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Abstract—Nowadays, most processing platforms make use of
cache memories to improve the execution speed of the tasks
running on the processors. However, when a processor switches
from a task to another, the caches must be reloaded with the
context of the upcoming task. This is time consuming and is
usually not predictable and thus affects the worst-case execution
time of the task. Such unpredictability should be avoided in real-
time systems in which the instant at which a result is available
is as important as the result itself.

In this paper, we present a hardware component named
hardware context switch (HwCS) which replaces the standard
L1 cache controller a processor. It divides the cache in two
interchangeable layers and enables to save or restore the content
of one layer while the second is simultaneously used as a
usual cache by the processor. Saving the cache content after
a preemption and restoring this content before resuming the
execution of the preempted task, makes the preemption overheads
negligible in comparison to the task worst-case execution times.
It is theoretically proven that the existing scheduling theory can
be used “as is” with the HwCS by simply reducing the task
deadlines, thereby bridging the gap between theory and practice.
The HwCS has been implemented in an uniprocessor system as
a proof of concept. The first results show a neat improvements
on the processor utilisation for a small cost in silicon surface.

I. INTRODUCTION

Over the last few decades, the technology used in integrated
circuits has been tremendously improved. Both the speed
and the number of integrated logic gates double each 18
month, this trend is commonly known as the Moore’s Law.
The high number of transistors that are now available in a
same die, makes possible the design of multi- and many-
core systems composed of more than 250 cores [1]. However,
memory technology scaling and thus read/write access time
did not follow the same trend as the processor logic scaling.
To circumvent this problem modern processors usually use
a hierarchical memory architecture. With such architecture,
small and fast local SRAM memories called caches are placed
near the processors to alleviate the latencies of a slow central
DRAM memory. Whenever instructions or data are accessed
by a task running on a processor, they are saved in the local
cache of this processor. Hence, the subsequent time that the
task will access those instructions (or data), they will be
available in the fast local cache and the task will not have
to make an access to the slow central memory.

Because a cache is smaller than the main memory by several
order of magnitude, data have to be organised to be quickly
accessible: a cache is used to keep track of temporal and spatial

locality of data or instructions accessed by a task running on a
processor. When a task running on a processor reads data that
is not stored in the cache, there is a cache miss. Because data
must be read in a memory located further from the processor,
the time to access the requested instruction or data will be
significantly higher — about 10 or 100 times longer [2] —
than the time needed to access data already stored in the cache
(i.e., if there is a cache hit).

In practice, the memory architecture may be composed of
several levels of caches starting from the level 1 cache (L1)
which is closest to the processor and has fastest access time
going to up to the L3 cache which is usually the last level
before the system main DRAM memory.

Unfortunately, this hierarchical memory architecture de-
creases the predictability of the task execution times. Let us for
instance consider the case of a task τa running in isolation,
i.e. running alone on the platform. In this situation, τa has
a given worst-case execution time (WCET) Ca. Now, let us
assume that τa is scheduled with other tasks on the platform
and another task — say τb — preempts τa during its execution
on a processor πj . After the completion of τb, the task τa can
be resumed on processor πj . However, because τb executed
on πj , instructions and data of τa that were stored in the L1
cache have been (at least partially) replaced by the instructions
and data of τb. Thus, when resumed, the task τa must look for
its instructions and data in higher levels of caches or even in
the central memory. Because the WCET of τa might depend
on other tasks running in the system, the WCET might be
longer than the one determined in isolation due to the increased
number of cache misses, studies proposed new methods to
compute a more accurate WCET [3].

All these preemption overheads must be added to the initial
worst-case execution times of the tasks [4]. These overheads
may be really high as shown through an empirical study in [5]
where preemptions delays may reach up to 1 million processor
cycles on a platform providing three levels of caches.

This problem should even worsen with an always increasing
number of processors available in processing platforms. The
communication delays between the processors and the central
memory will indeed increase with the number of processors
trying to access the memory through the communication
network, thereby increasing the number of contentions on
both the communication and memory levels and inducing a
significant jitter on the access time.



This jitter on the worst-case execution time of the tasks is
unacceptable in the context of a hard or firm real-time system.
Indeed, the tasks have deadlines that must imperatively be
respected (at least with some predefined quality of service in
the case of firm real-time systems). The worst-case execution
times of the tasks have therefore to be known a priori to
perform schedulability tests, which will be able to say whether
the task set is schedulable or not.

The impact however depends on (i) the specific scheduling
algorithm (and its implementation) utilized by the operating
system to schedule the tasks [6], [7] and (ii) the architecture
of the hardware platform [6].

There are several ways to address this problem. First, we can
try to integrate the preemption costs in the theory analyzing the
schedulability of a system. This approach however, usually en-
tails a large degree of pessimism [4], [5] and a task set which is
actually schedulable may end up being deemed unschedulable
by the modified schedulability test [7]. The second approach
consists in either using properties of the architecture or inte-
grating new hardware services in the platform to improve the
system predictability and reduce overheads [8]–[11], usually
these services require processor modifications. Finally, design-
ing a specific architecture with high predictability and specific
design flow is also an option [12]. We take the second option in
this paper. Specifically, we present a hardware component —
named hardware context switch (HwCS) — which is based on
a simple variant of a cache memory controller. The HwCS is
build upon the concept of double buffering applied to the cache
state (data and data organisation). It is designed to replace the
standard L1 cache controllers in the platform architecture and
is therefore almost independent from the processor used in
the platform. The HwCS makes the preemptions negligible
for the executed application, thereby making the preemption
costs virtually equal to zero for the tasks. As later proved in
Section IV, this property has for strong consequence that all
the real-time scheduling theory can now be used “as is” by
only adapting the deadline associated with each task, as long
as the schedulability tests are still correct with the modified
deadline.

The HwCS achieves this important result by providing
multiple layers of caches. Each cache layer has capabilities to
either save its content in the main memory or load a previously
saved content from the main memory, while another layer is
used as a usual L1 cache by the processor. The simultaneity of
those operations enables a processor πj to continue to execute
a task while the complete execution context of the next task
to be executed on πj is loaded in a second cache layer. Once
loaded, the next task can start its execution on πj in the exact
same state as it was left when it was preempted. Therefore, the
number of cache misses and hence the worst-case execution
time of the tasks will not be affected by the preemptions
anymore.

The proposed approach of multi-layered cache is very well
adapted to recent evolutions in integrated circuit (IC) pack-
aging, namely 3D-Stacking. In such configuration all system
SRAMs could be implemented in one or more independent

circuits placed on the top of the logic die. Each cache layer
could be implemented with the same memory size as in the
2D counterpart, but without increase of the overall IC footprint
and loss in memory access performances due to physical
distance of the memory from the processor.

Although the HwCS can be used to enhance migrations on
multiprocessor platforms, this paper will focus on preemptions
on uniprocessor systems.

Organisation of this paper: Related works are first presented
in Section II. The concepts, principles and correctness of the
HwCS are then explained in Section III. Section IV studies
the impact of the HwCS on the real-time scheduling theory.
Experimental results are provided in Section V. Section VI
concludes the paper.

II. RELATED WORKS

Low-end microcontrollers have often a direct access to the
main memory [13] enabling access time full predictability.
However, although this can be implemented for small systems
with a few hundred kilobytes of memory, it is not practical
with megabytes or gigabytes of memory we can find in
nowadays systems.

In this context, cache memories have been used for
decades [14] but predictability is lower than systems with
direct memory access because data may or may not be in
cache, implying a time consuming reload which worsens the
WCET [5].

Other hardware services allow fast preemptions. We propose
a review of them in this section before reviewing studies about
impact of preemptions on the WCET.

A. Hardware services for fast preemptions

1) Processors with multiple register banks: These proces-
sors take advantage of several hardware register banks to
switch between contexts. Commercial processors have usually
2 register banks. There are several variants around this con-
cept. For instance, SPARC processors take advantage of up to
32 overlapping register windows to switch context and pass
arguments/results between contexts [15]. Some industry RISC
processors like ARM R©processors, SHARC R©or academic pro-
cessor like COFFEE use two almost independent register files
to switch context in a few clock cycles [16]–[18]. We can cite
the NEC-DRP1 experimental processor which has 16 register
banks [19]. This architecture shows improvements of 1.6-
6x in execution speed compared to usual architectures [19].
Unfortunately, this approach limits the number of contexts
stored in a processor to the number of register banks. If more
contexts than the number of register banks are necessary, then
they have to be stored outside the processor when not in
use and reloaded on the processor when needed as on any
single register bank processor. Moreover, it does not solve the
increase of the task execution time due to the higher number
of cache misses caused by the execution of multiple tasks on
the same processor.



Multithreaded processors [20], [21] is another example of
architecture multiplying the number of register banks. Fine-
grain multithreading is used in the Tera computer architec-
ture [20] using a barrel-processor with one register set per
thread state. Coarse-grain multithreading is used in consumer
oriented processor [21] and is based on context switching
between two states of the processor when a stall happens.
Again, the processor state must be duplicated. The L1 cache
is shared between the threads.

2) Specific virtual platform mapped to hardware: It is
possible to virtually allocate resources of a cacheless system
to tasks and implement a time division multiplexing (TDM)
scheme to bound usage of resources and so ensure real-
time behaviour with predictability, like the CompSOC [12]
architecture. This platform relies on partitioning and virtuali-
sation of applications: all resources (processors, memories) are
budgeted and scheduled to ensure full predictability. Caches
and interrupts are unavailable on this platform. This platform
has its own design flow and its own architecture, different from
usual systems.

3) Partitioned and locked cache memories: Some cache
implementations add “cache line locking” and/or “cache par-
titioning”. This ensures that some lines stay in the cache
whatever happens to other data in the cache. This can lead
to predictable replacement behaviours in the cache [2] but
prevents a part of the cache to be useful when locked lines are
present in the cache. Nevertheless, cache partitions must still
be shared by multiple tasks if there are fewer partitions than
tasks. Moreover, the more partitions there are, the smaller the
actual size of the L1 cache available for a task is. To some
extents, the same goal can be reached with scratchpad mem-
ories where software can decide which data is in the memory
at which time. Note however that some studies showed that
cache locking can improve the worst-case execution time of
the tasks [22]. There is no way to save the state of a locked
zone of the cache to free some space and to reload it later to
resume execution in the same state.

4) Specific hardware services: Integrating new hardware
services in a platform to improve the system predictability
and reduce overheads is also possible [8]–[11]. These services
show good results at reducing overheads and are often added
at the processor level. The use of an ID for each process
can help reconfigure the memory management system to
speed-up context switching. Unfortunately, the number of
processes is limited to 128 in the ARMv6 architecture [10],
[16]. Another approach is to modify the processor to add
save/restore abilities for more than one register set [23].
In the Rhamma processor, the register sets stored near the
processor for switching can also be copied to the memory,
thus removing the limit on the context number. We will use a
similar technique but at the L1 level.

B. Preemption overheads impact on the WCET

Most of the theoretical works on the real-time scheduling
assume that the worst-case execution time Ci of any task
τi includes all the potential overheads this task could suffer

during its execution, especially preemptions. However, such
an approach can be very pessimistic since the number of
preemptions that a job may incur in the worst-case can be far
more larger than the number of preemptions it suffers in the
average and hence most frequent case. As a consequence, the
processing platform is over-dimensioned and lots of computa-
tional resources are left unused because of the overestimation
of the task computational needs.

Some works [24], [25] account for the overheads caused
by each task τi rather than the overheads suffered by τi.
This approach helps to reduce the pessimism of the overheads
accounting for some scheduling algorithms such as fixed job
priority algorithms.

Unfortunately, the preemption overheads may impact the
execution time of a task more than once, thereby highly
increasing its WCET. Furthermore, deriving an exact upper-
bound on the number of preemptions that a job can either
suffer or cause can turn out to be extremely difficult for
some scheduling algorithms with dynamic job priorities. Con-
sequently, there exist scheduling algorithms for which neither
of those approaches has been successfully applied yet [26] or
for which the computed worst-case execution time becomes
overly pessimistic [27]. Therefore their schedulability tests
remain theoretical and their performances for the scheduling
of realistic systems cannot be estimated differently than by
conducting empirical studies.

III. HARDWARE CONTEXT SWITCH (HWCS)

To reduce the impact of preemptions and migrations on
the execution time of tasks, we designed a HwCS which
almost removes the burden preemption from the processor and
transfer it to a context aware L1 cache controller.

We assume a generic uniprocessor architecture with a L1
cache and potentially other caches in the memory hierarchy.
Von Neumann and (modified) Harvard architecture are both
supported.

A. Concepts

A cache memory keeps track of spatial and temporal locality
of accesses made to a memory so that the cache memory can
speed up the future accesses to pre-stored data. Each cache
line holds (i) data, (ii) a tag which is used to store the base
address of data in the main memory and (iii) a few flags (valid
line, modified line) used by the cache controller. Sometimes,
data stored in the cache must be replaced with other data.
The choice of the line to be replaced in the cache is done by
the cache controller. Lots of replacement policies have been
developed over the years and the choice can be based on FIFO,
random, least/most recently used line [14], [28] or any other
policy [29], [30].

As explained in the introduction, the preemption of a task
τa by a second task τb will trigger a replacement of the cache
content with the instructions and data of τb. Therefore, a part
(if not all) the execution context of τa will have been lost
when τa will be resumed. A lot of cache misses will therefore
occur and the execution of τa will be slowed down. Without



the HwCS, after a context switch, a processor usually waits for
the cache controller to reload its content and so can be stalled
for a long time waiting for the cache misses to be resolved.

A good technique to avoid these cache misses related to
the context switches would be to save the execution context
of τa in the main memory in order to restore it later in the
cache of the processor. Hence, whenever a job is resumed after
a preemption, the temporal locality and the spatial locality of
data present in the cache is the same as before the preemption.
The burden to reload the cache memory after a preemption is
now supported by the HwCS and does not affect the processor
anymore because another layer can be used as a usual cache
at the same time for the current task, thereby limiting the
preemption overheads to only few clock cycles needed to save
and restore the internal processor context (i.e., the values of
the internal registers of the processor) and to the time needed
to configure the HwCS operations. Furthermore, the number
of tasks available for preemption is limited by the reserved
space in the system memory to store layer states.

The basic idea of the hardware context switch is the
following: the private L1 cache of a processor is divided into
two or more layers (see Figure 1(b)) of the same size. The
processor can access only one layer at a time, thereby implying
that the size of the cache visible by the processor is equal to
the size of one layer. Moreover, the layer which is not currently
used by the processor can be in three different states: (i) idle,
(ii) saving its content in the main memory or (iii) restoring a
previously saved content from the main memory.

The different layers are not used to ease keeping spatial
and temporal localities in separate caches [31] to improve
performances like in dual-cache systems. In our design, all
layers have the same properties regarding spatial and temporal
localisation of data.

This proposed new HwCS enables to simultaneously execute
a task on the processor and restore the execution context of
the next task to execute or save the previous executed context
in the other cache layer. Three situations may therefore occur:

1) The processor is executing a task — say τa — using
the first layer of the HwCS as a usual L1 cache (see
Figure 2(a)). The second layer of HwCS remains idle.

2) The scheduler decides to preempt the execution of τa
to start executing another task τb instead. The HwCS
therefore starts to restore τb’s context in its second layer
while the processor continues to execute τa using the
first layer as a usual cache memory (see Figure 2(b)).
In this case, the processor is not even aware that τb is
being prepared for execution.

3) The execution context of τb has been completely restored
in the second HwCS layer. The processor hence starts
running τb using this second layer as its L1 cache (see
Figure 2(c)). In parallel, the content of the layer which
is related to the execution of τa is saved in the main
memory.

This idea is quite similar to a double buffering scheme
applied to the whole L1 content including data, tags, flags
and replacement information.

The only unavoidable operations performed by the processor
are: (i) choosing which HwCS layer must be used for the
execution of the current running task, and (ii) configuring the
layer controller to initiate the saving or the restoring of the
cache content.

If the size of a layer is smaller than the size of the
L1 original cache, the task using it will suffer more cache
misses [32] during its execution but preemptions will no longer
be impacted and will cost virtually zero CPU time.

To the best of our knowledge, dual-buffering the whole
L1 (data, tags, flags and replacement information) and adding
abilities to save and restore a layer simultaneously has never
been implemented to improve system predictability.

B. Saving and restoring policy

1) Solution 1: The easiest implementation of the HwCS
would consist in saving the whole cache layer content includ-
ing tags, flags, data and the replacement policy information, at
consecutive addresses in the central memory. When this cache
state should be restored, the HwCS will simply have to read
the layer content as one block in the main memory.

Although the additional complexity of the cache controller
is minimal with this method, it faces important disadvantages:

a) Systematically saving the data and instructions stored
in the cache layer increases the amount of data transferred
through the communication network.

b) Saving the data of the cache will cause data duplication
and pollution of L2/L3 caches. The Figure 3a shows this
process. Let X be a piece of data stored in the cache layer
used by a task τa. X is accessed at the address addr(X) by
τa (accesses marked 2’). However, when the state of the cache
layer used by τa is saved in the main memory during a context
switch, the value of X is saved with the rest of the cache
content at another address denoted by addrsave(X) (accesses
marked 1’), so X exists now at two different addresses. Hence,
when the execution context of τa should be restored in a
cache layer, the HwCS will read the value of X at the address
addrsave(X) thereby warming up the L2 and L3 caches with
tags related to addrsave(X) (accesses marked 1) and not to the
address addr(X) at which τa accesses X (accesses marked 2).
This may eventually slow down the execution of τa because a
part of the context of τa that was still in L2 and/or L3 caches
might be evicted and will be reloaded at the first subsequent
access to X .

c) Coherency with data shared with other tasks is not
guaranteed. Assuming X is shared with a second task τb. The
value of X might be modified by τb when τa is not running on
the platform. Those modifications will be saved at the address
addr(X) in the main memory. However, because a copy of X
was saved at the address addrsave(X) when τa was preempted
and because the execution context of τa will be restored using
addrsave(X), the modifications made to X will not be seen
by τa. There is therefore a problem of coherency on the value
of X between the tasks.

2) Solution 2: Most of these problems can be solved by
not saving a copy of the data and instructions stored in each
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the second restores the context of the next task to be executed. (c) The first layer saves its context in the main memory while the second is used as a cache.
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Fig. 3. Comparison of solutions 1 and 2. Solution 1 (a): Save operation (top): Data, Tag, Flags and replacement policy information are saved to the
main memory (1’) and cause allocation in L2. Data already in L2 (2’) are duplicated with a different locality. Restore operation (bottom): Data, Tag, Flags,
replacement policy information are restored from the main memory (1) and cause allocation in L2 with data related to the context address in main memory.
These data are not used later by the task. And any write made in the HwCS, if propagated to the L2, will cause reallocation in L2. Solution 2 (b): Save
operation (top): data are first updated in L2/main memory (1’) then Tags, Flags and replacement policy information are saved to the main memory causing
minimal allocation in L2 (2). Restore operation (bottom): Tag, Flags, replacement policy information are restored from the main memory first (1) and cause
minimal allocation in L2. Then data are refreshed in the HwCS (2), causing L2 warm up with data actually used by the task.

cache line along with the tags, flags and the replacement policy
information. Indeed, the tags contain the addresses of the data
and instructions previously stored in each cache line. With that,
the cache data memories can be restored or saved without data
duplication. Any modified line must be updated to the main
memory during a layer save as shown on Figure 3b, phase
1’, and then the tags and flags have to be saved in the main
memory, phase 2.

For a restore operation, the tags and flags must be restored
first, phase 1, and then all lines must read from the main
memory, phase 2. Using these methods, data shared by tasks
are up-to-date and data are not duplicated, thereby removing
the coherency issue.

Restoring data using the tag causes transfers up to the size
of the cache and triggers allocations (warm-up) of data in the
L2/L3 caches i.e., the data stored in the layer are also stored
in L2/L3 caches, so cache misses related to the resumed task
might be resolved sooner.

With the solution 1, when we save the cache layer state, the
transfer size with the main memory is the sum of the tag and

flags, data and the replacement policy information memories.
Whereas with the solution 2, we only store the tag and flags
and the replacement policy information memories. The data
are updated in the main memory during the save operation
and reloaded during the restore operation, implying additional
transfers up to the size of the layer. For example, this transfer
is 5120 Bytes for a 32 kB 4-way associative cache using 32-
Byte lines with a FIFO replacement policy, which represents
only 16% increase related to the cache size. Solution 2 will
use only 5120 bytes for each context whereas Solution 1 will
use 37888 bytes).

C. Restrictions
1) Two Layers configuration: In the architecture described

above one layer of the HwCS is used by the processor as a
usual cache while the second layer may be used to save or
restore another task context. As pictured on Figure 4, when
a task τb must preempt a task τa, it first restores the context
of τb in the second layer (represented by a rising ramp on
Figure 4) while τa is still executed on the processor. Then,
when the execution context of τb has been fully restored in
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Fig. 4. Context switching with two layers

the second cache layer, τb starts to execute on the processor
and the execution context of τa can be saved in the main
memory (represented by a falling ramp). The save and restore
operations therefore happen in a row whenever a context
switch occurs.

Restoring or saving a layer takes some time as it has to be
read or written in the main memory respectively. This time
is dependent on the memory bandwidth and can usually be
bounded. The upper-bound on the the time needed to restore
the state of a cache layer is denoted by ∆R. Similarly, ∆S

provides an upper-bound on the time required to save the
context of a cache layer in the main memory. As we can
see on Figure 4, in the worst-case, no layer is available
during ∆R + ∆S time units to restore the context of a new
task. This imply that no new preemption can happen during
this interval. Therefore, the minimum time between two
consecutive preemptions on a same processor is equal to:
Tmin
preempt(Nlayers=2) = ∆R + ∆S

2) More than Two layers configuration: This minimum
time imposed between two consecutive preemptions can be
reduced by increasing the number of layers in the HwCS.
Indeed, restoring and saving task execution contexts can be
processed in parallel on different layers. For instance, as shown
on Figure 5, if we have three layers in the HwCS, the execution
contexts of two different tasks can be restored in an interval
of ∆R + ∆S time units. More generally, we can restore the
execution contexts of Nlayers−1 tasks in an interval of ∆R+∆S

time units when there are Nlayers layers in the HwCS. The
time between two simultaneous job arrival can be very short
— virtually zero — as long as at least a layer is empty, so
Tmin
preempt(Nlayers>2) = ε.

A practical limitation may arise from the required bandwidth
necessary to save/restore contexts. The number of concurrent
transfers with the memory increases with the number of layers
as more than one save/restore operation occurs at the same
time. Consequently, the delays ∆R and ∆S can be longer
than in a baseline design if the actual memory bandwidth is
kept constant.

D. Performance impact

The unpredictability of the cache related to the context
switching is no longer a concern as the processor does not
suffer additional cache misses caused by preemptions; the
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Fig. 5. Multiple preemptions with 3 layers

cache state is restored as it was before the preemption. Cache
misses due to context switching are therefore avoided.

Although the HwCS enables the processor to seamlessly
switch between tasks without major overhead, this ability has
two main drawbacks:

• Each layer of the HwCS must be able to save its state
or restore its state from the main memory. This increases
the controller complexity and might impose to provide
one cache controller for each layer.

• The bit-rate on the communication network as well as
the number of memory requests is increased since the
save and restore operations add additional transfers on
the architecture.

These additional costs imposed by the HwCS have been
measured and the results will be presented in Section V.
However, in the next section, we first study the impact of
the HwCS on the real-time scheduling theory.

IV. BRIDGING THE GAP BETWEEN THEORY AND PRACTICE

In the previous section, we described the principles and
concepts of the hardware context switch. We said that the
uniprocessor platform should have its L1 cache replaced by
such a hardware context switch so that the predictability of
the platform would be improved. In this section, we show the
implications of the hardware context switch on the application
behaviours running upon the platform and indeed prove that
the predictability of the hardware context switch makes the
practice fit the theory.

When we say that a task set is theoretically schedulable
with a given scheduling algorithm S, we mean that all the job
deadlines would be respected by S.

In the following, we will use the terms HW schedule and
OS schedule to differentiate between the schedule actually exe-
cuted on the hardware platform (i.e., the exact instants at which
the tasks start to execute on a processor as well as the exact
execution times of those tasks) and the schedule determined
online by the OS scheduler assuming that all the decisions
taken online by the operating system were instantaneously
realized (i.e., if the preemptions had no cost and there was not



any delay imposed by the HwCS), respectively. Note that the
HW schedule directly depends on the OS schedule computed
online but is impacted by the actual hardware characteristics.

Let us assume the initial task set SI
def
= {τ1, . . . , τn}

of sporadic tasks. Each sporadic task is defined as τi
def
=

〈Ci, Di, Ti〉 i.e., characterized by a worst-case execution time
Ci, a deadline Di and a minimum inter-arrival time Ti. That
is, the task τi releases a potentially infinite amount of jobs.
The release of two jobs are at least Ti time units apart, and
each of those job must execute for at most Ci time units before
its relative deadline occurring Di time units after its release.
If a job ends earlier than its WCET, the processor will stay
idle until the next decision taken by the scheduler is applied.

We will focus on the demonstration for uniprocessor de-
signs. Multiprocessors designs and migrations are left for
future works.

In this section, we make the following assumptions:

Assumptions 1–4
1) The operating system (OS) makes its scheduling deci-

sions relying on the OS schedule. That is, the operating
system assumes that no job ever exceeds its worst-case
execution time and that the tasks start executing on the
platform right at the instant at which the OS made the
decision (even though it does not correspond to what
actually happens on the platform);

2) At most, Nlayers−1 preemptions happens in any interval
of ∆R + ∆S time units when there are Nlayers layers in
the HwCS;

3) Loading the context of a task to be executed on the
processor always takes exactly ∆R time units (including
for the first execution of the task, i.e., when there is no
context to restore yet);

4) If the tasks share resources, the resource critical section
is executed non-preemptively.

Assumption 2 comes from the limitations of the HwCS
explained in Section III-C. Assumption 3 means that if the
save/restore operation is shorter than ∆R, the processor will
wait until ∆R time unit are elapsed before switching.

The last assumption (Assumption 4) ensures that a task
never stops to execute on a processor because of an unac-
cessible resource and hence the time spent to access resources
is included in the worst-case execution times of the tasks.
The use of other resource sharing protocols such as “Priority
Ceiling” or “Priority Inheritance” will be investigated in future
works.

A. Impact of the hardware context switch on the theory

The hardware context switch presented in the previous
section, makes the preemption cost negligible when compared
to the worst-case execution time of a task (see Section V
for accurate values). Furthermore, because the state of the
cache memory is exactly the same when a task τi restarts
its execution as it was when τi was preempted, τi’s execution
is not slowed down by the preemption. Therefore, the worst-
case execution times of the tasks are barely impacted by the

preemptions when the hardware context switch is used, and in
a first reasonable estimation, the worst-case execution times
can be considered completely independent of those.

However, because the hardware context switch must load
the cache with the execution context of a task τi before
starting to execute τi, a delay appears between the exact instant
at which τi starts running on a processor and the instant
initially scheduled for its execution by the OS scheduling
algorithm. We now analyse the impact of this delay on the
timing behaviours of the system.

Lemma 1. The HwCS will delay any scheduling decision
taken by the OS scheduler by ∆R time unit in the HW schedule
related to the OS schedule.

Proof: This is the direct consequence of Assumptions 2
and 3.

A consequence of Lemma 1 is that nothing will be executed
on the processor during ∆R time unit after the system start.
Therefore, the execution time of all the tasks in the HW
schedule is always equal to the execution time computed by
the scheduling algorithm for the OS schedule. Furthermore, the
HW schedule is identical to the OS schedule shifted forward
by ∆R time units (see Figure 6 for an example of the result of
an online schedule). Hence, the preemptions have no impact
on the actual execution times of the tasks.

However, because the OS schedule is shifted forward by
∆R time units, if a job was supposed to end its execution right
at its deadline in the OS schedule, it will end up finishing its
execution ∆R time units after its deadline in the HW schedule
(see Figure 6). Therefore, to be certain that all jobs will respect
their deadlines in the HW schedule, we must reduce their
deadlines by ∆R time units in the OS schedule and hence
impose a virtual deadline DOS

i
def
= Di −∆R to every task τi.

Let us assume the modified task set SOS
def
={

τOS
i

def
= 〈Ci, D

OS
i , Ti〉 | τi ∈ SI

}
, the following theorem

holds:

Theorem 1. If the modified task set SOS is (i) theoretically
schedulable by a scheduling algorithm S and (ii) Assump-
tions 1 – 4 are respected, then SI is schedulable when executed
on a platform using the hardware context switch.

Proof: By the properties of the hardware context switch,
the worst-case execution times of all tasks in SI are not
impacted by the preemptions. Therefore, the worst-case exe-
cution time experienced by any task τOS

i in the HW schedule
executed on the platform can be considered as being equal to
its worst-case execution time in the OS schedule.

Let ai,j be the time when the jth job of task τi ∈ SI (and
thus of task τOS

i ∈ SOS) is released, and let fOS
i,j and fHW

i,j be
the times when the jth job of task τOS

i ∈ SOS completes its
execution in the OS and HW schedule, respectively.

Because the task set SOS is theoretically schedulable by S,
all the jobs released by every task τOS

i ∈ SOS will respect their
virtual deadlines DOS

i and therefore complete their executions
at most DOS

i time units after their release in the OS schedule
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computed by S. Formaly, we have ∀i, j, fOS
i,j ≤ ai,j + DOS

i .
Moreover, by Lemma 1, the hardware context switch will delay
the execution of all jobs (both start and completion time) for
all tasks in SOS by ∆R time units in the HW schedule executed
on the platform. Since the WCET in SOS and in SI are the
same, the job executed in the hardware schedule will finish
at fHW

i,j = fOS
i,j + ∆R. And because fOS

i,j ≤ ai,j + DOS
i =

ai,j +Di −∆R, there is fHW
i,j ≤ ai,j +Di thereby implying

that all jobs of any task τi ∈ SI respect their deadlines.

This is an important progress for the real-time scheduling
community since scheduling algorithms can now be compared
on a fair basis. For instance, an optimal scheduling algorithm
is now indeed optimal, whatever the number of preemptions it
may cause. When doing comparisons, a scheduling algorithm
should now be considered better than an other one on the basis
of more relevant properties such as the model of tasks it can
schedule, the complexity of the algorithm, its behaviour in the
presence of a given set of events, etc.

V. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental platform used to test the HwCS was
designed using a modified Harvard architecture with a
HwCS composed of two layers. Specifically, a single
ARM R©Cortex

TM
M0 processor with an AMBA AXI4

TM
wrapper

is wired to a 2-layer HwCS for combined data and instructions
(2× 4kB, 4-way associativity, 32-byte lines). The system has
also one memory of 8MB (off-chip SSRAM with an AXI
wrapper) to store the OS, tasks, data, instructions and the layer
states.

We designed this setup to be predictable and easy to
implement. Therefore, the three following choices have been
made:

(i) the memory bandwidth is equally divided between all the
layers; This is implemented using Time Division Multiple
Access (TDMA) .

(ii) the save/restore operations transfer the whole content of
the cache memory (data and instructions stored in the
cache) along with tags, flags and the replacement policy
information using the solution 1.

(iii) the baseline configuration keeps the same memory band-
width as one layer of the HwCS (thus using only half the
available bandwidth).

The setup is similar to the one presented Figure 1b with the
L2 memory replaced by the SSRAM.

In this section, we will present the gate level implementation
of a two-layer HwCS and we will compare the results to the
baseline cache design. Then we will show the context switch
performance of the HwCS.

B. Gate level implementation

The HwCS was implemented in VHDL starting from a stan-
dard cache controller design [14] using a FIFO replacement
policy. We added necessary logic and data paths to the initial
design to save and restore the cache tags, flags and replacement
policy information. An address range is reserved to receive
commands (save/restore/flush) from the CPU side. This cache
controller uses three RAM to store data, tag and flags and the
FIFO replacement policy information.

RTL synthesis were made using Synopsys Synplify Premier
(E.2011-3).

The experimental platform enables the HwCS to be also
configured as a standard baseline cache by removing the added
features, thus using the same cache controller behaviour in
both configurations. The area of baseline and two-layer HwCS
are reported in Table I for different cache/layer size.

A HwCS layer is 10% bigger than the baseline cache con-
troller, considering Flip-Flops (FF) and Look Up Tables (LUT)
used for logic. Because we use a two-layer configuration, the
logic used is multiplied by 2.2 and the RAM is doubled for
the same HwCS layer size.

If we split the baseline cache size into two layers, we keep
the same increase in logic area with a constant memory use.

Related to the whole platform, the increase in area is lower.
If we consider the whole system with CPU, HwCS and glue



logic compared to the same system with a baseline cache, the
increase in area is 35% for logic and 100% for memory for a
constant HwCS layer/cache size and only 35% for logic when
splitting the baseline cache size in two for the HwCS.

The area of the Cortex M0 we use is around 950 FF and
3000 LUT which is similar to the logic area of one layer of
the HwCS, so the increase seems important, but if we compare
with a bigger processor, the increase in area is quite low.

For instance, according to [33], [34], the die of an Itanium 2
processor has a size of 421 mm2 and the two 16kB L1 area
used to store data and instructions have a total approximative
area of 11.5 mm2 on a 0.18 µm process. The micrograph of
the die shows that approximatively half of the L1 die area is
reserved for storage and the other half is logic. When scaled
to this particular technology node and application, the area
requirements for the HwCS with 2 layers are not more than
12.7 mm2 for the cache controllers (recall that we now need
two controllers, one for each layer) and 11.5 mm2 for the
RAM area needed for both layers (assuming that each layer
has a size of 16kB). Consequently, the modified die would size
433.7 mm2 which is only a 3% increase when we replace the
L1 cache by a HwCS composed of two layers.

C. System level experimental setup and characterisation

The system clock runs at 70 MHz in a Virtex5 LX330 FPGA
circuit on a CHIPIT R©PLATINUM FPGA prototyping platform
from Synopsys R©. All measurements were performed using the
gate level simulation of the platform.

A custom RTOS was developed to use the HwCS and apply
the process shown on Figure 4 using fully independent tasks.
It can be configured to run with a baseline cache as well.
Whenever a context switch should occur on the processor,
two interrupts are arisen. The first one executes the scheduler
and configures the HwCS to start the restore operation of
the next task to be executed. The second happens ∆R later,
switches contexts, configures the HwCS to save the other
preempted context and starts the execution of the new task.
Those interrupts represents the OS overhead listed in Table I. If
theses interruptions are not cached, their worst case execution
time is 200µs with the HwCS and 190µs on the baseline
system.

1) Platform characterisation: We characterised our plat-
form and measured the time needed to perform a cache flush
in the worst case (all the cache/layer has modified data which
must be updated in the main memory), the worst case time
needed to reload all lines from the main memory, the sum
gives the worst time needed to perform a context switch with
the baseline cache: T preempt

min . The OS overhead is also listed.
Knowing T preempt

min , the worst case available time (WCAT), i.e.,
the effective time usable for task execution is computed by :
WCATB(T ) =

T−OSoverhead −Tpreempt
min

T for the baseline cache
and WCATH(T ) = T−OSoverhead

T for the HwCS, with T the
period of the OS tick. Measurements are listed in Table I.

The measurements show that a system with the baseline
cache have a worst case utilisation of 5% (although the average
utilisation might be far better because we selected parameters

to highlight the cost of preemptions with the baseline cache).
Considering the worst case, almost all the available computing
time is wasted in overheads, whereas with a system using
the HwCS, the worst case available time is 90% in the same
situation, which represent a huge improvement.

The ∆S and ∆R were also measured and show an decrease
of a few percent related to the cache flush and reload time
respectively, with a bigger transfer with the memory. The
HwCS does not have to verify if data are cached when
saving/restoring a context, thus saving some cycles for each
cache line compared to the usual cache behaviour.

The only constraint is that T preempt
min must be lower than the

tick period. The peak relative memory bandwidth is doubled
with the HwCS as a layer can save/restore its content during
another task execution.

Of course, further improvements are possible and will be
implemented in future works. We could for instance unequally
share the bus bandwidth between the layers or we could im-
plement the save/restore Solution 2 described in Section III-B.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new hardware component
named HwCS, which makes the preemption overheads neg-
ligible in comparison to the task worst-case execution times.
However, the HwCS imposes a delay ∆R between the instant
of the preemption decided in the theoretical schedule and the
instant at which it actually happens on the platform. We proved
that this behaviour of the HwCS can be taken into account
in the real-time scheduling theory by simply reducing the
deadline of each task by ∆R time units. This property enables
to reuse all the existing theory on the real-time scheduling
while fairly comparing the scheduling algorithms.

Our experimental results show that the HwCS can poten-
tially improve the worst case processor utilization from 5 to
90% for a 1ms OS tick on a uniprocessor platform using a
two-layer HwCS and allowing preemptions every 1 ms. This
performance improvement has a cost which is estimated to an
increase of 3% for an Itanium processor die area.

The presented work is a first proof of concept and further
improvements could be made in the design of the HwCS for
uniprocessors systems. Furthermore, more comprehensive tests
must still be conducted to measure the impact of the HwCS
on the performances of various systems running realistic ap-
plications. Also, the impact of keeping the same memory area
in a N-layer HwCS compared to the standard baseline cache is
to be studied. The theory must be extended to multiprocessor
platforms.

REFERENCES

[1] Kalray Corporation. (2013) A new generation of agile manycore
processors & software solutions for high performance. [Online].
Available: http://www.kalray.eu

[2] ARM, PL310 Cache Controller Technical Reference Manual, 2007.
[3] D. Hardy and I. Puaut, “WCET analysis of multi-level non-inclusive

set-associative instruction caches,” Real-Time Syst. Symp. 2008, 2008.
[4] S. M. Petters and G. Färber, “Scheduling analysis with respect to hard-

ware related preemption delay,” in Workshop on Real-Time Embedded
Systems, december 2001.

http://www.kalray.eu


BL 4kB HwCS 2×4kB BL 32kB HwCS 2×32kB HwCS 2×16kB

HwCS/cache alone:
LUT6 1334 2900(×2.2) 1411 3186(×2.3) 3059(×2.2)

FF 1037 2105(×2.0) 1057 2224(×2.1) 2212(×2.1)
Logic (total) 2371 5005(×2.1) 2468 5410(×2.2) 5271(×2.1)

RAM (BRAM + 64b LUT) 1+53 2+106(×2) 12+36 18+384(×1.5/11) 10+200(×0.8/6)

Complete platform:
LUT6 5294 6905(×1.3) 5372 7191(×1.3) 7063(×1.3)

FF 3208 4279(×1.3) 3228 4398(×1.4) 4386(×1.4)
Logic (total) 8502 11184(×1.3) 8600 11589(×1.35) 11449(×1.3)

RAM (BRAM + 64b LUT) 1+53 2+106(×2) 12+36 18+384(×1.5/11) 10+200(×0.8/6)

relative memory 1 2 1 2 2
bandwidth (peak)

Cache flush (WC) [ms] 0.28 0.28 2.2 2.2 1.1
Cache reload (WC)[ms] 0.48 0.48 4.0 4.0 2.0

∆R [ms] NA 0.45 NA 3.6 1.8
∆S [ms] NA 0.26 NA 2.4 1.2

Tmin
preempt [ms] 0.76 0.71 6.2 6 3

OS overhead (WC) [µs] 190 200 190 200 200
CPU WCAT@1ms [%] 5 90 NA NA NA

CPU WCAT@10ms [%] 90 98 36 98 98

TABLE I
HWCS/BASELINE CACHE PERFORMANCE AND COSTS FOR SEVERAL CONFIGURATIONS

[5] A. Bastoni, B. B. Brandenburg, and J. Anderson, “Cache-related pre-
emption and migration delays: Empirical approximation and impact on
schedulability,” in OSPERT 2010, S. M. Petters and P. Zijlstra, Eds.,
July 2010, pp. 33–44.

[6] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empirical
comparison of global, partitioned, and clustered multiprocessor edf
schedulers,” in RTSS 2010, 2010, pp. 14–24.

[7] ——, “Is semi-partitioned scheduling practical?” in ECRTS 2011, July
2011, pp. 125–135.

[8] G. Nelissen, V. Nelis, J. Goossens, and D. Milojevic, “High-level
simulation for enhanced context switching for real-time scheduling in
mpsocs,” in JRWRTC 2009, C. Seidner, Ed., 2009, pp. 47–50.

[9] M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “RTOS
Scheduler Implementation in Hardware and Software for Real Time
Applications,” Seventeenth IEEE Int. Work. Rapid Syst. Prototyp., 2006.

[10] G. Chanteperdrix and R. Cochran, “The ARM fast context switch
extension for Linux,” Real Time Linux Work., 2009.

[11] J. S. Snyder, D. B. Whalley, and T. P. Baker, “Fast context switches:
Compiler and architectural support for preemptive scheduling,” Micro-
processors and Microsystems, vol. 19, pp. 35–42, 1995.

[12] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony,
S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad,
A. Nelson, and S. Sinha, “Virtual Execution Platforms for Mixed-Time-
Criticality Applications: The CompSOC Architecture and Design Flow,”
SIGBED Rev., vol. 10, no. 3, pp. 23–34, 2013.

[13] Microchip, 16-Bit Microcontrollers and Digital Signal Controllers with
High-Speed PWM, USB and Advanced Analog, 2012.

[14] A. J. Smith, “Cache Memories,” ACM Computing Surveys, vol. 14, no. 3,
pp. 473–530, 1982.

[15] SPARC International, The SPARC architecture manual Version 9, 1994.
[16] ARM, ARM architecture reference manual, 2007.
[17] Department of Computer Systems at the Tampere University of Tech-

nology, COFFEE Core USER MANUAL, 2007.
[18] Analog Devices, SHARC Processor Programming Reference (Includes

ADSP-2136x, ADSP-2137x, and ADSP-214xx Processors) Revision 2.2,
March 2011, 2011.

[19] N. Suzuki, S. Kurotaki, M. Suzuki, N. Kaneko, Y. Yamada, K. Deguchi,
Y. Hasegawa, and H. Amano, “Implementing and evaluating stream
applications on the dynamically reconfigurable processor,” in FCCM
2004, 2004, pp. 328–329.

[20] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith, “The Tera Computer System,” SIGARCH Comput. Arch.
News, vol. 18, no. 3b, pp. 1–6, 1990.

[21] Intel, Intel R© 64 and IA-32 Architectures. Software Developer’s Manual.
Volume 1-3C, 2012.

[22] L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Viñals, “Improving the
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