
Silvia Mazzini

Intecs S.p.A.

Pisa, Italy

silvia.mazzini@intecs.it

Lessons Learned in a Journey toward

Correct-by-Construction

Model-Based Development

On the origin of Correct-by-Construction

• Quoting E. Dijkstra: software productivity is closely

related to rigor in design, a sound and predictable

method to eliminate software bugs at an early stage

• … Not first write a program and then test it, but rather

provide a mathematical proof of correctness before

committing the corresponding algorithm to code

• Essentially… it is about detecting and removing as

early as possible any errors that may occur in the

development

3

Pursuing CbyC according to the MDE paradigm:

the ideal process

• CbyC principles and the MDE paradigm lead to an

ideal process of automated software production

• from a formal specification of the solution

• through a sequence of (automated) model transformations

• to a correct implementation

• Correctness of the involved transformations proven by

some algebra

4

• The goals of CbyC can be attained by the application of the

following six principles:

• Specialization
• Use formal/precise tools/notations

for any product of the development cycle

• Automated step-wise validation
• use tool support to validate

the product of each step

• Divide-and-conquer
• break the development down in

smaller steps to defeat error persistence

• Dryness
• say things only once, to avoid

contradictions and repetitions

• Beware of complexity
• design software that is easy to validate

• Rigor and discipline
• do the hard things first, including

thorough requirement analysis

and the development of early prototypes
5

Late Peter Amey’s «six principles» for CbyC

Still a code-centric approach!

Definition and

experimentation

of an MDE way to CbyC

Lessons learned across different projects

• We want to share our experience in this quest over a decade of
work across 4 large R&D projects

• ASSERT (EU FP6 program): the first attempt to realize a model-driven

methodology for embedded space software system development with a

dedicated component model, explicitly focused on CbyC.

• CHESS (ARTEMIS): the realization of a cross-domain model-based,

component-oriented approach to the development of embedded real

time software systems across domains

• SafeCer (ARTEMIS): model-driven technology for composable and

reusable safety certification, experimenting with contract-based

development processes

• CONCERTO (ARTEMIS): extend the CbyC model-based methodology

of CHESS to multi-core processors with the same level of guarantees

and also widened the coverage of industrial application domain needs

6

• Primary goal: prevention of semantic errors creeping in the user

model

• In particular, in the specification of real-time attributes and in the derivation of

real-time properties for software components and of their assembly

• Main result: a dedicated component model to enable

architectural, rule-based composition, for the compositional

assembly of locally asserted real-time attributes into system-level

properties

CbyC in Model-Driven Engineering:

the ASSERT Experience

7

8

The ASSERT Methodology

• Two levels of abstraction

 Platform-independent model (PIM) as the user space
o Model of components

o Expression of functional and timing properties for component interfaces

 Platform-specific models (PSM), generated by automated model

transformations, as an analysis and implementation space that

captures the concurrency and real-time semantics expressed in the

PIM model
o Feasibility analysis

o Automatic code generation

• Models conform with a given meta-model

 For syntax, semantics and constraints on entities, attributes and

relations

 The meta-model makes all the dimensions of interest fit together

consistently

9

CbyC Principles in ASSERT

• Model-based analysis

• Guaranteed static analyzability

• Consistent implementation

Ravenscar

Profile

A Ada profile for high-integrity

systems

• Eliminating non-determinism

and unbounded execution time

and space

• Warrants static analyzability

Language-neutral semantics

of the Ravenscar profile

A high-level language to design

systems that are Ravenscar-

compliant by construction

A programming

model prescribed

by the RCM

Graphical/

declarative language

Higher-level of abstraction

same semantics

ASSERT

Model

Ravenscar

Computational

Model

one single

meta-model

guarantees the

consistency

10

The CHESS approach

An open source solution for the development

of critical real-time and embedded systems

 Model-driven engineering

• Models as the central development artifacts

• Tool assisted automated development

 Component based development

• Specialized to capture the non-functional properties of components

o Real Time

o Dependability

 Separation of concerns

Separation of concerns [1/2]

A multi-view approach

11

 To sharply separate distinct aspects of design

 Each development actor focuses exclusively on their area of [development] expertise

 Use specialized formalisms, tools and verification techniques for distinct concerns

 Especially functional and non-functional concerns

Requirements View

System View

Component View

Analysis View

Deployment View

 Achieved by the use of design views in the user space

The architectural description of the system is

organized into one or more views of the

system where each view addresses one or

more concerns of the system’s stakeholders*

* [ISO/IEC/IEEE42010:2011 Systems and software engineering — Architecture description]

12

Separation of concerns is also achieved by the use of

 A component model that separates components, containers, and connectors

and uses them to address distinct concerns

Separation of concerns [2/2]

The CHESS Component Model

A component is a

pure functional unit

Exposes a set of cohesive

functional services

Declares the functional

services required from other

components or the system to

operate correctly

Declares the applicable non-functional

constraints and requirements in terms

of annotations of its functional

interface

The source code of components

is pure sequential code.

non-functional concerns are

realized (and guaranteed) by the

component model infrastructure

enables

Reuse of components under

different non-functional

concerns → increased reuse

potential

Component

 Component

• Reusable functional unit, decorated with non-functional constraints

• Platform Independent

 Container and Connector

• Implementation of the non-functional properties of components

• Factorized implementation

• Platform Specific

 Composability

• properties of individual components are preserved on component

composition

 Compositionality

• properties of the system as a whole can be derived as a function of

the properties of components

13

The CHESS Component Model

14

CHESS Container and Connector

Component

A

Container A

Component

A

Container A

Component

B

Container B

Connector AB

Container

-Wrapper responsible for the declared non-

functional attributes

- Provides the component with a mediated

connection with the execution platform and the

system in general

Connector

- Addresses interaction concerns

- Decouples the component from the other end-point(s) of a communication

- Realizes connection properties (best-effort, at most once, exactly once)

- E.g. procedure/function call, remote message passing, I/O file operation, …

- From the interaction perspective components

are black boxes that only expose their interfaces

Component-based modeling with guarantees

16

CHESS Component Model with properties of

 Compositionality

• the properties of the system as a whole can be

determined as a function of the properties of the

constituting components and the execution

environment

 Composability

• individual components’ properties are preserved on

component composition, deployment on target and

execution

 Computational model

• To relate architectural entities and their properties to

analysis equations

• To statically analyze the system

 Programming model

• To enforce analysis assumptions

• To express the semantics assumed

by the analysis

 Execution platform

• To actively warrant the properties

asserted by analysis

Correctness by construction

Non-functional properties can be:

• Specified on the model

• Asserted by static analysis

• Guaranteed in the implementation

• Preserved at run-time

17

The CHESS Modelling Language

Imports subsets of
standard languages
 avoid redundancy

fix semantic variations

Standard profile for
Modeling and Analysis of

Real-Time and
Embedded Systems

Standard Unified
Modeling LanguageStandard profile for

System and
Requirements Modeling

Integrates and extends standard
OMG languages

Introduces a new
Dependability Profile

19

CHESS under the Eclipse PolarSys Initiative

Investment in PolarSys of important players from the industrial and academic world:

a reliable community committed in the effort to create and maintain open methods and tools

for critical systems, guaranteeing interoperability based on open standards

20

SafeCer:

Using Contracts

• Use Contracts

• for lower levels of decomposition to

be consistent with the higher ones

• to formalize conditions for element

verification and integration

• for reuse of abstractions of available

components

• Contract-based design benefits

• compositional reasoning

• co-engineering

• separation of concerns

• systematic virtual integration and

verification

• protection of intellectual property

Contract

Reusable

component

21

Contract-based approach

 Contracts composed of Assumptions and
Guarantees

• Assumptions are properties expected

to be satisfied by the environment

• Guarantee is a statement that

holds as long as the environment

satisfies the assumption

Contract

Assumption

GuaranteeThe conceptual models

Functional Architecture

Logical Architecture

Physical Architecture

Step-wise (vertical) refinement process

with formal verification of contract refinement

within each conceptual model

and trace relation between corresponding

entities at different conceptual levels

22

Step-wise refinement

Formal verification

If the refinement steps are proven correct, then any implementation of the

leaf components that satisfies the component contracts can be used to

implement the system

A

B C

D E

… it is a top-down process …

Reusable

component

… but there is also a

bottom-up driver

exploiting a library of

reusable certified

components

• The OCRA tool by Fondazione Bruno Kessler supports checking

of refinement of contracts specified in a linear-time temporal logic

• Integration of OCRA in the CHESS tool-chain provides a

framework that assists the user across the entire development

process

• Description of the system and its hierarchical decomposition

• Definition of requirements associated to components

• Formalization of requirements as contracts

• Stepwise refinement process with explicit verification of contract

refinements and component implementations

• However…

• identifying a feasible system decomposition and contract refinement

requires engineering experience and human intervention

• Designing traces between corresponding component in different

conceptual levels is responsibility of the user (no automated formal

verification)
23

The CHESS Tool-chain

Integration with the OCRA tool

24

The CHESS enhanced V-model

development process

To extend the CHESS project achievements

 Extensions to multicore platforms

 Support partitioning

 Address mixed-criticality issues

 Manage run-time monitoring and back propagation of run-time data

 Model and clearly represent component hierarchies

 Support AUTOSAR

 Wider coverage of industrial domains

• automotive, medical, offshore platforms, avionics, telecom, space

25

Further Challenges:

CONCERTO

CONCERTO: Guaranteed Component

Assembly with Round Trip Analysis for Energy

Efficient High-integrity Multi-core Systems

ARTEMIS JU Call 2012: ongoing

26

The CONCERTO process

Implementation / analysis /
execution space

PIM

Design space
1. You construct a PIM to
represent your solution to
your problem,
independent of any

specific implementation.
Platform
description

Deployment
information

2
2. You complement the PIM with
information on the target platform
and the deployment plan.

This is a feature-rich
specification space for
multicore HW!

1-2a. Dependability/safety
analysis is performed at PIM
system/SW and platform
specification level, with back
propagation of analysis results.

1

1-2a

Analysis tool

PSM

3. Automated model transformation
produces a PSM from the user PIM3

4

4. Real-time relevant analysis
is performed on the PSM

5-6. The analysis results
are back propagated to
the PSM and to the PIM

5

6

The user iterates the
1-6 cycle as many
times as needed

7-8. The implementation is deployed to the HW,
with run-time verification support if needed.
Run-time monitoring is activated to grab live
data for run-time monitoring analyses and back
propagation of results, as in 5-6.

Run-time
Environment

7

8

The PSM is read-only!
The implementation product
is guaranteed to be
deterministic

• Multi-core target platforms introduce an extremely high level of complexity

for real-time analysis

• At the state-of-the art predictability analysis in case of multi-core processors

yields penalizing results due to the adoption of necessary conservative

countermeasures

• Scheduling so that only one core at a time is active

• Use strictly partitioned scheduling

The CHESS/CONCERTO solution is based on:

• Advanced feasibility analysis

• Possibility to perform schedulability and end-to-end response time analysis on

different (multi-core) deployments for comparison

• Back propagation of analysis results to the user model (PSM and then PIM)

• Round-trip analysis methodology

• Back propagation of run-time data from application execution in its run-time

environment for comparison with analysis results and model assumptions

• Use run-time monitoring to detect/ manage violations

27

Addressing Multi-core Processors Platforms

It is a «correct-by-correction» approach: design failures may occur,

but they are detected early enough and managed accordingly

• AUTOSAR (AUTomotive Open System ARchitecture)

• Open and standardized software architecture for automotive,

jointly developed by automobile manufacturers, suppliers and

tool developers

• Integrating CONCERTO with AUTOSAR

• Sound model transformations were developed from

CONCERTO to AUTOSAR

• CONCERTO component model entities are mapped to semantically

equivalent AUTOSAR ones

• The vice-versa was not feasible (AUTOSAR->CONCERTO)

• AUTOSAR component model has a richer set of constructs

• AUTOSAR allows higher degree of modeling freedom

• … but this freedom comes at the cost, for instance, of run-time semantics

of operations specified by the user in the AUTOSAR model not being

guaranteed, by construction, to be statically analyzable for feasibility

28

CHESS extensions for the Automotive domain

CONCERTO and AUTOSAR can complement each other,

but no complete bi-directional integration is currently possible

29

Automotive: CHESS integration with AUTOSAR

CHESS

CHESS

Model the

Component-based

design with

• Interfaces

• Component Types

• Component

• Implementations

CHESS

• The ASSERT and the CHESS development processes and

modelling steps had a strong connotation of CbyC

• SafeCer proposes a rigorous stepwise contract refinement

approach for system and software design.

• decompositions and refinements may have a more tentative nature than

assertive, requiring backtracks, as in correctness-by-correction

• Lessons learned in CONCERTO

• the wider the coverage of non-contiguous industrial domains, the more

difficult the application of CbyC

• not enough design and implementation prescriptions are known to

enforce correctness, to guide the development in a top-down fashion

• the satisfaction of some (modelling and semantic) constraints had to be

deferred to later stages, enabled by ad-hoc transformations toward

specialized analyses (e.g., for dependability, conformance to given

restrictions, feasibility in the time domain)

• substantial deflection of CbyC into correctness-by-correction

30

Conclusions

31

Thank you for

your attention!

Questions?

