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Abstract 

Automatic modulation classification is a task that is essentially required in many intelligent communication 
systems such as fibre-optic, next-generation 5G or 6G systems, cognitive radio as well as multimedia internet-of-
things networks etc. Deep learning (DL) is a representation learning method that takes raw data and finds 
representations for different tasks such as classification and detection. DL techniques like Convolutional Neural 
Networks (CNNs) have a strong potential to process and analyse large chunks of data. In this work, we considered 
the problem of multiclass (eight classes) classification of modulated signals, which are, Binary Phase Shift Keying, 
Quadrature Phase Shift Keying, 16 and 64 Quadrature Amplitude Modulation corrupted by Additive White 
Gaussian Noise, Rician and Rayleigh fading channels using 3D-CNN architectures in both frequency and spatial 
domains while deploying three approaches for data augmentation, which are, random zoomed in/out, random 
shift and random weak Gaussian blurring augmentation techniques with a cross-validation (CV) based 
hyperparameter selection statistical approach. Simulation results testify the performance of 10-fold CV without 
augmentation in the spatial domain to be the best while the worst performing method happens to be 10-fold CV 
without augmentation in the frequency domain and we found learning in the spatial domain to be better than 
learning in the frequency domain. 
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Abstract

Automatic modulation classification is a task that is essentially required in many intelligent

communication systems such as fibre-optic, next-generation 5G or 6G systems, cognitive

radio as well as multimedia internet-of-things networks etc. Deep learning (DL) is a rep-

resentation learning method that takes raw data and finds representations for different

tasks such as classification and detection. DL techniques like Convolutional Neural Net-

works (CNNs) have a strong potential to process and analyse large chunks of data. In this

work, we considered the problem of multiclass (eight classes) classification of modulated

signals, which are, Binary Phase Shift Keying, Quadrature Phase Shift Keying, 16 and 64

Quadrature Amplitude Modulation corrupted by Additive White Gaussian Noise, Rician

and Rayleigh fading channels using 3D-CNN architectures in both frequency and spa-

tial domains while deploying three approaches for data augmentation, which are, random

zoomed in/out, random shift and random weak Gaussian blurring augmentation tech-

niques with a cross-validation (CV) based hyperparameter selection statistical approach.

Simulation results testify the performance of 10-fold CV without augmentation in the spa-

tial domain to be the best while the worst performing method happens to be 10-fold CV

without augmentation in the frequency domain and we found learning in the spatial domain

to be better than learning in the frequency domain.

1 INTRODUCTION

Automatic modulation classification (AMC) is a task that is

essentially required in many intelligent communication sys-

tems. Software defined radio (SDR) is a new age technology

that has driven communication systems to become more

flexible to take maximum advantage of the available limited

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2021 The Authors. IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

bandwidth. In a cooperative system, AMC enables transceiver

components to switch modulation schemes in the presence of

noise. AMC supports monitoring, intelligence and recognition

tasks by identifying the modulation scheme of an undefined

signal in a non-cooperative system [1, 2]. In addition to SDR

technology, AMC is also deployed in cognitive radio (CR) to

sense the spectrum band [3] and utilize the best available band

IET Commun. 2021;1–14. wileyonlinelibrary.com/iet-com 1
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for services to avoid user interference and congestion [4–6].

Other applications of AMC are in fibre optic channels for the

transport of radio and millimetre wave signals at long distances

for the next generation 5G and sub terahertz communications

[7], the Internet of Things (IoT) technology [8, 9], automated

modulation of Orthogonal Frequency Division Multiplexing

(OFDM) systems [10–13], beyond 5G low-latency communi-

cation [14], multimedia IoT [15], and spectrum monitoring and

signal interception [16] etc.

Deep learning (DL) technology has revolutionized the land-

scape of modern technologies. Its applications such as neural

networks have been instrumental in bringing changes to the

communication technologies worldwide. Convolutional Neural

Networks (CNNs) are a powerful family of neural networks

for learning from data and have wide applications in image

recognition, object detection [17, 18], and semantic segmen-

tation tasks etc. Typical desirable properties of the features

learned by CNNs are spatial invariance, translation invariance,

and locality while typical components of these networks are

convolutional layer, padding and stride operations, maximum

and average pooling layers, fully connected (FC) layer, dropout

layer, and batch normalization layer etc. For object recognition

purposes, deformations like pose, affine transformations like

scaling, translation, optical flow as well as rotation or shear are

widely used as augmentation methods to synthetically increase

the size of the datasets [19]. Colour information instead of

a grayscale image may also improve prediction performance

[20]. Spatial transformation methods such as per-pixel flow,

mean blur and differentiable bilinear interpolation can also

be used to deform the input images benefiting many visual

recognition tasks [21]. CNNs performance in a classification

process is based on several aspects, including fulfilling the

requirements of the Nyquist sampling principle. Small shifts in

the input can drastically change the output of a CNN. Classic

anti-aliasing may improve shift equivariance of deep networks

leading towards better generalization of the network. Corrup-

tions like salt and pepper noise, masking noise and additive

isotropic Gaussian noise makes it difficult to learn a useful

representation. In general, CNNs performance is robust to

corruptions such as rotation, scaling, blurring, and noise vari-

ants. Literal shift equivariance cannot hold when subsampling

and recovered only when features can be extracted densely.

Shift equivariance is lost in modern deep networks as com-

monly used down sampling layers such as strided convolution,

max pooling and average pooling ignores Nyquist sampling

theorem [22].

Modulation is a technique by which a message-carrying sig-

nal is superimposed on a carrier signal for transmission. Com-

monly used modulation schemes are Binary Phase Shift Keying

(BPSK), Quadrature Phase Shift Keying (QPSK) and Quadra-

ture Amplitude Modulation (QAM). The term PSK is widely

used in a radio communication system. This method is largely

compatible with data transmissions. It allows information to be

transmitted through a radio communications signal in a more

efficient manner as compared to other modulation techniques.

QAM combines amplitude and phase information at different

levels and has wide applications in internet services and digital

cable television.

Blurring is often used as a first step before operations such as

thresholding, edge detection, or before finding the contours of

an image. Applying a low-pass blurring filter smooths the edges

and removes noise from an image. A Gaussian blur is a low-

pass frequency filter and thus blurring is tolerant of changes

in the high frequency range. The down sampling of an image

allows sharper blurred areas to exist. A complicated, but largely

image-independent relationship exists between corresponding

blur levels in images at different resolutions, which can be clar-

ified by a blur magnitude model studied as a function corre-

sponding to spatial frequency.

The human visual system has an uneven response to various

frequency components. It is vulnerable to many frequency

elements and treats them unequally. CNN models are more

vulnerable to low frequency components than higher frequency

components and are thus close to the human visual system.

Spectral bias of the CNN models can’t allow the CNN models

to keep unimportant frequency channels during inference

without the loss of accuracy during inference. Discrete cosine

transform (DCT) represents a finite data sequence in terms of

a sum of cosine functions that oscillates at various frequencies.

DCT is used in a wide range of applications such as digital

audio, speech coding, digital image, digital video and digital

radio. DCT is a Fourier related transform but uses only real

numbers [23].

The Additive White Gaussian Noise (AWGN) is invariant

with respect to its signal space origin rotation. It is circularly

symmetrical in any direction of the signal space, applied to any

noise inherent to the information system with a constant magni-

tude around the frequency band, and it has a regular distribution

with an average time domain value of zero. Rayleigh fading is

however a reasonable pattern when several objects disperse the

incoming signal in the atmosphere before it reaches the receiver.

If the scattering is high enough, the central limit theorem states

that the responses of the channel impulses are modelled as a

Gaussian process irrespective of the distribution of each com-

ponent. If the scatter has no dominant element, then the mean

would be zero and the phase will be evenly dispersed between

zero and 2𝜋 radians. The Rician fading is also used to char-

acterize fading in environments where the transmitter and the

receiver have a line of sight (LOS) or clear specular direction.

The factor Rice is measured as the ratio of LOS or specular

power to distributed power and follows closely a non-central

chi-square distribution with two degrees of freedom.

A large number of AMC approaches suggested in the litera-

ture can be divided into two distinct categories: feature based

(FB) [24]–[27] and likelihood based (LB) methods [28]–[32].

The LB processes are known to obtain optimal outcomes by

considering AMC as a problem of hypothesis testing to have

an optimum solution in the Bayesian sense, thus decreasing

probability of misclassification, however under restricted com-

puting resources the time per decision is not feasible. On the

other hand, FB classifier is computationally proficient and can

achieve nearly optimum performance when properly designed.
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FB algorithms including cyclic statistics, wavelet transforms and

cumulant-based methods extract features in order to identify

modulation schemes. FB methods are favoured as suboptimal

classifiers in practice. The feature extraction is performed in

FB approaches during the pre-processing stage preceded by the

classification stage. Traditional FB methods focus largely on

professional expertise, enabling them to do well in some con-

texts, but suffering from higher computational complexity and

limited generalization issues.

Several studies in the literature have been proposed that are

aimed at designing specialized features for the recognition of

breast cancer [39]–[41], future robust networks for 6G [42],

classification of digital modulated images [43], in-band spectral

variation and deviation from unit circle while utilizing Nesterov

accelerated adaptive moment estimation technique and the

classifier based on the artificial neural network, which carries

out AMC across a wide range of signal to noise ratio (SNR),

multi-gene genetic programming (MGP) based on features

that transforms cumulative sample estimates into highly dis-

criminatory, iterative features before maximal MGP features

are achieved and to determine the final classification perfor-

mance of the MGP features, while taking advantage of the

structural risk minimization principle [4]. Other works include

the integrating of a new Nelder-Mead channel estimator into

the radio frequency distinct features fingerprinting technique,

as well as utilizing a multipath system with degraded SNR

[8], a blind modulation classification algorithm using discrete

Fourier transform to check the existence of a synchronization

defect, that is a timing-phase offset and frequency without

previous knowledge on the signal and channel parameters for

the QPSK, BPSK, Minimal Shift Keying (MSK), 16-QAM

and Offset-Quadrature Phase Shift Keying (OQPSK) schemes

[10], utilizing higher order cumulants and signal spectral fea-

tures to train K-Nearest Neighbour (KNN) classifiers and

Support Vector Machine (SVM) [15], and a block coordinate

descent dictionary learning algorithm for multiclass classifica-

tion between QPSK, 8-PSK, 8-QAM, 16-QAM, Quadrature

Amplitude Shift Keying (QASK), and 8-ASK modulation

schemes [16].

In addition to these traditional methods for AMC tasks,

DL has risen as an emerging field for AMC tasks. In the

literature, different methods have been employed for the use

of auto-encoding neural networks for the extraction of fea-

tures and classify them using millimetre waves over fibre optic

communication systems [7], an auto encoder focused on DL to

extract spectrum representative features to accurately classify

waveforms as idle, jammer, or Wireless Fidelity [5], a deep neu-

ral network made of FC layers for multiple input and multiple

output (MIMO) OFDM system for QPSK, BPSK, 64-QAM

and 16-QAM modulation schemes [10], an improved CNN

based AMC network to classify among 8-PSK, Double Side

Band Amplitude Modulation (AM-DSB), BPSK, Wideband

Frequency Modulation (WBFM), Gaussian FSK, 16-QAM, 64-

QAM, Continuous Phase Frequency Shift Keying (CPFSK) and

4-Pulse Amplitude Modulation (4-PAM) schemes in beyond

fifth generation communication systems [14]. In the OFDM

system, CNN based AMC approach is used to consider phase

offset for the classification of 8-PSK, 16-QAM, QPSK and

BPSK modulation schemes [12], an ensemble deep neural net-

work employing Euclidean distance based rectified linear unit

(ReLU) activation functions for the classification of 16-QAM,

64-QAM, QPSK and BPSK modulation schemes [13], a DL

based radio frequency signal classifier for the classification of

BPSK, QPSK, Continuous Phase Modulation (CPM), Gaussian

FSK, 16-QAM and Gaussian MSK modulation schemes [14],

a combination of two CNNs for the classification of CR based

signals representing BPSK, QPSK, 8-PSK, Gaussian FSK,

CPFSK, 4-PAM, 16-QAM and 64-QAM modulation schemes

[6], as well as a feed-forward deep neural network based multi-

class classifier, which is made using FC layers, for adaptive

spatial modulation MIMO systems [33].

Different from other works, in this paper, we have con-

sidered the problem of multiclass (eight classes) classification

of modulated signals, which are, BPSK, 64-QAM, 16-QAM

and QPSK signals affected by Rician, AWGN and Rayleigh

fading channels employing a 3D-CNN architecture in both

frequency and spatial domains with three data augmentation

techniques such as random zoomed in/out, random weak

Gaussian blurring and random shift augmentation techniques.

We employed augmentation only in the spatial domain during

training of the DL architecture. The remaining paper is set

accordingly.

Mathematical background is given in Section 2, datasets are

explained in Section 3, 3D-CNN architectures are explained in

Section 4, Section 5 explains the experiments, and results and

discussion is given in Section 6. Finally, conclusions are given in

Section 7.

2 MATHEMATICAL BACKGROUND

In this part, we will give a mathematical background for fading

channels which are used for simulations in this study such as

AWGN, Rayleigh and Rician fading channels. Furthermore, the

convolution operation will be described followed by modula-

tion schemes which are used in the experiments such as BPSK,

QPSK, 64-QAM and 16-QAM modulation schemes as well as

frequency domain (DCT) operation.

The AWGN channel is defined at discrete time event index i

by a series of outputs Yi . Yi is the sum of the I Ni and noise N Oi

inputs, where N Oi is distributed independently and identically

and taken from a normal zero-mean distribution of variance N.

Furthermore, it is assumed that the N Oi is not correlated with

the I Ni . Mathematically,

NOi ∼  (0,N) , (1)

Yi = INi + NOi. (2)

The response to the channel impulses is better modelled

as a Gaussian mechanism no matter how each component is

distributed. If the scatter does not have a dominant compo-

nent, the scatter will be spread uniformly between 0 and 2π
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radians with zero mean and phase components. The channel

response envelope is thus distributed as a Rayleigh function.

Mathematically,

R (r ) =
2r

Ω
e−r2∕Ω

, r ≥ 0, (3)

where Ω = E (R2 ).

There are two parameters to characterize a Rician fading

channel. The first one, K is the ratio of the power in the direct

direction to the power in the other dispersed directions.

K =
v2

2𝜎2
. (4)

The second one, W is the total power from both paths and

acts as a scaling factor to the distribution

� = v2 + 2𝜎2. (5)

The 3D kernel is convolved into the cube to accomplish 3D

convolution, made up of several contiguous frames that are

stacked together. By this design, the feature maps in the con-

volutional layer are connected to the previous layer by several

contiguous frames together. The value of the jth feature map in

the ith layer at point (x, y, z) is formally defined with:

𝜐
xyz

i j
= f

(

bi j +
∑

m

Pi−1
∑

p = 0

Qi−1
∑

q = 0

Ri−1
∑

r = 0

𝔴
pqr

i jm
𝜐

(x+p)(y+q)(z+r )
m(i−1)

)

,

(6)

where Ri is a 3D kernel size in the temporal dimension, 𝔴
pqr

i jm
is

the (p, q, r)th kernel value that is connected to the previous layer

of the mth feature map. Since multiple kernels are convolved

with the input layer, the output contains a stack of activation

maps when several kernels are convolved with the input layer.

BPSK, functionally equivalent to 2-QAM modulation, uses two

phases separated by 180
◦

and 0◦.

Mathematically,

sn (t ) =

√

2Eb

Tb
cos

(

2𝜋 ft + 𝜋 (1 − n)
)

, n = 0, 1. (7)

QPSK uses four points on the constellation map equally dis-

tributed around a circle functionally equivalent to 4-QAM mod-

ulation, which are separated by 7𝜋∕4, 5𝜋∕4, 3𝜋∕4 and 𝜋∕4.

Mathematically,

sn (t ) =

√

2Es

Ts
cos

(

2𝜋 fct + (2n − 1)𝜋∕4
)

, n = 0, 1, 2, 3.

(8)

One carrier lags the other by 90
◦

in a QAM signal and is

generally defined as the in-phase component I(t) for its ampli-

tude information. The quadrature component Q (t) is the other

modulating function for its phase information. Mathematically,

sn (t )
Δ
= sin

(

2𝜋 fct
)

I (t ) + cos
(

2𝜋 fct +
𝜋

2

)

Q (t ) . (9)

The finite sequence of data points is expressed by DCT in

terms of the number of cosine functions that oscillate at various

frequencies. Mathematically,

Xk1,k2,k3
=

N1−1
∑

n1=0

N2−1
∑

n2=0

N3−1
∑

n3=0

xn1, xn2,xn3 cos
[

𝜋

N1

((

n1 +
1

2

))

k1

]

cos
[

𝜋

N2

((

n2 +
1

2

))

k2

]

cos
[

𝜋

N3

((

n3 +
1

2

))

k3

]

∀ ki = 0, 1, 2, … ,Ni−1

.

(10)

3 DATASET DESCRIPTION

We used 16-QAM, 64-QAM, QPSK and BPSK modula-

tion schemes to modulate random 2D lung X-ray images

of COVID-19 and healthy subjects downloaded from

the internet, added AWGN, Rayleigh and Rician noise to

them; and finally formed 3D volumes by stacking multi-

ple contiguous 2D frames together. There are eight classes

present in the dataset which are BPSK-AWGN-COVID-19,

BPSK-RICIAN-HEALTHY, 16-QAM-AWGN-COVID-19,

16-QAM-RAYLEIGH-HEALTHY, 64-QAM-RAYLEIGH-

COVID-19, 64-QAM-RICIAN-HEALTHY, QPSK-AWGN-

COVID-19 and QPSK-RICIAN-HEALTHY. A sample digital

modulated image of these classes is shown in Figure 1.

4 DESCRIPTION OF THE 3D-CNN
ARCHITECTURES

We used two 3D-CNN architectures for the experiments which

are shown in Figures 2 and 3. The only difference between these

architectures is the number of filters. We used more filters for

the experiments with more data in the training set such as those

involving augmentation methods. As we can see in Figures 2

and 3, there is an input layer with a size of 297 × 167 × 10 with

zero-centre normalization to obtain data dimensions (channels)

of approximately the same scale through division of each dimen-

sion (channel) by its standard deviation once it has been zero-

centred. This is done by subtracting the mean from each of

these dimensions (channels) so that the data cloud is centred at

the origin. After that, feature maps are created using a 3D con-

volutional layer by moving a filter of size 3×3×3 with number of

feature maps set to 12 or 11 depending on the number of sam-

ples in the training set. Here, we set the values of bias and weight

L2 factors to 0.00005 as smaller but non-zero weights generate

simpler model that is able to learn complex data patterns and

thus helps avoid overfitting by mitigating noise in the samples.

After that, a batch normalization layer [34] dynamically normal-

izes the inputs on a per mini-batch basis which has shown to
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FIGURE 1 A sample digital modulated image of all classes used for the multiclass classification task

improve the training time while avoiding overfitting. After that,

an exponential linear unit (ELU) layer [35] is added to speed up

learning by pushing mean activations closer to zero. Mathemat-

ically, it could be described as:

ELU∶

{

x, x ≥ 0

� (ex − 1) , x < 0
(11)

The pooling process progressively decreases the spatial res-

olution of hidden representations by aggregating information

such that greater receptive fields in the higher layers (in the

input) are sensitive to each hidden node. The pooling operator

consists of a fixed window that slides over all input regions in

compliance with its strides to measure single output at each

position crossed by a fixed-shaped window. Max pooling oper-

ators compute the highest factor value in the pooling window.

FC layer (also known as dense layer or the inner product layer)

has full links to all activation maps of the previous layer. The

input is simply multiplied by a weight matrix and a bias offset

is added. The FC layer is somehow similar to the convolutional

layer. Although the convolutional layer is connected to a local

region of the input, all inputs are connected to the FC layer.

One can be converted into the other easily. The dropout oper-

ation [36] helps in mitigating the overfitting phenomenon. It

works by injecting noise into each layer of the network during

training zeroing out some fraction of the nodes in the individual
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FIGURE 2 3D-CNN architecture with more number of samples in the training set for the experiments

layer before computing the next layer in forward propagation.

Finally, the softmax function helps in interpreting the outputs

of the 3D-CNN architectures as probabilities by optimizing the

model parameters to produce probabilities that maximize the

likelihood of the observed data. The classification layer places

the outputs into one of the eight classes.

In our proposed architecture, we have added three FC or

dense layers with the final dense layer having 8 neurons to place

the input into one of the 8 categories. The first two dense layers

have 500 and 300 neurons each to capture the feature activations

as they are getting passed from the convolutional layers. After

that, we added a dropout layer right before the softmax layer

with a probability of 0.1 to mitigate the disharmony between

batch normalization and dropout techniques caused by the vari-

ance shift phenomenon [38]. We chose the architecture to keep

the number of parameters to a minimum without sacrificing the

performance. Figure 4 displays another view of the proposed

3D-CNN architecture

5 EXPERIMENTS

We conducted a number of experiments using 10-fold and 5-

fold cross-validation (CV) approach to choose the optimum set

of hyperparameters. The experiments were carried out in the

spatial domain with and without augmentation techniques as

well as without augmentation in the frequency (DCT) domain.

We performed the following experiments:

1. Multiclass (8-classes) classification of modulated signals

augmented by the combined random shift, random weak

Gaussian blurred and random zoomed in/out augmen-

tation techniques in the spatial domain using 5-fold CV

approach.

2. Multiclass (8-classes) classification of modulated signals

augmented by the combined random weak Gaussian

blurred, random shift and random zoomed in/out aug-

mentation schemes in the spatial domain using 10-fold CV

approach.

3. Multiclass (8-classes) classification of modulated signals

augmented only by the random weak Gaussian blurred aug-

mentation scheme in the spatial domain using 5-fold CV

approach.

4. Multiclass (8-classes) classification of modulated signals

augmented only by the random weak Gaussian blurred aug-

mentation scheme in the spatial domain using 10-fold CV

approach.

5. Multiclass (8-classes) classification of modulated signals

augmented only by the random shifted augmentation

scheme in the spatial domain using 5-fold CV approach.
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FIGURE 3 3D-CNN architecture with less number of samples in the training set for the experiments

FIGURE 4 Proposed 3D-CNN architecture with a different view

6. Multiclass (8-classes) classification of modulated signals

augmented only by the random shifted augmentation

scheme in the spatial domain using 10-fold CV approach.

7. Multiclass (8-classes) classification of modulated signals

augmented only by the random zoomed in/out augmen-

tation scheme in the spatial domain using 5-fold CV

approach.

8. Multiclass (8-classes) classification of modulated signals

augmented only by the random zoomed in/out augmen-

tation scheme in the spatial domain using 10-fold CV

approach.

9. Multiclass (8-classes) classification of modulated signals

without augmentation in the spatial domain using 5-fold

CV approach.
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10. Multiclass (8-classes) classification of modulated signals

without augmentation in the spatial domain using 10-fold

CV approach.

11. Multiclass (8-classes) classification of modulated signals

without augmentation in the frequency domain using 5-fold

CV approach.

12. Multiclass (8-classes) classification of modulated signals

without augmentation in the frequency domain using 10-

fold CV approach.

For all the experiments that involve 10-fold CV approach as

well as 5-fold CV with augmentation(s), we choose a mini-batch

of size 2, an initial learning rate of 0.001, maximum number of

epochs were set to 30, training set was shuffled after every epoch

to mitigate overfitting, piecewise learning rate was selected that

lowers the learning rate after every 5 epochs by multiplying with

a factor of 0.1, while Adam [37] was used as the optimizer and

categorical cross-entropy as the loss function. Feature maps in

the convolutional layer of the 3D-CNN architecture were set to

12. The training was conducted on a single NVIDIA Titan RTX

graphical processing unit.

For all the experiments that involve 5-fold CV approach with-

out augmentation(s) in the frequency and spatial domains, we

choose a mini-batch of size 2, an initial learning rate of 0.001,

maximum number of epochs were set to 30, training set was

shuffled after every epoch to mitigate overfitting, piecewise

learning rate was selected that reduces the learning rate after

every 5 epochs by multiplying with a factor of 0.1, while Adam

was used as the optimizer and categorical cross-entropy as the

loss function. Feature maps in the convolutional layer of the 3D-

CNN Architecture were set to 11.

For the experiments involving 5-fold CV approach without

augmentation in the frequency and spatial domains, the vali-

dation set has 96 samples per class while the training set has

384 samples per class. For the experiments involving 5-fold

CV approach with single augmentation technique in the spa-

tial domain, the validation set has 96 samples per class while

the training set has 768 samples per class. For the experiments

involving 5-fold CV approach with combined augmentation

techniques in the spatial domain, the validation set has 96 sam-

ples per class while the training set has 1536 samples per class.

For the experiments involving 10-fold CV approach without

augmentation in the frequency and spatial domains, the vali-

dation set has 48 samples per class while the training set has

432 samples per class. For the experiments involving 10-fold

CV approach with single augmentation technique in the spatial

domain, the validation set has 48 samples per class while there

are 864 samples per class in the training set. For the experiments

involving 10-fold CV approach with combined augmentation

techniques in the spatial domain, the validation set has 48 sam-

ples per class while the training set has 1728 samples of each

class.

Total time for the experiments was approximately

28,418 min, 474 h, or 20 days while time for a single experiment

was approximately 316 min or 5.27 h. Approximate time for

the experiments that used 5-fold CV approach was around

TABLE 1 Average CEN values for all methods

Serial # Methods

Average

CEN

1 10-fold CV without augmentation in the spatial

domain

0.0605

2 5-fold CV without augmentation in the spatial domain 0.0732

3 10-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.082

4 5-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.0891

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

0.092

6 5-fold CV with combined augmentations in the spatial

domain

0.1002

7 5-fold CV with random zoomed in/out augmentation

in the spatial domain

0.1044

8 5-fold CV without augmentation in the frequency

domain

0.1135

9 10-fold CV with random shifted augmentation in the

spatial domain

0.1144

10 10-fold CV with combined augmentations in the

spatial domain

0.115

11 5-fold CV with random shift augmentation in the

spatial domain

0.1161

12 10-fold CV without augmentation in the frequency

domain

0.1296

8942 min or 149 h while approximate time for the experiments

that used 10-fold CV approach was around 19476 min or 325 h.

6 RESULTS AND DISCUSSION

Tables 1–6 represent the results of the experiments performed

for the multiclass classification of signals in the presence of fad-

ing. We used RCI, CEN, IBA, GM and MCC as our perfor-

mance metrics.

The RCI metric is an entropy-based measure that quantifies

how much the uncertainty of the decision problem is reduced

by the classifier, relative to classifying by simply using the prior

probabilities of each class. It corrects for differences in prior

probabilities of the diagnostic categories, as well as the number

of categories. Values of this measure lie in the interval between

0 and 1, where values close to 1 represent better classification.

CEN is an information theoretic measure based upon the

idea of entropy for measuring classifier performances. It evalu-

ates the confusion level of the class distribution of misclassified

samples. CEN measures generated entropy from misclassified

cases considering not only how the cases of each class have

been misclassified into other classes, but also how the cases

of the other classes have been misclassified as belonging to

this class, as well as entropy inside well-classified cases. Small

values of CEN represent less information loss and better

classification.
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TABLE 2 Average IBA values for all methods

Serial # Methods

Average

IBA

1 10-fold CV without augmentation in the spatial

domain

0.9406

2 5-fold CV without augmentation in the spatial domain 0.9295

3 10-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9215

4 5-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9141

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

0.9106

6 5-fold CV with combined augmentations in the spatial

domain

0.9018

7 5-fold CV with random zoomed in/out augmentation

in the spatial domain

0.8993

8 5-fold CV without augmentation in the frequency

domain

0.892

9 10-fold CV with random shifted augmentation in the

spatial domain

0.891

10 10-fold CV with combined augmentations in the

spatial domain

0.889

11 5-fold CV with random shift augmentation in the

spatial domain

0.8881

12 10-fold CV without augmentation in the frequency

domain

0.8716

TABLE 3 Average GM values for all methods

Serial # Methods

Average

GM

1 10-fold CV without augmentation in the spatial

domain

0.9826

2 5-fold CV without augmentation in the spatial domain 0.9793

3 10-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9769

4 5-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9746

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

0.9736

6 5-fold CV with combined augmentations in the spatial

domain

0.9708

7 5-fold CV with random zoomed in/out augmentation

in the spatial domain

0.9701

8 5-fold CV without augmentation in the frequency

domain

0.9678

9 10-fold CV with random shifted augmentation in the

spatial domain

0.9675

10 10-fold CV with combined augmentations in the

spatial domain

0.9669

11 5-fold CV with random shift augmentation in the

spatial domain

0.9666

12 10-fold CV without augmentation in the frequency

domain

0.9614

TABLE 4 Average MCC values for all methods

Serial # Methods

Average

MCC

1 10-fold CV without augmentation in the spatial

domain

0.9655

2 5-fold CV without augmentation in the spatial domain 0.9589

3 10-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9542

4 5-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.9498

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

0.9478

6 5-fold CV with combined augmentations in the spatial

domain

0.9424

7 5-fold CV with random zoomed in/out augmentation

in the spatial domain

0.9409

8 5-fold CV without augmentation in the frequency

domain

0.9364

9 10-fold CV with random shifted augmentation in the

spatial domain

0.9357

10 10-fold CV with combined augmentations in the

spatial domain

0.9346

11 5-fold CV with random shift augmentation in the

spatial domain

0.9339

12 10-fold CV without augmentation in the frequency

domain

0.924

TABLE 5 RCI values for all methods

Serial # Methods RCI

1 10-fold CV without augmentation in the spatial

domain

0.9189

2 5-fold CV without augmentation in the spatial domain 0.902

3 10-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.8902

4 5-fold CV with random weak Gaussian blurred

augmentation in the spatial domain

0.8805

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

0.8765

6 5-fold CV with combined augmentations in the spatial

domain

0.8656

7 5-fold CV with random zoomed in/out augmentation

in the spatial domain

0.8602

8 5-fold CV without augmentation in the frequency

domain

0.8483

9 10-fold CV with random shifted augmentation in the

spatial domain

0.8471

10 10-fold CV with combined augmentations in the

spatial domain

0.8459

11 5-fold CV with random shift augmentation in the

spatial domain

0.8448

12 10-fold CV without augmentation in the frequency

domain

0.8263
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TABLE 6 Individual and overall ranking of the methods

Serial # Methods

Individual and

overall ranking

1 10-fold CV without augmentation in the

spatial domain

1

2 5-fold CV without augmentation in the spatial

domain

2

3 10-fold CV with random weak Gaussian

blurred augmentation in the spatial domain

3

4 5-fold CV with random weak Gaussian

blurred augmentation in the spatial domain

4

5 10-fold CV with random zoomed in/out

augmentation in the spatial domain

5

6 5-fold CV with combined augmentations in

the spatial domain

6

7 5-fold CV with random zoomed in/out

augmentation in the spatial domain

7

8 5-fold CV without augmentation in the

frequency domain

8

9 10-fold CV with random shifted augmentation

in the spatial domain

9

10 10-fold CV with combined augmentations in

the spatial domain

10

11 5-fold CV with random shift augmentation in

the spatial domain

11

12 10-fold CV without augmentation in the

frequency domain

12

IBA provides information on the dominancy of a class with

the highest degree of individual accuracy. The method combines

an unbiased index of its overall accuracy and a measure of how

dominant the class with the highest individual accuracy rate is.

Higher values indicate better classification.

GM focuses only on the recall of each class which is aggre-

gated multiplicatively. It is defined as the product of sensitivity

and specificity under a square root. Higher values of this mea-

sure indicate better classification performances.

MCC is a coefficient of correlation between the classifica-

tions that are observed and predicted. Its values lie in the inter-

val between -1 and+1, where+1 indicates perfect classification.

As given in Tables 1–6, we considered average values of class-

wise statistics for CEN, IBA, GM and MCC metrics for the

eight classes, the values of the RCI metric as well as individ-

ual and overall ranking of the methods. The average values are

calculated by taking the sum of values in the eight classes and

dividing that sum by 8.

As a visual aid, Figures 5–10 display the values of each of

these performance metrics as well as the overall ranking of the

methods based on these metrics.

The procedure for forming the ranking system will be

explained next. To form the RCI based ranking of methods, we

took the maximum values and sorted all the methods based on

these values. To form the CEN based ranking of methods, we

took the minimum of average values of this metric and sorted all

of our methods based on these values with the best performing

FIGURE 5 Average CEN values of the methods in the study

FIGURE 6 Average GM values of the methods in the study

method been given the minimum average CEN value. To form

the IBA, GM and MCC based ranking of the methods, we took

the maximum of average values of these metrics and sorted all

of our methods based on these values with the best performing

method been given the maximum average IBA, GM or MCC

value. Finally, we formed the overall ranking of the methods

based on the individual RCI, CEN, IBA, GM and MCC rank-

ings. In this case, our overall and all individual metrics based

rankings are exactly the same which shows strong correlation

between the individual metrics as given in Table 6. As a visual

aid, Figure 10 displays the ranking of all the methods considered

in this study as given in Table 6.

As can be seen in Table 6, the best performing method

turns out to be 10-fold CV without augmentation in the spa-

tial domain while the worst performing method happens to be

10-fold CV without augmentation in the frequency domain. We
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TABLE 7 Comparison with the state-of-the-art

Author(s) Data Method(s) Accuracy Classification task

K Bu et al. [44] RadioML2016.10a Adversarial transfer learning architecture 82.4% Multiclass classification

Kim S.H et al. [45] RadioML2018.01A CNN architecture 91.48% Multiclass classification

P. Ghasemzadeh et al. [46] RadioML2018.01A DBN based model 85% Multiclass classification

Ma H et al. [47] RML2016.10a Cross model deep learning scheme 90% Multiclass classification

Y Lin et al. [48] RML2016.10a Filter-level pruning technique 80% Multiclass classification

Hu S et al. [49] RML2016.10a DNN based classifiers 80% Multiclass classification

Lin R et al. [50] RadioML2016.10b CNN + bi-directional GRU 89.25% Multiclass classification

Li L et al. [51] RML2016.04C Capsule network 90% Multiclass classification

Zhao Y et al. [52] Custom DL based intelligent edge surveillance technique 89% Multiclass classification

Our approach Custom 3D-CNN 96.97% Multiclass classification

DBN: Deep Belief Network, GRU: Gated Recurrent Unit.

FIGURE 7 Average IBA values of the methods in the study

FIGURE 8 Average MCC values of the methods in the study

FIGURE 9 RCI values of the methods in the study

can also observe that spatial domain methods have an edge over

frequency domain methods. One reason for the better perfor-

mance of spatial domain methods could be that they work on

data with larger variation in intensity values of inputs which

allows them to capture intrinsic information of a volume bet-

ter. Furthermore, combining the augmentation methods in the

training set resulted in performance degradation in compar-

ison with the methods that used single augmentation meth-

ods. In addition to that, we can observe that random weak

Gaussian blurring augmentation method is the best perform-

ing augmentation method in comparison to random zoomed

in/out augmentation and random shifted augmentation meth-

ods. Although the best performing method uses more data in

the training set, methods that used more data during training

may not necessarily be the best. The performance of meth-

ods that used random shifted augmentation during training was

found to be inferior to the other methods. One reason for this

phenomenon is that small translations or rescalings of the input
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FIGURE 10 Individual and overall ranking of methods based on

performance metrics

image can drastically change the prediction of a CNN model as

CNNs are not invariant to such transformations due to the igno-

rance of classical sampling theorem. The better performance of

random weak Gaussian blurring augmentation method could be

explained by the blurring operation that smooths the output of

the non-linearity which helps in preventing high frequency acti-

vations, and also helps in isolating the aliasing phenomenon.

AMC is an important task with wide range of civil and mili-

tary applications and has a number of uses in different scenar-

ios. Our work lies at the intersection of DL and AMC task. We

deployed state-of-the-art 3D CNN architectures for the mul-

ticlass classification of modulation schemes in the presence of

noise in both spatial and frequency domains with data augmen-

tation procedures to carry out this task.

The proposed architecture is optimally designed to carry out

multiclass classification of modulation schemes. The main gist

behind the design is to attain maximum performance from the

proposed design. Number of neurons in the FC layers, fea-

ture maps in the convolutional layers and other hyperparame-

ters have been chosen to avoid overfitting, long training time

and other problems. It can be seen that 3D CNN architectures

are a useful tool for this task in achieving better performances.

Comparison of our work with the other studies reported in

the literature is given in Table 7.

7 CONCLUSION

In this work, we compared and contrasted the performance of

several DL architectures for the multiclass (8-classes) classifica-

tion of modulated signals in the presence of noise in both spatial

and frequency (DCT) domains. The best performing model has

been found to be 10-fold CV without using augmentation in

the spatial domain while the worst performing model has been

found to be 10-fold CV without augmentation in the frequency

domain. Furthermore, we note that spatial domain methods

performed better than their frequency domain counterparts.

This study can be extended further by considering other mod-

ulation schemes such as frequency modulation methods as well

as noise models such as Nakagami model and other DL archi-

tectures such as graph convolutional networks.
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