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Abstract 

Cooperating mobile robots are real-time systems that often require mutual synchronisation, either to carry out 
cooperative sensing and actuation, or to improve the quality of wireless communications. Concerning this last 
aspect, a common technique to improve the communication channel is to eliminate access collisions by allocating 
predefined disjoint time slots to robots, in a circular list, which is known as Time Division Multiple Access (TDMA). 
This technique typically requires a global clock to identify each slot. However, this method is not robust with 
respect to asynchronous transmissions generated by external or joining nodes. Consequently, this work proposes 
a global TDMA protocol that allows for real-time and guaranteed delivery of messages within deadlines, given its 
predictable schedule, and that: i) applies to dynamic mesh networks of cooperating mobile robots; ii) synchronises 
slots in a relative fashion using locally perceived delays of message exchanges that are globalised throughout the 
network, thus not relying on a global clock; and iii) tolerates external traffic and asynchronous joining robots using 
underneath standard ad-hoc wireless RF technologies that provide CSMA-type arbitration. We describe our 
protocol and prove that under common operating conditions all robots eventually reach synchronisation. We also 
propose a heuristic for the few cases that were not covered by the previous proof, which always led to consensus 
under extensive simulation testing. To the best of our knowledge, this is the first guaranteed clockless 
synchronisation approach for ad-hoc networks of mobile robots that works over commodity wireless protocols. 
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Abstract—Cooperating mobile robots are real-time systems
that often require mutual synchronisation, either to carry out
cooperative sensing and actuation, or to improve the quality of
wireless communications. Concerning this last aspect, a common
technique to improve the communication channel is to eliminate
access collisions by allocating predefined disjoint time slots to
robots, in a circular list, which is known as Time Division
Multiple Access (TDMA). This technique typically requires a
global clock to identify each slot. However, this method is not
robust with respect to asynchronous transmissions generated by
external or joining nodes. Consequently, this work proposes a
global TDMA protocol that allows for real-time and guaranteed
delivery of messages within deadlines, given its predictable
schedule, and that: i) applies to dynamic mesh networks of
cooperating mobile robots; ii) synchronises slots in a relative
fashion using locally perceived delays of message exchanges that
are globalised throughout the network, thus not relying on a
global clock; and iii) tolerates external traffic and asynchronous
joining robots using underneath standard ad-hoc wireless RF
technologies that provide CSMA-type arbitration. We describe
our protocol and prove that under common operating conditions
all robots eventually reach synchronisation. We also propose a
heuristic for the few cases that were not covered by the previous
proof, which always led to consensus under extensive simulation
testing. To the best of our knowledge, this is the first guaranteed
clockless synchronisation approach for ad-hoc networks of mobile
robots that works over commodity wireless protocols.

I. INTRODUCTION

Teams of mobile robots, or mobile agents in general, are

frequently used in cooperative applications such as surveil-

lance, search and rescue, automatic warehouses and industrial

manufacturing. These systems fall in a class recently called

Mobile Cyber-Physical Systems (M-CPS) [4] in which sensors

and actuators can be relocated dynamically within a region and

are inherently real-time systems.

In these systems, mobility and physical distances lead to

the common use of Radio Frequency (RF) wireless commu-

nications. Since the wireless medium is shared and current

standard protocols are half duplex, simultaneous transmissions

may cause collisions and packet drops. With few robots

and low bandwidth requirements, common arbitration-based

access control protocols, such as those based on Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA),

can generally deal with collisions. However, the efficiency

of these protocols is seriously reduced when the number of

agents and the communication load increases, leading to more

collisions, packet losses, and long delays [15]. Moreover,

these systems frequently use periodic communication patterns

that may lead to intervals of time, called critical interfer-

ence periods [4], during which the probability of collisions

increases significantly, independently of the communication

load, due to persistent simultaneous communication attempts

and retransmissions [12].

Both critical interference periods and excess of collisions in

general can be mitigated using synchronisation, since it allows

for each agent to transmit in disjoint time slots, a technique

commonly called Time Division Multiple Access (TDMA),

which is typically used in real-time communications given its

predictable timing characteristics. Moreover, synchronisation

can benefit other periodic processes within the team, from syn-

chronising sensor measurements with the communication pro-

tocol (improving data freshness) to synchronising distributed

behaviours such as formation control and target tracking [10].

A common technique to achieve synchronisation is setting

up a single absolute time reference, that is, a global clock.

The time reference can be external, e.g., using GNSS or

NTP over the Internet, or internal, using extra messages to

exchange clock values. However, transmitting periodically on

predefined time instants does not cope well with external

interference produced by nodes outside the team, or even by

nodes joining the team asynchronously. In particular, critical

interference periods may still occur when the interference is

periodic with a period close to an integer (sub)multiple of the

TDMA round [3].

Alternatively, looser forms of synchronisation, such as rela-

tive synchronisation using the delay patterns suffered by mes-

sages exchanged within the team, are simpler to implement and

have been shown to be effective in practice in highly dynamic

mobile robotic scenarios, e.g., robotic soccer competitions,

outperforming traditional (absolute) clock synchronisation in

robustness. This technique is the basis of the Reconfigurable

and Adaptive TDMA (RA-TDMA) protocol [4] that was

developed for infrastructured networks.

In this paper we take inspiration from RA-TDMA to put

forth the following contributions:

• The Ad-hoc Reconfigurable and Adaptive TDMA (RA-

TDMA+) protocol to achieve relative synchronisation in
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ad-hoc mesh networks of mobile robots;

• An original TDMA framework modeling technique based

on phases of periodic processes;

• A formal proof of convergence (synchronisation) to a

global periodic TDMA framework under typical team

operating conditions;

• A heuristic that allows synchronising the robots in the

cases beyond those covered by the previous proof.

To the best of our knowledge, this is the first guaranteed

clockless (relative) synchronisation framework for dynamic

mesh networks of mobile robots that works over commodity

wireless protocols, facilitating real-time.

The remainder of the paper is organised as follows. The

next section discusses related work. Section 3 presents the

background of the global synchronisation approach leading to

the RA-TDMA+ protocol. Section 4 introduces the TDMA

framework modelling approach relying on phases. Then, in

Section 5 we present the synchronisation convergence analysis,

including the formal proof of convergence and a comple-

mentary heuristic for the few cases that do not fit the proof

conditions. Finally, Section 6 presents the protocol validation

via extensive simulation while Section 7 concludes the paper.

II. RELATED WORK

Currently, IEEE 802.11 [1] is arguably the most common

standard RF communications technology used by mobile

robots due to its robustness, cost, and reach. Since it is a com-

modity and general purpose, overlay protocols are frequently

defined on top to provide specific properties.

A commonly desired additional property is reduced or no

access collisions, to improve the quality of communications.

IEEE 802.11 uses CSMA/CA arbitration, a mechanism that

detects collisions and invokes a back-off and retry procedure

that is known to be particularly effective with a lightly loaded

medium. However, when the load increases, variable and

unpredicted delays may develop. Nonetheless, CSMA/CA is

still quite useful as a base layer for solving collisions created

by unpredictable or uncontrollable interferences.

One way of handling these conditions, is the token-passing

approach for IEEE 802.11 proposed by the WIreless Chain

networK Protocol (WICKPro) [2][5] aiming at providing real-

time guarantees for Wireless Mesh Network (WMN) in chain

topologies. The protocol uses a typical cyclic approach with

a macro-cycle that repeats itself over time, and is formed

by several micro-cycles within which the protocol circulates

a token to serialise transmissions. A token master enforces

the periodic token release that synchronises all robots in

the network. Synchronisation is thus centralised and strictly

following the clock of the token master, particularly not

adapting to external interference.

Other approaches use implicitly defined transmission slots

mechanisms, e.g. using TDMA or transmission schedules.

For example, the work presented in [6] defines transmission

schedules that are calculated by all robots in parallel, and

updated at an agreed future instant every time there is a

topology change. This relies on global clock synchronisation,

as robots need to agree on the times of each transmission and

when the schedule is to be updated.

There are many algorithms that provide global clock syn-

chronisation, for example DMTS [13], where the time master

broadcasts a timestamp that receivers use to update their

clocks. In [9], a master clock is used, in this case part of

the Access Point (AP) in a IEEE802.11 network. When the

AP sends a beacon that contains its timestamp, receivers get

the packet near-simultaneously, allowing them to synchronise

their local clocks with the AP clock.

FLOPSYNC-2 [14] is another clock synchronisation ap-

proach in which a master node imposes its clock, from

which slaves align their local times. The master transmits

a periodic packet, which is received by all slaves, each of

which calculates a correction factor. To have all the slaves

receive the master message, FLOPSYNC-2 combines with

Glossy [7], a protocol that uses concurrent transmissions of the

same packet that interfere constructively at each hop, flooding

the multi-hop network in the minimum number of hops from

transmitter to the farthest receiver (network radius). This is a

rather promising flooding technique but it is highly dependent

on the clock precision achieved. Currently, to the best of

our knowledge, there are no reported implementations on

commodity IEEE 802.11 technology, yet, and it is unclear how

this technique would cope with asynchronous transmissions in

an open environment, thus being inadequate for our context.

A relevant aspect is that global rigid periodic frameworks

based on clock synchronisation perform worse when they

are exposed to critical interference periods, i.e. periods in

which external periodic transmissions are synchronous with

robots transmissions, while looser synchronisation approaches,

e.g., relative, fare better on these periods [4]. In fact, by

adjusting the offset of periodic processes in response to relative

delays it is possible to escape from periodic interference,

as opposed to frameworks which transmissions are stuck to

fixed instants in an absolute timeline. The work in [8] is an

example, achieving the synchronisation of multiple agents in

a distributed and adaptive way. In this work, agents emit a

periodic pulse (not messages) with a known frequency. Agents

that receive a pulse either delay or advance their own pulses

within certain constraints, in an effort to match the received

one. Eventually, agents synchronise and start emitting simul-

taneously. However, this technique cannot be directly used

in our context, either. Firstly, the transmission of messages

instead of pulses is significantly more prone to delays and

omissions (losses). Secondly, advancing transmissions may

imply a transient violation of the bandwidth allocated to

each robot. Finally, the purpose of our synchronisation is

to prevent simultaneous transmissions of different messages,

which would lead to collisions and unpredictable delays.

On the other hand, RA-TDMA [4], a protocol developed

within the Cooperative Autonomous Mobile roBots with Ad-

vanced Distributed Architecture (CAMBADA) robotic soccer

team [10] for the RoboCup Middle-Size League (MSL), fol-

lows similar goals to ours. This protocol organises the team

communications in a periodic TDMA round. However, when

306



a robot’s transmissions are delayed, e.g. due to interference,

all other robots delay their transmissions, too, in an attempt

to keep their slots separate and in order, without relying

on a global clock. This corresponds to delaying the whole

TDMA round, enforcing a loose clockless synchronisation.

This mechanism proved to be effective when compared with

using absolute clock [3] in harsh operational scenarios, such

as the RoboCup MSL games. Contributing to reduce collisions

within the team and eliminating critical interference periods.

Despite its favourable properties, RA-TDMA follows the

constraint imposed by the MSL league of using a managed,

i.e., infrastructured, network. Thus, it does not work in dy-

namic mesh networks leaving open the development of a new

clockless synchronisation approach that could exhibit similar

properties in such challenging domains.

III. RA-TDMA+

Our target is to support real-time collaboration among teams

of connected robots that periodically share their state. We

assume that robots can move freely within a given area of

operation that is larger than the individual communication

ranges. Thus, each robot can only exchange messages with

its neighbours, but needs to communicate with the entire team

leading to a dynamic mesh topology. Our first early attempt

was a global TDMA framework relying on a global clock

but we faced problems with critical interference periods, as

explained before. We then moved to RA-TDMA, and faced

several additional challenges arising from the robots lack of

a direct view of the team membership and network topology.

In addition, synchronisation based on perceived delays is also

more complex since each robot listens to a potentially small

subset of the team members, only.

In this section we introduce the RA-TDMA+ protocol that

addresses these challenges in a fully distributed way and

enforces the desired global synchronisation extending the basic

mechanism of RA-TDMA. One of our requirements is to build

it on a standard communication layer that provides CSMA/CA

type of arbitration (e.g. ad-hoc IEEE 802.11), to cope with

external interference, i.e., from sources outside the team, as

well as new robots that may join the team asynchronously,

interfering until they receive their own slot.

We took inspiration from our earlier implementations [12]:

ideas for information dissemination and for tracking of both

network topology and team membership. We briefly describe

these mechanisms in this section.

A. The team of robots and its TDMA round

Let TA be the set of N active robots, i.e., those that are

currently engaged in the team. This set may vary dynamically

as robots join or leave, but we consider these changes to occur

at a low average rate compared with the speed of the topology

tracking mechanism.

The robots in the team communicate one at a time in a cycle,

i.e., the TDMA round. The duration of the round (Tup) defines

the reactivity of the communications and is set according to

the real-time requirements of the cooperative applications the

team executes. This parameter is fixed and known a priori by

all robots in the team. The round is divided in N consecutive

time slots of equal duration (tslot = Tup/N ), each assigned

exclusively to a robot in the team. As the number of robots in

the team increases, the slot duration decreases, that is, there

is a trade-off of scale for bandwidth.

Each robot has an unique numeric physical ID. The pro-

tocol uses a simple algorithm that assigns slots to robots

by increasing physical ID. For example, in the team TA =
{ID2, ID3, ID5} robot ID2 gets slot s0, robot ID3 gets slot

s1, and robot ID5 gets slot s2. Since the team is dynamic, it

is convenient to refer to the robots in a way independent from

their physical ID. Thus, the same algorithm assigns each active

robot a logical ID that corresponds to its slot, i.e., the logical

ID li is assigned to the robot that owns slot si. As long as all

robots have a consistent view of the team, i.e., consistent team

membership, they will all derive the same slot assignment and

unique logical IDs. In particular, they will all know which slot

marks the beginning of the round, i.e., slot s0.

B. State dissemination

We use flooding with aggregation to share the state of

the robots throughout the mesh network. The state of each

robot encompasses its view of the network topology, the team

membership, and other team-shared information. Each robot

disseminates its own state in the beginning of its slot using a

multicast message to the entire team. When a robot receives

the state from a neighbour, it updates its own state. The state of

a robot also includes the age of each state variable, which is set

to zero when transmitted by the robot owning the variable and

it is incremented as the variable travels through the network

mesh. State aggregation only keeps the freshest values.

This mechanism, similar to [6], allows the entire team to

converge to the same team state in a bounded number of

rounds, assuming there is a path between any pair of robots

(i.e., a fully connected mesh). The number of rounds depends

on network diameter, message loss rate, and topology changes

(e.g., arising from motion).

Once the robot transmits its state message, the remaining

slot time is available to transmit messages from applications

running in the robots. An application example is a multi-hop

unicast delivery mechanism, where the topology information

(explained below) is used to set-up routes in the network [11].

C. Tracking topology

The network topology is part of the team state and is

represented by a connectivity matrix M (Fig. 1), where

M(j, k) = 1 if robot lj can receive messages from robot lk
1.

Robot li has a version of the matrix (M i) and it is responsible

for updating row i indicating the neighbours from whom it

receives messages. Note, however, that to avoid instability

due to transient message losses, the state of each link is

switched after a predefined number of consecutive rounds with

a consistent behaviour, only, either connected or disconnected.

1The connectivity matrix uses signal strength for better link management
but here we represent links as binary for simplicity.
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The remaining rows are taken from the matrices received

from the neighbours; as mentioned above, a row will only

be updated if the received values are fresher than the current

values, i.e., lower age.

l0

l1

l2

l3l4 l5

0 1 2 3 4 5

1 1

1

1 1

11

11

1 1

0

1

2

3

4

5

0

0 0 0 0 0

0 0 0 0

000

0 0 0 0

0000

1 1

1

0

l0 li

l0

li

Fig. 1: Connectivity matrix representing a team of 5 robots

and the corresponding network topology

Since each robot is constantly updating its own matrix, any

change in the network topology is propagated in the following

round, eventually reaching all robots a few rounds later.

However, in the dissemination process, matrices may be

temporarily inconsistent among robots, that is, some of the

paths may no longer exist or vice-versa. This inconsistency

is transient and intrinsic to the system, and collaborative

applications executing in the team must be aware of it. If

transient disruption of certain links is not tolerated, adequate

topology control must be used at the team level, e.g., doing

formation control.

D. Tracking membership

Membership refers to the current team composition, TA.

Tracking membership is fundamental for the communications

management for two reasons: (a) to define N , the current team

size, which is used to divide the communications round in N
slots, and (b) to determine each robot’s slot allocation. Thus,

the connectivity matrix includes a row with robots’ physical

IDs (top row in Fig. 1).

Whenever a robot in the team receives a message from a

joining team member (asynchronously), it inserts a new row

and column in its matrix for the new robot in a position

consistent with the slot allocation policy and increases N ,

effectively creating a new slot. This will be done by all team

members that hear the joining robot. In the following round,

the updated matrix is propagated to its neighbours, signalling

the arrival of the new member and its inclusion in the TDMA

schedule. The joining robot will also receive messages from its

new neighbours and update its matrix according to the current

team. Removing robots from the team can be triggered by

any team member, although typically there will be several

robots initiating the action. This is done when a robot (or

more) detects one or more null rows or columns in the matrix

for a predefined consecutive number of rounds. Such rows and

columns are deleted from the matrix, N updated accordingly

and the matrix propagated through the network. If the team

network is partitioned in cliques, each will form its own team

with its own matrix. Most importantly, as soon as one robot

links several cliques, they are merged back into a single team.

Collisions are handled by the CSMA/CA arbitration of the

native wireless protocol that we keep active. This is useful to

tolerate external traffic but also during joining phases, while

joining robots transmit asynchronously and until they get a

slot and synchronise with the team.

E. Team synchronisation mechanism

Recall that our purpose is to synchronise the team without

using absolute physical time, but relying on periodic network

state dissemination to enforce the slot allocation policy. Thus,

whenever a robot lk receives a state packet from a neighbour, it

can assert if the packet was received when expected or if it was

delayed. If a delay is detected, then the robot delays its own

next transmission by the same amount in order to maintain the

slots in order and separated. In fact, lk assesses the delays of

all state packets received in a round and uses the maximum

for its own compensation, achieving synchronisation even with

mesh topologies (Section V). Note that the actual source of

delays is irrelevant to the protocol, whether coming from

interference in the medium, in the protocol stack or from drifts

of robots internal clocks or even from misconfiguration with

different values of Tup. Moreover, the overhead is negligible,

owing to both the small state packets to synchronise commu-

nications and to the simplicity of the algorithm.

Fig. 2 shows an example of the synchronisation process in a

line topology accommodating a delay of δ time units affecting

robot l0 transmission at instant a). The dashed vertical lines

represent the slot boundaries in the original round structure,

i.e., before the delay, while the solid vertical lines represent

the slots in the shifted round structure, after accommodating

the delay. The arrows show the propagation of the delays as

imposed by the synchronisation mechanism.

The initial delay at time a) was detected by robot l2, the

recipient of the message, which delays its own transmission by

the same amount, i.e., δ time units, when it transmits its own

message, at time b). This delay is then detected by robot l1,

which also delays its next transmission, at time c). Similarly,

this delay is now detected by robot l3 that also delays its

next transmission at time d), concluding the synchronisation

of the team. If there are different delays affecting the messages

received by a robot in one round, it considers the maximum

to delay its transmission. However, if the delays are too large,

the robot communications can be stalled, jeopardising its real-

time properties, or they can also fall within a slot of another

robot. This is prevented truncating large delays that affect

the received messages to an upper bound (∆). The value ∆
has significant consequences for the dynamic behaviour of the

synchronisation mechanism, which will be discussed later on.

Fig. 3 shows in the Y-axis the offsets of the robots transmis-

sions in each TDMA round, with respect to the transmissions

of robot 0, as shown in [12]. The X-axis shows the sequence

of rounds in a timeline.Five robots are communicating using

Tup = 200ms and several consecutive network reconfigura-

tions occur, with robots joining and leaving. Robots 0, 2, and
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a) b) c) d)

1 320

Fig. 2: RA-TDMA+ synchronisation: (bottom) robots topol-

ogy; (top) delay propagation. Dotted lines represent the slot

structure before a delay occuring at time a) and the solid lines

represent the slot structure after that delay is accommodated.

4 form a network; robot 3 joins at round 24 (solid vertical

line) causing a resynchronisation from 3 to 4 slots. At round

45, robot 1 also joins (second solid line). Then, at round

60, robot 4 leaves the team (dotted line), which causes a

resynchronisation on round 72 (dashed line). Note that robot

4’s absence was confirmed after 10 consecutive rounds without

transmitting and then a reconfiguration was triggered to have

it removed from the team. The same happens when robot 2

leaves the network on round 73 (dotted line), and is removed

from the team on round 86 (dashed line).

�

�

��

�

T
up

=0.2s

0 10 20 30 40 50 60 70 80 90

t 
(s

)

0

0.05

0.1

0.15

0.2

0.25
Transmission offset with respect to start of round

Fig. 3: Synchronisation protocol operating with robots joining

(at t = 24, 45), leaving (at t = 60, 73) and removed from the

team (at t = 72, 86). Y-axis is offset of transmissions in each

round. X-axis is sequence of rounds in a timeline.

IV. TIMINGS AND PHASES IN RA-TDMA+

To formalise our synchronisation problem, we first define

the TDMA round as shown in Fig. 4 (right). Round k starts

at trk as given by Eq. (1), where tφ represents the offset of

round zero, i.e. tφ = tr0 . Slot i in round k starts at tsk,i
as

given by Eq. (2), which is expressed as an offset with respect

to the start of the respective round. Note that ∀k. tsk,0
= trk

and tsk,N
= trk+1

.

trk = tφ + k × Tup, where k ∈ N0 (1)

tsk,i
= trk + i×

Tup

N
, where i = 0, . . . , N − 1 (2)

1) Transforming time to phases: Similarly to many domains

that handle periodic processes (e.g., AC circuit analysis), we

adopt a phase representation of time, using a simple linear

conversion (see Eq. (3)) of the absolute time for each robot

[0,∞( (Fig. 4 right) to a corresponding angle θ in the phase

space [0, 2π( that represents one single round (Fig. 4 left).

All time instants separated by Tup are mapped onto the same

point in the phase space (same point in the circumference).

Offsets and delays are represented as angles in this space.

Thus, the extra complexity of considering absolute rounds that

is intrinsic to the timeline approach, and which is irrelevant for

synchronisation purposes, is avoided using phases. As the time

progresses for a robot, the corresponding phase moves around

the circle counter-clockwise. When the phase reaches points

a, b, and c respectively, slot 0, 1, and i start (as indicated by

the angle θ).

θ (t) =
2π

Tup

t (3)

Let us define φ the initial phase of a given periodic

round with initial time offset tφ. The conversion by Eq. 3)

of an arbitrary round k, as in Eq. 4, shows how index k
becomes irrelevant and the start of all rounds maps to φ, i.e.,

∀k. φ = θ (trk) = θ (tφ).

θ (trk) =
2π

Tup

× (tφ + k × Tup)

=θ (tφ) + 2πk = θ (tφ) = φ

(4)

Similarly, we define σi as the phase-equivalent of the start

time of slot i using Eq. 3 for t = tsk,i
(Eq. 2), which again

eliminates index k, leading to Eq. 5.

θ
(

tsk,i

)

=
2π

Tup

× tsk,i

=
2π

Tup

×

(

trk + i×
Tup

N

)

= φ+ i×
2π

N
= σi

(5)

2) Quantifying the synchronisation status: We note that

each robot li has its own local view of the start of the

communication round, with phase φi, relative to which it

defines its own transmission slot si. The synchronisation

mechanism explained above attempts at making all round

phases equal, that is, ∀i,jφi = φj , so that all slots are

referred to a similar time reference. Let us also define

Φ as the set of phases of all robots within the team,

Φ = {φ0, φ1, . . . , φN−1}. Similarly, let Φi be the phases of all

robots that are neighbours of robot li including its own phase,

i.e., Φi =
{

φi ∪
{

φk : M i(i, k) �= 0 ∧M i(k, i) �= 0
}}

.

Similarly to [8], we define the Arc(Φ), denoted AΦ, as the

shortest phase interval that contains all the phases of set Φ
(Fig. 5). Using AΦ we can measure the state of synchronisation

of the network since the smaller the value of the Arc, the

smaller are the differences between the phases of the robots.

For example, Fig. 5 shows a set of robots on the left that

are closer to synchronisation than those shown on the right.

However, measuring this value is not simple. Conversely, its
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Fig. 4: Right: TDMA round structure where trk is the start of round k and tsk,i
is the start of slot i of round k, the round

duration is Tup and the slot duration is Tup/N with N active robots. Left: The corresponding phase representation.

θ

l3

θ

AΦ

θ

AΦ

l1
l0

l2

l3

l1

l0

l2

Fig. 5: The Arc of a set of phases – The left set is closer to

synchronisation (smaller Arc) than the right set (large Arc).

complement, defined as the pair of consecutive phases furthest

apart from each other, i.e., (A∗
Φ = 2π −AΦ) is much simpler

to measure, as follows.

To measure A∗
Φ, we first sort the set Φ with growing

phase, thus obtaining Φ′ =
{

φ′
0, φ

′
1, . . . , φ

′
N−2, φ

′
N−1

}

,

where φ′
0 < φ′

1 < · · · < φ′
N−2 < φ′

N−1. Using this

ordered set we can calculate the clockwise distances2

between every pair of consecutive sorted phases

DΦ′ =
{

d′0,1, d
′
1,2, . . . , d

′
N−2,N−1, d

′
N−1,0

}

. Consequently,

distance d′i,j normalised in the phase space [0, 2π), between

the phases of robot li and lj can be computed with Eq. 6.

d′i,j =
(

φ′
j − φ′

i

)

− 2π

⌊

φ′
j − φ′

i

2π

⌋

(6)

Finally, we can obtain A∗
Φ as in Eq. 7 and, using this result,

solve Eq. 8 to calculate AΦ.

A∗
Φ = max (DΦ′) (7)

AΦ = 2π −A∗
Φ = 2π −max (DΦ′) (8)

Within AΦ, robots can be classified according to their phase

φ, as shown in Fig. 6:

• fΦ – Robots that have the most advanced phase within

the arc AΦ (front)

• bΦ – Robots that have the earliest phase within the arc

AΦ (back)

2We define the clockwise distance between two phases as the angle
separating them in a clockwise direction.

θθ

AΦ

fΦ
mΦ

bΦ
l3

l1l2l4 l5
l0

Fig. 6: Robots can either be fΦ, bΦ, or mΦ, if they are in the

front, back, or middle of the Arc, respectively.

• mΦ – Robots that are neither in bΦ nor a fΦ (middle)

Robots can only be classified in one of the categories above;

if all have the same phase, we say all robots are fΦ robots.

A. The synchronisation method in the phase space

When robot lj reaches its slot and sends a packet (Pj) to

its neighbourhood, its neighbours can estimate the phase φj of

lj . For that purpose, when a neighbour li receives the packet

from lj at time tjrx, it calculates the slot start of the latter robot

(tsk,j
) as in Eq. 9, where tjlen is the packet transmission time,

i.e., the time required to transmit b bits at the network bit rate.

Using this value in Eq. 5, we can calculate the phase of slot

sj (Eq. 10) and then the phase (φj) of robot lj (Eq. 11).

tsk,j
= tjrx − tjlen (9)

σj = θ
(

tsk,j

)

= φj + j ×
2π

N
(10)

φj = σj − j ×
2π

N
(11)

When robot li reaches its own slot, it will have collected

the phases of all its neighbours (Ni) in the previous round,

and can calculate how much delay (δi) it needs to add to its

next transmission to synchronise with the team (Eq. 12).

δi = max
k∈Ni∪li

(φk − φi)×
Tup

2π
(12)

Note that δi is never negative since at least φk − φi = 0
for k = i. On the other hand, if a limit is not imposed on
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Fig. 7: Synchronisation in two consecutive rounds. Top, l0
detects a delay of δ in l1 and l2; bottom, l0 delays its

transmission δ and recovers synchronisation.

this delay, robots can be a long time without transmitting,

jeopardising their real-time communications; or even start

transmitting in another robot’s slot. To prevent such situations,

we define a delay saturation value ∆ that we apply when

adjusting the phase of each robot (Eq. 13, where φnxt
i is

the new phase for robot li and φnow
i its current phase). The

specific value of ∆ determines how much delay a robot can

apply to its TDMA round, thus it also determines the speed

of convergence. Increasing ∆ allows larger phase adjustments,

thus longer delays but faster convergence. Conversely, shorter

∆ constrains the delays but slows convergence. This is a

trade-off between speed of convergence and stability of the

instantaneous round period.

φnxti = φnowi +min (∆, δi)×
2π

Tup

(13)

Fig. 7 shows the synchronisation process. The top part

represents a round in which l0 detects a delay of δ relatively

to l1 and l2. The lower part shows the next round where robot

l0 adjusted its phase to synchronise with l1 and l2. The left

side shows the robots timelines while the corresponding phase

representation from the perspective of robot l0 is on the right.

B. Implementation of the phase-based approach

The synchronisation approach represented in the phase

space was implemented in Matlab for extensive simulation

purposes. A video of a simulation showing the synchronisation

process is available at https://youtu.be/l0soqkJyKkE. In the

video, robots are joining the team one by one, until the

team has five active members. Their transmissions are being

affected by random delays that trigger the synchronisation

mechanism and represent load in the network beyond the team

communications, as well as the asynchronous transmissions of

the joining nodes. Then, robots start leaving the team, until

only three are left.

φ5

φ3φ4

φ0

φ2
φ1

AΦ

AΦ

φ4

φ3

φ2
φ1φ5φ0

Fig. 8: Different views by different robots. The Arc of the

team is smaller than π: all robots, either l0 (left) or l4 (right),

agree on the most advanced phase (l4 - dark grey circle).

V. CONVERGENCE OF THE SYNCHRONISATION

ALGORITHM

In this section, we determine the initial conditions that

enforce convergence of our synchronisation algorithm (Sec-

tion V-A), that is, we carry out an analysis of when our

algorithm will reach synchronisation. However, under certain

peculiar starting conditions, particularly when robots join, con-

vergence is not guaranteed. For those situations, we propose

an heuristic that avoids the pitfalls that prevent synchronisation

(Section V-B) and, although we cannot prove it converges, has

converged in every experiment during extensive simulations.

Specifically, we ran simulations using 10 robots in 1500

different random topologies, and for each topology 1000

random starting conditions.

A. Proving the convergence

Assume that we have a network of N robots, each with its

own view of the phase set, φi. ∀i=0..N−1, forming an Arc.

Also, assume that at a certain instant in time the phases are

not aligned (not all equal), caused, for example, by asymmetric

interference suffered by the robots or one robot that joined or

left the team. When the phenomena causing phase misalign-

ments cease, the synchronisation algorithm adjusts the phases

towards the maximal one, as explained before, and we can

state Theorem 1.

Theorem 1. If the Arc of the network is within π, AΦ < π,

then the proposed synchronisation protocol eventually con-

verges to a consistent phase φ = φi, ∀i=0..N−1.

Proof. In order to prove that the phases eventually reach φ =
φi, ∀i=0..N−1, we will show equivalently that all robots li in

the team (i = 0..N − 1) will become fΦ robots. In particular,

we will show that using our protocol the number of fΦ robots

increases for all i and never decreases.

Since all phases start within π, AΦ < π, all robots are able

to agree on who has the most advanced phase3. For example,

as we show in Fig. 8, the most advanced phase belongs to

l4 (dark grey circle); both from the point of view of robot l0
(Fig. 8 left) and robot l4 (Fig. 8 right)

3Note that robots are asynchronous and therefore do not know the slots or
phases of other robots in the beginning.
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Fig. 9: Failure to synchronise (1): All robots measure a delay

above ∆, thus all robots delay their own transmission by

∆. The relative distances of the phases is kept constant, and

synchronisation is never reached.

Now consider an arbitrary robot li in the team and let |F |,
|M |, |B| be the number of fΦ, mΦ, and bΦ robots, respectively.

If li is a fΦ, then it will not detect a phase more advanced

than its own, thus it will not delay its own transmission. If

li is a neighbour of an fΦ robot, it will observe a phase

more advanced than its own. Therefore, it will delay its own

communications, increasing its phase according to Eq. 13 and

reducing the difference to the phases of the fΦ robots until that

difference is zero. At that point, it becomes an fΦ robot and

|F | increases. This reasoning can be repeated with the new

fΦ robots and their neighbours, until |M | = 0 and |B| = 0.

As all bΦ robots delay their communications, the value of AΦ

decreases, eventually reaching zero when all robots become fΦ
robots and |F | = N . This trend occurs in all robots, eventually

leading to the synchronisation of the whole team.

B. Addressing the AΦ < π assumption

Despite the condition AΦ < π being very frequent in

practice, essentially corresponding to periods of stable team

composition, there are still situations when AΦ ≥ π, typically

related to the arrival of a new robot. In these cases, certain

rare scenarios may prevent synchronisation from converging,

for example when all robots are turned on simultaneously with

random phases or when unsynchronised groups of robots come

together. Such an example is shown in Figure 9, in which

all robots detect delays that are superior to the maximum

allowed delay correction per round (∆). The robots form a

fully connected network (see right part of the figure) and, as a

consequence, they all delay their communications by the same

amount of time. The resulting behaviour is that their relative

phases do not change, thus the robots remain unsynchronised

transmitting with a period equal to Tup +∆.

We also found that a loop topology (Figure 10) where all

robots have a neighbour that has a larger phase than their

own, can prevent synchronisation convergence. For example,

in the situation shown, each robot li will sequentially try

to synchronise with robot li+1 while robot lN−1 will try to

synchronise with robot l0. Consequently, all robots will delay

their transmission in the round which, similarly to the previous

problem, inhibits their ability to synchronise their rounds.

Delay

Delay

Delay

Delay

φ1

φ0

φ3
φ2

l3l0

l1

Topology

l2

Fig. 10: Failure to synchronise (2): topology loop causes robots

to adopt the phase of the previous one. Here, robots l0, l1, l2,

and l3 will sequentially change their phases to those of robots

l1, l2, l3, and l0 respectively, thus not synchronising.

Topology
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l4

l5

l6

l7

l8
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Tree

Fig. 11: Disseminating synchronisation information: Building

a tree from the connectivity matrix allows limiting the set of

neighbours with which robots synchronise, preventing loops.

To reach synchronisation even in such cases, we modified

our protocol to avoid loops that hinder the ability to reach

a consensus. Our solution is to build a spanning tree (thus

eliminating loops) using the topology information contained in

the connectivity matrix as shown in Figure 11. In the figure,

messages that arrive through links that exist in the current

topology (left) but not on the tree (right) are ignored for

synchronisation purposes.

Since the matrix is available in all robots, each one of

the team members can build its own tree locally following a

common set of rules, thus obtaining the same tree, as follows.

Initially, the root of the tree is the robot with the lowest ID,

namely robot l0. Then we add all neighbours of robot l0 to the

tree by increasing ID (increasing index), and repeat the process

for the neighbours of the neighbours until all the robots are

added. Note, however, that the tree does not actually limit the

propagation of information. It is only used to select a subset

of neighbours with which the robot synchronises, instead of

synchronising with all of its neighbours.

The drawback of having a tree is a reduction in speed

of disseminating synchronisation information throughout the

network, thus slowing the synchronisation process. If robots

were able to measure the value of AΦ directly, then it would

be simply a matter of using the tree when AΦ ≥ π, only.

However, since robots can only observe their neighbourhood,

they have a limited vision of the network and robot li can only
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Fig. 12: Time to synchronise a static topology as a function of

∆, using Tup = 200ms and random initial phases (AΦ ≤ π).

measure the Arc formed by itself and its neighbours (AΦi
).

Thus, to calculate an upper bound to the Arc of the team, each

robot li shares AΦi
as part of its state. Then, robot li computes

Σi =
∑

n∈[0,N−1] AΦn
� AΦ and uses the tree if Σi � π,

which is a conservative but safe option.

As a practical issue, for the sake of stability of the syn-

chronisation process, a hysteresis was added to this mode

change. That is, only after a pre-determined number of TDMA

rounds where the robot observes Σi � π will it start using the

tree. Similarly, only after the same number of rounds where

Σi < π, will the robot stop using the tree. Moreover, to avoid

inconsistencies as the ones caused by symmetries in the first

example, when the user inputs the value of ∆ (the maximum

delay per round), each robot calculates its internal value as

(0.8 + 0.2rnd)∆, where rnd is a random number between 0

and 1 taken from a uniform distribution.

VI. EXPERIMENTAL VALIDATION

RA-TDMA has been successfully used in robot soccer for

several years [10] and a practical algorithm that served as

inspiration for RA-TDMA+ was reported in [12]. In this

section we analyse RA-TDMA+ through extensive simulations

that cover a wide operational space and capture intrinsic

protocol features. We assess the impact of (i) ∆, the maximum

phase shift per round, and (ii) delays (regardless of original

cause); our main metric is the time to synchronise robots under

different conditions.

A. Influence of threshold ∆

We isolate the impact of ∆ on the time required to syn-

chronise. Remember this is an important design parameter that

sets a trade-off between speed of convergence and stability of

the round (i.e., the period does not increase much). To obtain

data that represents the intrinsic characteristics of the proposed

protocol, we do not consider any other source of interference

(e.g., no clock drifts, no packet losses, and no message delivery

delays) in this section.

We set up a network of 10 robots in a given topology

communicating with a period Tup = 200 ms, and ran simula-

tions for values of ∆ ranging from 10% to 100% of the slot

duration. For each of those values of ∆, we ran 100 different
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Fig. 13: Time to synchronise a dynamic topology against ∆,

using Tup = 200ms and random initial phases (AΦ ≤ π).

sets of starting phases, and measured the time required for the

robots to synchronise. We run this experiment with AΦ < π
for two cases: (i) fixed topologies and (ii) dynamic random

topologies, representing robots motion. In the latter case, the

robots were changing positions every 10s, and take 2s to reach

their new positions. We present the results in box graphs below

with x-axis with different values of ∆ and y-axis representing

the time required to synchronise. As usual, the box top and

bottom represent the 25% and 75% quartiles, the middle line

represents the median, and crosses represent top and bottom

25% quartile values.

The main observation is that, in all cases, all robots were

able to reach synchronisation, thus agreeing on a global

TDMA framework.

We can see from Figures 12 and 13 that the difference

between static and dynamic topologies is almost imperceptible,

given that for phases that do not differ too much, movement

does not make a difference. In addition, we can see that the

time to converge (in number of periods, or rounds) decreases

exponentially to start with, and is stable when ∆ > 0.2 (i.e.,

increasing ∆ speeds up synchronisation). This is expected

since, according to our analysis, the faster the robots can adjust

their phases, the faster a consensus is reached. Moreover, since

the phase differences are relatively small, the impact on the

synchronisation time is insignificant for ∆ ≥ 50%.

We also repeated the same set of experiments without the

AΦ < π constraint, to study a situation where the robots are

initially very unsynchronised (e.g., when one or more robots

join the team simultaneously). Figures 14 and 15 show that

the behaviour is less predictable, especially for values of

∆ > 50%. We can see that static and dynamic situations

have the same characteristics and values, when the maximum

delay per round is 20% or above. In the case of 10% The

dynamic case shows a larger time (average goes from 20s

to 26s) and variance. The increased variability comparing to

the static case, particularly when ∆ > 50%, is due to, as

mentioned above, the slower propagation of synchronisation

in the imposed tree topologies.

Discussion Both dynamic and static experiments show that,

when AΦ < π the absolute time to synchronise is below 5s

for ∆ ≥ 30%. These low values show that the protocol would
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Fig. 14: Time to synchronise a static topology as a function

of ∆, using Tup = 200ms and arbitrary initial phases.
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Fig. 15: Time to synchronise a dynamic topology as a function

of ∆, using Tup = 200ms and arbitrary initial phases.

enforce synchronisation in the team even for fast mobility,

with topology changes as frequent as every 5s on average.

Lastly, using a shorter round period (e.g., Tup = 100ms), would

reduce proportionally the time to synchronisation, increasing

resilience to dynamic topologies caused by mobility.

B. Impact of delays on the synchronisation

We analyse the impact of “observed delays” on the maxi-

mum phase difference, which is a measure of the team syn-

chronisation. External interfering traffic, robots’ clock drifts,

operating system interference, etc. are all indistinctively sensed

as part of the observed delays. Using the same values for Tup

and number of robots, we fix ∆ = 40% (i.e., 8ms), and inflict

a uniformly distributed random delay (between 0 and D) on

all packet transmissions, where D = 1, 2, ..., 10ms (from [4]

and more than ∆ in some cases). For each value of D, we

ran the experiment for 1000 seconds and recorded the value

of AΦ, that is, the maximum phase difference.

The results for both the static and the dynamic cases are

presented in Figure 16, where the X-axis represents the largest

difference of phases expressed in time (AΦ/2π ∗Tup) and the

Y-axis represents the cumulative number of occurrences of

that value. The results show that our synchronisation algorithm

effectively keeps the system with AΦ < π all the time, even

for larger levels of interference. Note that with Tup=200ms

a phase difference of π corresponds to 100ms. That is, the

AΦ ≥ π condition never occurs in the experiments, although

it may occur when new robots join the team (as we will see

below).

Moreover, we see that larger interfering delay increases

maxAΦ, i.e., for which CDF=1, in a near linear fashion, thus

causing a graceful degradation of the synchronisation state.

Note that, the lower AΦ the more stable the TDMA round

is (shorter phase adaptations). We also note the vertical lines

(corresponding to the 99 percentile of D = 1, 5, and 10ms)

shift to the right from static to dynamic as expected, adding

about 50% to 80% to the AΦ, but still preserving it to less

than 30ms.
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Fig. 16: CDF of the largest difference of phases (AΦ/2π∗Tup)

with different interference conditions, for different values of

maximum message delays.

C. Impact of team changes on the synchronisation

To complete the experiments, we address a more gen-

eral scenario in which we include robots mobility, random

interference delays and changes in the team membership,

with robots leaving and joining the team. We use the same

metric, thus assessing the combined impact on the maximum

phase difference. When membership changes, there is an

interval of time in which the robots transmissions will lose

synchronisation because their offsets (with respect to the first

slot) are no longer valid. To measure this effect, we use the

same pattern of movement as before and we remove one robot

from the team every 50s, until only 3 robots remain. Then, we

starting adding one robot back to the team every 50s until the

team has 10 robots again. Using the same values for Tup, we

fix ∆ = 40% (i.e., 8ms—26.6ms depending on the number

of active robots), and inflict a uniformly distributed random
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delay (between 0 and 10ms) on all packet transmissions. We

ran the experiment for 10,000 seconds (i.e., 200 changes in

team membership) and recorded the value of AΦ, that is, the

maximum phase difference.

The results are presented in Figure 17, where the X-axis

represents the largest difference of phases expressed in time

(AΦ/2π×Tup) and the Y-axis represents the cumulative num-

ber of occurrences up to that value. During this experiment, we

observed several time instances where AΦ ≥ π, caused by the

membership changes. Nevertheless, this is a small fraction of

all observed phase differences and our algorithm was always

able to recover synchronisation and keep the system with

AΦ ≪ π (recall that π = 100ms), as evidenced by the vertical

lines corresponding to the 90, 95, and 99 percentiles.
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Fig. 17: CDF of the largest difference of phases (AΦ/2π×Tup)

with a varying number of mobile team members from 10 down

to 3, then up to 10 again, repeatedly, every 50s.

VII. CONCLUSIONS

Our objective is the synchronisation of communications in a

team of cooperating mobile robots forming an ad-hoc dynamic

mesh network. We proposed a global TDMA protocol on

top of a common collision detection network. Our proposed

synchronisation approach is clockless, fully distributed, and

symmetrical, in the sense that all nodes play a similar role

(no master-slave coordination). To the best of our knowledge,

this is the first such approach that can be provably used for

synchronisation of periodic processes scattered over a mesh

network without a global clock.

Using a consensus approach and a phase representation of

the TDMA round, we proved that under common operating

assumptions the network achieves synchronisation, allowing

the nodes to use real-time-friendly TDMA framework. For

the rare scenarios that go beyond the considered assumptions

for the proof, we proposed a heuristic that allowed achieving

synchronisation for all conditions tested. This has been verified

by extensive simulations.

For future work, we will analyse which events (e.g., robots

joining/leaving the team) can make a synchronised team of

robots become unsynchronised with AΦ > π, and we will

focus on the proof of convergence of the proposed heuristic.
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