complex middleware intended for the support to
replicated/distributed applications. Hence, this chapter presents the main guidelines used
for the implementation of a prototype of the framework, describing the framework
structure and its main mechanisms. Also, and more important, this chapter discusses
some of the most relevant lessons learnt from the framework implementation.

As the goal of implementing the prototype was to assess the difficulties presented by
the Ravenscar profile to implement replication and distribution, the full specification of
the prototype is not presented. Instead, the focus is given to the prototype structure and
to the most relevant mechanisms used in its implementation. Since the implementation
of the communication and replication mechanisms follows the protocols presented in
Chapters 4 and 5, their implementation will not be presented.

This chapter is structured as follows. Section 6.2 describes the structure of the
prototype, focusing on the implementation of the framework main modules (Object
Repository, Replica Manager and Communication Manager), also presenting the
prototype’s main limitations. Afterwards, Section 6.3 presents the support provided to
the final configuration phase of the application. Finally, Section 6.4 discusses the
problems related to the Ravenscar restrictions, and draws some conclusions on the
expressiveness of the profile.

6.2. Prototype Implementation

The specification of the prototype will be presented using a decomposition similar to the
HRT-HOOD design methodology (Burns and Wellings, 1995a). Packages will be
represented by round boxes (hierarchies are presented by placing the child package box
inside the parent’s box), an arrow represents a use relationship between packages, and a
rectangular box represents used packages outside of the current hierarchy. In order to be
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able to represent the internal package resources (subprograms, tasks, and protected
objects), when necessary a rectangular box will be used (Figure 6.1).

Package

Child 1

Child 2

Package
Resources Other Package

Other Package
uses the Package
resources

Child 2 uses
Child 1

Figure 6.1. Model example

The structure of the prototype implementation is presented in Figure 6.2. The
Object_Repository, Replica_Manager and Communication_Manager hierarchies map
the framework structure presented in Chapter 4. The Framework_Types package
hierarchy contains the specification of all types that are global to the prototype, and
although not shown is implicitly used in the remaining figures of this chapter. The
Application hierarchy contains the constants and data structures needed to configure the
framework for application-specific information. This hierarchy is used by
Framework_Types (for type declaration) and by the Property_Recorder and
Configuration modules of the Replica_Manager and Communication_Manager,
respectively. Finally, the Can_Board_Driver package is the interface to the specific
CAN board used in the prototype implementation. This package is only used by the
Communication_Manager.

Object_Repository

Replica_Manager

Communication_Manager

Framework_Types

Application Can_Board_Driver

Framework

Application
Program

Figure 6.2. Prototype implementation structure
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As presented in the prototype implementation structure, there is no direct interaction
between the Object_Repository and the Communication_Manager hierarchies. The
Replica_Manager performs this interface, in order to shield the Repository from changes
in the communication infrastructure.

The control flow within the framework maps the downstream and upstream flow of
communication streams.

6.2.1. Object Repository

The structure of the Object_Repository hierarchy is presented in Figure 6.3. The child
packages Shared_Data, Release_Event and Release_Event_With_Data provide the
simple objects intended to be used when no replication and distribution is considered,
without any replication/distribution management mechanisms.

The Inter_Group sub-hierarchy (Figure 6.4) provides child packages for the
interaction objects between groups of replicated components. The Intra_Component
sub-hierarchy (Figure 6.5) provides the interaction objects related to interactions inside a
component. Packages Inter_Group and Intra_Component are empty packages, and are
only used for hierarchy reasons.

Object_Repository

Shared_Data

Inter_Group

Release_Event Release_Event_W_Data

Intra_Component

Replica_Manager
Replication_Support

Application
Program

Replica_Manager
Handler

Replica_Manager
Consolidation

Figure 6.3. Object_Repository structure

The Replication_Support package is used for the support of distribution and
replication. The Consolidation hierarchy of the Replica_Manager provides some of the
required mechanisms for replica consolidation. All objects that act as receivers of
communication streams require the Handler package, since the absence of dynamic
priorities in the Ravenscar profile forces objects to create their own reception handler.

The Intra_Component hierarchy (Figure 6.5) does not require the Consolidation
mechanism. Nevertheless, all its objects require the Replication_Support package, and
the objects with distribution capabilities must also use the Handler package.



Lessons Learnt from the Framework Implementation

114

Inter_Group

Shared_Data

Release_Event

Release_Event_W_Data

Replica_Manager
Replication_Support

Replica_Manager
Handler

Replica_Manager
Consolidation

Figure 6.4. Object_Repository Inter_Group structure

Intra_Component

Det_Shared_Dat

Det_Release_Event

Det_Event_W_Data

Dist_Shared_Data Det_Dist_Shared_Data

Dist_Release_Event

Dist_Event_W_Dat
a

Replica_Manager
Replication_Support

Replica_Manager
Handler

Figure 6.5. Object_Repository Intra_Component structure

In the Object_Repository, all terminal objects are implemented as generic packages.
The use of generic packages allows reusing the same implementation mechanisms for
objects with different data types. Even objects that do not require data (as the simple
Release_Event) are implemented as generics, since they require objects to be instantiated
with extra information (for instance object identifier and ceiling priority). The use of
generic packages allows parameterisation at compile time, providing significant reuse
capabilities.

Since the goal of transparency is to allow the simple objects to be replaced by objects
with distribution and replication capabilities, the public interface for similar interaction
objects is the same. For instance, Figures 6.6 and 6.7 present the public interface for the
Release_Event and Inter_Group Release_Event objects, respectively.

Although the differences between the generic parameters (the Inter_Group object
requires extra parameters: the number of proposing replicas and the procedure to be used
for the decision on the release instant), the interface to the application code is the same
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(lines 5 to 8 of Figure 6.6 and lines 7 to 10 of Figure 6.7). This approach is used in all
similar objects, allowing the configuration phase to modify just the objects declaration,
not changing the application tasks’ code (application configuration issues will be further
detailed in Section 6.3).

1:  generic
2:     Id    : Framework_Types.Obj_Id_Type;
3:     Prio  : System.Priority;

4:  package Object_Repository.Release_Event is

5:     type Release_Obj is private;

6:     function Request_Release_Obj return Release_Obj;

7:     procedure Wait    (Obj: Release_Obj); -- potentially
   -- blocking
8:     procedure Release (Obj: Release_Obj);

9: private
     -- private interface
10: end Object_Repository.Release_Event;

Figure 6.6. Release_Event object public interface

1:  generic
2:     Id : Framework_Types.Obj_Id_Type;
3:     Prio : System.Priority;
4:     N_Replicas : Framework_Types.Rep_Id_Type;

5:     with procedure Decide (
Instant_Values : Framework_Types.Instant_Array_Type;
Valid_Instants : Framework_Types.Boolean_Array_Type;
Rejected_Inst : out Framework_Types.Boolean_Array_Type;
Release_Instant : out Ada.Real_Time.Time;
Release_Ok : out Boolean);

6:  package Object_Repository.Inter_Group.Release_Event is

7:     type Release_Obj is private;

8:     function Request_Release_Obj return Release_Obj;

9:     procedure Wait    (Obj: Release_Obj); -- potentially
-- blocking

10:    procedure Release (Obj: Release_Obj);

11: private
       -- private interface
12: end Object_Repository.Inter_Group.Release_Event;

Figure 6.7. Inter_Group Release_Event object public interface
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Internally, the Repository objects are implemented as Ada protected objects, in order
to provide mutual exclusion for the access to the object state and, for the case of Release
objects, to allow application tasks to be blocked by a protected entry. As an example,
Figure 6.8 presents the specification of the protected type used for the Inter_Group
Release_Event object.

1:  generic
       -- ...
2:  package Object_Repository.Inter_Group.Release_Event is

3:     type Release_Obj is private;
       -- ...
4:  private
5:     protected type Release_Receive_Type (
 Prio: System.Priority;

                         Id: FT.Obj_Id_Type) is
6:        pragma Priority(Prio);
7:        entry Wait;
8:        procedure Release;
9:        function Get_Id return FT.Obj_Id_Type;
10:    private
11:       Obj_Id: FT.Obj_Id_Type := Id;
12:       Released: Boolean := False;
13:    end Release_Receive_Type;

14:    type Release_Obj is access all Release_Receive_Type;

15: end Object_Repository.Inter_Group.Release_Event;

Figure 6.8. Example of object private implementation

In order to support the consolidation mechanism, the Inter_Group objects are required
to instantiate a new consolidation object of the Replica_Manager (Figure 6.9, line 3).
This object will be made available to the Communication_Manager for the decision
phase, since this phase requires a data-specific procedure (detailed in Section 6.3).

1:  package body Object_Repository.Inter_Group.Release_Event is
       -- ...
2:     package RM_RS renames Replica_Manager.Replication_Support;
3:     package Consolidate is new

     RM_RS.Consolidation.Release_Event ( Id, N_Replicas,
Decide );

4:     function Request_Release_Obj return Release_Obj is
5:        Obj : Release_Obj;
6:     begin
          -- ...
7:        Consolidate.Register_Object (Id);
8:        return Obj;
9:     end Request_Release_Obj;
10: end Object_Repository.Inter_Group.Release_Event;

Figure 6.9. Inter_Group Consolidate object creation example
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In a similar approach, objects with distribution requirements are required to
instantiate a new Handler package of the Replica_Manager (Figure 6.10 presents the
example for the Intra_Component Distributed_Release_Event object). This Handler
package (Figure 6.11) provides the task required by the Replica_Manager to interact
with the object (thus it is created with the same priority as the ceiling priority of the
object).

1:  package body Object_Repository.Intra_Comp.Dist_Release_Event is

2:     package RM_RS renames Replica_Manager.Replication_Support;

3:     package Handler is new RM_RS.Receive.Handler (Id,
 Ada.Real_Time.Time'Size, Prio );

       -- ...
4:     function Request_Release_Receive_Obj

 return Release_Receive_Obj is
5:        Obj: Release_Receive_Obj;
6:     begin
          -- ...
7:        Handler.Init;
8:        return Obj;
9:     end Request_Release_Receive_Obj;

10: end Object_Repository.Intra_Comp.Dist_Release_Event;

Figure 6.10. Handler task creation example

1:  generic
2:     Id: FT.Obj_Id_Type;
3:     Size: Integer;
4:     Prio: System.Any_Priority;
5:  package Replica_Manager.Replication_Support.Receive.Handler is

6:     package FT renames Framework_Types;
7:     package A_RT renames Ada.Real_Time;

8:     task type Handler ( Obj: FT.Obj_Id_Type;
 Size: Integer;
 Prio: System.Any_Priority) is

9:        pragma Priority (Prio);
10:    end Handler;

11:    procedure Init;

12:    procedure Release ( Msg_Type: FT.Message_Type;
 Str: FT.Stream;
                           Tdeliver: A_RT.Time);

13: end Replica_Manager.Replication_Support.Receive.Handler;

Figure 6.11. Handler task specification
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6.2.2. Replica Manager

Figure 6.12 presents the structure of the Replica_Manager hierarchy. This structure
maps the actual structure of the Replica Manager presented in Chapter 4. The
Error_Manager package, in addition from being used by the framework, may also be
used to notify any error occurrence to the application. The Application_Support package
provides application tasks with the support specified in Chapter 4 (Section 4.5.3), and
also with the necessary interface to initialise the framework and to wait for the
initialisation to complete. The application can use this interface to only start tasks (by
starting the application components) after the complete initialisation of the system.

Replica_Manager

Property_Recorder

Error_Manager

Replication_Support

Application_Support

ApplicationCommunication_Manager

Application
Tasks

Object_Repository

Figure 6.12. Replica_Manager structure

Replication_Support

Consolidation

Communication_Manager

Receive

Package
Resources

Object_Repository

Figure 6.13. Replication_Support structure

The Replication_Support package (Figure 6.13) provides the support to the
instantiated objects in the application. In order to avoid elaboration problems, a child
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package (Receive) is provided for the reception of messages from the
Communication_Manager, or from the Consolidation support of the Replica_Manager.

The Consolidation support of the Replica_Manager (Figure 6.14) is used to achieve
the needed shielding between the Object_Repository and the Communication_Manager
(as described in the previous subsection). In order to use this support, objects requiring
consolidation (see Figure 6.9) instantiate a new child package of the Replica_Manager
Consolidation (according to the object type).

Consolidation

Release_Event_W_Data

Communication_Manager

Shared_Data Release_Event

Package
Resources

Figure 6.14. Consolidation structure

These packages provide the interface for the Consolidate protocol (in the
Communication_Manager) to record the replicas’ proposals and to request the execution
of the decide procedure (Figure 6.15 presents the interface to support Inter_Group
Release Events objects).

1:  generic
2:     Id: FT.Obj_Id_Type;
3:     N_R: FT.Rep_Id_Type;
4:     with procedure Decide (

Instant_Values : Framework_Types.Instant_Array_Type;
Valid_Instants : Framework_Types.Boolean_Array_Type;

       Rejected_Instants : out Framework_Types.Boolean_Array_Type;
Release_Instant : out Ada.Real_Time.Time;
Release_Ok : out Boolean);

5:  package
     Replica_Manager.Replication_Support.Consolidation.Release_Event is

6:     procedure Register_Object (Obj_Id : FT.Obj_Id_Type);

7:     procedure Add_Proposed_Release (Obj_Id : FT.Obj_Id_Type;
             Rep_Id : FT.Rep_Id_Type;
         Instant: A_RT.Time);

8:     procedure Consolidate (Obj_Id : FT.Obj_Id_Type);
       -- ...

Figure 6.15. Example of Replica_Manager Consolidation support
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When the consolidation is performed, the Receive package of the Replication_Support
is used to deliver the consolidated message. Note that, although these objects perform
the consolidation processing, the control (the Consolidate protocol) is implemented in
the Communication_Manager layer.

The Receive package (Figure 6.16) receives messages either from the
Communication_Manager, or from the Consolidate module. However, as it is necessary
to interact with the Repository objects through the handler tasks, this package, according
to the target object, releases the previously created handler task (see Figure 6.10)

Receive

Communication_Manager

Handler

Objects

Package
Resources

Figure 6.16. Receive structure

This handler task (Figure 6.17) is a simple sporadic task, released by a protected
object (declared in line 2, used in line 9), which processes the received message (line 10)
using a procedure (Receive_Proc) that performs the Replica_Manager Receive_Handler
specified in Chapter 4 (Figure 4.28). Both the Receive_Proc procedure and the protected
object responsible for the release of the handler task are specified in the parent package
(Receive, Figure 6.18).

1: package body Replica_Manager.Replication_Support.Receive.Handler
   is

       -- ...
2:     Object: Receive_Handler_Release (Id, Size);

3:     task body Handler is
4:        Msg_Type: FT.Message_Type;
5:        Str: FT.Stream (1 .. Size);
6:        Tdeliver: A_RT.Time;
7:     begin
8:        loop
9:           Object.Wait (Msg_Type, Str, Tdeliver);
10:          Receive_Proc (Msg_Type, Str, Obj, Tdeliver);
11:       end loop;
12:    end Handler;

       -- ...
13: end Replica_Manager.Replication_Support.Receive.Handler;

Figure 6.17. Implementation of the handler task
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1:  package Replica_Manager.Replication_Support.Receive is
       -- ...
2:  private
3:     procedure Receive_Proc (Msg_Type: FT.Message_Type;

 Str: FT.Stream;
                           Obj_Id: FT.Obj_Id_Type;
 Tdeliver: A_RT.Time);
4:     protected type Receive_Handler_Release (Id: FT.Obj_Id_Type;

 Size: Integer) is
5:        procedure Release ( Msg_Type: FT.Message_Type;
 Str: FT.Stream;
 Tdeliver: A_RT.Time);
6:        entry Wait (Msg_Type: out FT.Message_Type;

Str: out FT.Stream;
 Tdeliver: out A_RT.Time);
7:     private
8:        Obj_Id: FT.Obj_Id_Type:= Id;
9:        MType: FT.Message_Type;
10:       S: FT.Stream (1 .. Size);
11:       Time: A_RT.Time;
12:       Released : Boolean := False;
13:       pragma Priority (System.Any_Priority'Last - 1);
14:    end Receive_Handler_Release;
       -- ...
15: end Replica_Manager.Replication_Support.Receive;

Figure 6.18. Receive package

6.2.3. Communication Manager

The Communication_Manager hierarchy (Figure 6.19) provides the support for
fault-tolerant real-time communication in CAN, as proposed in Chapter 5, and is
structured as follows. The Configuration package provides the interface to the message
streams’ configuration data (in the Application package).

Communication_Manager

Interface

Atomic_Multicast

Configuration

Can_Board_Driver

Timeouts

Replica_Manager

Application

Figure 6.19. Communication_Manager structure
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The Interface hierarchy provides the required interface with the Replica_Manager,
while the Atomic_Multicast hierarchy provides the atomic multicast communication
protocols. The Timeouts package provides a support for the communication timeouts,
since the Ravenscar profile prohibits the use of the Ada timed entry call mechanism.

Interface

ConsolidationFragmentation

Replica_Manager
Replication_Support

Replica_Manager
Receive

Replica_Manager
Consolidation

Package
Resources

Atomic_Multicast

Timeouts

Figure 6.20. Interface structure

The Interface hierarchy (Figure 6.20), in addition to providing the group
communication support to the Replica_Manager, also supports the Fragmentation and
Consolidation protocols. The existence of a group communication interface causes a
greater complexity in the framework implementation, since it is an extra layer between
the replication mechanisms and the communication infrastructure. However, as referred
in Chapter 4 (Section 4.5.2), it allows providing an abstract interface, facilitating
changes in the communication infrastructure without a greater impact in the replication
mechanisms.

Atomic_Multicast

Can_Board_Driver

Interface

Timeouts
Receive

Prot UnrelProt IMDProt 2MGD
Prot_2M

Package
Resources

Figure 6.21. Atomic_Multicast structure

The Atomic_Multicast hierarchy (Figure 6.21) provides the support for the atomic
multicast protocols proposed in Chapter 5. The Receive package is responsible for
performing the filtering of received messages (the Filtering module) and for delivering
the message for the correspondent atomic multicast protocol package.
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As the protocols proposed in Chapter 5 (atomic multicast, fragmentation and
consolidation) are based on delaying the message delivery, it is necessary to provide
support for timeouts. However, the Ravenscar profile forbids the use of the timed entry
call mechanism. It is therefore necessary to devise a mechanism that allows to start a
timer and to, if necessary, abort the timer before completion. This is provided by the
Timeouts package (Figure 6.22), that can be used to request, launch, and cancel a timer.

1:  package Communication_Manager.Timeouts is
2:     package FT renames Framework_Types;
3:     package A_RT renames Ada.Real_Time;
4:     type Timeout_Callback is access procedure (
 Id: FT.Timeout_Id_Type);
5:     procedure Request_Timer ( Id: out FT.Timeout_Id_Type;

Ok: out Boolean);
6:     procedure Launch_Timer (Id: FT.Timeout_Id_Type;

Time: A_RT.Time;
 Call: Timeout_Callback);
7:     procedure Cancel_Timer (Id: FT.Timeout_Id_Type);
8:     procedure Init;
9:  end Communication_Manager.Timeouts;

Figure 6.22. Timeouts package

The handling of timers (Figures 6.23 and 6.24) is provided through the use of timer
tasks. The package has a set of timer tasks (Figure 6.24), each one being a infinite loop,
that in each iteration wait in an entry of a protected object (line 7) and then delays until
the requested time has elapsed.

1:     protected Timer_Management is
2:        procedure Request_Timer ( Id: out FT.Timeout_Id_Type;
 Ok: out Boolean);
3:        procedure End_Timer (Id: FT.Timeout_Id_Type);
4:     private
5:        Available: Used_Timeout_Type := (others => True);
6:        pragma Priority (System.Any_Priority'Last-1);
7:     end Timer_Management;

8:     protected type Timer_Launch is
9:        entry Wait(T: out A_RT.Time; Call: out Timeout_Callback);
10:       procedure Release (T: A_RT.Time; Call: Timeout_Callback);
11:       procedure Cancel;
12:       function Is_Cancelled return Boolean;
13:    private
14:       Time: A_RT.Time;
15:       Callback: Timeout_Callback;
16:       Cancelled: Boolean := False;
17:       Released: Boolean := False;
18:       pragma Priority (System.Any_Priority'Last-1);
19:    end Timer_Launch;

Figure 6.23. Timer management
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Since it is necessary to support the timer cancellation, the task queries its release
object after the end of the delay, to determine if the timeout was cancelled. Only if not
cancelled, the task calls the correspondent callback. A protected object
(Timer_Management, Figure 6.23) is used to record which timers are in use, thus to
manage timer requests. For each timer task there is a protected object (Timer_Launch,
Figure 6.23) that is used to release the task, and to manage its cancellation.

1:    task type Timer_Task is
2:       pragma Priority (System.Any_Priority'Last-1);
3:    end Timer_Task;

4:    task body Timer_Task is
 -- ...
5:    begin
          -- ...
6:          loop
7:             Timer_Launch_Objs (Obj).Wait (Time, Call);
8:             delay until Time;
9:             if not Timer_Launch_Objs (Obj).Is_Cancelled then
10:               Call.all (Obj);
11:            end if;
12:            Timer_Management.End_Timer (Obj);
13:         end loop;
14:   end Timer_Task;

Figure 6.24. Timer tasks

Figure 6.25 presents an example of the use of the timer tasks (for the 2M protocol).
When a new message is received (line 10), it is necessary to start two timers for the
confirm and deliver timeouts. Lines 12 to 15 present the required processing for the case
of the confirm timeout. A timer is requested in line 12 (if there are no timers available,
an error in the framework is signalled), and recorded by the receive object (line 13).
Afterwards, this timer is launched (line 15).

When a duplicate message is received  (line 17) it is necessary to restart the timeouts.
However, since it is not possible to abort the timer tasks delay, they are cancelled (lines
18 to 21) and new timer tasks are requested (lines 22 to 26). It is clear that this approach
is very inefficient, since it requires a greater set of timer tasks than the absolutely
required (this will be further discussed in Section 6.4).

6.2.4. Prototype Limitations

This prototype implementation presents some limitations, mainly due to the goal of
focusing on Ravenscar specific issues. At the present moment, the prototype does not
support different applications in each node (no memory partitioning between the
applications and the middleware), and it is targeted only to PC based systems, not
supporting heterogeneous distributed systems. It also does not support several replicas of
the same component in the same node (although it is not expected that an application
would require such support).
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1:  package body Communication_Manager.Atomic_Multicast.Prot_2M is
2:     package Timers renames Communication_Manager.Timeouts;

       -- ...
5:     protected body Received_Msg_Obj is

6:        procedure Received_Msg (Msg: i527.Message_Data;
Size: CAN.Data_Length;

 Time:A_RT.Time) is
7:           Ok: Boolean;
8:           Id: FT.Timeout_Id_Type;
9:        begin
10:          if State = Empty then -- Received Message
11:             State := Unstable;

12:             Timers.Request_Timer (Id, Ok); -- Confirm Timer
                -- ...
13:             Used_Timers (Next_Used_Timer) := Id;
14:             Next_Used_Timer := Next_Used_TImer + 1;
15:             Timers.Launch_Timer (

Id,
 Time + CM_C.Message_Confirm_Delay (Obj_Id),
  Confirm_Timeout_Callback'Access);

16:             Timers.Request_Timer (Id, Ok); -- Deliver Timer
                -- The same processing for the deliver timer

17:          elsif State = Unstable then -- Received Duplicate

18:             while Next_Used_Timer > 1 loop   -- Cancel Timers
19:                Next_Used_Timer := Next_Used_Timer - 1;
20:                Timers.Cancel_Timer (

Used_Timers(Next_Used_Timer));
21:             end loop;

22:             Timers.Request_Timer (Id, Ok); -- New Confirm Timer
23:             Used_Timers (Next_Used_Timer) := Id;
24:             Next_Used_Timer := Next_Used_Timer + 1;
25:             Timers.Launch_Timer (

Id,
 Time + CM_C.Message_Confirm_Delay (Obj_Id),
 Confirm_Timeout_Callback'Access);

26:             Timers.Request_Timer (Id, Ok); -- New Deliver Timer
                -- ...
27:       end Received_Msg;
          -- ...
28:    end Received_Msg_Obj;

29:    Used: array (FT.Message_Identifier)
 of Boolean := (others => False);
30:    Received_Messages: array (FT.Message_Identifier)
 of Received_Msg_Obj;

31: end Communication_Manager.Atomic_Multicast.Prot_2M;

Figure 6.25. Example of timer tasks use
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Furthermore, it is not possible to instantiate the generic objects with data types that do
not have compile-time defined size (with access types or unconstrained arrays).
However, this would only require the final configuration phase to instantiate the generic
packages with two extra subprograms, to convert the data type to and from the
framework Stream type.

Finally, the implementation of the generic Shared_Data objects only supports a single
writer. This limitation is the one that is the most restrictive, since it precludes
Inter-Group Shared Data objects to be written by more than one component. It also does
not allow a Shared Data object to be written by more than one task of the same
component. This restriction is related to the configuration data structures used, which
can easily be modified.

6.3. Application Configuration

The configuration of the application is performed by instantiating different generic
packages, providing the required parameters, which can easily be performed by a
configuration tool. Therefore, application tasks are not changed, although being required
to comply with a specific structure.

1:  package body Example_Application_Tasks is
2:     package RM_AS renames Replica_Manager.Application_Support;

3:     task body Sensor is
4:        Period: Ada.Real_Time.Time_Span := ...;
5:        Start: Ada.Real_Time.Time := ...;
          -- ...
6:     begin
7:        RM_AS.Wait_Initialization (Sensor_Task_Id);
8:        RM_AS.Register_Task (Sensor_Task_Id);
9:        loop
10:          Start := Start + Period;
11:          RM_AS.Request_Periodic(Start);
             -- ...
12:       end loop;
13:    end Sensor;

14:    task body Controller is
          -- ...
15:    begin
16:       RM_AS.Wait_Initialization (Controller_Task_Id);
17:       RM_AS.Register_Task (Controller_Task_Id);
18:       loop
19:          Device_Event_Data_P.Wait( Device_Event_Obj,

Dev_Data);
          -- ...
20:       end loop;
21:    end Controller;
22: end Example_Application_Tasks;

Figure 6.26. Application tasks structure
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Figure 6.26 presents the structure of a periodic (Sensor) and a sporadic (Controller)
task (from the example in Chapter 4). Both tasks, before starting the main processing
loop must perform two actions. They must wait for the framework initialisation (to
guarantee that all data structures are configured) and they must register in the
Replica_Manager. The Wait_Initialisation call (lines 7 and 16) simply blocks the task
until the initialisation is completed. The Register_Task call (lines 8 and 17) is also
required, in order to map the runtime task identifier to the application-specific task
identifier.

As presented in Chapter 4 (Section 4.5.3), the periodic task requests its next release
through a call to the Replica_Manager (line 11), while a sporadic task is released
through a Release object (line 19).

6.3.1. Object Replacement

The configuration phase is performed by replacing the simple interaction objects with
the appropriate objects, providing replication and distribution support. In order to
demonstrate the configuration of an application through the use of different interaction
objects, Figure 6.27 presents a possible implementation for the Device_Data type of the
example presented in Chapter 4. This data type is required for a Release Event With Data
object.

1:  package Device_Data_Package is

2:     type Device_Data is ...;
3:     type Device_Data_Array is
 array (FT.Rep_Id_Type Range <>) of Device_Data;

4:     Device_Data_Replicas: FT.Rep_Id_Type := ...;
5:     Device_Obj_Id: FT.Obj_Id_Type := ...;
6:     Device_Obj_Prio: System.Priority := ...;

7:     procedure Device_Data_Decide (
Values : Device_Data_Array;

            Value_Instants : FT.Instant_Array_Type;
            Valid_Values : FT.Boolean_Array_Type;
            Rejected_Values : out FT.Boolean_Array_Type;
            Release_Value : out Device_Data;
            Release_Instant : out A_RT.Time;
           Release_Ok : out Boolean);

8:  end Device_Data_Package;

Figure 6.27. Data handling package

The package Device_Data_Package specifies the type of the data (line 2) and an
anonymous array type (line 3). It also provides the configuration information, such as the
number of replicas of the releasing group (line 4), the identifier of the object (line 5) and
the objects’ ceiling priority (line 6). Finally, a Decide procedure (to be executed by the
consolidation protocol) is also provided (line 7).
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This procedure presents several parameters that must follow a defined interface. The
Values parameter provides the array of the received proposals. The Values_Instants
provides the instants when the values were delivered. As the Values array has always the
size of the maximum number of proposing replicas, a Valid_Values array of booleans is
used to provide information about which of the array positions have valid proposals.

The other parameters represent the information provided by the procedure to the
framework. A Rejected_Values parameter is provided to notify the framework that some
of the proposed values are to be rejected, thus the Error_Manager will be notified. The
Release_Value parameter provides the decided value, the Release_Instant parameter
provides the release instant to be given to the related task, and the Release_Ok parameter
specifies if a decision was performed.

1:  package body Example_Application_Tasks is

2:     package DDP renames Device_Data_Package;

3:     package Device_Event_Data_P is
          new Object_Repository.Release_Event_With_Data (
                           Id          => DDP.Device_Obj_Id,
                           Prio        => DDP.Device_Obj_Prio,
                           Data_Type   => DDP.Device_Data );

4:     Device_Event_Obj: Device_Event_Data_P.Data_Release_Obj :=
   Device_Event_Data_P.Request_Data_Release_Obj;
       -- Other Objects and Application Tasks

5:  end Example_Application_Tasks;

Figure 6.28. Use of data handling package (before configuration)

1: package body Example_Application_Tasks is

2:    package DDP renames Device_Data_Package;

3:    package Device_Event_Data_P is
         new Object_Repository.Inter_Group.Release_Event_With_Data(

Id => DDP.Device_Obj_Id,
Prio => DDP.Device_Obj_Prio,
N_Replicas => DDP.Device_Data_Replicas,
Data_Type => DDP.Device_Data,
Data_Array_Type => DDP.Device_Data_Array,
Decide          => DDP.Device_Data_Decide);

4:    Device_Event_Obj: Device_Event_Data_P.Data_Release_Obj :=
  Device_Event_Data_P.Request_Data_Release_Obj;

      -- Other Objects and Application Tasks

5: end Example_Application_Tasks;

Figure 6.29. Use of data handling package (after configuration)
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Figures 6.28 and 6.29 present the use of this Device_Data_Package, respectively
before and after the configuration phase. The only difference is in line 3, in the
instantiation of the generic package, where the Release Event With Data generic package
only requires the identifier, priority and data type parameters. After configuration, the
Inter-Group Release Event With Data generic package also requires the number of
replicas, the data type array and the Decide procedure.

1: package body Application.Configuration is
      -- Task Configuration
2:    Periodic_Sensor_Task: Periodic_Task_Configuration_Record := (
                  Comp    => 1,
                  Rep     => 1,
                  Period  => ...,
                  Offset  => ...,
                  WCET    => ...,
                  BCET    => ...;
       -- Object Configuration
3:     Device_Release_Obj: Release_Obj_Configuration_Record := (
                  Obj_Type       => Inter_Group,
                  Data_Release   => True,
                  Releasing_Task => Sensor_Task_Id,
                  Used_Message   => 4);
       -- Message Configuration
4:     Sensor_Message_Node_1 : Message_Stream_Record := (
                  Used               => True,
                  Source_Group       => 1,
                  Source_Replica     => 1,
                  Dest_Groups        => (1, (others => 2)),
                  Obj_Id             => 1,
                  Protocol           => CM.Prot_2M,
                  D_Deliver          => ...,
                  D_Confirm          => ...,
                  D_Deliver_AE       => Null_Time,
                  Need_Consolidation => True,
                  Fragmented         => False);
5:     procedure Init_Configuration is
6:     begin
7:        This_Node_Id := ...;
8:        Periodic_Task_Array := (1 => Periodic_Sensor_Task,
                  3 => Periodic_Actuator_Task,
                  others => Null_Periodic_Task);
9:        Release_Obj_Configuration_Array := (

1 => Device_Release_Obj,
3 => Alarm_Release_Obj,
others => Null_Release_Obj);

10:       Message_Streams_Array := (
3 => Sensor_Message_Node_1,
4 => Sensor_Message_Node_2,
5 => Control_Message_Node_1,
6 => Control_Message_Node_2,
7 => Alarm_Message_Node_2,
others => Null_Stream);

          -- Initialization of other Configuration Data Structures
11:    end Init_Configuration;
12: end Application.Configuration;

Figure 6.30. Framework configuration example
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6.3.2. Framework Configuration

Finally, the Application.Configuration package provides the required support to the
configuration of the framework. A set of data structures is provided, which must be
configured for each application and for each node. These data structures are used by the
Property_Recorder and Configuration modules of the Replica_Manager and
Communication_Manager, respectively. As an example, Figure 6.30 presents a possible
configuration of the simple example presented in the Chapter 4. Line 2 presents the
specification of a periodic task  (Sensor), line 3 the specification of an interaction object
(Device_Release) and line 4 the specification of a CAN message stream (from the
Sensor task in node 1). The framework data structures must then be configured in the
Init_Configuration procedure, which is executed in the initialisation of the framework.

This implementation of the configuration structure is very inefficient and presents
redundant information. Furthermore, it causes the configuration phase to be very
complex and error prone.  These data structures can be modified, and a better approach
(with the appropriate tool support) can be easily devised, since only the
Property_Recorder and Configuration modules are dependent of this structure.
Nevertheless, the specification and implementation of such configuration tool is out of
scope of this thesis.

6.4. Lessons Learnt

From the implementation of the framework prototype, some conclusions about the use of
the Ravenscar profile for the implementation of complex middlewares can be easily
drawn. It is possible to assess the increase of complexity in the framework code, and also
the increase in the used resources, particularly when considering the interaction with the
communication-related mechanisms.

Although Ravenscar presents an extensive number of restrictions, only four of them
were considered to have a relevant impact in the implementation:

- The restrictions imposed to protected types, namely only one entry and no more
than one task simultaneously calling a protected entry;

- Not allowing the dynamic allocation of tasks and protected objects;
- Not allowing dynamic priorities;
- Not allowing timed entry calls (no select statement);

These restrictions have also been previously identified as producing greater
complexity and resource usage in Ravenscar compliant implementations (Audsley and
Wellings, 2000; Audsley et al., 2000; Vardanega and Caspersen, 2000), and were
discussed in the 10th International Real-Time Ada Workshop (Wellings, 2000; Pinho,
2000). It is thus important to evaluate how their inclusion would impact both the
complexity and resource usage of the framework implementation.

6.4.1. Protected Entries

In the Ravenscar profile, protected objects are restricted to have at most one protected
entry and only one task simultaneously queued. It is clear that these restrictions will
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impose an increased complexity of the middleware code. The reason is that the
mechanisms that could be performed by a single object must now be jointly performed
by a group of objects (for instance, the timer task management and release mechanism
presented in Figure 6.23).

However, it is considered that this complexity increase is not sufficient to produce
significant difficulties to the implementation of these mechanisms. There will be,
however, an increase of the resource usage (higher number of protected objects).
Nevertheless, this increase can be counterbalanced by the decrease of the complexity
related to the management of the protected objects in the runtime.

6.4.2. Dynamic Allocation of Tasks and Protected Objects

Another restriction in the Ravenscar profile (which was not present in the initial
specification (Burns, 1997)) is that the dynamic creation of tasks and protected objects is
not allowed, even during the program elaboration. Thus, the initialisation of the
middleware becomes more complex, since it is not possible to create just the resources
required by the implementation.  This can be seen in Figure 6.25, where an array of
objects for managing the protocol must be created (line 30), one for each possible
message identifier (the Used array in line 29 is used to, during initialisation, record the
identifiers that will use the protocol).

If dynamic creation of objects were possible, only the message identifiers using the
protocol would have a related object. Although not increasing the code complexity, this
restriction increases the amount of resources required for the implementation.

6.4.3. Dynamic Priorities

A restriction with a significant impact in the implementation is the impossibility of
dynamically changing the priority of a task. The main problem arises during the
interaction of protected objects with communications. Tasks processing the messages’
reception have to update values or to release entries in the protected objects of the
Repository. However, it must be guaranteed that the priority of the task is not greater
than the ceiling priority of the called object.

If dynamic task priorities were allowed, it would be easy to change the task priority to
the ceiling priority of the object, before making the call. Since this is not possible, each
object requiring the reception of communication streams has to declare its own handler
task, which consequently increases the code complexity and the resource usage by the
framework.

6.4.4. Timed Entry Calls

Another restriction with a relevant impact in the complexity and resource usage of the
implementation is the impossibility of using the timed entry call mechanism of Ada. This
mechanism allows a task to abort a protected entry call where it is suspended, when a
specific time is reached. As this mechanism provides an efficient support for managing
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timeouts, it would not be necessary to use the complex and inefficient mechanism
presented in Section 6.2.

Nevertheless, it is considered that due to the nature of the delays used in the protocols
proposed in Chapter 5, the most efficient approach would be to use a high resolution
hardware timer. This timer could be reprogrammed each time a new timeout was
required (as is usually done for task management), without the overhead related to the
timed entry call mechanism.

6.4.5. Final Considerations

From this evaluation, it is possible to conclude that the Ravenscar profile, by decreasing
the complexity and overhead of the Ada runtime, introduces a greater complexity and
overhead in applications requiring distribution and replication support. However, within
the restrictions that were found to have some impact, only dynamic task priorities and
dynamic allocation of tasks and protected objects are considered to be useful in the
implementation of the prototype.  The availability of these mechanisms would reduce the
overhead and resource usage of the framework.

The restrictions on protected entries do not present a relevant impact, since more
complex mechanisms can be built with this basic block when needed. The lack of the
timed entry call mechanism, although decreasing the related overhead, would not present
a significant improvement, considering the nature of the required timeouts for the
communication protocols.

The introduction of a transparent and generic approach allows applications to abstract
from the requirements of replication and distribution, thus becoming simpler to develop.
Nevertheless, this approach increases the complexity and resource usage of the
framework, since the mechanisms for managing generics together with replication and
distribution become more complex.

Nonetheless, the same reasoning that is applied to the Ada tasking model can also be
applied to the framework. As the framework is not application-specific, it does not have
to be designed for each application, thus much more attention can be given to its
implementation. Note that, in the absence of the framework, the mechanisms of
replication and distribution management would have to be implemented in the
application. Although such approach could be more efficient, the application itself would
be more complex, thus more difficult to develop and maintain.

6.5. Summary

This chapter presented the main issues related to the prototype implementation of the
proposed framework for the development of fault-tolerant real-time applications
conforming to the Ravenscar profile. Its main goal was to assess the expressiveness of
the Ravenscar profile for the development of the mechanisms required by the
framework.

From the implementation, it is considered that some of the restrictions present some
impact, but that in general, the profile presents a suitable model for the development of
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these mechanisms. It is also considered that by producing a more efficient runtime, the
profile can compensate the greater complexity it causes in applications.

It is also clear that the proposed transparent and generic approach causes a greater
complexity and resource usage. However, it is considered that the simpler programming
model provided to applications in the presence of replication and distribution
counterbalances these issues, as applications become simpler to develop and maintain.





Chapter 7

Conclusions

7.1. Introduction

This thesis proposes a transparent and generic programming model for the development
of fault-tolerant real-time applications, conforming to the pre-emptive fixed priority
computational model, and considering the utilisation of Commercial Off-The-Shelf
(COTS) components. The main advantage of this model is that it allows the application
to be developed with a focus on the requirements of the controlled system, abstracting
the system developer from the implementation details of replication and distribution.

In order to provide such a model, it was considered that a suitable approach was to
support the transparent replication of software components, considering a close
integration of the programming mechanisms for replication and distribution with the
underlying communication infrastructure. Concerning the underlying technologies, the
focus was given to the support of Ada 95 (ISO/IEC, 1995) applications conforming to
the Ravenscar profile (Burns, 1997), where replication and distribution are supported by
a communication infrastructure based on the Controller Area Network (CAN) (ISO,
1993).

The emergence of the Ravenscar profile is creating an increasing eagerness towards
the use of Ada in applications with fault tolerance and hard real-time requirements. The
Ravenscar profile allows the use of the pre-emptive fixed priority computational model
in application areas where the cyclic executive model has traditionally been the preferred
approach. Nevertheless, it is also considered that further studies are still necessary for its
use to support replicated and distributed systems. The interaction between multitasking
software and replication introduces new problems, particularly for the case of a
transparent and generic approach.

CAN was originally developed as an in-vehicle communication network. However,
due to its real-time characteristics, CAN is increasingly used as a communication
infrastructure for computer control systems. It is generally considered that CAN
guarantees atomic multicast properties, through its extensive error detection/signalling
mechanisms. Nonetheless, there are some well identified error situations where messages
can be delivered in duplicate by some receivers or delivered only by a subset of the
receivers. This misbehaviour may be disastrous when CAN networks are used to support
replicated applications. It is therefore important to provide the adequate protocols to
support replicated application components, whilst maintaining the real-time properties of
CAN message transfers.
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In order to provide a suitable framework for the development of fault-tolerant
real-time applications, the major requirements imposed to such applications were
identified. Based on these requirements, a Hard Real-Time Subsystem was specified to
support to fault-tolerant real-time applications, within the DEAR-COTS architecture
(Veríssimo et al., 2000b).

This thesis proposes a framework for the development of fault-tolerant real-time
applications, based on the transparent replication of application components. A set of
generic task interaction objects is provided, which are to be used as the basic building
blocks for application development, interfacing the application with a middleware layer
providing the replication and distribution support. These objects are responsible for
providing the required transparency during the application development.

As the integration of replication and distribution mechanisms with the communication
infrastructure was also intended, a set of atomic multicast and consolidation protocols is
also proposed. These protocols guarantee fault-tolerant and real-time communication on
top of a CAN network. In addition, they maintain the predictability of CAN message
transfers, in spite of CAN inconsistent message deliveries and considering the possible
occurrence of temporary periods of network inaccessibility.

This thesis also discusses some of the lessons learnt during the implementation of a
prototype of the proposed framework. The main goal of this implementation was to
assess the expressiveness of the Ravenscar profile for the framework development,
considering the complexity associated to the support of replication and distribution,
particularly considering the proposed transparent and generic approach.

7.2. Research Contributions

This thesis provides some relevant contributions to the development of fault-tolerant
real-time applications. The introduction of a generic and transparent approach
(considering COTS components and multitasking replicas) allows application
development to focus on the requirements of the controlled system, without the need to
implement the low-level mechanisms of replication and distribution. Therefore,
applications become easier to develop and maintain. This section tries to summarise the
most relevant contributions of this thesis to the development of computer control
applications.

7.2.1. DEAR-COTS Hard Real-Time Subsystem

In order to provide an adequate environment for computer control systems, this thesis
specified the Hard Real-Time Subsystem (HRTS) of the DEAR-COTS architecture,
responsible for providing a distributed environment intended for the transparent
replication of real-time applications. This subsystem addresses requirements identified as
being important in current computer control systems: real-time, fault tolerance,
genericity, transparency and interconnectivity.

The use of a multitasking environment is proposed to support real-time applications,
being the fault tolerance issues addressed through the transparent replication of
application components. The subsystem also addresses the requirements of genericity
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and transparency through the provision of a framework for the development of
fault-tolerant real-time applications. As current computer control applications are also
required to interconnect with other levels of the system, the HRTS also provides support
for the interaction of the computer control applications with the DEAR-COTS Soft
Real-Time Subsystem (STRS).

7.2.2. Transparent Framework for Application Replication

This thesis provides an abstraction for application replication, based on the concept of
component, in order to support the transparent replication of applications. This concept
allows applications to be configured only after being developed, thus allowing
applications to be developed without considering replication and distribution issues. By
using this approach, applications become easier to develop and maintain.

Although the goal was to transparently manage distribution and replication, it was
considered that a completely transparent use of these mechanisms would introduce
unnecessary overheads and difficulties for checking the real-time and fault tolerance
properties of applications. Therefore, object-based resources (which transparently
manage replication and distribution issues) were introduced to enable their use by the
system developer (transparent approach). Later, in a configuration phase, the system
developer configures the application components and their replication level, and
allocates the application tasks and resources in the system.

This means that during the application development there is no consideration on how
the application will be replicated or distributed. This methodology allows the system
developer to abstract from replication and distribution issues, focusing on the
requirements of the controlled system.

During the application configuration phase, transparency is only considered at the
mechanisms level. Basically, this means that the application code is not constrained by
the low-level details of replication and distribution mechanisms. On the other hand, by
performing object replacement during configuration, the full behaviour of application
(considering replication and distribution) is controlled and predictable. This allows the
off-line determination of the real-time and fault tolerance properties of applications,
which is of paramount importance in computer control systems.

Such object replacement is achieved by providing a repository of task interaction
objects, which map the usual task interaction mechanisms available in hard real-time
systems. The main advantage of this approach is that, by providing objects with different
capabilities but with the same public interface, applications can be configured simply by
replacing the used interaction objects, while during development applications just need
to use objects without replication or distribution capabilities.

This object repository provides objects with different capabilities, namely with
distribution support, replication support, or both. These objects provide the interface to a
middleware layer, responsible for implementing the replication and distribution
mechanisms. By reducing the set of mechanisms that need to be supported at the object
level, an additional advantage is obtained, since the upgrade of the repository (to provide
extra interaction objects) is simplified.
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7.2.3. Fault-Tolerant Real-Time Communication

The replication and distribution of application components requires the communication
infrastructure to support atomic multicast and replica consolidation mechanisms.
Therefore, in this thesis a set of protocols is proposed to provide such mechanisms on
top of CAN networks, while at the same time guaranteeing the real-time properties of
CAN. These protocols address the problem of CAN inconsistency in message transfers,
guaranteeing the required fault tolerance properties. One of the CAN characteristics that
is considered in these protocols is that it may be disturbed by temporary periods of
network inaccessibility (periods during which the network is unreachable due to
on-going error detection and recovery mechanisms).

For the atomic multicast of messages, a set of different protocols is proposed, each
one with different behaviours in the presence of errors. One, the IMD protocol, addresses
the problem of inconsistent duplicates, without introducing extra overheads in the
communication network. A second protocol, the 2M protocol, addresses both duplicate
and omission inconsistencies. It only requires the transmission of an extra message
(without data) in error-free situations. Only in the presence of an inconsistent message
omission, extra messages will be transferred in the bus, guaranteeing that none of the
receivers will deliver the message. Finally, the 2M-GD protocol offers a similar
behaviour, but it also guarantees that all receivers of a message will deliver the message,
even in the presence of an inconsistent message omission, if at least one correct node
received the message.

For the consolidation of replicated messages, the Consolidate protocol, supported by
the underlying atomic multicasts, is proposed. This protocol allows the implementation
of replica agreement mechanisms, and does not require any extra messages in the bus.

Another protocol, the Fragmentation protocol, is also proposed to allow the
transparent transmission of data units larger than the maximum size of the data field of
CAN frames.

To guarantee the real-time properties of the CAN communication, a set of
pre-run-time schedulability conditions was developed for all the proposed protocols,
making it possible to determine the worst-case and best-case delivery times of messages.
Since these conditions follow the current approach for response time analysis of CAN
communications, they can be used for determining the schedulability of the applications,
without the need to develop different schedulability analysis methods.

7.2.4. Evaluation of the Ravenscar Restrictions

As it is considered that a framework supporting replication and distribution of Ravenscar
applications must also conform to the profile restrictions, a prototype implementation of
the proposed framework was also developed. The goal of this implementation was to
assess if the profile has the required expressiveness for the implementation of the
proposed mechanisms, particularly considering the genericity and transparency
requirements. From this implementation it is concluded that, although some of the
Ravenscar imposed restrictions cause a more complex implementation and greater
resource usage, in general the profile provides a suitable approach for the development
of fault-tolerant real-time applications. Particularly, from the set of restrictions that were
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identified to have impact on the framework’s development, only the impossibility of
using tasks with dynamic priorities and dynamic allocation of tasks and protected objects
were considered to have a significant impact.

Furthermore, it is clear that the transparent and generic approach introduces some
additional complexity and resource usage in the framework development. Nevertheless,
it is considered that a positive trade-off is obtained, since a clearer and simpler
programming model is provided to the application development, and as the framework is
not application-specific, much more attention can be given to its implementation.

7.3. Future Work

The proposed programming model and associated replication/distribution mechanisms
are considered to be an adequate tool for the development of computer control
applications. However, new research directions have also been identified. In this section
some improvements that can be applied to the results of this thesis, and future work that
can be performed, are described.
1. Throughout the lifetime of a system it is often necessary to change the operational

mode of the application (mode changes), in order to cope with a different set of
requirements. The proposed framework provides a limited support to mode changes,
through the support for application reconfiguration (at the component level). It
would be interesting to provide a more extensive support to mode changes, by
introducing the concept of a mode in the framework. This can be achieved by
providing different application configuration data structures for different modes of
operation and by integrating mode changes’ support directly in the middleware.

2. In the framework, it is considered that error recovery mechanisms are implemented
at the application level, since their efficient implementation is dependent on the
application-specific structure and behaviour. Therefore, the framework provides
mechanisms for application-specific modules to be notified by the error detection
mechanisms implemented and to allow the reconfiguration of the application. It
would be important to allow applications to tailor the behaviour of the framework,
enabling reconfiguration procedures to be executed upon error detection. This would
allow reconfiguration to be performed at the middleware level. Furthermore, in
order to support application error recovery, it would be interesting to assess how the
provided interaction objects could be used for state recovery operations.

3. At the communications level it is clear that the pre-run-time schedulability
conditions provided for the response time analysis are somehow pessimistic, since
they always assume the worst-case behaviour, even in cases where such behaviour
can be demonstrated to have a negligible probability. It would be important to
further evaluate the level of pessimism, in order to provide a less pessimistic
analysis, while at the same time preserving the guarantees required by fault-tolerant
real-time applications (as is briefly outlined in the Annex).

4. System configuration and component allocation in a replicated/distributed system is
a complex task, since there is a trade-off between system efficiency and system
reliability. Furthermore, when distributed systems are considered, the allocation of
components to the different nodes is a difficult task, since the change of a single
component may change the overall system properties. Therefore, the existence of a
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configuration tool could ease the assessment of the system behaviour, in particular
in what concerns the fault tolerance and real-time properties of the system. The tool
would ease the reconfiguration of the system, since it would provide the required
analysis to determine the impact of the alterations in the overall behaviour of the
system. The direct interaction of the tool with the configuration of the application
program would also reduce the possibility of configuration errors.

5. Finally, it was concluded that while the Ravenscar profile reduces the complexity
and overheads of the runtime, it also introduces some additional complexity and
higher resource consumption. It would be worthwhile to further investigate how
much is gained from applying certain restrictions, at the cost of an increased
complexity. To achieve this, a suitable platform (compiler and runtime) is required,
in order to obtain relevant measures of performance.



Annex

CAN Behaviour in the Presence of Errors

A.1.  Introduction

This annex presents a study (Pinho et al., 2000a) performed in order to evaluate the
behaviour of CAN networks in the presence of either bus or network interface errors.
The results emphasise that, in the presence of temporary periods of network
inaccessibility (periods during which nodes cannot communicate with each other, due to
the existence of on-going error detection and recovery mechanisms), a CAN network is
not able to provide different integrity levels to the supported applications, since errors in
low priority messages interfere with the response time of higher-priority message
streams. Furthermore, CAN is also not resilient to transceiver errors, since they can lead
to large inaccessibility periods. However, a pessimism analysis also demonstrates that,
for less strict failure assumptions, CAN may be used as the communication
infrastructure for fault-tolerant real-time applications.

This annex is structured as follows. Section A.2 presents the analysis of a CAN
network example, where temporary periods of network inaccessibility are considered.
The chosen example is based on the SAE benchmark (SAE, 1993), which allows the
comparative analysis of the results with a previously available study (Tindell et al.,
1995). Afterwards, Section A.3 evaluates how severe is the pessimism of the analysis
presented in Section A.2, related to the identified sources of inaccessibility-related
pessimism.

A.2.  SAE Benchmark

This SAE benchmark specifies a set of messages that must be transferred, considering
network data rates of: 125 Kbit/sec, 250 Kbit/sec, 500 Kbit/sec and 1 Mbit/sec. A
simplification of this benchmark for the case of CAN networks was presented in (Tindell
et al., 1995), where the number of message streams is drastically reduced by
piggybacking groups of data messages in single Data Frames, whenever possible. This
simplification allows a reduction of the overall network load, due to the removal of the
messages’ overhead. Table A.1 presents the resulting set of message streams, ordered by
decreasing priorities.
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Table A.1. SAE benchmark

Si Ci

(bytes)
Ti

(ms)
Di

(ms)
SI Ci

(bytes)
Ti

(ms)
Di

(ms)

A 1 1000 5 J 2 10 10

B 2 5 5 K 1 100 20

C 1 5 5 L 4 100 100

D 2 5 5 M 1 100 100

E 1 5 5 N 1 100 100

F 2 5 5 O 3 1000 1000

G 6 10 10 P 1 1000 1000

H 1 10 10 Q 1 1000 1000

I 2 10 10

Table A.2 presents the response time and the network load considering the message
stream set of Table A.1 (evaluated using equations (5.1) and (5.7), respectively). The 0
errors assumption is the assumption considered in (Tindell et al., 1995), although with a
slight difference: in (Tindell et al., 1995) the authors assume that a message could be
blocked by messages with 8 data bytes, although there is no such message in the
benchmark. Thus, the response times presented in the 1st column of Table A.2 are
slightly smaller than those presented in (Tindell et al., 1995).

Table A.2. Response time of messages (125 Kbit/sec)

Response Time (ms)
Msg.

0 errors 1 error 2 errors 3 errors Transc. Error

A 1.368 2.416 3.464 4.512 18.136

B 1.952 3.000 4.048 5.096 18.720

C 2.456 3.504 4.552 6.184 21.560

D 3.040 4.088 5.136 7.272 24.160

E 3.544 4.592 7.312 8.360 28.672

F 4.128 5.176 8.400 9.448 33.952

G 4.864 8.672 9.720 10.768 43.712

H 5.368 9.176 10.224 14.920 54.176

I 8.712 9.760 14.960 18.768 60.040

J 9.296 10.344 18.888 19.936 78.536

K 9.800 18.928 19.976 29.104 99.288

L 10.456 19.584 20.632 29.760 100.448

M 19.040 20.088 29.216 30.264 110.272

N 19.544 28.672 29.720 38.848 119.360

O 20.048 29.176 30.224 39.352 120.368

P 28.632 29.680 38.808 39.856 128.952

Q 28.656 29.704 38.832 39.880 128.976

U (%) 80.279 81.327 82.375 83.423 80.280
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In this table, all the message streams that may miss their deadlines are highlighted. A
network date rate of 125 Kbit/sec is considered (which leads to the highest network load)
together with the following set of error assumptions:

- from 0 to 4 bus errors in each 100 ms time interval, resulting from a bit error
rate of approximately 10-4 (for a data rate of 125 Kbit/sec, this results in
considering 0-4 errors within 12500 bits), which is an expectable range for bit
error rates in aggressive environments;

- a single transceiver failure (causing 16 failed transmissions), leading the related
node to an Error-Passive state.

As it can be seen, a set of message streams that is completely schedulable without
considering temporary periods of network inaccessibility, is no longer schedulable even
assuming low bit error rates. The simple consideration of one bit error within an interval
of 100 ms leads to a faulty timing behaviour in two of the message streams. Network
load does not increase significantly since just 0-4 bus errors are considered within each
interval of 100 ms.

An interesting result is that, conversely to what is common in fixed priority systems,
the first message stream to miss its deadline is not the lowest priority one, but one with
an intermediate priority (message streams F and J). The reason for this unusual
behaviour is that the occurrence of a bus error results in the same inaccessibility period,
whatever the message stream being considered. Therefore, message streams with smaller
response times will have the larger percentage increase on their message’s duration,
resulting that the most penalised message streams will be the ones with the smallest
slack time (smallest difference between response time and deadline).

Table A.3. Response time of messages (250 Kbit/sec)

Response Time (ms)
Msg.

0 errors 1 error 2 errors 3 errors 4 errors Transc. error

A 0.684 1.208 1.732 2.256 2.780 9.068

B 0.976 1.500 2.024 2.548 3.072 9.360

C 1.228 1.752 2.276 2.800 3.324 9.904

D 1.520 2.044 2.568 3.092 3.616 10.992

E 1.772 2.296 2.820 3.344 3.868 11.828

F 2.064 2.588 3.112 3.636 4.160 12.624

G 2.432 2.956 3.480 4.004 4.528 13.576

H 2.684 3.208 3.732 4.256 4.780 14.272

I 2.976 3.500 4.024 4.548 5.072 14.816

J 3.268 3.792 4.316 4.840 6.744 16.780

K 3.520 4.044 4.568 5.092 6.996 17.324

L 3.848 4.372 4.896 6.800 7.324 17.652

M 4.100 4.624 6.528 7.052 7.576 17.904

N 4.352 4.876 6.780 7.304 7.828 18.156

O 4.604 5.128 7.032 7.556 8.080 18.408

P 4.856 6.760 7.284 7.808 8.332 18.660

Q 4.868 6.772 7.296 7.820 8.344 18.672

U (%) 40.140 40.664 41.188 41.712 42.236 40.140
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This unusual behaviour is present even in the case of errors during the transfer of
lower-priority messages. In this case, the mechanism needed to recover from the error
prevents higher-priority messages from being transmitted.

Thus, in the presence of bus errors, a CAN fieldbus network is not able to provide
different integrity levels to the supported applications, since errors in low priority
messages interfere with the response time of higher-priority messages. This result proves
that the scheduling of messages in the presence of errors is not equivalent to the
scheduling of fixed priority systems in overload conditions (where tasks/messages with
lower priorities do not interfere with the response time of higher-priority
tasks/messages).

Table A.3 analyses the same scenario for the case of a network data rate of 250
Kbit/sec. Obviously, as the duration of messages is reduced by 50%, the overall network
load is also reduced by 50%. As a consequence, considering such reduced network load
for this particular set of message streams (with harmonic periodicities), the message
stream set is now schedulable for the considered failure assumptions.

Also included in Tables A.2 and A.3 is the consideration of a single transceiver
failure. In this situation, higher-priority messages miss their deadlines. It is interesting to
notice that the response time of message stream A increases 13 times when a transceiver
error is considered, but the network load does not suffer any increase. That is due to the
assumption of an extremely low failure rate for transceivers, leading to a negligible
increase in the network load.

Table A.4. Response time of messages considering one transceiver error

Response Time (ms)
Msg. 1

Mbit/sec
500

Kbit/sec
250

Kbit/sec
125

Kbit/sec

A 2.267 4.534 9.068 18.136

B 2.340 4.680 9.360 18.720

C 2.403 4.806 9.904 21.560

D 2.476 4.952 10.992 24.160

E 2.539 5.496 11.828 28.672

F 2.612 5.768 12.624 33.952

G 2.704 6.098 13.576 43.712

H 2.767 6.224 14.272 54.176

I 2.840 6.370 14.816 60.040

J 2.913 6.516 16.780 78.536

K 2.976 6.642 17.324 99.288

L 3.058 6.806 17.652 100.448

M 3.121 6.932 17.904 110.272

N 3.184 7.058 18.156 119.360

O 3.247 7.184 18.408 120.368

P 3.310 7.310 18.660 128.952

Q 3.313 7.316 18.672 128.976

U (%) 10.035 20.070 40.140 80.280
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It is also clear that transceiver errors are extremely penalising for the scheduling of
message stream sets, since a node with an erratic transceiver may signal up to 16 errors,
preventing other nodes from accessing the bus.

Finally, Table A.4 analyses a scenario where there are no bus errors; instead, a single
transceiver error for different network date rates is considered. It can be seen that, even
without bus errors, the message stream set is only schedulable at 1Mbit/sec, that is, it is
only schedulable for a network load as low as 10%.

A.3.  Pessimism Analysis

Up to this moment, a set of worst case error assumptions has been assumed. It is,
therefore, important to evaluate how severe is the pessimism inherent to the proposed
approach. Considering the worst-case analysis presented in Chapter 5 (Section 5.4.1,
equations (5.1) and (5.7)), some sources of inaccessibility-related pessimism can be
identified:

- It has been assumed that the worst case error assumptions are always present.
That is, that all the nbus and ntransc are present in one round of messages;

- It has been assumed that bus errors are always detected in the last bit of the
longest Data Frame;

- It has been also assumed that an Error Frame has always the maximum number
of bits.

Although this set of assumptions is necessary for worst-case evaluations, it is also
correct to say that it contains an important level of pessimism. In order to assess the
impact of each one of these factors in the pessimism of the response time analysis, the
following set of equations has been used:
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where A stands for the percentage of assumed errors in a period of Tbus (maximum of 4
errors), B stands for the percentage of the longest message to be transmitted and C is the
percentage of the error frame length. As Error Frames have at least 14 bits, C can only
be applied to the remaining 6 bits.

Figures A.1 and A.2 illustrate the impact of each one of these factors on the network
load and on the response time of Message Stream F (Message Stream F is chosen for the
analysis, since it is the one with the smallest slack time). The variation of parameter A is
made considering a value of 1 for parameters B and C. Variation of parameters B and C
is made considering the existence of 3 bus errors.
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Figure A.1. Variation of the network load with parameters A, B and C
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Figure A.2. Variation of message stream F response time with parameters A, B and C

As it can be seen, the parameter that has the strongest influence is the bus error rate.
However, network load is only slightly penalised by errors. That is due to the assumption
of a low failure rate in the network, since just 0-4 bus errors are considered within each
interval of 100 ms.

The analysis presented in Section A.2 showed that message stream F is only
schedulable in the absence of errors (Table A.2). In Figure A.2, such non-schedulability
is reflected in the sudden increase of its response time, which is due to the increasing
interference of higher-priority message streams (with 5 ms period). As shown in Figure
A.2, the response time of this message stream is highly dependent on the assumed error
rate, and also on the assumed inaccessibility time caused by such errors. However, with
smaller periods of temporary inaccessibility, the message stream is schedulable even for
larger error rates.

In order to assess the pessimism of considering that errors always occur in the last bit
of the largest message, Figure A.3 shows the impact of parameter B for different bus
errors assumptions (parameter A).
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Figure A.3. Variation of message stream F response time with parameter B

Considering just one bus error per 100 ms, when parameter B is set to 0.5, the
response time of message stream F will be just 4.744 ms, which compared to 5.176 ms
(Table A.2) gives a reduction of 8%. Furthermore, for this scenario, message stream F
becomes schedulable. If greater error rates are assumed, the decrease of the response
time is even more relevant.

The scenario is quite realistic since there is only one message that takes 6 bytes of
data, while the majority of the messages have 1 or 2 bytes of data. Therefore, the
inherent pessimism of worst case analysis can be reduced, if less strict failure
assumptions are accepted.

A.4.  Summary

This annex presents a study performed in order to evaluate the behaviour of CAN
networks, considering temporary periods of network inaccessibility. From the achieved
results, it can be concluded that message streams with smaller response times will have
the larger relative increase on their duration, resulting that the most penalised message
streams will be the ones with the smallest slack time.

An important conclusion is also that a CAN fieldbus network is not able to provide
different integrity levels to the supported applications, since errors in low priority
messages interfere with the response time of higher-priority messages. This result proves
that the scheduling of messages in the presence of errors is not equivalent to the
scheduling of fixed priority systems in overload conditions (where tasks/messages with
lower priorities do not interfere with the response time of higher-priority
tasks/messages).

Another conclusion is that CAN is not resilient to transceiver errors, since they can
lead to large inaccessibility periods. A faulty network interface can cause a sequence of
(at most) 16 erroneous messages, causing the network to become unreachable for all
nodes for a large period.
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The inherent pessimism of the proposed analysis has also been evaluated, and it is
concluded that the message set response times’ are highly dependent on the considered
error rates and inaccessibility periods. It is also concluded that assuming smaller periods
of temporary network inaccessibility, the system becomes schedulable even for greater
bus error rates. This assumption is quite realistic, since the majority of the considered
messages carry only 1 or 2 bytes of data. Therefore it is considered that, for less strict
failure assumptions, CAN may be used as the communication infrastructure for
fault-tolerant real-time applications.
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