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Abstract—ARINC specification 653-2 describes the interface
between application software and underlying middleware in a
distributed real-time avionics system. The real-time workload
in this system comprises of partitions, where each partition
consists of one or more processes. Processes incur blocking and
preemption overheads and can communicate with other processes
in the system. In this work we develop compositional techniques
for automated scheduling of such partitions and processes. At
present, system designers manually schedule partitions based on
interactions they have with the partition vendors. This approach
is not only time consuming, but can also result in under utilization
of resources. In contrast, the technique proposed in this paper is
a principled approach for scheduling ARINC-653 partitions and
therefore should facilitate system integration.

I. INTRODUCTION

ARINC standards, developed and adopted by the Engineer-
ing Standards for Avionics and Cabin Systems committee,
deliver substantial benefits to airlines and aviation industry
by promoting competition, providing inter changeability, and
reducing life-cycle costs for avionics and cabin systems. In
particular, the 600 series ARINC specifications and reports
define enabling technologies that provide a design foundation
for digital avionics systems. Within the 600 series this work
deals with ARINC specification 653-2, part I [1] (henceforth
referred to as ARINC-653), which defines a general-purpose
Application/Executive (APEX) software interface between the
operating system of an avionics computer and the application
software.

As described in ARINC-653, the real-time system of an
aircraft comprises of one or more core modules connected
with one another using switched Ethernet. Each core module
is a hardware platform that consists of one or more processors
among other things. They provide space and temporal par-
titioning for independent execution of avionics applications.
Each independent application is called a partition, and each
partition in turn is comprised of one or more processes
representing its real-time resource demand. The workload on a
single processor in a core module can therefore be described
as a two-level hierarchical real-time system. Each partition
comprises of one or more processes that are scheduled among
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Fig. 1. Scheduling hierarchy for partitions

themselves using a (local) partition specific scheduler. All the
partitions that are allocated to the same processor are then
scheduled among themselves using a (global) partition level
scheduler. For example, Figure 1 shows two such systems,
where partitions P1 and P2 are scheduled together under
a global scheduler on one processor, and partitions P3 and
P4 are scheduled together under a global scheduler on an-
other processor. Each partition Pi in turn is comprised of
processes τ i,1, . . . , τ i,mi scheduled under a local scheduler.
Processes are periodic tasks that communicate with each other.
Sequences of such communicating processes form dependency
chains and designers can specify end-to-end latency bounds for
them. For example, Figure 1 shows one such chain between
tasks τ1,1, τ2,2 and τ3,2. Processes within a partition can block
each other using semaphores for access to shared data, giving
rise to blocking overheads (tasks τ4,2 and τ4,m4 in the figure).
Further, processes and partitions can also be preempted by
higher priority processes and partitions respectively, resulting
in preemption overheads.

There are several problems related to the hierarchical sys-
tem described above that must be addressed. For scheduling
partitions, it is desirable to abstract the communication de-
pendencies between processes using parameters like offsets,
jitter and constrained deadlines. This simplifies a (global)
processor and network scheduling problem into several (local)
single processor scheduling problems. The process deadlines
must also guarantee satisfaction of end-to-end latency bounds
specified by the designer. Given such processes we must
then generate scheduling parameters for partitions to be used
by the global scheduler. The resulting global schedule must
provide sufficient processor capacity to schedule processes
within partitions. Further, these scheduling parameters must



also account for blocking and preemption overheads incurred
by processes and partitions.

This avionics system frequently interacts with the physical
world and hence is subject to stringent government regulations.
Then, to help with system certification, it is desirable to de-
velop schedulability analysis techniques for such hierarchical
systems. Further, these analysis techniques must account for
resource overheads arising from preemptions, blocking and
communication. In order to protect the intellectual property
rights of partition vendors, it is also desirable to support
partition isolation; only so much information about partitions
must be exposed as is required for global scheduling and the
corresponding analysis. We therefore consider compositional
techniques for partition scheduling, i.e., we schedule parti-
tions and check their schedulability by composing partition
interfaces which are abstract representations of the resource
demand of processes within partitions.

Partition workloads can be abstracted into interfaces using
existing compositional techniques [2], [3], [4], [5]. These tech-
niques use resource models as interfaces, which are models
characterizing resource supply from higher level schedulers.
In the context of ARINC-653, these resource model based
interfaces can be viewed as abstract resource supplies from
the global scheduler to each partition. Various resource models
like periodic [2], [4], bounded-delay [3] and Explicit Deadline
Periodic (EDP) [5], have been proposed in the past. However,
before we can use these techniques, we must modify them to
handle ARINC-653 specific issues like communication depen-
dencies and blocking and preemption overheads. In this paper
we assume that communication dependencies and end-to-end
latency bounds are abstracted using existing techniques into
process parameters like offset, jitter and constrained deadline
(see [6], [7]). Note that although we do not present solutions
to this problem, it is however important, because it motivates
the inclusion of aforementioned process parameters.

Contributions. In this paper we model ARINC-653 as
a two-level hierarchical system and develop compositional
analysis techniques for the same. This is a principled approach
for scheduling ARINC-653 partitions that provides separation
of concerns among different partition vendors and therefore
should facilitate system integration. In particular, our contri-
butions can be summarized as follows:

1) We extend and improve existing periodic [2] resource
model based compositional analysis techniques to take
into account (a) process communications modeled as
offsets, jitter and constrained deadlines, and (b) process
preemption and blocking overheads. Section III presents
this solution and illustrates its effectiveness using actual
workloads from avionics systems.

2) We develop techniques to schedule partitions using their
interfaces, taking into account preemption overheads
incurred by partitions. Specifically, in Section IV, we
present a technique to count the exact number of pre-
emptions incurred by partitions in the global schedule.

II. SYSTEM MODEL AND RELATED WORK

Partitions and processes. Each partition has an associated
period that identifies the frequency with which it executes,
i.e., it represents the partition-interface period. Typically, this
period is derived from the periods of processes that form
the partition. In this work we assume that partitions are
scheduled among themselves using deadline-monotonic (DM)
scheduler [8]. This enables us to generate a static partition
level schedule at design time (hyper-period schedule) as re-
quired by the specification. Processes within a partition are
assumed to be periodic tasks1. ARINC-653 allows processes
to be scheduled using preemptive fixed-priority schedulers, and
hence we assume that each partition also uses DM to schedule
processes in its workload.

As discussed in the introduction, we assume that communi-
cation dependencies and end-to-end latency requirements are
modeled with process offsets, jitter and constrained deadlines.
Hence each process can be specified as a constrained deadline
periodic task τ = (O, J,T,C,D), where O is offset, J is
jitter, T is period, C is worst case execution time and D
(≤ T) is deadline. Jobs of this process are dispatched at
time instants xT + O for every non-negative integer x, and
each job will be released for execution at any time in the
interval [xT + O, xT + O + J]. Each job requires C units of
processing capacity within D time units from its dispatch. For
such a process it is reasonable to assume that O ≤ D [6].
Further, we denote as 〈{τ1, . . . , τn}, DM〉 a partition P that
comprises of processes τ1, . . . , τn and uses DM scheduler.
Without loss of generality we assume that in this partition
τ i has higher priority than τ j for all i < j.

In addition to the restrictions specified so far, we make
further assumptions for the system described herein. These
assumptions have been verified to be true in digital avionics
systems. For example, see the avionics workloads given in
the appendix of this technical report [9]. (1) We assume that
the processes within a partition, and hence the partition itself,
cannot be distributed over multiple processors. (2) We assume
that periods of partitions that are scheduled on the same
processor are harmonic2. Note that this assumption does not
prevent processes from having non-harmonic periods. (3) We
assume that processes in one partition cannot cause blocking
to processes in another partition. This follows from the fact
that mutual exclusion based on semaphores requires use of
shared memory, which is only possible within a partition.

Related work. Traditionally, the partition scheduling
problem has been addressed in an ad-hoc fashion based on
interactions between the system designer and vendors who
provide the partitions. Although many different ARINC-653
platforms exist (see [10], [11]), there is little work on au-
tomatic scheduling of partitions [12], [13], [14]. Kinnan et
al. [12] only provide preliminary heuristic guidance, and the
other studies [13], [14] use constraint-based approaches to look

1Partitions with aperiodic processes also exist in avionics systems, but they
are scheduled as background workload. Hence we ignore them.

2A set of numbers {T1, . . . ,Tn} is harmonic if and only if, for all i and
j, either Ti divides Tj or Tj divides Ti.



at combined network and processor scheduling. In contrast to
this high-complexity holistic analysis, we present an efficient
compositional analysis technique that also protects intellectual
property through partition isolation.

Resource models based on periodic resource allocations
and compositional analysis techniques using them have been
developed in the past [4], [5], [2]. However these studies
do not consider dependencies between and within partitions.
But such dependencies in hierarchical systems have been
addressed in other studies [15], [16], [17], [18], [19], [20].
Almeida and Pedreiras [15] have presented compositional
analysis techniques for the case when processes in partition
workload have jitter in their releases. Davis and Burns [16]
have extended this technique to consider release jitter as well
as preemption overheads. Various resource-sharing protocols
(HSRP [18], SIRAP [19], BROE [20]) that bound the max-
imum resource blocking time for dependent partitions have
also been proposed in the past. However all these approaches
do not consider process offsets which are used to model
communication dependencies. Although these techniques can
still be used for processes being considered in this paper, the
analysis will be pessimistic in general. In this work we address
this issue by developing exact schedulability conditions for
processes with offsets. Matic and Henzinger [17] have also
developed compositional analysis techniques in the presence
of partition dependencies. Although one of their dependency
models (real-time workshop) is similar to the dependency
constraints that we consider here, it is more restrictive in that
periods of dependent processes are required to be harmonic.

Mataix et al. [21] compute the number of preemptions
when partitions are scheduled under a fixed-priority scheduler.
However, unlike our technique which counts the preemptions
exactly, they only present an upper bound.

III. PARTITION INTERFACE GENERATION

In this section we propose techniques to compute a pe-
riodic resource model based interface for a partition P =
〈{τ1, . . . , τn}, DM〉. We assume that ΠP denotes the interface
period specified by the system designer for P . We first briefly
discuss the shortcomings of existing resource model based
analysis, and then develop techniques that overcome these
shortcomings.

A. Inadequacy of existing analysis

A periodic process, such as the one described earlier,
consists of an infinite set of real-time jobs that are required to
meet temporal deadlines. The resource request bound function
of a process upper bounds the amount of processing capacity
required to meet all its temporal deadlines (rbf : < → <).
Similarly, the request bound function of a partition is the
worst-case amount of resource requested by all the processes
in the partition. We denote by rbfP,i(t) the request bound
function of process τ i in partition P for a time interval length
t. Then Equation (1) gives rbfP,i assuming that jitter and
offset for all the processes are zero [4].

rbfP,i(t) =

iX
j=1

‰
t

Tj

ı
Cj (1)

When processes have non-zero jitter but zero offset, Tindell
and Clark have derived a critical arrival pattern which can be
used to compute rbf [22]. In this arrival pattern each higher
priority process is released simultaneously with the process
under consideration, incurring maximum possible jitter. All
future jobs of these higher priority processes are released as
soon as possible, i.e., they incur zero jitter. Further, the process
under consideration itself is assumed to incur maximum possi-
ble jitter. Thus, for a process τ i with zero offset but non-zero
jitter, rbfP,i can be specified as

rbfP,i(t) =

iX
j=1

„‰
t+ Jj

Tj

ı
Cj

«
(2)

To satisfy the demand of a process or partition, the core
module processor must supply sufficient computational re-
sources. A resource model is a model for specifying the
timing properties of this resource supply. For example, a
resource supply that provides Θ units of resource in every
Π units of time can be represented using the periodic resource
model φ = 〈Π,Θ〉 [4]. Similarly, a resource supply that
provides Θ units of resource within ∆ units of time with
this pattern repeating every Π time units, can be represented
using the explicit deadline periodic (EDP) resource model
η = 〈Π,Θ,∆〉 [5]. In both these models, Θ

Π represents the
resource bandwidth (average processor supply used over time).
The supply bound function of a resource model lower bounds
the amount of resource that the model supplies (sbf : < → <).
Given a resource model R and time interval length t, sbfR(t)
gives the minimum amount of resource that R is guaranteed
to supply in any time interval of length t. sbf for periodic
(Equation (3)) and EDP (Equation (4)) resource models are
reproduced below. In these equations x1 = 2(Π−Θ), y1 =⌊
t−(Π−Θ)

Π

⌋
, x2 = Π + ∆−2 Θ and y2 =

⌊
t−(∆−Θ)

Π

⌋
, where

x1 and x2 are called the blackout intervals for periodic and
EDP models respectively. These functions are also plotted in
Figure 2. As shown in the figure, after the blackout interval,
the models provide Θ units of resource in every Π time units.

sbfφ(t) =


max {0, t− x1 − y1 Π}+ y1 Θ t ≥ Π−Θ

0 Otherwise
(3)

sbfη(t) =


max {0, t− x2 − y2 Π}+ y2 Θ t ≥ ∆−Θ

0 Otherwise
(4)

When processes in a partition have zero offset and jitter
values, conditions for schedulability of the partition using a
periodic or EDP resource model have been proposed in the
past [4], [5]. These conditions can be easily extended for
processes with non-zero jitter and is presented below.
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Theorem 1: A partition P =
〈〈τ1 = (0, J1,T1,C1,D1), . . . , τn = (0, Jn,Tn,Cn,Dn)〉, DM〉
is schedulable over a periodic or EDP resource model R iff

∀i, 1 ≤ i ≤ n,∃ti ∈ (0,Di− Ji] s.t. rbfP,i(ti) ≤ sbfR(ti),

Periodic or EDP resource model based interface for partition
P can be generated using Theorem 1 as follows. We first set
the period of resource model R to be equal to ΠP . If R is a
periodic resource model, then techniques presented in [4] can
be used to develop a periodic model based interface. Since
we are interested in minimizing processor usage (and hence
resource bandwidth), we must compute the smallest Θ that
satisfies this theorem. Hence, for each process τ i, we solve
for different values of ti and choose the smallest Θ among
them. Note that the theorem needs to be evaluated only at
those time instants at which rbfP,i changes. Θ for model R
is then given by the largest value of Θ among all processes in
P . Similarly, if R is an EDP resource model then Easwaran
et al. [5] have presented a technique that uses this theorem
to compute a resource model having the smallest bandwidth.
However, as described in the introduction, processes can be
more accurately modeled using non-zero offset values. Then
a major drawback in using the aforementioned techniques is
that Theorem 1 only gives sufficient (not necessarily tight)
schedulability conditions. This follows from the fact that the
critical arrival pattern used by Equation (2) is pessimistic for
processes with non-zero offset. Additionally, these techniques
do not take into account preemption and blocking overheads
incurred by the processes.

In the following sections we extend Theorem 1 to accommo-
date processes with non-zero offsets, as well as to account for
blocking and preemption overheads. Recollect from Section II
that all the partitions scheduled on a processor are assumed
to have harmonic interface periods. This observation leads to
a tighter supply bound function for periodic resource models
when compared to the general case. Therefore we first present
a new sbf for the periodic resource model and then extend
Theorem 1.
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Fig. 3. Tasks with harmonic periods

B. sbf under harmonic interface periods

In the technique described in [4], a periodic interface φ =
〈Π,Θ〉 is transformed into a periodic task τφ = (Π,Θ,Π)3

before it is presented to the global scheduler. Note that the
period of model φ and task τφ are identical and the period
of task τφ is identical to its deadline. In ARINC-653, this
means the partitions that are scheduled on a processor are
in fact abstracted into periodic tasks with harmonic periods.
When such implicit deadline (period = deadline) periodic tasks
are scheduled under DM, every job of a task is scheduled in
the same time instants within its execution window. This can
be derived from the following observations: 1) whenever a
job of a task is released, all the higher priority tasks also
release a job at the same time and 2) each job always executes
for its stated worst-case execution time, in order to provide
sufficient supply to the underlying periodic resource model.
For example, Figure 3 shows the schedule for a periodic task
set {τ1 = (2, 1, 2), τ2 = (4, 1, 4), τ3 = (4, 1, 4)}. It can be
seen that every job of τ3 is scheduled in an identical manner
within its execution window.

Whenever task τφ is executing, the resource is available for
use by the periodic model φ. This means that resource supply
allocations for φ also occur in an identical manner within
intervals (nΠ, (n + 1) Π], for all n ≥ 0. In other words, the
blackout interval x1 in sbfφ can never exceed Π−Θ. For the
example shown in Figure 3, assuming task τ3 is transformed
from a periodic resource model φ3 = 〈4, 1〉, the blackout
interval for φ3 can never exceed 3. Therefore the general sbf
for periodic models given in Equation (3) is pessimistic for
our case. Improved sbfφ is defined as follows.

sbfφ(t) =

—
t

Π

�
Θ + max


0, t− (Π−Θ)−

—
t

Π

�
Π

ff
(5)

For an EDP resource model η = 〈Π,Θ,∆〉, the blackout
interval in sbfη is Π + ∆−2 Θ [5]. Since ∆ ≥ Θ is a
necessary condition, this blackout interval can never be smaller
than Π−Θ. Then there will be no advantage in using EDP
models for partition interfaces over periodic models. Therefore
we focus on periodic models in the remainder of this paper.

3This task is equivalent to the constrained deadline periodic task
(0, 0,Π,Θ,Π), i.e., it has zero jitter and offset. For convenience of pre-
sentation, we ignore the leading zeroes in the notation.



C. Schedulability condition for partitions

Request function. When processes have non-zero offsets,
identifying the critical arrival pattern to compute rbf is a non-
trivial task. It has been shown that this arrival pattern could
occur anywhere in the interval [0,LCM], where LCM denotes
the least common multiple of process periods (see [23]).
As a result no closed form expression for rbf is known in
this case. Therefore we now introduce the request function
(rf : < × < → <), which for a given time interval gives
the maximum possible amount of resource requested by the
partition in that interval. Since rf computes the resource
request for a specific time interval as opposed to an interval
length, it can be computed without knowledge of the critical
arrival pattern. When processes have non-zero jitter in addition
to non-zero offsets, we must compute rfP,i assuming an arrival
pattern that results in the maximum higher priority interference
for τ i. The following definition gives this arrival pattern for a
job of τ i with latest release time t, where t = Oi + Ji +xTi
for some non-negative integer x.

Definition 1 (Arrival pattern with jitter [6]): Recall that a
job of process τ = (O, J,T,C,D) is dispatched at time
instant xT + O (for some non-negative integer x) and
can be released for execution at any time in the interval
[xT + O, xT + O + J]. Then a job of τ i with latest release
time t incurs maximum interference from higher priority
processes in P whenever, (1) all higher priority processes
with dispatch time before t are released at or before t with
maximum jitter and (2) all higher priority processes with
dispatch time at or after t are released with zero jitter.

To compute rfP,i(t1, t2) based on the above arrival pattern,
we do the following for each higher priority process. We first
count the number of jobs that can be released up to time
t2, assuming zero jitter. We then subtract from this count the
number of jobs that can be released up to time t1, assuming
maximum jitter. Thus

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj (6)

Schedulability conditions. The following theorem presents
exact schedulability conditions for partition P under periodic
resource model φ.

Theorem 2: Let T = {τ1, . . . , τn} denote a set of pro-
cesses and P = 〈T , DM〉 denote a partition, where for each
i, τ i = (Oi, Ji,Ti,Ci,Di). Also, let LCMP denote the
least common multiple of process periods T1, . . . ,Tn. P is
schedulable using a periodic resource model φ = 〈Π,Θ〉
iff ∀i, 1 ≤ i ≤ n, ∀tx s.t. tx + Di−Oi− Ji < LCMP
and tx = Oi + Ji +xTi for some non-negative integer x,
∃t ∈ (tx, tx + Di−Oi− Ji] such that

rfP,i(0, t) ≤ sbfφ(t) and rfP,i(tx, t) ≤ sbfφ(t− tx) (7)

Proof: To prove that these conditions are sufficient for the
schedulability of P , we must validate the following statements:

(1) it is sufficient to check the schedulability of all jobs whose
deadlines lie in the interval [0,LCMP ] and (2) Equation (7)
guarantees that the job of τ i with latest release time tx is
schedulable using periodic resource model φ.

Since Di ≤ Ti and Oi ≤ Di for all i, no process released
before LCMP can execute beyond LCMP without violating
its deadline. Further, dispatch pattern of processes in P is
periodic with period LCMP . Therefore it is sufficient to check
the schedulability of all jobs in the interval [0,LCMP ].

We now prove statement (2). Consider the job of τ i with
latest release time tx. For this job to be schedulable under
resource model φ, higher priority interference encountered
by the job in the interval [tx, tx + t) must be satisfied by
resource model φ. This higher priority interference arises from
processes released before tx, as well as from those released at
or after tx. Condition rfP,i(tx, t) ≤ sbfφ(t − tx) guarantees
that φ provides enough supply to satisfy the interference
from processes released at or after tx. To account for the
interference from processes released before tx, we have the
second condition, i.e., rfP,i(0, t) ≤ sbfφ(t). This condition
ensures that the minimum resource provided by φ in an interval
of length t, is at least as much as the total higher priority
interference up to time t. This proves that these conditions are
sufficient for the schedulability of partition P .

We now prove that these conditions are also necessary
for the schedulability of P . For this purpose, observe that
rfP,i(0, t) ≤ sbfφ(t) is a necessary condition to guarantee that
resource model φ satisfies the higher priority interference in
interval [0, t). Further, this condition alone is not sufficient,
because it does not guarantee that φ will provide enough
resource in the interval [tx, t). The second condition ensures
this property.

Periodic resource model based interface for partition P can
be generated using Theorem 2, employing techniques identical
to those described at the end of Section III-A. Note that, in
this case as well, the theorem needs to be evaluated only at
those time instants at which rfP,i changes. When compared to
Theorem 1, this technique represents a computationally expen-
sive (exponential versus pseudo-polynomial) but more accurate
interface generation process. In fact for many avionics systems
we expect this technique to be computationally efficient as
well. For instance, if process periods are harmonic as in
many avionics systems (see workloads in the appendix of this
technical report [9]), then LCMP is simply the largest process
period and our technique has pseudo-polynomial complexity
in this case.

Although Theorem 2 presents an exact schedulability con-
dition for P , it ignores the preemption and blocking overheads
incurred by processes in P . Hence, in the following section,
we extend our definition of rf to account for these overheads.

Blocking and preemption overheads. Recall that pro-
cesses incur blocking overhead because of mutual exclusion
requirements modeled using semaphores. Blocking occurs
when a job of a lower priority process is executing in a critical
section, and a job of a higher priority process cannot preempt
this lower priority job. In this case the higher priority job



is said to be blocked by the lower priority job, resulting in
blocking overheads. In this paper we assume that critical sec-
tions span entire job executions and they are non-preemptible.
That is a job locks each shared data it wants to access at the
beginning of its execution and releases these locks only when
it finishes its entire execution. Two properties of the blocking
overhead can then be derived immediately: (1) this overhead
varies with each job of a process and (2) any job of a process
can be blocked by at most one lower priority job.

Consider a process set T = {τ1, . . . , τn} and partition
P = 〈T , DM〉. We now present an approach to bound the
blocking overhead for a job of process τ l ∈ T released at
time t. Specifically, we compute the bound when this job is
blocked by some job having priority lower than that of process
τ i, for some i ≥ l. For each process τk (k > i), we compute its
largest interference on the job of τ l released at time t (Ik), and
then choose the maximum over all such processes. Suppose J
denotes a job of process τk that is released before time t but
has a deadline after t. If no such job exists, then interference
Ik is zero. Otherwise, we set Ik equal to the maximum time for
which J can execute after time t without missing its deadline.

Ik =

8>>><>>>:
0

j
t

Tk

k
Tk + Ok ≥ t

or
j
t

Tk

k
Tk + Dk ≤ tj

t
Tk

k
Tk + Dk −t Otherwise

Since the maximum time for which a job of τk can block
a higher priority job is upper bounded by its worst case
execution time Ck, the blocking overhead for a job of τ l
released at time t is given as

BOP,l,i(t) = max
k>i
{min {Ik,Ck}} , (8)

The following equation presents a quantity BOP,l,i(t1, t2),
which bounds the blocking overhead incurred by all jobs of
τ l released in the interval [t1, t2).

BOP,l,i(t1, t2) =
X

t:t∈[t1,t2) and τl released at t
BOP,l,i(t) (9)

When a higher priority process preempts a lower priority
process, the context of the lower priority process must be
stored for later use. When the lower priority process resumes
its execution at some later time instant, this context must
be restored. Thus every preemption results in an execution
overhead associated with the storing and restoring of pro-
cess contexts. Many different techniques for bounding this
preemption overhead have been proposed in the past. For
example, Easwaran et al. [24] have proposed an analytical
upper bound for the number of preemptions under fixed-
priority schedulers. They presented these bounds for processes
with non-zero offset values and zero jitter. These equations can
be easily extended to account for jitter in process releases,
as well as for blocking overheads. We assume that an upper
bound on the number of preemptions is obtained using one
such existing technique. Further, we let POP,i(t1, t2) denote
this upper bound in the interval [t1, t2), for preemptions

incurred by processes that have priority at least as much as
τ i. Assuming δp denotes the execution overhead incurred by
processes for each preemption, request function with blocking
and preemption overheads is given as

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj

+ δp × POP,i(t1, t2) +

iX
j=1

BOP,j,i(t1, t2) (10)

The blocking overhead in the above equation considers the
total blocking incurred by all processes τ j (j ≤ i) from
processes having priority lower than τ i. This in fact represents
the total lower priority workload that can potentially execute
at a priority higher than that of τ i.

D. Interface generation for sample workloads

We now demonstrate the effectiveness of our proposed
technique using sanitized data sets obtained from an avionics
system. These data sets are specified in the appendix in
the technical report [9]. There are 7 workloads, where each
workload represents a set of partitions scheduled on a single
processor. We consider two types of workloads; workloads in
which tasks have non-zero offset but zero jitter (workloads 1
and 2), and workloads in which tasks have non-zero jitter but
zero offset (workloads 3 thru 7). For workloads 1 and 2, Table I
in Section III-D1 specifies the total resource utilization of
individual partitions (

∑
C
T ). For workloads 3 thru 7, Table II

in Section III-D2 specifies the resource bandwidth reserva-
tions for individual partitions, in addition to total resource
utilization. These reservations, currently used by the system
designers to allocate resources, are computed using the vmips
parameter of the workload specifications4.

We have developed a tool set that takes as input the
aforementioned workloads, and generates as output resource
model based interfaces for them. In the following two sections
we present the results generated using this tool set.

Partition Utilization Partition Utilization
P1 0.134 P6 0.12
P2 0.056 P7 0.1345
P3 0.028 P8 0.165
P4 0.1265 P9 0.006
P5 0.0335 P10 0.038

P11 0.048

TABLE I
WORKLOADS 1 AND 2

1) Workloads with non-zero offset: In this section we
consider workloads 1 and 2. Firstly, we compare our proposed
approach with the existing well known compositional analysis
technique based on the periodic resource model [4]. We
assume that this technique uses Theorem 1 to generate pe-
riodic resource model based partition interfaces and therefore

4See the appendix of the technical report for details on how the reservations
are computed.
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Fig. 4. Interfaces for partitions P1, . . . , P5

ignores process offsets. This approach does not account for
the preemption and blocking overheads incurred by processes.
Hence to ensure a fair comparison, we ignore these overheads
when computing interfaces using our approach as well. In Fig-
ures 4(a) and 5(a), we have plotted the resource bandwidths of
interfaces obtained using our approach (Theorem 2). We have
plotted these bandwidths for period values 1 and multiples
of 5 up to 50. Note that since sbfφ defined in Equation (5)
is a linear function of capacity Θ, there is no need to use
a linear lower bound like the one used in [4]. Similarly,
we also obtained partition interfaces using Theorem 1 as
discussed above, and their resource bandwidths are plotted
in Figures 4(b) and 5(b). Although partition (and therefore
interface) periods are fixed by the system designers, we have
plotted the resource bandwidths for different period values.
This is to illustrate that our results in this section, that of
comparison of the two approaches, are independent of partition
periods.

As can be seen from these plots, interfaces obtained using
our approach have a much smaller resource bandwidth on an
average when compared to those obtained using the existing
technique. This gain in efficiency is because of two reasons:
(1) we use a tighter sbf in Theorem 2 when compared to
the existing approach, and (2) the existing approach ignores
process offsets and hence generates pessimistic interfaces.
These advantages of our approach over the existing one hold
in general, and therefore the illustrative results of this section
are also expected to hold for other workloads in the avionics
domain. From the plots in Figures 4(a) and 5(a) we can also
see that, for some period values, bandwidths of our periodic
resource models are equal to the utilization of corresponding
partitions. Since utilization of a partition is the minimum
possible bandwidth of a resource model that can schedule
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Fig. 5. Interfaces for partitions P6, . . . , P11

the partition, our approach generates optimal resource models
for these periods. In these plots it can also be observed that
the bandwidth increases sharply beyond a certain period. For
interfaces φ1, φ4 and φ8 corresponding to partitions P1,P4

and P8 respectively, the bandwidth increases sharply beyond
period 25. This increase can be attributed to the fact that in
these partitions the smallest process period is also 25. In our
examples, since smallest process period corresponds to the
earliest deadline in a partition, resource models with periods
greater than this smallest value require larger bandwidth to
schedule the partition.

Finally, we also generated partition interfaces using Theo-
rem 2, taking into account preemption and blocking overheads.
The resource bandwidth of these interfaces are plotted in
Figures 6(a) and 6(b). For preemptions we assumed that the
overhead of each preemption (δp) is 0.1, and that every job
of a process preempts some lower priority job. This bound
on δp is consistent with the observed preemption overhead on
real avionics workloads (i.e., 10% of one unit of execution
on an average). Blocking overhead was computed using the
upper bound given in Equation (9). As expected, resource
bandwidths of these interfaces are significantly higher in
comparison to the bandwidths in Figures 4(a) and 5(a) 5. Since
our preemption and blocking overheads are only upper bounds
and not necessarily tight, the minimum bandwidths of resource
models that can schedule these partitions lie somewhere in
between the two plots.

2) Workloads with non-zero jitter: In this section we con-
sider workloads 3 thru 7. Since these workloads have zero
offset, we used Theorem 1 to generate periodic resource model
based partition interfaces. In this theorem we used sbf given

5Y-axis in Figures 6(a) and 6(b) ranges from 0 to 1, whereas in Figures 4(a)
and 5(a) it ranges from 0 to 0.45.
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Fig. 6. Partition interfaces with blocking and preemption overheads

by Equation (5) and interface periods are set equal to the
corresponding partition periods given in the workload specifi-
cations. Preemption overheads are assumed to be identical to
those described in the previous section. For blocking overhead
of a process τ l we use maxt:τ l is released at tBOP,l,l(t).
This is in fact equal to maxk>l{Ck} because the process has
zero offset.

We now compare the bandwidth of generated interfaces with
the reserved bandwidth of partitions. Table II lists the follow-
ing four parameters for each partition in workloads 3 thru 7:
(1) Total utilization of the partition (

∑
C
T ), (2) Reserved

bandwidth, (3) Interface bandwidth computed as described
above, and (4) Percentage increase in bandwidth (100 ×
(reserved − computed)/computed). As can be seen from this
table, bandwidths of partition interfaces generated using our
technique are significantly smaller than the reserved band-
widths of partitions on an average. When generating partition
interfaces, we ignore the resource requirements of aperiodic
processes in partitions. These aperiodic processes are identified
by a period value of zero in the workload specifications. For
example, they are present in partition ”PART26 ID=26” of
workload 4 and partition ”PART22 ID=22” of workload 6.
Since the workloads do not specify any deadlines for these
processes (they execute as background processes in ARINC-
653), we cannot determine the resource utilization of these
processes. Then one may argue that the difference in reserved
bandwidth and bandwidth computed by our technique, is in
fact used by aperiodic processes. Although this is possible,
our results show that even for partitions with no aperiodic
processes there are significant savings using our technique.
The bandwidth computed using our technique is higher than
the reserved bandwidth for two partitions (“PART36 ID=36”
and “PART12 ID=12”). Without more information on how

Partition name Utilization Reserved Computed % Increase
Workload 3

PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART29 ID=29 0.199415 0.37669 0.3735 0.9%
PART35 ID=35 0.05168 0.22185 0.0717 209.4%
PART20 ID=20 0.035125 0.09798 0.0589 66.3%
PART32 ID=32 0.033315 0.08164 0.0781 4.5%
PART36 ID=36 0.045 0.11036 0.12 −8%
PART33 ID=33 0.0379 0.09178 0.0579 58.5%
PART34 ID=34 0.04764 0.10755 0.0676 59.1%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART31 ID=31 0.00684 0.01689 0.0137 23.3%

Workload 4
PART30 ID=30 0.11225 0.23086 0.169 36.6%
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART20 ID=20 0.035125 0.09797 0.0589 66.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART26 ID=26 0.13496 0.44932 0.2538 77%
PART27 ID=27 0.02784 0.06869 0.0478 43.7%
PART28 ID=28 0.0552 0.12106 0.0752 61%

Workload 5
PART15 ID=15 0.5208 0 0.5224
PART13 ID=13 0.01126 0.03378 0.0163 107.2%
PART12 ID=12 0.0050 0.01126 0.02 −43.7%

Workload 6
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART19 ID=19 0.14008 0.32939 0.2284 44.2%
PART21 ID=21 0.12751 0.30011 0.2667 12.5%
PART22 ID=22 0.13477 0.31137 0.2631 18.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%

Workload 7
PART45 ID=45 0.00325 0.02815 0.01 181.5%

TABLE II
BANDWIDTHS FOR WORKLOADS 3 THRU 7

the reserved bandwidths are computed, the only reasonable
explanation for such exceptions is that our estimates on
preemption and blocking overheads are far higher than their
actual values in these partitions.

IV. PARTITION SCHEDULING

Let the partition set P1, . . . ,Pn be scheduled on an unipro-
cessor platform under DM scheduler. Further, let each partition
Pi be represented by a periodic resource model based interface
φi = 〈Πi,Θi〉 as described in Section III. Without loss of
generality we assume that Π1 ≤ . . . ≤ Πn. To schedule these
interfaces on the uniprocessor platform, we must transform
each resource model into a task that the higher level DM sched-
uler can use. For this purpose, we use the transformation which
for interface φi generates the process τ i = (0, 0,Πi,Θi,Πi). It
has been shown that this transformation is both necessary and
sufficient with respect to the resource requirements of φi [4].

If each partition interface is transformed as above, then
processes in the resulting set (τ1, . . . , τn) have implicit dead-
lines, zero offset and harmonic periods (partition periods are
harmonic). Liu and Layland have shown that DM is an optimal
scheduler for such processes [25]. In the following section
we present a technique to count the number of preemptions
incurred by this process set. The partition level schedule can
then be generated after adjusting the execution requirements
of τ1, . . . , τn to account for preemption overheads.
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A. Partition level preemption overhead

Preemption overhead for partitions (represented as pro-
cesses) can be computed using the upper bounds described
in Section III. However as described in the previous section,
these processes are scheduled under DM and have harmonic
periods, implicit deadlines and zero offset and jitter values.
For such a process set, it is easy to see that every job of
each process executes in the same time instants relative to its
release time (see Figure 3). Therefore every job of a process is
preempted an identical number of times. For this case, we now
develop a technique to compute the number of preemptions.

For each i, let Ni denote the number of preemptions
incurred by each job of τ i. We first give an upper bound for Ni
and later show how to tighten this bound. For this upper bound,
we assume that the number of preemptions N1, . . . , Ni−1

for processes τ1, . . . , τ i−1 respectively, are known. We also
assume that the worst case execution requirements of these
processes are adjusted to account for preemption overheads.
Then the following equation gives an upper bound for Ni.

N
(k)
i =

2666 Θ
(k)
i

Πi−1−
Pi−1
j=1

Πi−1
Πj

Θj

3777
 

Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj
(Nj − 1)

!
(11)

In this equation we assume Θ(0)
i = Θi and Θ(k)

i =
Θi +N (k−1)

i δp, where δp denotes the execution overhead for
each preemption. Then the upper bound for Ni is given by
that value of N (k)

i for which N (k)
i = N

(k−1)
i .

Theorem 3: Let N∗i denote the value of N (k)
i in Equa-

tion (11) such that N (k)
i = N

(k−1)
i . Then N∗i ≥ Ni.

Proof: In the kth iteration, given Θ(k)
i , Equation (11)

computes the number of dispatches of process τ i−1 that occur
before the execution of Θ(k)

i units of τ i. For example, in
Figure 8 there are three dispatches of τ i−1 that overlap with
the execution of τ i: intervals (t1, t2], (t2, t3] and (t3, t4]. We

then determine the number of preemptions incurred by τ i
within the execution window of each these dispatches of τ i−1.
Since every job of a process executes in the same time instants
relative to its release time, this number of preemptions is the
same in each of these execution windows, except the last one.
In the last window it is smaller because the execution of τ i
can terminate before the end of the window. Use of ceiling
function in the equation implies that the last window is treated
similar to the other execution windows, and this is one factor
for the upper bound.

To determine the number of preemptions within each exe-
cution window of τ i−1, Equation (11) computes the number
of execution chunks of τ i in each window. Each set of
consecutive execution units of a process in a schedule is a
single execution chunk 6. The maximum possible number of
chunks is given by Πi−1 /Π1. However, since higher priority
processes also execute in this window, τ i need not have so
many execution chunks. Therefore we subtract the execution
chunks of higher priority processes from this maximum pos-
sible number. For each higher priority process τ j , Πi−1 /Πj

gives the number of jobs of τ j in the current execution window
and Nj gives the number of preemptions incurred by each of
those jobs. Then the number of execution chunks of τ j in
the entire window is (Nj × Πi−1)/Πj . However all of these
execution chunks cannot be always discarded; specifically the
last one. Since the response time of τ j need not necessarily
coincide with a release of τ1, τ i could potentially continue its
execution immediately after the last execution chunk of τ j .
In Equation (11) we always use Nj − 1 for the number of
execution chunks of τ j and this results in an upper bound.

Since Θ(k)
i is non-decreasing and cannot be greater than

Πi, this iterative computation must terminate and has pseudo-
polynomial complexity. This computation only gives an upper
bound for Ni due to two reasons: (1) the ceiling function and
(2) use of Nj as the count for execution chunks of process
τ j . In fact Equation (11) cannot be used to upper bound Ni,
because it assumes knowledge of exact preemption counts
for processes τ1, . . . , τ i−1. We now present a technique that
overcomes these shortcomings. We modify Equation (11) as
follows:
• We replace the ceiling function with a floor function, and

add a separate expression that counts preemptions in the
last execution window of τ i−1.

• We replace Nj in the equation with a quantity Ij , which
is either Nj+1 or Nj depending on whether the response
time of τ j coincides with a release of τ1 or not.

Let N (k)′

i denote the preemption count for τ i in the last
execution window of τ i−1, when Θ(k)

i is the execution re-
quirement of τ i. Then Ni is given by

N
(k)
i =

6664 Θ
(k)
i

Πi−1−
Pi−1
j=1

Πi−1
Πj

Θj

7775 Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj
Ij

!
+N

(k)′

i

(12)

6Note that the number of execution chunks is always equal to the number
of preemptions encountered by the process.



We now give equations to compute the two unknown
quantities Ij and N (k)′

i in the above formula.

Ij =

(
Nj

l
Rj

Π1

m
=
j

Rj

Π1

k
Nj − 1 Otherwise

Here Rj denotes the worst case response time of process
τ j . Since j ∈ [1, . . . , i − 1], Nj is known and therefore Rj

can be computed. N (k)′

i is given by the following equation.

N
(k)′

i =

&
R

(k)
i −T

(k)
i−1

Π1

’
−

i−1X
j=2

&
R

(k)
i −T

(k)
i−1

Πj

’
Ij (13)

In this equation R(k)
i denotes the response time of τ i with

execution requirement Θ(k)
i , and T

(k)
i−1 is the time of last

dispatch of τ i−1 (for example, t3 in Figure 8). R(k)
i −T (k)

i−1

gives the total time taken by τ i to execute in the last execution
window of τ i−1. This, along with the higher priority inter-
ference in the window, gives N (k)′

i . The following theorem
then observes that the preemption count generated using
Equation (12) is equal to Ni.

Theorem 4: Let N∗i denote the value of N (k)
i in Equa-

tion (12) such that N (k)
i = N

(k−1)
i . Then N∗i = Ni.

One may argue that the exact preemption count can also
be obtained by simulating the execution of processes. Since
process periods are harmonic, the simulation runs in pseudo-
polynomial time. However, in safety critical systems such
as avionics, it is often required that we provide analytical
guarantees for correctness. The iterative computation presented
here serves this purpose.

Thus each process τ i can be modified to
account for preemption overhead and is specified as
τ i = (0, 0,Πi,Θi +Niδp,Πi). If the resulting process set
{τ1, . . . , τn} is schedulable7, then using Theorems 2 and 4
we get that the underlying partitions can schedule their
workloads.

V. CONCLUSIONS

In this paper we presented ARINC-653 standards for avion-
ics real-time OS and modeled it as a two level hierarchical
system. We extended existing resource model based techniques
to handle processes with non-zero offset values. We then
used these techniques to generate partition level schedules.
Design of real-time systems in modern day air-crafts is done
manually through interactions between application vendors
and system designers. Techniques presented in this paper
serve as a platform for the principled design of partition level
schedules. They also provide analytical correctness guarantees,
which can be used in system certification.
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