Formal Contracts for Runtime Verification Support in the Ada Programming Language

André Pedro, David Pereira, Luís Miguel Pinho, and Jorge Sousa Pinto
{anmap, dmrpe, lmp}@isep.ipp.pt, jsp@di.uminho.pt

Motivation

• Static Verification is not sufficient to cope with many of the challenges of modern and future generation real-time embedded systems:
 • state-explosion problem of model-checking;
 • limited automation in deductive reasoning, even with recent advances in SAT and SMT solvers.
• Most of the data important to certify a real-time embedded system is related to extra-functional properties:
 • Duration of tasks;
 • Energy consumption;
 • Temperature management;
 • Other cyber-physical properties.
• Unfortunately, most of the extra functional data is only available and verifiable during execution time.

Runtime Verification

• Runtime Verification is the discipline that studies formal theories and that proposes methods to generate monitors capable of observing and verifying formal specification during execution time:
 1. Formal specifications determine the property of interest that must be verified;
 2. Monitors are generated from that specification and are instrumented into the system.
• Typical contracts establish properties about the program that are verified via static approaches
• Runtime Verification behavior should follow the same principles:
 • Users define contracts about properties that he wishes to see verified upon execution;
 • The system is responsible for generating the monitors from those contracts.

Ada 2012 and Contracts

• Contracts enhance trust in the system by establishing a compromise between requirements and implementation
• Ada 2012 provides a sub-language for specifying contracts:
 • Checked at runtime via asserts, or;
 • Statically verified using the SPARK toolset.
• Contract language provides the ideal environment to specify properties that we need to be checked upon run-time (e.g., timed behavior of tasks)
• Runtime Verification contracts can be pre-processed to generate the monitors, and afterward removed, thus preserving the standard Ada 2012 contracts

Underlying Architecture

Pluggable Formal Theories

References

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and when applicable, co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within project UID/EEA/04005/2013 (CISTER Research Centre); also by the EU ARTEMIS JU within project ARTEMIS/0001/2013 - JU grant n. 621429 (EMC2).